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Abstract

Although the type-l interferon (IFN-1) response is considered vertebrate-specific,
recent findings about the Intracellular Pathogen Response (IPR) in nematode
Caenorhabditis elegans indicate that there are similarities between these two tran-
scriptional immunological programs. The IPR is induced during infection with natural
intracellular fungal and viral pathogens of the intestine and promotes resistance
against these pathogens. Similarly, the IFN-I response is induced by viruses and other
intracellular pathogens and promotes resistance against infection. Whether the IPR
and the IFN-I response evolved in a divergent or convergent manner is an unanswered
and exciting question, which could be addressed by further studies of immunity against
intracellular pathogens in C. elegans and other simple host organisms. Here we highlight
similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic
stressors, and transcription factors to induce the IPR and IFN-I response, as well as the

similar consequences of these defense programs on organismal development.
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INTRODUCTION

Constant pressure from rapidly evolving pathogenic threats drives

gene duplication, alteration and acquisition of new gene function, and

Abbreviations: ADA, adenosine deaminase; AGS, Aicardi-Goutieres syndrome; CARD,
caspase activation and recruitment domain; cGAS, cyclic GMP-AMP synthase; CTD,
C-terminal domain; DAMP, damage-associated molecular pattern; dsRNA, double-stranded
ribonucleic acid; ERV, endogenous retroviral element; GPCR, G-protein-coupled receptor;

even gene loss.[1] These changes lead to complex patterns resulting
from divergent and convergent evolution within immune pathways. We

can see this complexity when comparing the nematode Caenorhabdi-

IFN, interferon; IPR, intracellular pathogen response; IRF, interferon regulatory factor; ISGF3,

interferon-stimulated gene factor 3; NHR, nuclear hormone receptor; ORR, oomycete
recognition response; PAMP, pathogen-associated molecular pattern; pDC, plasmacytoid
dendritic cell; PNP, purine nucleoside phosphorylase; PRAAS, proteasome-associated
autoinflammatory syndrome; PRR, pattern recognition receptor; RLR, RIG-I-like receptors;
RNAI, ribonucleic acid interference; siRNA, small interfering ribonucleic acid; SLE, systemic

lupus erythematosus.

tis elegans to other metazoans. For example, C. elegans does not have
the NF-xB transcription factor, which is a key immune defense factor
in the fruit fly Drosophila melanogaster and in vertebrates.!2l On the
other hand, RIG-I-like receptors (RLR) do not seem to be present in D.
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melanogaster, but they serve as important cytosolic viral RNA sensors
in vertebrates and in C. elegans, where they are among the few pattern
recognition receptors (PRRs) shared with vertebrates.[3!

RLRs promote anti-viral defense in mammals by upregulating the
transcription of type | interferon (IFN) genes, which encode secreted
proteins that induce both local and systemic immune responses.l4] In
general, IFN responses represent some of the most important antivi-
ral programs in all jawed vertebrates. Evolutionary studies indicate that
the first IFN genes emerged in cartilaginous fish and were passed onto
higher vertebrates.!>] The IFN and interleukin-10 (IL-10) gene families
evolved from the same ancestral gene, which likely encoded a helical
cytokine. IFN-1 and IFN-II genes probably separately diverged from the
IL-10 family in an early period of vertebrate evolution, whereas IFN-
111 likely resulted from an IFN-I duplication event in amphibians. While
many of the topics we cover in this review relate to both IFN-I and
IFEN-I11, for simplicity we will only cover IFN-I responses.

Given that IFN genes are vertebrate-specific, how do RLRs in the
invertebrate C. elegans promote anti-viral immunity? Initial characteri-
zation indicated that RLRs promote defense through upregulating RNA
interference (RNAI) in the nematode, with more recent work indicat-
ing that the RLR DRH-1 also activates a transcriptional immune/stress
response called the Intracellular Pathogen Response (IPR).[3¢! Thus,
RLRs in both mammals and C. elegans are upstream of anti-viral tran-
scriptional responses. Furthermore, perturbations in purine salvage
metabolism and proteostasis induce the IFN-I response in mammals,
as well as the IPR in C. elegans. A shared consequence of IFN-I and
IPR activation is impaired organismal development. Inspired by these
and other similarities, this review will discuss the induction of these
immune responses to intracellular pathogens of C. elegans and mam-
mals, as well as the cost to host fitness incurred by their activation
(Figure 1).

C. elegans host/pathogen interactions and immune
responses

C. elegans has a relatively simple anatomy, consisting of epithelial,
neuronal, muscular, and germline tissues.”! So far, there has not
been the identification of professional immune cells, like macrophages
or neutrophils in worms.[2] Thus, C. elegans heavily relies on non-
professional immune cells (i.e., cells whose primary function is not
immunity-related) like epithelial cells and neurons to defend against
pathogens. Because of the many genetic tools that are available in C.
elegans research, as well as the worm’s transparent body and short
generation time, C. elegans represents a powerful system for study-
ing the defense mechanisms of non-professional immune cells in a
whole-animal context.[8]

In nature, C. elegans lives in a microbially rich environment of rot-
ting vegetation where it feeds on different types of microorganisms.
Besides being a food source, many microbial species appear to form
complex communities in the intestinal lumen of worms in the wild,
and emerging research suggests that the gut microbiome has substan-
tial effects on C. elegans development and pathogen resistance.[?-11]

