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ABSTRACT

Empirical risk minimization (ERM) is known to be non-robust in practice to dis-
tributional shift where the training and the test distributions are different. A suite
of approaches, such as importance weighting, and variants of distributionally ro-
bust optimization (DRO), have been proposed to solve this problem. But a line
of recent work has empirically shown that these approaches do not significantly
improve over ERM in real applications with distribution shift. The goal of this
work is to obtain a comprehensive theoretical understanding of this intriguing
phenomenon. We first posit the class of Generalized Reweighting (GRW) algo-
rithms, as a broad category of approaches that iteratively update model parameters
based on iterative reweighting of the training samples. We show that when over-
parameterized models are trained under GRW, the resulting models are close to
that obtained by ERM. We also show that adding small regularization which does
not greatly affect the empirical training accuracy does not help. Together, our re-
sults show that a broad category of what we term GRW approaches are not able
to achieve distributionally robust generalization. Our work thus has the following
sobering takeaway: to make progress towards distributionally robust generaliza-
tion, we either have to develop non-GRW approaches, or perhaps devise novel
classification/regression loss functions that are adapted to GRW approaches.

1 INTRODUCTION

It has now been well established that empirical risk minimization (ERM) can empirically achieve
high test performance on a variety of tasks, particularly with modern overparameterized models
where the number of parameters is much larger than the number of training samples. This strong
performance of ERM however has been shown to degrade under distributional shift, where the train-
ing and test distributions are different (Hovy & Sggaard, 2015; Blodgett et al., 2016; Tatman, 2017).
There are two broad categories of distribution shift: domain generalization, defined as the scenario
where the test distribution contains samples from new domains that did not appear during training;
and subpopulation shift, defined as the scenario where the training set contains several subgroups
and the testing distribution weighs these subgroups differently, like in fair machine learning.

People have proposed various approaches to learn models robust to distributional shift. The most
classical one is importance weighting (IW) (Shimodaira, 2000; Fang et al., 2020), which reweights
training samples; for subpopulation shift these weights are typically set so that each subpopulation
has the same overall weight in the training objective. The approach most widely used today is
Distributional Robust Optimization (DRO) (Duchi & Namkoong, 2018; Hashimoto et al., 2018),
which assumes that the test distribution belongs to a certain uncertainty set of distributions that are
close to the training distribution, and train on the worst distribution in that set. Many variants of
DRO have been proposed and are used in practice (Sagawa et al., 2020a; Zhai et al., 2021a;b).

While these approaches have been developed for the express purpose of improving ERM for distri-
bution shift, a line of recent work has empirically shown the negative result that when used to train
overparameterized models, these methods do not improve over ERM. For IW, Byrd & Lipton (2019)
observed that its effect under stochastic gradient descent (SGD) diminishes over training epochs, and
finally does not improve over ERM. For variants of DRO, Sagawa et al. (2020a) found that these
methods overfit very easily, i.e. their test performances will drop to the same low level as ERM after
sufficiently many epochs if no regularization is applied. Gulrajani & Lopez-Paz (2021); Koh et al.
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(2021) compared these methods with ERM on a number of real-world applications, and found that
in most cases none of these methods improves over ERM.

This line of empirical results has also been bolstered by some recent theoretical results. Sagawa
et al. (2020b) constructed a synthetic dataset where a linear model trained with IW is provably not
robust to subpopulation shift. Xu et al. (2021) further proved that under gradient descent (GD) with
a sufficiently small learning rate, a linear classifier trained with either IW or ERM converges to the
same max-margin classifier, and thus upon convergence, are no different. These previous theoretical
results are limited to linear models and specific approaches such as IW where sample weights are
fixed during training. They are not applicable to more complex models, and more general approaches
where the sample weights could iteratively change, including most DRO variants.

Towards placing the empirical results on a stronger theoretical footing, we define the class of gen-
eralized reweighting (GRW), which dynamically assigns weights to the training samples, and itera-
tively minimizes the weighted average of the sample losses. By allowing the weights to vary with
iterations, we cover not just static importance weighting, but also DRO approaches outlined earlier;
though of course, the GRW class is much broader than just these instances.

