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Universidad de Sevilla. Escuela Politécnica Superior, C/ Virgen de Africa, 7, 41011-Sevilla, Spain and
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Metapopulation models have been a popular tool for the study of epidemic spread over a network of highly
populated nodes (cities, provinces, countries) and have been extensively used in the context of the ongoing
COVID-19 pandemic. In the present work, we revisit such a model, bearing a particular case example in mind,
namely that of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e., between the
first and second pandemic waves). Our aim is to consider the possibility of incorporation of mobility across the
province nodes focusing on mobile-phone time dependent data, but also discussing the comparison for our case
example with a gravity model, as well as with the dynamics in the absence of mobility. Our main finding is
that mobility is key towards a quantitative understanding of the emergence of the second wave of the pandemic
and that the most accurate way to capture it involves dynamic (rather than static) inclusion of time-dependent
mobility matrices based on cell-phone data. Alternatives bearing no mobility are unable to capture the trends
revealed by the data in the context of the metapopulation model considered herein.
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I. INTRODUCTION

Human mobility has played an indisputable role in COVID-19 dynamics [9, 28] with as many as 86% of global cases having
been imported from Wuhan, the original location of the pandemic. Studies of the epidemic in China have shown that in the
early stages thereof, the probability of an outbreak was correlated with the frequency of imported cases from Wuhan [28]. The
trajectory of the epidemic over a similar time period was also studied in [29] using an SEIR (Susceptible-Exposed-Infected-
Recovered) stochastic metapopulation model, where it was determined that undocumented infections played a crucial role in the
rapid spread of the epidemic. These early and high profile studies render it clear that a systematic consideration of such mobility
aspects of the pandemic and of theoretical models thereof is a key ingredient towards appreciating its potential for spreading
across countries and regions.

Continuing along this vein, in a subsequent study [44], the probability of case importations to countries having airports with
direct flights to and from mainland China was estimated. It was assumed that the probability of importation is proportional to
the number of airports in the country with direct connections to mainland China. With the implementation of Wuhan’s travel
ban and the subsequent international travel restrictions, [9] analyzed the effect of quarantine measures on local, national, and
international pandemic spread. Even though the spread of the virus could only be delayed in the Chinese mainland, the mitigation
of the transmission would be notable around the world. Modeling the course of the epidemic in other countries such as England
and Wales, [13] also incorporated daily commuting as an important factor in the spread of the disease. It was assumed that
infectious hosts may infect others both at home during the night and away during the day in the span of a day’s cycle. A study
evaluating confinement and other mitigation measures in Spain [2] used workforce mobility as a proxy for confinement. For
Brazil, commuter and airline data were used to calibrate a stochastic epidemic model [11]. The model was used to investigate the
spatial spread of the disease at various geographical scales (ranging from municipalities to states). It should be clear that these
are only some select studies within a continuously expanding large volume of literature, which has now also been reviewed, e.g.,
in [7] (see also earlier reviews such as [8, 31]).

Of course, such models have a time-honored history in earlier instances of disease-spread modeling. For example, the Global
Epidemic and Mobility (GLEAM) team integrates real-world pandemic transmission models with mobility data, including airline
transportation network flows, ground mobility flows, and sociodemographic features, to capture spatiotemporal connections
between mobility and an epidemic’s spread [4, 9]. A model for influenza in the US [33] accounted for both daily commuting and
random travels between states. One of the main findings there was that the metapopulation model more accurately predicts the
onset, peak timing and intensity than models only accounting for specific locations. A study of long-term influenza patterns in the
US [42] used mortality data and the gravity model, whereby population flows between nodes of the metapolulation network are
determined by considerations akin to Newton’s law of gravity, to study the spreading of influenza across states. References [4, 49]
also showed correlation between infection spread and human movements. Theoretical metapopulation studies, where the travel
rates are given by the gravity model, also exist [5]. Other works use the rates at which hosts leave and return to their permanent
locations to infer the coupling strengths in their ODE model [25]. In earlier work, the bubonic plague epidemic was modeled
using a similar approach [24], with adjacent metapopulations on a lattice coupled to rates chosen to fit historical data.

Studies looking at human mobility under lenses that go beyond gravity models also exist. One such example is the radiation
model [37], which is based on the assumption that population density dictates employment opportunities, so when density is
low, commuters need to travel longer distances. Hence, the predicted flux depends on the origin and destination populations
and on the population of the region surrounding the origin location. More recently, a new mobility law [36] has been proposed
showing that the number of visitors to any location is proportional to the inverse square of the product of the frequency of visits
and distance traveled. This law has been applied in the context of urban mobility (within-city mobility), where it has shown a
remarkable agreement with data.

When traffic data are available, they may be leveraged using entropy maximization techniques [22, 41] aiming to reconstruct
origin-destination matrices [46] describing human mobility among various locations. However, in more recent considerations
where mobile phone data are available, these have been found to more accurately represent the actual movements of people
[39, 45]. During the first and second COVID-19 pandemic waves, in the US [3, 21], Japan [48], and in China [9], among others,
mobile phone location data were utilized to explore the effects of mobility on the reported cases reduction.

We should also note in passing that other approaches to examining the spatial spread of COVID-19 have also been deployed,
including, e.g., models based on partial differential equations [27, 30, 43]. These modeling efforts take into account local
population density by modifying the transmission coefficients accordingly [27] (compared to an ordinary differential equations
model), emphasize the importance of inflows from neighboring regions [43], and utilize time-varying diffusion coefficients to
account for the effect of mitigation measures [27, 30].