In addition, C. elegans frequently encounters pathogenic microorgan-
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FIGURE 1 Overview of the similarities between the IPR in C.
elegans and the IFN response in mammals. RIG-I-like receptors,
perturbations of purine salvage/degradation metabolism, and
proteotoxic stressors all activate transcription factors that trigger the
IPR and IFN-I responses, which promote pathogen defense and
negatively affect development.

isms in its natural environment, including bacterial, viral, fungal, and
oomycete pathogens.[12]

In a laboratory setting, synchronized populations of C. elegans are
typically hatched as germ-free organisms that are fed specific bacte-
rial food sources (most commonly Escherichia coli strain OP50) and
then challenged by specific pathogens. While infections with extracel-
lular pathogens typically require exposure to pathogens as a sole food
source, intracellular pathogens are most commonly provided in a mix-
ture with standard E. coli food.[13] This exposure to selected microbes
allows researchers to directly study host-pathogen interactions and
their consequences. One of the best-studied pathogens in C. elegans
is the predominantly extracellular bacterial pathogen Pseudomonas
aeruginosa. This microorganism produces several virulence factors that
contribute to lethal intestinal infection in C. elegans, and studies with
this and other predominantly extracellular pathogens have led to the
discovery of various defense responses in worms.[214] For example,
the upregulation of anti-microbial genes via activation of a conserved
p38 MAPK pathway provides cell-autonomous defense against several
pathogens of C. elegans.[15-171 |n addition, there are several examples of
systemic regulation of immune responses whereby the nervous system
controls defense in distal tissues like the intestine and epidermis.! 18-231
For example, detection of epidermal pathogens called oomycetes by
the nervous system leads to activation of the oomycete recognition

response (ORR) in the epidermis.[22]
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Despite many important discoveries regarding immune signaling
and behavioral responses in C. elegans, only a few PRRs that recog-
nize pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) have been identified in this
host. With the exception of RLRs, C. elegans lacks obvious homologs of
many of the canonical PRRs found in mammals, such as cyclic GMP-
AMP synthase (cGAS)-STING and nucleotide-binding and leucine-rich
repeat (NLR) receptors. Interestingly, most of the few known PRRs
in C. elegans belong to gene families that have expanded dramatically
in C. elegans compared to mammals, such as the G-protein-coupled
receptor (GPCR) family (estimates vary; up to 1,596 members in C.
elegans and up to 948 in humans) and the nuclear hormone recep-
tor (NHR) gene families (284 members in C. elegans compared to
48 in humans).[24-26] For example, the GPCR DCAR-1 can by acti-
vated either by infection of epidermal epithelial cells with the fungal
pathogen Drechmeria coniospora or by physical wounding. DCAR-1
serves as a DAMP receptor that recognizes the tyrosine-derivative
4-hydroxyphenyllactic acid in damaged tissue and induces an epi-
dermal innate immune response.[2’] PCDR-1 is another GPCR that
may function as a PRR given its requirement for clearance of the
bacterial pathogen Microbacterium nematophilum from the rectum.[281
Recent characterization of NHR-86 highlights its role as a novel
type of PRR acting in intestinal epithelial cells. NHR-86 binds to
the newly described PAMP, P. geruginosa metabolite phenazine-1-
carboxamide, which activates an antibacterial transcriptional response
in C. elegans.[27:30]

Distinct pathogens elicit distinct transcriptional responses in C. ele-
gans. However, the correlation between pathogen class and response
type is less clear for C. elegans than it is for other hosts like D.
melanogaster, where fungal and Gram-positive bacterial pathogens
elicit specific transcriptional responses through the Toll receptor,
while Gram-negative bacterial pathogens elicit distinct transcriptional
responses through the Imd receptor.!31-331 |nterestingly, the IPR intro-
duced above is acommon transcriptional response in C. elegans induced
by diverse intracellular pathogens of the intestine, including a natural
RNA virus called the Orsay virus, and a species of microsporidia (fungal
pathogens), called Nematocida parisii.!34-37] Though molecularly dis-
tinct, these microbes are both obligate intracellular pathogens that
infect the C. elegans intestine in the wild. The IPR constitutes a novel
immune/stress response that is mostly distinct from the responses
elicited by facultative intracellular fungal pathogens and by bacterial
pathogens like P. aeruginosa.l34-391 Notably however, the IPR has sub-
stantial overlap with the ORR, and these two transcriptional programs
may represent distinct but related responses induced by pathogens of
the intestine and the epidermis, respectively.!2240]

The IPR consists of about 80 highly upregulated genes, together
with hundreds of additional genes upregulated at lower levels.[3437.38]
Some IPR genes encode cullin-RING ubiquitin ligase components, sev-
eral of which are involved in defense against intracellular pathogens,
as well as promoting proteostasis capacity, which is often perturbed
by intracellular infection. IPR genes also include genes of unknown
biochemical function called pals genes, which contain an uncharacter-

ized ALS2CR12 signature named for its human homolog of unknown

function.[41] Interestingly, only one pals gene each has been identified
in mice and humans, while the family has expanded to 39 members in
C. elegans. Of the 39 genes, 26 are upregulated as part of the IPR, while
several pals genes in C. elegans are not upregulated and instead serve
as regulators of IPR gene transcription.[3436.37:42] These pals genes
appear to act in modules including activators and repressors. For exam-
ple, pals-22 is a repressor of upregulated pals genes and all other IPR
genes, and acts together with its antagonistic paralog pals-25, function-
ing downstream of pals-22 as an activator of upregulated pals genes
and other IPR genes in pals-22 mutants. pals-22 mutants exhibit con-
stitutive expression of IPR genes, and thus display increased resistance
to intracellular intestinal-specific pathogens in a pals-25-dependent
manner.[34.37]