Main contributions. We prove that GRW and ERM have (almost) equivalent implicit biases, in
the sense that the points they converge to are very close to each other, under a much more general
setting than those used in previous work. Thus, GRW cannot improve over ERM because it does
not yield a significantly different model. We are the first to extend this line of theoretical results (i)
to wide neural networks, (ii) to reweighting methods with dynamic weights, (iii) to regression tasks,
and (iv) to methods with Lo regularization. We note that these extensions are non-trivial technically
as they require the result that wide neural networks can be approximated by their linearized counter-
parts to hold uniformly throughout the iterative process of GRW algorithms. Moreover, we fix the
proof in a previous paper (Lee et al., 2019) (see Appendix E) which is also a great contribution.

Overall, the important takeaway is that distributionally robust generalization (DRG) cannot be di-
rectly achieved by the broad class of GRW algorithms (which includes popular approaches such as
importance weighting and most DRO variants). Progress towards this important goal thus requires
either going beyond GRW algorithms, or devising novel loss functions that are adapted to GRW
approaches. In Section 6 we will discuss some promising future directions and the case with non-
overparameterized models and early stopping. Finally, we want to emphasize that while the models
we use in our results (linear models and wide neural networks) are different from practical models,
they are general models most widely used in existing theory papers, and our results based on these
models provide explanations to the baffling observations made in previous empirical work, as well
as valuable insights into how to improve distributionally robust generalization.

2 PRELIMINARIES

Let the input space be X C R and the output space be ) C R." We assume that X is a subset of the
unit Ly ball of R%, so that any @ € X satisfies ||z||2 < 1. We have a training set {z; = (z;,y;)}"
i.i.d. sampled from an underlying distribution P over X x ). Denote X = (@1, - ,&,) € Raxn,
and Y = (y1,-- ,yn) € R™. For any function g : X — R™, we overload notation and use
9(X) = (g(x1),- -+, g(xy)) € R™*"™ (except when m = 1, g(X) is defined as a column vector).
Let the loss function be £ : ) x ) — [0,1]. ERM trains a model by minimizing its expected risk

R(f; P) = E.p[t(f(x),y)] via minimizing the empirical risk R(f) = + S (), yi)

n

In distributional shift, the model is evaluated not on the training distribution P, but a different
test distribution P, so that we care about the expected risk R(f; Pes). A large family of methods
designed for such distributional shift is distributionally robust optimization (DRO), which minimizes
the expected risk over the worst-case distribution Q < P? in a ball w.r.t. divergence D around the
training distribution P. Specifically, DRO minimizes the expected DRO risk defined as:

Rp,(f; P) = Sga{EQ[ﬁ(f(w)yy)] :D(@Q || P) < p} (1)

for p > 0. Examples include CVaR, x2-DRO (Hashimoto et al., 2018), and DORO (Zhai et al.,
2021a), among others.

'Our results can be easily extended to the multi-class scenario (see Appendix B).
2For distributions P and Q, Q is absolute continuous to P, or Q < P, means that for any event A,
P(A) = 0implies Q(A) = 0.



Published as a conference paper at ICLR 2023

A common category of distribution shift is known as subpopulation shift. Let the data domain

contain K groups D1, --- , Dg. The training distribution P is the distribution over all groups, and
the test distribution Py is the distribution over one of the groups. Let Py(z) = P(z | 2z € Dy)
be the conditional distribution over group k, then P can be any one of Py, -- , P;. The goal is

to train a model f that performs well over every group. There are two common ways to achieve
this goal: one is minimizing the balanced empirical risk which is an unweighted average of the
empirical risk over each group, and the other is minimizing the worst-group risk defined as

Rmax(f; P) = k:I{laX,KR(fv Pk) = k:r{{a}iKEzwp[g(f(m)ay)|Z € Dk] (2)