In the present work, we wish to explore some of the practical challenges of applying a metapopulation model to a concrete
region during the COVID-19 pandemic, and also when attempting to systematically compare model results with existing data.
In line with our earlier studies [12], we bring to bear an epidemic model that accounts for both symptomatic and asymptomatic
infections and includes appropriate recovered compartments, as well as a compartment for the fatalities, since the latter appears
to be the most accurate dataset [23]. However, since we have examined already aspects of the identifiability of such models,
as well as their usefulness in the context of age-structured populations [12], we do not focus on such aspects herein. Instead,
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our emphasis is on the availability of different approaches to couple the nodes of such a model into a network pattern for a
metapopulation description of a region of interest. In that vein, we compare and contrast the findings of an implementation
neglecting the mobility between provinces, with one incorporating it. When incorporating such mobility traits, we comment
on our attempts to do so, based on “standard” techniques such as those stemming from gravity models or transportation-based
origin-destination matrices.

Our case example of interest is the region of Andalusia in Spain for numerous reasons, including the familiarity of our group
with the region (aiding an understanding of the observed mobility patterns and, e.g., their seasonal variation). A significant
feature facilitating and enabling our study is a large-scale data analysis of the Transportation Ministry of the Spanish Government
[32] that provides time-resolved mobility data across the provinces within this region and hence a dynamic incorporation of the
relevant patterns based on an “as accurate as possible” characterization of the mobility within the area of interest. We calibrate
the model using fatality data from Andalusia [15], focusing on the summer and early fall period of 2020 (i.e., from around the end
of the first and the beginning of the second pandemic wave). During this period, mitigation measures were relatively relaxed and
mobility among provinces was high due to summer vacations and later due to higher education-related relocation. We find that
we are unable to obtain a quantitative match with the observed data in each province (and hence Andalusia as whole) without
mobility —or with static patterns of mobility produced by some of the above mentioned “standard” techniques—. Instead,
our most accurate quantitative description of the observations stems from the incorporation of the above described “dynamic
mobility” as obtained from the time dependent mobile-phone data in [32].

Our presentation is structured as follows. In Section 2, we present the model, including the relevant metapopulation network
considerations. We also show how mobility matrices, an input to the metapopulation model, that are obtained from different
data sets compare. In Section 3, we present our results, including the parameter fitting approach used and the comparison with
the existing data for COVID-19 fatalities in each Andalusian province. Finally, in Section 4, we present our conclusions and a
discussion towards future steps within these classes of models. The Appendix contains information on the determination of the
Origin-Destination matrix using either the gravity method or mobile-phone data.

II. MODELING FRAMEWORK

A. Epidemic model for each node
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FIG. 1. Schematic diagram of the Susceptible-Exposed-Asymptomatic-Infected-Recovered (SEAIR) model for each metapopulation node.

In the ordinary differential equation (ODE) model that we put forth (a slight variant of the ones previously considered,
e.g., in [12, 27]), there are seven compartments for each node. Susceptible individuals, S, become exposed (latently infected,
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not infectious yet), E, after contact with either asymptomatically infectious hosts, A, or symptomatically infectious hosts, I .
Recall that the importance of asymptomatically induced transmission, especially in the context of COVID-19 has been argued
in numerous studies [7, 34]. We assume standard incidence βAS,IS/(N −D), where N −D = S +E +A+ I +U +R is the
total living population. However, as the number of individuals in the deceased class D is quite small in most cases, from now
on it will be ignored compared to N , namely we will set the incidence to βAS,IS/N , where the transmission coefficient βAS,IS
can be assumed constant over the considered periods of time. We have selected the time interval under consideration as one
involving high mobility without changes in mitigation measures, so as to reflect more clearly the genuine role of transportation
effects in the model results.

Once in the exposed class E, a fraction of hosts φ never develop symptoms and moves into the asymptomatically infectious
classA at a rate σA. Asymptomatic hosts are assumed to recover at an average rate γA and move into the recovered compartment
U . The remaining exposed host fraction 1− φ develops symptoms at a rate σI and these individuals move into the symptomat-
ically infectious class I . A fraction ω of symptomatic hosts die at an average rate χ (moving into the compartment D) and
the remaining fraction 1 − ω recovers at a rate γI and moves into the recovered class R. A schematic diagram of the above
description is shown in Figure 1. The relevant equations governing the spreading of the epidemic read:

S′ = −βASS
A

N
− βISS

I

N
(1)

E′ = βASS
A

N
+ βISS

I

N
− (κA + κI)E (2)

A′ = κAE − γAA (3)
I ′ = κIE − (κR + κD)I (4)
U ′ = γAA (5)
R′ = κRI (6)
D′ = κDI, (7)

where we set

κA = φσA, κI = (1− φ)σI , κR = (1− ω)γI , κD = ωχ. (8)

In what follows, in order to reduce parameter redundancy in the model, we fit the following seven parameters and parameter
combinations

βAS , βIS , κA = φσA, κI = (1− φ)σI , κR = (1− ω)γI , κD = ωχ, γA (9)

This version of the model will be used when considering the fatalities within Andalusia’s provinces but without any (mobility-
induced) coupling between them and when considering the entire Andalusia (no metapopulation). It is straightforward to
observe that for system (1-7), the total population N = S + E + A + I + R + U + D is conserved. Moreover, the subset
{S ≥ 0, E ≥ 0, A ≥ 0, I ≥, U ≥ 0, R ≥ 0, D ≥ 0} of R7 is positively invariant for the system. Hence, the system is well-posed
for any initial condition.

All variables and model parameters are defined in Table I.