Because pals-22 and pals-25 are broadly expressed in virtually all tis-
sues of C. elegans, these regulators may act as an ON/OFF switch to
coordinate immunity in several different tissues. Indeed, independent
genetic screens identified pals-22 and pals-25 as regulators of the ORR
induced by oomycetes, which are epidermal pathogens, as well as the
IPR induced by viral and microsporidian intestinal pathogens.[34:36:37]
In mammals, coordinated signaling across cells and tissues is a key
feature of the IFN-I response. The response starts with infected
cells or proximal bystander cells upregulating transcription of IFN-I
genes, which encode proteins that are secreted extracellularly, where
they bind to the IFN-I receptor expressed on other cells.!*3] These
activated cells then trigger the expression of a large suite of interferon-
stimulated genes (ISGs) (Figure 2).[44-47] Because the IPR is still being
defined in C. elegans, it is not yet clear which IPR genes are induced
as part of the initial transcriptional response (potentially analogous to
IFN-I in mammals), and which genes are induced as part of a secondary
response in uninfected cells (potentially analogous to ISGs in mam-
mals). It is also possible that the IPR pathway may not have a two-step
structure like the IFN-I response. It is also unclear which IPR compo-
nents may act as IFNs. Nonetheless, coordination of the IPR across
cells and tissues in C. elegans suggests that there are likely secreted
signaling proteins that activate this response in distal tissues.134] In
particular, activation of the IPR through depletion of PALS-22 protein
in epidermal cells, or through the epidermal-specific expression of a
gain-of-function form of PALS-25 protein, triggers IPR activation in
epidermal cells as well as in intestinal epithelial cells (Figure 2). Further-
more, this epidermal-specific activation of the IPR leads to increased
resistance to intracellular infection of the intestine.[3* While much is
still to be learned about how this response is coordinated from the
epidermis to the intestine, these findings indicate that the IPR, like
the IFN-I response, regulates systemic immunity against intracellular

pathogens.

RIG-I-like receptors (RLRs) regulate the IFN-I
responses and the IPR

RLRs and their homologs play central roles in antiviral defense across
diverse metazoan lineages. Phylogenetic analysis suggests that RLRs

emerged at the inception of multicellularity in metazoans, as RLRs are
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FIGURE 2 ThelPRand IFN response enhance immunity via cell non-autonomous signaling. Depletion of PALS-22 protein in epidermal cells
leads to activation of the IPR in both epidermal and intestinal cells, as well as increased resistance against intracellular intestinal pathogens.
Secreted type-l interferons bind the interferon-a/g receptor (IFNAR) to induce interferon-stimulated genes (ISGs) and antiviral immunity in other

cell types.

not found in non-metazoan eukaryotes or plants.[48] Gene duplication
led to functional heterogeneity of RLRs across different species.l48]
The C. elegans genome contains three mammalian RLR homologs,
known as dicer-related helicase 1, 2, and 3 (drh-1, drh-2, and drh-
3).1649] The gene duplication events that led to the three C. elegans
RLR homologs occurred independently from duplication events that
led to mammalian RLR homologs. As such, we might expect significant
divergence in the function of C. elegans RLR homologs compared to
homologs found in other organisms. Indeed, several studies indicate
that DRH-1 regulates RNAI, a function distinct from RLRs in mam-
mals, which activate transcription of the ligands IFN-a/f involved in
the IFN-I response (Figure 3).164°] Protein interaction analysis indi-
cated that DRH-1 binds two key RNAi components in C. elegans, the
RNase llI-related enzyme Dicer (DCR-1) and the RNA helicase RDE-
4, to form a complex that initiates RNAI in response to exogenous
double-stranded RNA (dsRNA). Because dsRNA is a product of viral
replication, these findings suggested that DRH-1 could function in the
detection of RNA virus infection. These and other findings indicated
that DRH-1 regulates the processing of dsRNA to small interfering
RNAs (siRNAs), while another Dicer-interacting protein, DRH-3, medi-
ates the production of secondary siRNAs and is required for RNAI in
the germline.[47]

Following the initial identification of DRH-1 and its role in RNAI,
subsequent genetic analysis indicated that DRH-1 inhibits replication

of aheterologously expressed Flock house virus replicon. This anti-viral

effect differs from the previously described RNAi-mediated silencing
triggered by non-viral exogenous dsRNA.[5%] The same study suggests
that drh-2 may be a negative regulator of antiviral RNAI. In 2011, the
discovery of the Orsay virus from wild C. elegans was significant, as it
allowed studies for the first time with a virus that can infect worms
via feeding instead of using artificial delivery methods, and which can
complete its life cycle in C. elegans in the lab.[>1] Studies with the Orsay
virus also demonstrated a clear role for RNAI in antiviral defense.[5%]
Excitingly, analysis of wild C. elegans strains that had differing levels
of resistance to the Orsay virus revealed that this difference was due
to a naturally occurring deletion polymorphism in drh-1 that causes
increased sensitivity to infection.!2! Further characterization revealed
that drh-1 mutants exhibit defects in antiviral RNAI to the Orsay virus
as well as to vesicular stomatitis virus, which is introduced into C. ele-
gans via microinjection.[52-54] However, the specific function of DRH-1
in the RNAI pathway is unclear, as one study proposed that it is not
required to initiate anti-viral siRNA, but rather acts in a downstream
step to enhance it.[53] Regardless, DRH-1 does appear to be important
for promoting anti-viral RNAI against several viruses and to protect
against infection. Interestingly, while D. melanogaster lacks an obvious
RLR homolog, it does have an RNA helicase gene called Dicer2, which
is important for anti-viral RNAI in this species.[55:56]