3 GENERALIZED REWEIGHTING (GRW)

Various methods have been proposed towards learning models that are robust to distributional shift.
In contrast to analyzing each of these individually, we instead consider a large class of what we call
Generalized Reweighting (GRW) algorithms that includes the ones mentioned earlier, but potentially
many others more. Loosely, GRW algorithms iteratively assign each sample a weight during training

(that could vary with the iteration) and iteratively minimize the weighted average risk. Specifically,
()

at iteration ¢, GRW assigns a weight g; * to sample z;, and minimizes the weighted empirical risk:

Rao (f) = alP0(f(z:), 1) 3)
=1

where ¢® = (¢{” -+ g?)and ¢V + - + ¢ = 1.

Static GRW assigns to each z; = (x;, y;) a fixed weight ¢; that does not change during training, i.e.

ql@ = ¢;. A classical method is importance weighting (IW) (Shimodaira, 2000), where if z; € Dy,

and the size of Dy, is ny, then ¢; = (K nk)_l. Under IW, (3) becomes the balanced empirical risk
in which each group has the same weight. Note that ERM is also a special case of static GRW.

On the other hand, in dynamic GRW, q*) changes with ¢. For instance, any approach that iteratively
upweights samples with high losses in order to help the model learn “hard” samples, such as DRO,
is an instance of GRW. When estimating the population DRO risk Rp ,(f; P) in Eqn. (1), if P
is set to the empirical distribution over the training samples, then ) < P implies that @ is also
a distribution over the training samples. Thus, DRO methods belong to the broad class of GRW
algorithms. There are two common ways to implement DRO. One uses Danskin’s theorem and
chooses () as the maximizer of Eq[¢(f(x), y)] in each epoch. The other one formulates DRO as a
bi-level optimization problem, where the lower level updates the model to minimize the expected
risk over ), and the upper level updates () to maximize it. Both can be seen as instances of GRW. As
one popular instance of the latter, Group DRO was proposed by Sagawa et al. (2020a) to minimize
(2). Denote the empirical risk over group k by 7@;.3( f), and the model at time ¢ by f(). Group DRO

iteratively sets qgt) =

g,(:) /ny; for all z; € Dy, where g,(:) is the group weight that is updated as
g o g™V exp (VRL(FUT)) (k=10 K) @
for some v > 0, and then normalized so that qit) 4+ -+ qr(f) = 1. Sagawa et al. (2020a) then

showed (in their Proposition 2) that for convex settings, the Group DRO risk of iterates converges to
the global minimum with the rate O(t~'/2) if v is sufficiently small.

4 THEORETICAL RESULTS FOR REGRESSION
In this section, we will study GRW for regression tasks that use the squared loss

1

€59) = 50— 9™ )
We will prove that for both linear models and sufficiently wide fully-connected neural networks, the
implicit bias of GRW is equivalent to ERM, which means that starting from the same initial point,
GRW and ERM will converge to the same point when trained for an infinitely long time. Thus,
GRW cannot improve over ERM as it produces the exact same model as ERM. We will further show
that while regularization can affect this implicit bias, it must be large enough to significantly lower
the training performance, or the final model will still be similar to the unregularized ERM model.

3
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Figure 1: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO) with
the squared loss on six MNIST images with a linear model. All norms are Lo norms.

4.1 LINEAR MODELS

We first demonstrate our result on simple linear models to provide our readers with a key intuition
which we will later apply to neural networks. This key intuition draws from results of Gunasekar
et al. (2018). Let the linear model be denoted by f(x) = (6, x), where § € RY. We consider the
overparameterized setting where d > n. The weight update rule of GRW under GD is the following:

n
0D =00 — 5> ¢ OV l(fO (1), yi) (©)
i=1
where 77 > 0 is the learning rate. For a linear model with the squared loss, the update rule is