B. Metapopulation model

We are implementing a coupling between the different provinces in line with [5]. Namely, we assume that individuals are
indistinguishable and travel from node i to node j at some rate given by human mobility data, without assigning any base
location to them. Hence, individuals in node i are instantaneously assigned to node j upon arrival, regardless of their prior node
(no memory). The same individual may change multiple nodes, in principle, within the model. Connections between the nodes
depend on the mobility flow of susceptible S, exposed E, and infectious hosts, A and I . To avoid a highly complicated model,
we do not incorporate terms such as SiAj , SiIj in the equations., i.e., we assume that the primary source of infection is through
interactions of susceptible with infectious individuals within each node (no direct long-range transmission).

The metapopulation model assumes the following form (with i = 1, . . . imax where imax = 8 since Andalusia has eight
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TABLE I. Variables and parameters
Variable

S susceptible hosts
E exposed hosts
A asymptomatically infectious hosts
I symptomatically infectious hosts
U recovered hosts (transitioning from A)
R recovered hosts (transitioning from I)
D deceased hosts
t time (days)
Parameter

βIS transmission rate between I and S (1/day)
βAS transmission rate between A and S (1/day)
κA transition rate from E to A (1/day)
κI transition rate from E to I (1/day)
γA transition rate from A to U (1/day)
κR transition rate from I to R (1/day)
κD transition rate from I to D (1/day)

provinces):

S′i = −βASSi
Ai
Ni
− βISSi

Ii
Ni

+ θ

∑
j

Mij
Sj
Nj
−
∑
j

Mji
Si
Ni

 (10)

E′i = βASSi
Ai
Ni

+ βISSi
Ii
Ni
− (κA + κI)Ei + θ

∑
j

Mij
Ej
Nj
−
∑
j

Mji
Ei
Ni

 (11)

A′i = κAEi − γAAi + θ

∑
j

Mij
Aj
Nj
−
∑
j

Mji
Ai
Ni

 (12)

I ′i = κIEi − (κR + κD)Ii + θ

∑
j

Mij
Ij
Nj
−
∑
j

Mji
Ii
Ni

 (13)

U ′i = γAAi (14)
R′i = κRIi (15)
D′i = κDIi (16)

N ′i = θ

∑
j

Mij −
∑
j

Mji

 (17)

The last equation shows how the population of node i is updated over time. Our model is along the lines of [29, 33]. If mobility
is ignored by setting θ = 0, the total population within each node Ni is conserved. Otherwise, when θ = 1, solely the total
population over all provinces is conserved. We note that θ is a binary parameter, assuming the value 1 (0) when human mobility
is considered (not considered). Mij is the daily rate of people traveling from j to i. Then, one multiplies this rate with the
proportion of S,E,A, I in the total node population Nj . This can be interpreted as the probability of an individual from these
four classes traveling if we choose randomly from Nj . Symptomatically infectious individuals I are assumed to be able to
move, but not U or R. In any event, the latter two do not affect further dynamics in the network as they are terminal classes of
the model. Allowing U and R to move (since no re-infection is considered on the time-scales used in the present work) only
has the effect of redistributing the recovered population among the network nodes: the infection dynamics are not expected to
be directly affected. However, movement of individuals in these compartments may still change the population size of a given
location, which could slightly affect incidence (frequency-dependent transmission with 1/Ni, 1/Nj terms). It is relevant to also
note that, over the time scale considered, these individuals are assumed to have immunity (upon recovery) and, hence, it is
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not considered to be a possibility for the population in U or R to re-enter the susceptible population, over the time frame of
interest. Therefore, we only allow the susceptible class, S, which consists the majority of the population, and the exposed, E,
and infectious, A and I , classes to move among the network nodes. Furthermore, since there were no mobility restrictions at
the time, we assume that the movement of exposed, asymptomatic, and infected individuals is the same as the movement of
susceptible individuals. While quarantine and isolation were required at the time for infectious and exposed individuals, we
consider that they all travel and at the same rate since it is not straightforward to estimate compliance. Should, however, such
compliance data become available, it would be an easy fix to multiply Mij with the appropriate compliance rate.

One may easily observe that as long as Ni > 0, i = 1, ..., 8 the metapopulation model is well-posed for any initial condition.
This follows since the region

{Si ≥ 0, Ei ≥ 0, Ai ≥ 0, Ii ≥, Ui ≥ 0, Ri ≥ 0, Di ≥ 0} ⊂ R56

is positively invariant and for the time period studied, while Ni fluctuate, they stay positive for all i = 1, ..., 8.
We note that based on the mobility data [32], the network of the eight Andalusian provinces is a complete graph and the

population flows Mij are time-dependent. In the following subsection we discuss how we determined the daily movement rates,
i.e., the population flows, between two network nodes, and alternative ways to determine them if mobile-phone records are not
available.

C. Human mobility estimation

Mobility flows are commonly estimated from mobile-phone records. In this work the flows we analyzed are based on a study
performed by the Ministry of Transportation, Mobility and Urban Agency (Ministerio de Transportes, Movilidad y Agenda
Urbana-MITMA) [32] that included all of Spain for the period beginning on March 14, 2020. The main data source was
anonymized mobile phone data for more than 13 million mobile lines as well as locations of communication towers and antenna
orientations. Population data as well as information about the transportation network (airport locations, railways) were leveraged.
Figure 2 shows the time-dependent population flows for each province, i.e., each network node, of Andalusia as determined by
the mobile-phone data. They are shown for the time duration of our study, starting on July 10, 2020 till October 29, 2020 (112
days). Note the significant time dependence of the inter-province population flows.

Daily mobility data among locations, such as those provided by mobile phones, may not be always readily and publicly
available. When this is the case, other types of data and alternative models are used to determine the population flows. One
avenue is to rely on census surveys and base the coupling of the epidemiological model on daily commuting data [13, 14]. In this
approach, workdays and weekend, as well as commuters and non-commuters, should be distinguished using additional travel
surveys. Failure to consider non-work related trips may lead to an erroneous slowing down of the epidemic [14]. This fine tuning
is not required when using time-varying mobility matrices as in the present work.