Recent work indicates that C. elegans RLRs may have an additional
anti-viral role similar to mammalian RLRs. As mentioned above, during

infection with the Orsay virus, DRH-1 is essential for the activation of
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FIGURE 3 Activation of the IPR and IFN response through the RIG-I-like receptors during viral infection. C. elegans RIG-I-like protein DRH-1
activates the IPR following viral genome replication. DRH-1 is also a component of the RNAi complex. Mammalian RIG-1 and MDAJ5 recognize viral
dsRNA and signal through MAVS to activate downstream factors that induce transcription of IFN genes.

the transcription of IPR genes. Moreover, the requirement for DRH-1
appears to be specific to viral infection, as DRH-1 is dispensable for
IPR activation in response to non-viral triggers, such as microsporidia
and proteotoxic stress.[3] DRH-1 also activates the IPR in a manner
independent of canonical RNAi components including DCR-1/Dicer,
and RNA-binding proteins RDE-4 and RDE-1, suggesting that DRH-1
upregulates transcription in a manner distinct from its effects on RNAi
(Figure 3).131

In mammals, members of the RLR family include the founding mem-
ber retinoic acid-inducible gene | (RIG-I), melanoma differentiation-
associated gene 5 (MDAS5), and laboratory of genetics and physiol-
ogy 2 (LGP2).[457.58] | the canonical signaling pathway, mammalian
RLRs detect viral or host-derived RNAs to initiate a series of down-
stream signaling events that result in the transcription of IFN genes
(Figure 3).1591 All RLRs share a domain architecture composed of a
central DExD/H box RNA helicase domain and a C-terminal domain
(CTD). RIG-I and MDAS5 also possess N-terminal caspase activation
and recruitment domains (CARDs) that mediate interactions with
downstream host signaling factors. On the other hand, LGP2 lacks N-

terminal CARDs and does not seem to activate the IFN response. The

role of LGP2 is potentially quite varied, as some reports suggest that
LGP2 is a positive regulator of RLR signaling, whereas others describe
LGP2 as a negative regulator.!0-¢2] Nevertheless, a shared character-
istic of all three mammalian RLRs (RIG-I, MDA5, and LGP2) is the ability
to bind RNA at the helicase and CTD.

Upon binding RNA, mammalian RIG-l and MDAD5 adopt a signaling-
competent configuration. Mammalian RIG-I/MDA5 bind RNA virus
replication products, including 5 triphosphate RNA and dsRNA.[63] In
addition to binding RNAs of viral origin, RIG-I and MDAS5 also bind
host RNAs (Figure 3).[64] For example, perturbations to mitochondrial
homeostasis can induce the release of mitochondrial dsRNA, which is
then recognized by MDAG5 to induce an IFN-I response.[6] While these
and other studies have elucidated the RNA-binding function of mam-
malian RLRs, little is known about whether RNA-binding is a broadly
conserved function in RLRs from other species.

Several studies suggest that C. elegans DRH-1 may bind RNA. Specif-
ically, studies mentioned above showed that DRH-1 interacts with
RNA-binding proteins.[®] In addition, more recent findings with a
genetically encoded viral replicon demonstrated that replication prod-

ucts of the Orsay virus (presumably including dsRNA) induce the
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majority of IPR genes in a DRH-1-dependent manner (Figure 3).[3:66]
Although direct binding of RNA to DRH-1 has not been demon-
strated, these observations support the idea that DRH-1 recognizes
a viral intermediate to induce a transcriptional response, analogous
to RLR sensing of viral replication products. Further, the helicase and
C-terminal domains of DRH-1 share relatively high sequence similar-
ity and conserved amino acid motifs with human RLRs. The human
RIG-I helicase domain and CTD can even functionally substitute for
corresponding domains in DRH-1 in the context of antiviral RNA.[¢7]
In addition, mitochondrial dysfunction in C. elegans induces RNAI via
DRH-1, and is associated with upregulation of mitochondrial RNA, in
a situation that is perhaps analogous to RLR binding mitochondrial
dsRNA in mammals.[68! Collectively, these findings support the idea
that RNA-binding activity is conserved in DRH-1/RLR and that interac-
tion between viral RNA and DRH-1 may regulate activation of the IPR,
similar to what is observed in the mammalian antiviral IFN-I response.