60 =60 —n Y 2i(f (@) — yo) )
i=1
For this training scheme, we can prove that if the training error converges to zero, then the model
converges to an interpolator 6* (s.z. Vi, (0, x;) = y;) independent of qgt) (proofs in Appendix D):
Theorem 1. If x1,--- ,x, are linearly independent, then under the squared loss, for any GRW

such that the empirical training risk 7@( f (t)) — 0ast — oo, it holds that ") converges to an
(t)

i

interpolator 0* that only depends on 0©) and x+,- - - , x,,, but does not depend on q

The proof is based on the following key intuition regarding the update rule (7): 8¢+1 — () is
a linear combination of x1,--- ,x, for all ¢, so 8() — §(®) always lies in the linear subspace
span{xy,- - ,@,}, which is an n-dimensional linear subspace if 1, -- , @, are linearly indepen-
dent. By Cramer’s rule, there is exactly one 0 in this subspace such that we get interpolation of all
the data (6 4+ 09, x;) = y; forall i € {1,...,n}. In other words, the parameter §* = § + §(*)
in this subspace that interpolates all the data is unique. Thus the proof would follow if we were to
show that #®) — 9(®) which lies in the subspace, also converges to interpolating the data. Moreover,
this proof works for any first-order optimization method such that the training risk converges to 0.

We have essentially proved the following sobering result: any GRW algorithm that achieves zero
training error exactly produces the ERM model, so it does not improve over ERM. While the various
distributional shift methods discussed in the introduction have been shown to satisfy the precondi-
tion of convergence to zero training error with overparameterized models and linearly independent
inputs (Sagawa et al., 2020a), we provide the following theorem that shows this for the broad class
of GRW methods. Specifically, we show this result for any GRW method that satisfies the following
assumption with a sufficiently small learning rate:

(®

Assumption 1. There are constants g1, -- ,gp s.t. Vi, q; * — ¢; ast — oo. And min; ¢; = ¢* > 0.

Theorem 2. If 1, -+ ,x, are linearly independent, then there exists ng > 0 such that for any
GRW satisfying Assumption 1 with the squared loss, and any n < nq, the empirical training risk

R(f®) = 0ast — .

Finally, we use a simple experiment to demonstrate the correctness of this result. The experiment is
conducted on a training set of six MNIST images, five of which are digit O and one is digit 1. We use
a 784-dimensional linear model and run ERM, importance weighting and group DRO. The results
are presented in Figure 1, and they show that the training loss of each method converges to 0, and
the gap between the model weights of importance weighting, Group DRO and ERM converges to
0, meaning that all three model weights converge to the same point, whose Lo norm is about 0.63.
Figure 1d also shows that the group weights in Group DRO empirically satisfy Assumption 1.

4.2 WIDE NEURAL NETWORKS (WIDE NNS)

Now we study sufficiently wide fully-connected neural networks. We extend the analysis in Lee
et al. (2019) in the neural tangent kernel (NTK) regime (Jacot et al., 2018). In particular we study
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the following network:

—ax' 4+ 80 and 2!t =g(ATY) (1=0,---,L) (8)
Vd;

where ¢ is a non-linear activation function, W' € R%+1>*4 and W’ € R'*?_ Here dy = d. The
parameter vector 6 consists of W, .- W% and b°,--- , b¥ (6 is the concatenation of all flattened
weights and biases). The final output is f(z) = hZT!. And let the neural network be initialized as

hl+1 —

Wi ~ N(0,1) wHO =0
1) (l=0,---,L—-1) and L(0) 9)
b ~ N(0,1) b, ~N(0,1)

We also need the following assumption on the wide neural network:
Assumption 2. ¢ is differentiable everywhere. Both o and its first-order derivative ¢ are Lipschitz.?

Difference from Jacot et al. (2018). Our initialization (9) differs from the original one in Jacot
et al. (2018) in the last (output) layer, where we use the zero initialization WL © — 0 instead of the
Gaussian initialization W J(O) N(0,1). This modification permits us to accurately approximate
the NN with its linearized counterpart (11), as we notice that the proofs in Lee et al. (2019) (partic-

ularly the proofs of their Theorem 2.1 and their Lemma 1 in Appendix G) are flawed. In Appendix
E we will explain what went wrong in their proofs and how we fix it with this modification.