Another avenue is to utilize commonly used trip-distribution modeling techniques, like the gravity model to construct the
origin-destination (O-D) matrix for the metapopulation network. The gravity law is used extensively in the literature to model
travel demand between O-D pairs (e.g., [16, 20]). We assume a region where n denotes the nodes (or centroids ) of the cities in
the regional transportation network and m their highway links. A trip matrix element (number of trips per day) is denoted by
wij , where i and j are the origin and destination nodes of the considered trip, respectively. Given the population of these cities
and their distances, the O-D matrix elements are computed by

wij = C
Nα
i N

γ
j

eβGdisij
(18)

where C is a constant, disij is the distance between the O-D pair (ij), α and γ are parameters associated with the populations
Ni and Nj of the pair (ij), and βG is a constant parameter whose value —measured in units of inverse distance, indeed in our
case of 1/Km— depends on the distance between the network nodes, as explained in Appendix A. Once the elements of the O-D
matrix have been estimated, the force of infection on susceptible hosts Sj in location j in the metapopulation model, which reads
βASAj/Nj , βISIj/Nj in Eqs. (10, 11) is modified as [47]

βAS
1

Nj

(
Aj + CNγ

j

∑
i6=j

Aαi
eβGdisij

)
, βIS

1

Nj

(
Ij + CNγ

j

∑
i6=j

Iαi
eβGdisij

)
. (19)

A notable difference between models implementing (19) and the metapopulation model (10-17) is the following. Whereas the
model defined by (10-17) introduces mobility via changes directly in the rates of change of the S, E, A, and I populations (for
θ = 1), models using (19) implement mobility through modification of the transmission terms.

It is relevant to note that the accuracy of gravity-like models has received considerable recent criticism [36, 37]. In the present
work, we will not embark on a detailed comparison of a metapopulation model based on the gravity law and our own approach
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FIG. 2. Time-varying daily population flows (the daily rate of individuals traveling Mij) for each Andalusian province as determined from
mobile-phone data [32]. The destinations are shown on the vertical axis. The code name for the eight provinces in Andalusia is: Alm: Almeria,
Cad: Cadiz, Cor: Cordoba, Gra: Granada, Hue: Huelva, Jae: Jaen, Mal: Malaga, Sev: Seville.

(based on time-dependent mobile-phone records). Nevertheless, for completeness, we would like to illustrate that in the absence
of alternative and possibly quite superior data sets, the method can be used to capture some principal features of mobility flows
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in workdays (Friday and Tuesday; no mobility restrictions in place); see, in particular, Figure 3 . More concretely, due to the
scarcity of reported traffic count data –they are averaged over a year – only a static O-D matrix can be obtained. Also, the
traffic count data available to us were from 2019-2020, namely prior to the pandemic. The O-D matrices in Figure 3 show that
the gravity-law method roughly captures the main mobility trends. For instance, there is substantial support within the matrix
between the rows 2-4 and columns 6-8 (and vice-versa), as well as e.g. between Seville and Huelva or Malaga etc. Therefore,
in the absence of more detailed and accurate mobility information, it can be used as an alternative. The O-D matrix presented
in Fig. 3 , left panel, reproduces the gravity-law data shown in Table VI in the Appendix. It should be noted however, that the
gravity-law O-D is in terms of vehicle trips per day, whereas the mobility flows from the Spanish government reported in [32]
are expressed in terms of people traveling per day. To convert one into the other one would need to know on average the number
of people traveling in vehicles: as the comparison is qualitative we opted not to convert population flows to trips per day.
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FIG. 3. Origin-Destination matrices based on the gravity-law method (vehicle trips per day) for a pre-pandemic day (panel (a), left) and from
the mobility data based on mobile-phone records (people traveling per day) for Friday, July 10, 2020 (panel (b), middle) and Tuesday, October
27, 2020 (panel (c), right).

III. RESULTS

A. Period of study and rationale

The time period considered begins on July 10, 2020 and ends on October 29, 2020 (112 days). We use the first 84 days from
July 10 till October 1, 2020 as the fitting period, and the remaining 28 days from October 2 to October 29, 2020 as the prediction
interval. Since the goal of the present study is to investigate of the role of mobility on the spread of an epidemic, the period of
study was chosen to satisfy the following two conditions. First, that there would be no imposed mobility restrictions except at
the end. In fact, on October 29, the regional government imposed a curfew at nights and closed the border with the rest of Spain
and limited mobility between the provinces. That is the reason we chose to perform our analysis up to the end of October 2020,
and not longer, as afterwards the mobility patterns were modified due to the imposed restrictions on travel. Second, the period
should include the initial exponential growth of the epidemic peak.

B. Parameter fitting and model predictions

We first use the model of Eqs. (1)-(7) for the entire region of Andalusia. We use the norm

N =
84∑
i=1

(
Dnum(ti)

Dobs(ti)
− 1

)2

, (20)

as the objective function. We minimized it to fit the fatality data Dobs(ti), where ti stands for day i, since our start point of
July 10, 2020, and Dnum(ti), denotes the fatality estimate for the same day, obtained from the model. It is worth noting again
that we are not attempting to fit to case data, since these are believed to be significantly less reliable than fatality data, due to
under-reporting as has been the case in other countries as well [12, 26]. Indeed, when trying to fit both case and fatality data,
we have obtained results that are considerably less satisfactory than the ones presented below.