Sequence and functional analyses of DRH-1 have unveiled similari-
ties in the helicase and C-terminal domain with RIG-I/MDA5, whereas
the N-terminal domain appears to be more divergent.[52] RIG-I/MDA5
CARD:s interact with the CARD domain in mitochondrial antiviral sig-
naling protein (MAVS), and nucleate a signaling complex resulting in
transcription of IFN-a/3 (Figure 3). In C. elegans, it remains unclear
if DRH-1 contains N-terminal CARDs that mediate signaling to the
IPR, because the N-terminus of RIG-I/MDAS5 shares low amino acid
sequence identity with the N-terminus of DRH-1. One possibility is
that the protein structure, and thus signaling activity, is conserved
despite disparate sequences. Alternatively, the sequence divergence at
the N-terminus of DRH-1 could reflect a novel mode of RLR signaling
that does not involve CARD domains. In line with the possibility of a
novel mode of signaling, C. elegans lacks obvious homologs to the down-
stream signaling components of the RLR pathway, including MAVS.
Further investigation of how DRH-1 regulates an antiviral transcrip-
tional response in C. elegans could advance our understanding of how
RLRs activate anti-viral defense apart from classic IFN-I responses, and

how these responses have been conserved or rewired in metazoans.

The role of nucleotide metabolism in regulating
immunological responses

In addition to the IPR and the IFN-I response both being regulated
by RLRs, these two responses are also regulated by similar enzymes
involved in nucleotide metabolism. Nucleotides are widely known as
the fundamental units of DNA and RNA, but nucleotides and nucleotide
metabolism also play vital roles in modulating host immune responses
during viral infection. For example, there are numerous examples of
cyclic di-nucleotides serving as second messengers in cell-intrinsic
immune signaling pathways.[6%70] Furthermore, there are many host
antiviral factors that deplete or modify nucleotides to block viral
replication..71-72] The abundance of purine nucleotides in particu-
lar represents a limiting step in viral replication for two reasons:

(1) purines like adenine and guanine are indispensable constituents

of rapidly amplifying viral genomes, and (2) they represent the core
components of nucleoside triphosphates, which comprise the main
energy sources in the cell. Interestingly, microsporidia genomes lack
nucleotide biosynthesis pathways, and so these obligate intracellu-
lar pathogens likely depend entirely on hosts for purines and other
nucleotides, similar to viruses.13%73-75] As microsporidia are enclosed
in membranes that separate them from the host cytoplasm, they
express nucleotide transporters on their plasma membranes that ‘steal’
purines from the host cytoplasm.l7374]

Cells synthesize purine nucleotides through either the de novo or
the salvage pathways, with a preference for the more energy-efficient
salvage pathway.[3%76] The enzymes in purine salvage pathways are
highly conserved from bacteria to humans.””! Two key enzymes
in the purine nucleotide salvage pathway are adenosine deaminase
(ADA) and purine nucleoside phosphorylase (PNP). ADA catalyzes the
deamination of (deoxy-) adenosine to (deoxy-) inosine, whereas PNP
mediates cleavage of the N-glycosidic bond in (deoxy-) inosine and
(deoxy-) guanosine to hypoxanthine and guanine, respectively. Humans
have two ADA enzymes: ADA2 has a signal sequence and is respon-
sible for most of the extracellular activity, while ADA1 lacks a signal
sequence and is responsible for most of the intracellular activity.[78.79]
Mutations in ADA1, ADA2, and PNP salvage enzymes lead to com-
plex syndromes in humans that include features of immunodeficiencies
coupled with auto-inflammation.[80-82]

Of relevance for this review is the finding that loss of ADA2 leads
to increased IFN-B mRNA expression and spontaneous IFN-I signaling
in human endothelial cells, providing insight into the potential basis
for diseases caused by loss of ADA2.[83] The mechanism proposed by
Dhawani et al is that loss of ADA2 leads to increased extracellular
deoxy-adenosine that is taken up into cells and converted into deoxy-
inosine by intracellular ADA1. Increased intracellular deoxy-inosine
then blocks SAM synthetase activity, leading to hypomethylation on
DNA of endogenous retroviral elements (ERVs). Given that methyla-
tion normally silences these ERVs, hypomethylation causes increased
transcription, which is bidirectional, generating ERV dsRNA. This
dsRNA then activates RLRs, triggering an IFN-I response and antivi-
ral immunity.[83! The effect of ADA2 loss can be exacerbated by loss
of PNP, likely due to a further increase in deoxy-inosine, although
PNP loss in a wild-type background was not described in this study.
Altogether, these results provide a mechanism by which dysregulated
purine metabolism, through the loss of ADA2 in human endothelial
cells, triggers the IFN-I response. Of note, human epithelial cells do not
appear to express ADA2, and future work could explore whether ADA1
(and also PNP) have a role in regulating IFN-1 in these cells.

Analogous to how mutations in purine salvage enzymes lead to
upregulated IFN-I responses in human cells, perturbations in a purine
salvage enzyme function also result in the activation of the IPR. A
forward genetic screen in C. elegans uncovered the purine nucleoside
phosphorylase-encoding gene pnp-1 as a negative regulator of the IPR.
Loss of pnp-1 leads to upregulation of the IPR gene expression and
provides resistance to Orsay virus and microsporidia infections.[3%:3]

Metabolomic analysis showed that pnp-1 mutants have increased
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levels of the PNP substrate inosine, as well as decreased levels of the
PNP product, hypoxanthine. This result confirmed that the PNP-1
protein in C. elegans has an enzymatic activity similar to PNP in other
species. As previously stated, the accumulation of deoxy-inosine in
mammalian cells induces the IFN response through ERV upregulation.
However, it is currently unknown if increased inosine concentrations
in worms induce the IPR through a similar mechanism, although the
C. elegans genome does contain retroviral-like sequences.!#4] While
pnp-1is expressed in neurons and intestinal epithelial cells, expression
of pnp-1 specifically in the intestine was sufficient to rescue pnp-1
mutant phenotypes, indicating intestinal epithelial cells are the site of
action for inducing immune responses due to loss of pnp-1.139! Taken
together, these studies indicate that purine salvage metabolism plays
an important function in regulating innate immune responses in both
mammals and nematodes. Future studies could investigate the role
of adah-1, the C. elegans homolog of ADA1/2, and the mechanisms
by which alterations in purine salvage metabolism induce immune

responses in this host in comparison to humans.