Denote the neural network at time ¢ by f®)(x) = f(z;6®)) which is parameterized by §*) ¢ R?
where p is the number of parameters. We use the shorthand Vg f(©)(z) := V4 f(x;0) | =0, . The
neural tangent kernel (NTK) of this model is O (z, z') = V, f () (x) TV, f(©) (2'), and the Gram
matrixis ©(0) = ) (X X) € R™*™. For this wide NN, we still have the following NTK theorem:

Lemma 3. If o is Lipschitz and d; — oo forl = 1,--- | L sequentially, then ©©)(x, x') converges
in probability to a non-degenerate* deterministic limiting kernel ©(z, x').

The kernel Gram matrix © = ©(X,X) € R"*™" is a positive semi-definite symmetric matrix.
Denote its largest and smallest eigenvalues by A™#* and A™". Note that © is non-degenerate, so we
can assume that A™™" > 0 (which is almost surely true when dz, > n). Then we have:

Theorem 4. Let f*) be a wide fully-connected neural network that satisﬁes Assumption 2 and is
trained by any GRW satisfying Assumption 1 with the squared loss. Let fERM be the same model
trained by ERM from the same initial point. If dy = --- = dp, = d, Vo f©O(xy), -, Ve f O (a,)
are linearly independent, and \™™ > 0, then there exists a constant 1, > 0 such that ifn <mn’,
then for any § > 0, there exists D > 0 such that as long as d > D, with probability at least (1 — 0)
over random initialization we have: for any test point x € R? such that ||z|, < 1, as d — oo,

limsup | f® (x) — féQM(IB) =04 =0 (10)
t—o0

Essentially this theorem implies that on any test point « in the unit ball, the GRW model and the
ERM model produce almost the same output, so they have almost the same performance. Note that

for simplicity, we only prove for d;y = --- = dp = d — oo, but the result can be very easily

extended to the case where d;/dy — «; forl = 2,---, L for some constants aa, - ,ar, and

d; — oo. The key to proving this theorem is to consider the linearized neural network of f*)(zx):
i (@) = SO (@) + (09 =0, VO () (11)

which is a linear model w.r.t. Vo f© (z). If Vof O (xy),---,Vof©(a,) are linearly indepen-
dent (which is almost surely true when the model is overparameterized so that 6 has a very high
dimension), then our key intuition tells us that the linearized NN will converge to the unique inter-
polator. Then we show that the wide NN can be approximated by its linearized counterpart uniformly
throughout training, which is considerably more subtle in our case due to the GRW dynamics. Here
we prove the upper bound O(d~'/*), but in fact the upper bound can be O(d~'/2+) for any € > 0:

? f is Lipschitz if there exists a constant L > 0 such that for any 1, @2, | f(z1) — f(z2)| < L||z1 — x2][,.
*Non-degenerate means that ©(z, ') depends on & and &’ and is not a constant.
>For ease of understanding, later we will write this condition as “with a sufficiently small learning rate”.
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Lemma 5 (Approximation Theorem). For a wide fully-connected neural network f®) satisfying
Assumption 2 and is trained by any GRW satisfying Assumption 1 with the squared loss, let flgfl) be
its linearized neural network trained by the same GRW (i.e. qz(t) are the same for both networks
for any i and t). Under the conditions of Theorem 4, with a sufficiently small learning rate, for any
0 > 0, there exist constants D > 0 and C' > 0 such that as long as d > D, with probability at least
(1 — &) over random initialization we have: for any test point € R? such that ||z|, < 1,

sup | fin (@) — £ )| < €M (12)
t>

This lemma essentially says that throughout the GRW training process, on any test point & in the
unit ball, the linear NN and the wide NN produce almost the same output. So far, we have shown
that in a regression task, for both linear and wide NNs, GRW does not improve over ERM.