In addition to the seven parameters shown in (9), we also obtain estimates for the initial parameters I0, A0, E0 when the entire
autonomous community of Andalusia is considered. We performed 500 optimizations with an initial guess for each parameter
uniformly sampled within a pre-specified range. The upper and lower limits of the variation ranges were used as boundaries in
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FIG. 4. Model fit and prediction of the fatalities time series for the entire region of Andalusia. Data points are shown as black dots, the output
of the metapopulation model with mobility (θ = 1) is shown as a red curve, the output of the metapopulation model with mobility turned off
(θ = 0) is shown as a blue curve, and the fit to the ODE model (Eqs. 1-7) is shown as a green curve. The light blue vertical line corresponds
to the date when fitting stops (day 84) and prediction begins. The interquartile range is highlighted in red.

the constrained minimization algorithm (implemented in Matlab via the fmincon function). The outcome of the fitting, for
values taken from July 10 to October 1, 2020 (84 days), allowed us to retrieve an approximation for the initial values for the I ,
E and A compartments. Their median (they had a very small dispersion) was used as initial condition for the metapopulation
model (10-17), weighted by ωj = Cj/C, with Cj being the number of cases in the j-th province in the period from July 4 to
July 10 and C the total number of cases in Andalusia in the whole period. We minimized the norm

N =
8∑
j=1

Nj (21)

with

Nj =
∑
i

(Dj,num(ti)

Dj,obs(ti)
− 1
)2

i = 1, . . . , 84, (22)

andDj,num(ti) andDj,obs(ti) being, respectively, the fatality estimate and data for the day ti at province j. In the metapopulation
model, we focused on two values of θ, θ = 1 and θ = 0, which will be denoted as the metapopulation model with and without
mobility, respectively. As mentioned previously, the coupling matrices Mij were obtained from mobile-phone data [32].

Figure 4 shows the fit of the SEAIR model of Eqs. (1)-(7), no metapopultion, together with the metapopulation model (10-17)
with (θ = 1) and without (θ = 0) mobility for the case of only Andalusia. Part of the data (the first 84 days, from July 10 to
October 1) is used for parameter fitting, and the remaining is used for prediction (till day 112, from October 2 to October 29).
We observe that while all three curves are close to each other and trail the data points with a satisfactory level of accuracy during
the fitting period (since we are fitting them to the data), they diverge afterwards. Only the metapopulation model with mobility
follows the same trend as the the data in the prediction interval. One possible reason is that during summer the fatality curves
in all provinces behave similarly, i.e., they are quite homogeneous, but later on they follow different trends, and they become
heterogeneous. Hence, the overall fatality curve (black dots in the figure), the one corresponding to the entire autonomous
community of Andalusia, diverges from the homogeneous curve.

Another explanation is that it is possible to fit different models to the same data set, but not all models will be able to make
accurate predictions. This is especially true when fitting to epidemic data in the period before the inflection point of the epidemic
peak has been reached [35].

Further insight on the dynamical evolution of the fatalities in each of the provinces is provided in Figure 5. During the months
considered in the present study, due to relaxation or complete absence of mitigation measures, different nodes of the network
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exhibit different characteristics. This can be attributed to some nodes being touristic destinations (Malaga, Huelva), others being
close to country borders (Cadiz with Gibraltar and Huelva with Portugal), while yet others undergoing annual exodus over the
summer months (Seville). This is evident in Figures 2 and 6, where we show the variation in mobility flows and population,
respectively, for the eight provinces forming our network.

It is relevant to make the following observations in connection with the results. With the exception of Cordoba (featuring a
systematic underestimation within the prediction interval for which we do not have a definitive explanation) and Huelva (with
a corresponding overestimation in the prediction interval), data points typically follow qualitative trends consonant with the
interquartile range. Huelva is a major vacation hub, both in the summer period and during weekends, mainly from residents in
Seville (who also commonly spend their holidays in the province of Cadiz). If people return to their permanent residence to
receive treatment and quarantine (or are anyway logged as cases within these regions), this may explain the disparity between
the observed and predicted fatalities. It is worthwhile to note an apparently similar overestimation trend within the prediction
interval for Cadiz; however, in this case, the situation is somewhat less clear, due to an opposite trend within the fitting interval.
Also, high population density over the summer could partially explain the overestimation: the model is trained with more people
residing there, who subsequently depart to return to their regular residence. Also, compared to other provinces, fatalities are
relatively small in number, which makes it prone to stochastic effects [1, 6], as is also evident in the trends of the data.

Figure 6 shows the population in each province during the period of our study. Two major trends emerge. First, there is a
weekly oscillation, due to increased mobility during the weekends. This is due to residents traveling from their primary residence
to vacation destinations, such as the ones we described before between Seville and Huelva or Cadiz; similar patterns are found
between other pairwise transitions: e.g., in the case of Cordoba, such movements happen to and from Malaga, Seville and Jaen. In
any event, the real-time data used in this work provide a clear picture of the dynamics across the network and the key interactions
across its nodes. Second, there is a significant variation in the population of most provinces, ranging from mild (0.99-1.06 in
Jaen, 0.93-1 in Cordoba) to extreme (0.75-1.2 in Huelva). Others, experience a peak in late summer (Almeria, Cadiz, Malaga)
before their population drops again in October. Granada and Seville exhibit a reverse behavior, where their population increases
in the fall, when people resume living in their permanent residence. This is the seasonal trend that is superposed to the weekly
trend. A similar observation may be made by considering Figure 2 where the time-dependent population flows between any two
provinces are shown. In line with our above observations, some clear signatures are obvious, such as weekly periodicity, overall
increased mobility in the summer months and other trends, such as the consistent mobility between specific pairs of provinces,
as discussed above.