Proteotoxic stress as a regulator of the IFN-I
response and the IPR

Another area of similarity between the IFN-I response and the IPR is
that they both can be triggered by stressors that impair protein home-
ostasis (proteostasis). Obligate intracellular pathogens commonly per-
turb proteostasis, as they undergo their entire replicative life cycle
inside host cells.I8%] In particular, viruses cause proteotoxic stress by
hijacking host protein synthesis machinery to synthesize viral proteins,
thus impairing the synthesis of host proteins. And while microsporidia
presumably synthesize their own proteins, studies indicate that they
secrete hundreds of proteins into the host cytosol, which likely impair
proteostasis in the host cell.[8] Indeed, infection of C. elegans by
either the Orsay virus or N. parisii leads to the formation of ubiquitin
aggregates, which are hallmarks of impaired proteostasis.!38]

Perturbations in proteostasis by non-pathogenic triggers in C.
elegans can also activate the IPR, as inhibition of the proteasome
either genetically or pharmacologically leads to IPR activation, as
does knock-down of ubiquitin expression or prolonged heat stress.!38]
RNA-seq analysis revealed that IPR induction in response to pro-
teasome blockade occurs in parallel to a previously described tran-
scriptional response to proteasome blockade called the bounce-back
response.!353787] The bounce-back response includes the upregula-
tion of proteasome subunit genes, which are not part of the IPR. The
bounce-back response is controlled by SKN-1, which is a transcrip-
tion factor that promotes resistance to proteotoxic stress, oxidative
stress, as well as pathogen infection.[88-701 Overall, these findings in
C. elegans suggest that proteasome blockade stimulates the activation
of the IPR and the bounce-back response as distinct, non-overlapping
stress/immune responses.

Studies in mammals indicate that blockade of the proteasome also

induces two transcriptional responses with similarity to the responses

in C. elegans. First, Nrf1, a transcription factor homologous to SKN-1A,
also upregulates the expression of proteasome subunits in response
to proteasome blockade in this host.?!] In the second response,
blockade of the proteasome induces the IFN-I response,!?2] simi-
lar to how it induces the IPR in worms. Moreover, mutations in
the proteasome are associated with inflammatory disorders called
interferonopathies that are characterized by overexpression of IFN-I.
Mutations in the gene encoding inducible proteasome (immunopro-
teasome) subunit 8 8 (PSMB8) were reported to be related to the
development of proteasome-associated autoinflammatory syndrome
(PRAAS) in humans.?3-9¢] Subsequently, mutations in four other
genes that encode proteasome components were also found to cause
PRAAS interferonopathy, including immunoproteasome and consti-
tutive proteasome subunits.!?397] Furthermore, PRAAS-associated
mutations have been identified in genes encoding several protea-
some regulators.[?397] Importantly, these mutants show increased
expression of IFN genes and ISGs, which is likely a prerequisite for
PRASS development.[?398] These examples demonstrate a correla-
tion between proteasomal dysfunction and innate immune induc-
tion and suggest that there are two conserved surveillance systems
(SKN-1A/Nrf1 and IPR/IFN-I) that trigger protective transcriptional
responses following proteostasis perturbations in both mammals and

in C. elegans.

Transcription factor regulation of IFN-I gene
expression and the IPR

Having described the similarities in the activation of the IFN-I response
and the IPR, we now compare the transcription factors that activate
these responses. The IFN-I response is transcriptionally regulated by
the members of the IFN regulatory factor (IRF) family. For example,
IRF3 and IRF7 are essential for the activation of IFN-I downstream
of PRRs like RLRs (Figure 4).[99:1901 |RF3 is ubiquitously expressed
in all cell types, whereas IRF7 is highly expressed in dendritic cells.
IRF7 is expressed in other types of cells as well, but its half-life is
relatively short in comparison to IRF3. IRF7 degradation via ubiquitin-
proteasome system is additionally accelerated upon viral infection in
all tested cell types, except for plasmacytoid dendritic cells (pDCs).
Following primary infection, pDCs are the most potent producers of
IFN-I, which likely correlates with the longer stability of IRF7 in this
cell type.l 101 Although IRF7 degradation in pDCs is lower than in other
cells, it still needs to be adequately regulated to prevent harmful IFN
hyperactivation. This regulation is achieved through the polyubiqui-
tylation and proteasomal degradation of IRF7.[192] Polyubiquitylation
also plays an important role in IRF3 turnover during viral infection.[103]
In the absence of pathogens, IRFs are maintained in their inactive form
in the cytosol. Upon infection, IRFs become activated through phos-
phorylation, which leads to their translocation into the nucleus and
transcriptional upregulation of IFN gene expression (Figure 4).