4.3 WIDE NEURAL NETWORKS, WITH Ly REGULARIZATION

Previous work such as Sagawa et al. (2020a) proposed to improve GRW by adding Lo penalty to the
objective function. In this section, we thus study adding Lo regularization to GRW algorithms:

Reo(F) = S a (o)) + o — 00 (13)
i=1

At first sight, adding regularization seems to be a natural approach and should make a difference.
Indeed, from the outset, we can easily show that with Lo regularization, the GRW model and the
ERM model are different unlike the case without regularization. As an concrete example, when f is

a linear model, ¢ is convex and smooth, then 7%‘; v, (f) with static GRW is a convex smooth objective
function, so under GD with a sufficiently small learning rate, the model will converge to the global
minimizer (see Appendix D.1). Moreover, the global optimum 6* satisfies V@Iﬁ,gm (f(x;6%)) =0,
solving which yields 8* = 0 + (XQX " 4+ uI)"* X Q(Y — f(© (X)), which depends on Q =
diag(q1,- - ,qn), so adding Lo regularization at least seems to yield different results from ERM
(albeit whether it improves over ERM might depend on ¢, - - - , qp)-

However, the following result shows that this regularization must be large enough to significantly
lower the training performance, or the final model would still be close to the unregularized ERM
model. We still denote the largest and smallest eigenvalues of the kernel Gram matrix © by A™&*
and \™", We use the subscript “reg” to refer to a regularized model (trained by minimizing (13)).

Theorem 6. Suppose there exists My > 0 s.t. Hng(O) (w)||2 < My for all ||x|| < 1. If \™in > 0
and (> 0, then for a wide NN satisfying Assumption 2, and any GRW minimizing the squared loss

with a sufficiently small learning rate ), if dy = dy = --- = dp = d, Vo fO(x1),---, Vo O (2,,)
are linearly independent, and the empirical training risk of fr(ég) satisfies
lim sup 7A2(fr(e’2) <e€ (14)
t—o0

for some € > 0, then with a sufficiently small learning rate, as d — oo, with probability close to 1
over random initialization, for any x such that ||z||, < 1 we have

limsup |8 (2) — figu(@)| = O(d™V1 + Ve) = O(Ve) (15)

t—o0

where fr(elg is trained by regularized GRW and féQM by unregularized ERM from same initial points.

This theorem essentially says that if the regularization is too small and the training error is close to
zero, then the regularized GRW model still produces an output very close to that of the ERM model
on any test point & in the unit ball. Thus, a small regularization makes little difference.

The proof again starts from analyzing linearized NNs, and showing that regularization does not help
there (Appendix D.4.2). Then, we prove a new approximation theorem for Ly regularized GRW
connecting wide NNs to linearized NNs uniformly throughout training (Appendix D.4.1). With
regularization, we no longer need Assumption 1 to prove the new approximation theorem which
was used to prove the convergence of GRW, because with regularization GRW naturally converges.



Published as a conference paper at ICLR 2023

o o
g g
£0.06 18w~ Berml2 —w £0.06 —— 18w — Berml2 —w
8 ‘\ 8gro ~ Berml2 4 o4 GDRO 8 | |8aro = Berml2 g o GDRO
5004 E) —— ERM £ 0.04] | > — ERM
5 0.0z} | £02 5 [ £02
£ = £ —
£ N = Eo.02 = \
Z0.00 — 0.0 = 0.0
0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000
Epochs Epochs Epochs Epochs
(a) Weight Difference (b) Training Loss (c) Weight Difference (d) Training Loss

Figure 2: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO) with
L, regularization with the squared loss. Left two: ;1 = 0.1; Right two: 1 = 10.

To empirically demonstrate this result, we run the same experiment as in Section 4.1 but with Lo
regularization. The results are presented in Figure 2. We can see that when the regularization is
small, the training losses still converge to 0, and the three model weights still converge to the same
point. On the contrary, with a large regularization, the training loss does not converge to 0, and the
three model weights converge to different points. This shows that the regularization must be large
enough to lower the training performance to make a significant difference to the implicit bias.