Figure 7 depicts the time evolution of the fatalities in the form of a heat map. We can observe how the model predicts the
spreading of the epidemic from Almeria to neighboring provinces. Note, however, that in the reported data there was a spot
in Malaga, probably caused by people traveling from other places in the world (a process which is not included in the current
work). We also observe that Seville and Malaga are the provinces that eventually exhibit the highest number of fatalities, an
observation correlated to their higher population. The maps also show that the model without mobility predicts a very much
smaller number of fatalities than the model with mobility. Although at an early stage of the prediction both models are fairly
comparable, later on, within the prediction interval, the model with mobility is significantly more accurate towards predicting
the spread of the epidemic within the metapopulation network than the model without it. Both the detailed (individual province,
cf. Fig. 5) quantitative findings, and this overarching figure are convincing, in our view, of the relevance at such regional levels
of the consideration of metapopulation approaches. Additionally, the concrete trends that our mobility data reveal illustrate the
relevance of the dynamic consideration of the coupling matrices Mij .

The best-fit parameters are shown in Table II, whereas Table III presents the initial conditions for each province in the metapop-
ulation model. For the initial condition of the population (N0) we took the census data for January 1, 2020 [17]. We must note
that the data we compared with correspond to the day when events (such as deaths) actually occurred, and were extracted from
the data available in the National Epidemiological Center of Spain [15], as well as that each fatality is assigned to the residence
province.

Table IV shows the residuals for the fitting and predictions. The former is found by computing (20) at each simulation and
taking the median and quartiles of all these values; for getting the latter, the same procedure is followed but extending the
summation in (20) to 114

C. Effective reproduction number

Given the importance of the reproduction number during the initial stages of an epidemic wave, we use the Next Generation
Matrix approach [18] to evaluate the effective reproductive number Rt. In doing so, we treat this epidemic wave as a “new
epidemic” assuming that most of the population is still susceptible. This assumption practically renders Rt = R0, namely the
effective reproductive number is equal to the basic reproductive number R0. For t > 0 it holds Rt = R0S(t)/N , [10]. Hence,
the calculated effective reproduction number refers to the first day of our simulations, July 10th, 2020. The reproduction number
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FIG. 5. Fatality data (black dots) and model fit for each province of Andalusia. The output of the metapopulation model, Eqs. (10)-(17), with
mobility (θ = 1) is shown as a red curve and the output of the metapopulation model with mobility turned off (θ = 0) is shown as a blue curve.
The light blue vertical line corresponds to the date when fitting stops (day 84) and prediction begins. The interquartile range is highlighted in
light-red for red curve, while for the blue curve, the interquantile range is so narrow that it is not visible in the plot. Note the different y-axis
scales.
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FIG. 6. The ratio of the population of each province Ni(t) to the the initial population N0, the latter based on data from (17). The light red
vertical line corresponds to the day when fitting stops (day 84) and validation begins. Note the different y-axis scales.
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FIG. 7. Snapshots of the evolution of the number of fatalities occurring from (and including) July 10 at each province at different days from
September to October. Top and middle row maps correspond to the numerical fit/prediction of the metapopulation model with and without
mobility, whereas bottom row maps represent the observed number of fatalities. Bottom map in the first snapshot includes the code for the
name of each province (AL: Almeria, CA: Cadiz, CO: Cordoba, GR: Granada, H: Huelva, J: Jaen, MA: Malaga, SE: Seville).

for the one-node model (1-7) (with either N −D in the denominator or the simplified version N −D ≈ N ) is

Rt =
κA

κA + κI

βAS
γA

+
κI

κA + κI

βIS
κD + κR

. (23)

The first term is the contribution toRt from asymptomatic hostsAwhile the second is the contribution from the symptomatically
infectious hosts I . Each term represents the fraction of asymptomatic κA/(κA+κI) or symptomatically infected κI/(κA+κI)
hosts generated in the lifespan of an exposed host E, or equivalently the fraction of individuals reaching A or I after going
through state E, multiplied by the number of new infected hosts generated in the lifespan of the corresponding infectious host,
βAS/γA, βIS/(κD + κR), respectively.

Using the estimated parameters shown in the first column of Table II, the value of Rt is (the interquartile range in parenthesis)

Rt = 1.4848 (1.4798− 1.4903).
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TABLE II. Best fit parameter values

Parameter Median (interquartile range) Median (interquartile range) Median (interquartile range)
(No metapopulation) (Metapopulation w/o mobility) (Metapopulation w/ mobility)

βIS 0.475749 (0.439256–0.497102) 0.428599 (0.422961–0.446900) 0.394443 (0.274636–0.511767)
βAS 0.483056 (0.469496–0.506530) 0.490886 (0.469169–0.492347) 0.412055 (0.287619–0.513972)
κA 0.338381 (0.333010–0.347806) 0.493038 (0.469970–0.494282) 0.313193 (0.254518–0.372569)
κI 0.280513 (0.270371–0.287488) 0.426593 (0.377388–0.453029) 0.278822 (0.227327–0.331485)
γA 0.317751 (0.308228–0.324681) 0.461193 (0.421694–0.474062) 0.318094 (0.262533–0.384494)
κR 0.334552 (0.326885–0.345297) 0.192424 (0.191560–0.201661) 0.320300 (0.242333–0.417852)
κD 0.000106 (0.000102–0.000113) 0.000056 (0.000054–0.000060) 0.000455 (0.000287–0.000558)
E0/I0 1.59 (1.57–1.61) — —
A0/I0 1.60 (1.58–1.63) — —
I0 587.05 (582.71–591.87) — —