IFNs bind to the receptors on the plasma membranes of the target
cells. The binding of IFNs leads to the activation of several JAK/STAT
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FIGURE 4 Overview of the transcriptional regulation IPR and IFN-I responses, including intercellular signaling for IFN-I response (while
intercellular signaling does occur in the IPR, the exact players are not well-understood). ZIP-1 and STA-1 antagonistically regulate the
transcription of some IPR genes. NF-xB and IRFs promote the transcription of IFN genes. IFN signals to the same (autocrine signaling) and other
cells (paracrine signaling) by binding to JAK receptors on the cell surface. This binding stimulates the formation of the ISGF3 complex that consists
of STAT1, STAT2, and IRF9 and activates the transcription of ISGs. STAT3 inhibits the ISGF3 complex. P = phosphorylated.

pathways that promote resistance to pathogens.2%4! For example,
IFN-I activates STAT1, STAT2, and STAT3 proteins, which regulate tran-
scription. STAT1, STAT2, and IRF9 form the IFN-stimulated gene factor
3 (ISGF3) complex that promotes the transcription of IFN-stimulated
genes, which are important for the antiviral response (Figure 4).1105]
However, STAT3 acts as a suppressor of IFN-I signaling and prevents
hyperactivation of the ISGF3 complex in several ways. For example,
STATS3 prevents the transcription of STAT1, STAT2, and IRF9; it binds
and sequesters STAT1, and it cooperates with PLSCR2 to prevent DNA
binding of ISGF3. Furthermore, STAT3 indirectly suppresses ISGF3
through the induction of miRNAs that target this complex for degrada-
tion and through the induction of IFN-negative regulator SOCS3.1105]
In summary, several STAT proteins play antagonistic roles to fine-tune
the antiviral response.

The C. elegans genome does not appear to contain homologs of
mammalian IRFs, but it contains two genes that encode STAT family
transcription factors STA-1 and STA-2, which are both important for
innate immunity. STA-1 is a negative regulator of the IPR (Figure 4)
and sta-1 depletion leads to increased resistance to Orsay virus
infection.10¢] This result suggests that STA-1 in C. elegans and STAT3
in mammals might have similar roles as negative regulators of anti-viral
defense. STA-2 promotes the expression of antimicrobial peptide genes
inthe epidermis and provides protection against the fungal pathogen D.
coniospora.l197] However, STA-2 is not required for promoting the IPR
and has no known role there.[35]

A recent study has identified ZIP-1 as the first transcription factor
that activates the IPR, and the first transcription factor shown to pro-
mote defense against the Orsay virus and microsporidia infection in C.
elegans (Figure 4).1351 ZIP-1 acts as a central hub for all known IPR trig-

gers and is required for the upregulation of a subset of IPR genes. ZIP-1

belongs to the extended family of bZIP transcription factors that play
important roles in plant immunity, as well as in antibacterial defense in
nematodes, including bZIP transcription factors ZIP-2 and ATF7 that
provide defense against P. aeruginosa infection.[198:199] zjp-1 mutants
show significantly higher viral loads and have a shorter lifespan upon
N. parisii infection in comparison to wild-type control animals.[35]

RNA-seq studies suggest that ZIP-1 regulates the transcription of
roughly one-third of all IPR genes. While some IPR genes are zip-
1-dependent only in the initial phase of IPR activation, others are
dependent in the later phase. Therefore, IPR genes can be categorized
into three groups: early zip-1-dependent, late zip-1-dependent, and
zip-1-independent genes.[35! Other, currently unknown transcription
factors are necessary to induce the expression of zip-1-independent
and partially zip-1-dependent genes. Tissue-specific depletion studies
of zip-1 indicate it acts in the intestine to regulate gene expression,
although it is also expressed in epidermal cells, and may also have roles
there.[35]

zip-1itselfis transcriptionally upregulated by IPR triggers. However,
because it is required for mRNA induction only 30 min after treatment
with an IPR trigger, it is believed to be the proximal transcription factor
downstream of RLR activation and other IPR triggers, although it is not
yet known where ZIP-1 binds in the genome.!35] And while zip-1 mRNA
is present in the absence of IPR triggers, ZIP-1::GFP protein reporter
expression is not detectable without IPR activation, suggesting that
ZIP-1 protein may have a fast turnover similar to IRF7 in mammals.
Following IPR activation, ZIP-1::GFP expression becomes visible and is
localized to the nucleus of infected and neighboring uninfected cells,
similar to paracrine signaling during the IFN response.[35] However,
even before becoming visible by fluorescence microscopy, ZIP-1 is

required for induction of a subset of IPR genes. This result suggests that
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even when ZIP-1 is expressed at very low levels, it still plays a key role
for induction of immunological response following pathogen invasion.