TABLE III. Initial conditions
Province I0 E0 A0 N0 = S0

Almeria 175 278 281 727945
Cadiz 26 41 42 1244049

Cordoba 9 15 15 781451
Granada 246 391 395 919168
Huelva 7 11 11 524278

Jaen 14 23 23 631381
Malaga 95 150 152 1685920
Seville 14 23 23 1950219

TABLE IV. Residuals
Province No metapopulation Metapopulation without mobility Metapopulation with mobility

Fitting Prediction Fitting Prediction Fitting Prediction
Almeria — — 0.074 (0.074–0.074) 0.855 (0.852–0.859) 0.497 (0.444–0.776) 1.620 (1.121–2.653)
Cadiz — — 0.169 (0.169–0.169) 0.232 (0.232–0.235) 0.095 (0.076–0.111) 0.535 (0.314–0.852)

Cordoba — — 0.227 (0.227–0.228) 2.097 (2.095–2.102) 0.059 (0.043–0.071) 0.512 (0.334–1.081)
Granada — — 0.266 (0.266–0.267) 0.686 (0.685–0.691) 0.041 (0.026–0.047) 0.147 (0.113–0.333)
Huelva — — 0.406 (0.403–0.406) 1.821 (1.813–1.824) 0.584 (0.513–0.829) 3.595 (2.610–4.605)

Jaen — — 0.019 (0.019–0.019) 0.532 (0.531–0.532) 0.126 (0.116–0.131) 0.304 (0.260–0.496)
Malaga — — 0.005 (0.005–0.005) 0.216 (0.216–0.218) 0.052 (0.040–0.061) 0.254 (0.154–0.509)
Sevilla — — 0.168 (0.168–0.169) 1.194 (1.193–1.199) 0.030 (0.024–0.047) 0.110 (0.063–0.436)

Andalusia 0.00069 (0.00068–0.00083) 8.752 (8.603–8.942) 0.006 (0.006–0.006) 0.434 (0.433–0.435) 0.012 (0.007–0.018) 0.129 (0.060–0.412)

We calculated Rt based on the 500 sets of parameter values, see the discussion following Eq. (20). The interquartile range was
calculated as follows. First, using the 500 accepted sets of the model parameters, we calculate Rt. From those values, we then
obtain the lower and upper quartiles and the median. When the metapopulation model is used without mobility (θ = 0), then
the same expression, Eq. (23), applies with the parameters of the second column yielding

Rt = 1.5972 (1.5945− 1.5983).

Finally, for the entire metapopulation network, Rt is calculated as follows. We define the relevant vectors, focusing on the
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infectious/infected compartments (Ei, Ai, Ii) and ignoring the rest (Si, Ui, Ri, Di):

F =



βAS

N1
S1A1 +

βIS

N1
S1I1

0

0
...

βAS

N8
S8A8 +

βIS

N8
S8I8

0

0


, V =



(κA + κI)E1 − θ
(∑

jM1j
Ej

Nj
−
∑
jMj1

E1

N1

)
−κAE1 + γAA1 − θ

(∑
jM1j

Aj

Nj
−
∑
jMj1

A1

N1

)
−κIE1 + (κR + κD)I1 − θ

(∑
jM1j

Ij
Nj
−
∑
jMj1

I1
N1

)
...

(κA + κI)E8 − θ
(∑

jM8j
Ej

Nj
−
∑
jMj8

E8

N8

)
−κAE8 + γAA8 − θ

(∑
jM8j

Aj

Nj
−
∑
jMj8

A8

N8

)
−κIE8 + (κR + κD)I8 − θ

(∑
jM8j

Ij
Nj
−
∑
jMj8

I8
N8

)


We then find the Jacobian matrices ofF ,V with respect toEi, Ai, Ii in the order in which they appear. This yields two 24×24

matrices of the form:

F =


F11 O3×3 O3×3 . . . O3×3

O3×3 F22 O3×3 O3×3 O3×3

O3×3 O3×3 F33 O3×3 O3×3
...

...
...

. . .
...

O3×3 O3×3 O3×3 . . . F88

 , Fii =

 0 βAS
Si

Ni
βIS

Si

Ni

0 0 0

0 0 0

 , O3×3 =

 0 0 0

0 0 0

0 0 0



V =


V11 V12 . . . V18
V21 V22 . . . V28

...
...

. . .
...

V81 V82 . . . V88

 , Vii =

 κA + κI + θ
∑
j
Mji

Ni 0 0

−κA γA + θ
∑
j
Mji

Ni
0

−κI 0 κR + κD + θ
∑
j
Mji

Ni



Vij =


−θMij

Nj
0 0

0 −θMij

Nj
0

0 0 −θMij

Nj


We note that for the calculation at t = 0, we set Si(0)

Ni(0)
in the Fii matrices and Mji(0)

Ni(0)
, Mij(0)
Nj(0)

in Vii, Vij , respectively.
The reproduction number is the spectral radius of FV −1 which in our case has the value

Rt = 1.3349 (1.2806− 1.4581).

This is exactly the same value one obtains when using Eq. (23) if one completely disregards the mobility terms in matrix V ,
i.e., with the parameter values of the third column in Table II. Hence, the change in Rt is due to the different values in third
column of Table II, and not due to the terms containing Mij in matrix V . In other words, the effect of mobility is to change the
estimated parameters; while they do not alter the Rt (which, as mentioned earlier is effectively evaluated at the first day of our
simulations), they have a large effect on the dynamics later. When mobility is included in the model, the interquartile intervals
of each parameter value are significantly wider, which is also reflected in the corresponding interval for Rt.

IV. DISCUSSION-CONCLUSION

In the present work, we revisited the formulation of metapopulation models, motivated by the interest towards describing a
“relatively small” region (the autonomous community of Andalusia within Spain) with well-defined and available in a time-
resolved manner data regarding the mobility across provinces. It is also a region without an extensive influx (or outflux) of
populations, e.g., through major international airport hubs. This appears to render this case a fertile ground for the application
of metapopulation models.

In that vein, in addition to a prototypical model for each node, involving susceptibles, exposed, asymptomatic and symptomat-
ically infected, as well as recovered from each of these categories and fatalities, we considered different possibilities on how
to incorporate human mobility across the nodes. We explored the model for the entire autonomous community of Andalusia
(without sub-nodes), the model where the nodes do not feature mobility between them (independent nodes) and the canonical
case proposed where mobility is incorporated. One of the main findings of the present work is that in the absence of mobility
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among nodes the model is unable to predict the wave of infections that took place in the fall of 2020. It has long been known that
human mobility is crucial at the beginning stages of an epidemic, when the infection is seeded in various locations [9, 28, 45].
It has also been noted that mobility may also affect contact rates which in turn affect disease transmission [45]. The present
study suggests that population flows are critically important in periods during an epidemic when there are no restrictions on
mobility. Moreover, while there are numerous ways of incorporating mobility, for example via static origin-destination matrices
as calculated via gravity models, we believe that at present the optimal inclusion should be time-resolved. Dynamical infor-
mation stemming from mobile-phone data seamlessly incorporates aspects such as the weekly or seasonal variations of human
mobility; hence it more accurately captures the resulting increases or decreases in the probability of formation of an epidemic
wave of infection. However, when this is not possible, we also offer details on how origin-destination matrices obtained by the
gravity-law can be calculated to be used in a metapopulation model.

Nevertheless, we certainly refrain from assigning full responsibility to human mobility for the wave of infections in the fall of
2020, or indeed more generally during the second wave of the pandemic. It is clear that there exist numerous factors that may
have contributed to the relevant features, including, e.g., seasonality [13] and humidity [19]. It would be interesting to further
explore these factors and their interplay with mobility both in the context of the second wave (as here) in other regions, but also
as concerns subsequent waves of the pandemic, where other key factors, such as the existence and the role of vaccinations [40]
need to be taken into consideration. Such studies will be deferred to future publications.
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Appendix A: Origin-Destination matrices

We describe the methodology used to compute origin-destination (O-D) matrices for light-duty vehicle highway travels com-
patible with empirical data of coarse grained flows in highway transportation networks. We obtained the O-D matrices either
via the gravity model or from the mobile-phone data reported by the Ministry of Transportation, Mobility and Urban Agency
(Ministerio de Transportes, Movilidad y Agenda Urbana-MITMA) [32] (see, also the discussion in Section II C in the main text).
Specifically, we constructed the O-D matrix as follows: given population data from the Instituto Nacional de Estadı́stica [17] and
distances of city pairs we applied the gravity law to calculate the vehicle number of trips per day between any two nodes. The
gravity-model methodology is presented in Section A 1. Section A 2 describes briefly how we translated the mobile-phone data
into population flows, people traveling per day between provinces. Figure 3 in the main text compares the static, pre-pandemic,
gravity-model calculated O-D matrix with time-dependent O-D matrices obtained from mobile-phone data for two characteristic
working days: Friday, July 10, 2020 and Tuesday, October 27, 2020.

1. Methodology: Gravity law and traffic counts

Given the population of provinces and distances between the capital city of province pairs, the gravity model as described by
Eq. (18) in the main text can be leveraged with the parameters presented in Table V. When the distance between an O-D pair
(ij) is larger than 300 km, βG is set to be N/A, which denotes that the denominator will be approaching 0, as well as wij would
be approaching 0.

TABLE V. Parameters of gravity law [4, 38]

d(km) Parameter Estimate
≤ 300 α 0.46

γ 0.64
βG 0.0122

>300 α 0.35
γ 0.37
βG N/A
C 0.04289

The Origin-Destination matrix for the eight Andalusian provinces calculated from the gravity law with the parameters reported
in Table V is presented in Table VI, which summarizes the daily number of vehicle trips between O-D pairs (ij). As mentioned
in the main text this O-D matrix is static, and the data we used referred to 2019-2020, i.e., before the pandemic started.

TABLE VI. O-D matrix (daily number of vehicle trips) based on the gravity law.

Almeria Cadiz Cordoba Granada Huelva Jaen Malaga Sevilea
Almeria 0 0 0 4139 0 873 4863 0
Cadiz 0 0 2391 0 2645 0 4704 21312

Cordoba 0 2536 0 3323 1658 4211 10110 14025
Granada 4018 0 3531 0 0 7051 13425 3253
Huelva 0 3248 1920 0 0 0 0 17683

Jaen 964 0 5092 8022 0 0 3728 2612
Malaga 4015 4509 9138 11417 0 2787 0 9059
Seville 0 19750 12257 2675 13346 1888 8758 0
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2. Methodology: Mobile-phone data

All mobility data used in this work are available in the website referenced in [32]. The database aggregates more than 13
million anonymized mobile lines to provide data for the number of persons traveling per day, i.e. , population flows. The
procedure we followed to determine Mij , the daily rate of people traveling from province i to province j, was to download the
spreadsheet, and then to select the origin and destination of a trip according to following codes: 04 for Almerı́a, 11 for Cádiz,
14 for Córdoba, 18 for Granada, 21 for Huelva, 23 for Jaén, 29 for Málaga, and 41 for Sevilla. The trip date is under the column
“fecha” and the trips, one per individual, under the column “viajes”. This information is extracted and assembled into theMij(t)
matrices for day t that provide the desired population flows as persons traveling per day.
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