Prolonged activation of the IFN-I response and the
IPR is detrimental to organismal development

Activation of immunological responses rewires metabolism to pro-
mote defense at the expense of cellular and organismal develop-
ment and growth. Therefore, prolonged and/or overly strong activa-
tion of immune responses can be detrimental to organismal devel-
opment and can cause metabolic diseases. For example, autoim-
mune disorders Aicardi-Goutieres syndrome (AGS) and systemic
lupus erythematosus (SLE) show a correlation between hyperacti-
vation of IFN-I response and neurological developmental impair-
ments. Specifically, AGS patients frequently develop cerebral atrophy
and microcephaly,!110] whereas chronic inflammation of different
organ systems during SLE often leads to cellular necrosis and organ
degeneration.[111:112] | oss of a recently described “guard” of the IFN-
| response called MORC3 leads to increased IFN-I expression and
resistance to viral infection, and mice with MORC3 mutations have
bone and hematopoietic abnormalities.[113! Enteroviral infections and
a subsequent increase of IFN-I signaling have been implicated in the
autoimmune destruction of pancreatic cells and the onset of type
1 diabetes mellitus.[114115] Diabetes and other metabolic disorders
frequently have deleterious effects on organismal development.
Similar to hyperactivation of the IFN-I response, prolonged activa-
tion of the IPR in C. elegans appears to be detrimental to development,
reproduction and lifespan, based on analysis of loss-of-function muta-
tions in two negative regulators of the IPR, pals-22 and pals-17.36:3742]
Mutations in pals-22 or pals-17 cause constitutive upregulation of
IPR gene expression in the absence of infection, and these mutants
have increased resistance to intracellular pathogens as well as devel-
opmental delay. Specifically, pals-22 premature stop codon mutants
develop slower than wild-type animals, and have a slenderer appear-
ance, smaller brood sizes, and shorter lifespan.[36:37] Furthermore, they
exhibit phenotypes reminiscent of premature aging, including loco-
motory defects.[*!] Loss of pals-17 causes even more severe negative
impacts than loss pals-22. pals-17 partial loss-of-function mutants grow
very slowly and asynchronously within a population, while deletion
of the entire pals-17 gene causes arrested development of all animals
at an early larval stage.[42] Several other pals genes act downstream
of pals-22 and pals-17 and antagonize their functions. Loss of pals-
25 and pals-16 revert all phenotypes observed in pals-22 and pals-17
mutants, respectively.[3742] Loss of the pals-20 gene, however, sup-
presses the upregulation of IPR genes in pals-17 mutants only at early
larval stages and provides nearly normal development.[42] In summary,
the components of the expanded pals gene family form several reg-
ulatory modules in C. elegans that act as IPR ON/OFF switches and
maintain the balance between immunity and development. Similar to
pals regulators of the IPR, the antagonistic relations between different

STAT proteins during IFN response activation (described earlier in this

B?oEssastm

review) highlight the importance of complex and precise regulation of
immunological responses.

CONCLUSIONS

A hallmark of genes involved in host-pathogen battles is their rapid
acquisition and loss over evolutionary time, including expansion of
particular gene families.[1! In this light, one reasonable explanation
for expansion of the C. elegans pals gene family is selective pressures
from co-evolving pathogens. A set of 330 C. elegans natural isolates
has provided a powerful tool for evolutionary work in this organ-
ism, with a recent study indicating selective pressures on pals genes
in particular.[116117] There have also been examples of evolutionary
expansion/loss of RLR genes over time, as RIG-I appears to have been
lost in chickens and some fish.[118] RLRs may also have been lost in D.
melanogaster, given the presence of RLRs in C. elegans, sea urchins and
vertebrates together with the evolutionary relationships among these
species.[11?] On the other hand, RLRs appear to have expanded inde-
pendently to three genes each in C. elegans and mammals, and 12 genes
in the purple sea urchin.[120]

Is the similar regulation of the C. elegans IPR and the mammalian
IFN-1 response by RLRs and other factors mentioned above due to
divergent evolution (i.e., derived from a similar pathway found in the
last common ancestor of C. elegans and mammals), or convergent evo-
lution (C. elegans and mammals independently adopted these modes of
defense)? Notably, a revolution in our understanding of cell-intrinsic
immune responses regulated by NLRs has shifted the field toward
the model that these immune receptors found both in plants and
animals have likely undergone divergent evolution, instead of conver-
gent evolution as originally proposed.[121] These findings are based on
structural similarities in animal and plant NLRs, as well as the recent
finding that bacteria have NLRs used for defense. Furthermore, other
cell-intrinsic defense pathways like cGAS/STING have been shown to
be deeply conserved across bacteria, archaea, and eukaryotes.! 122123
Thus, the last common ancestor of bacteria, plants and humans likely
had versions of NLR and cGAS/STING cell-intrinsic defense that under-
went extensive sequence divergence to become their current forms
that are still being used across phylogeny for anti-viral defense.

Given the precedents mentioned in the paragraph above, together
with the similarities mentioned in this review, we suggest that RLR
regulation of the IPR and the IFN-I may represent divergent evolution.
As described above, although IFN genes evolved in the vertebrate lin-
eage, several upstream activators of the IFN-I response evolved much
earlier. In particular, RLRs evolved upon multicellularity in metazoans,
while other cellular processes that regulate the IPR and IFN-| response
are even more broadly conserved.[48:124125] Whijle highly speculative,
we suggest that surveillance of purine salvage and the proteasome
may also trigger protective transcriptional responses in single-celled
organisms. If such regulation were found in single-celled organisms,
together with identification of RLRs that regulate the response, these

findings would provide support for the divergent evolution model.
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Further analysis of anti-viral defense responses in a broad range of
hosts including C. elegans will inform how mechanisms of defense have
evolved against intracellular pathogens in diverse hosts, including
cell-intrinsic as well as systemic signaling used to fight off infection.
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