5 THEORETICAL RESULTS FOR CLASSIFICATION

Now we consider classification where )) = {+1, —1}. The big difference is that classification losses
don’t have finite minimizers. A classification loss converging to zero means that the model weight
“explodes” to infinity instead of converging to a finite point. We focus on the canonical logistic loss:

£(9,y) = log(1 + exp(—3y)) (16)
5.1 LINEAR MODELS

We first consider training the linear model f(x) = (6, ) with GRW under gradient descent with the
logistic loss. As noted earlier, in this setting, Byrd & Lipton (2019) made the empirical observation
that importance weighting does not improve over ERM. Then, Xu et al. (2021) proved that for
importance weighting algorithms, as t — oo, [|0()||s — oo and () /[|§®) ||, converges to a unit
vector that does not depend on the sample weights, so it does not improve over ERM. To extend this
theoretical result to the broad class of GRW algorithms, we will prove two results. First, in Theorem
7 we will show that for the logistic loss and any GRW algorithm satisfying the weaker assumption:
()

Assumption 3. For all 4, liminf; ,., ¢;’ > 0,

if the training error converges to 0, and the direction of the model weight converges to a fixed unit
vector, then this unit vector must be the max-margin classifier defined as

Ovm = arg max { min y; - (0, a:z>} 17
oiflofl =1 (P=Lem

Second, Theorem 8 shows that for any GRW satisfying Assumption 1, the training error converges
to 0 and the direction of the model weight converges, so it does not improve over ERM.

Theorem 7. If x1,--- ,x, are linearly independent, then for the logistic loss, we have: for any
GRW satisfying Assumption 3, if as t — oo the empirical training risk 7@( f (t)) converges to 0 and
0D /110D ||y — w for some unit vector u, then w = Oy

This result is an extension of Soudry et al. (2018), and says that all GRW methods (including ERM)

make the model converge to the same point Gpm that does not depend on qz(t). In other words, the
samples weights do not affect the implicit bias. Thus, for any GRW method that only satisfies the
weak Assumption 3, as long as the training error converges to 0 and the model weight direction
converges, GRW does not improve over ERM. We next show that any GRW satisfying Assumption

1 does have its model weight direction converge, and its training error converge to 0.

Theorem 8. For any loss { that is convex, L-smooth in 1 and strictly monotonically decreasing to
zero as yj — +oo, and GRW satisfying Assumption 1, denote F(0) = > 1 q;0((0,x;), y;). If
Ty, -, &, are linearly independent, then with a sufficiently small learning rate 1, we have:

(i) F(OW)—0ast— oo. (ii) |01V, = ccast — oc.

(iii) Let Op = argming{F(0) : ||0||, < R}. Og is unique for any R such that min)g,<r F(0) <

. e . . *) .
min; ¢;£(0,y;). And if imp_, %R exists, then lim;_, H:TH also exists and they are equal.
2
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This result is an extension of Theorem 1 of Ji et al. (2020). For the logistic loss, it is easy to show
that it satisfies the conditions of the above theorem and limg_, ‘%R = éMM. Thus, Theorems 8
and 7 together imply that all GRW satisfying Assumption 1 (including ERM) have the same implicit
bias (see Appendix D.5.3). We also have empirical verification for these results (see Appendix C).

Remark. It is impossible to extend these results to wide NNs like Theorem 4 because for a neural
network, if ||0(*)||; goes to infinity, then ||V f||2 will also go to infinity. However, for a linear model,
the gradient is a constant. Consequently, the gap between the neural networks and its linearized
counterpart will “explode” under gradient descent, so there can be no approximation theorem like
Lemma 5 that can connect wide NN to their linearized counterparts. Thus, we consider regularized
GRW, for which §(*) converges to a finite point and there is an approximation theorem.

5.2 WIDE NEURAL NETWORKS, WITH L, REGULARIZATION

Consider minimizing the regularized weighted empirical risk (13) with ¢ being the logistic loss. As
in the regression case, with L, regularization, GRW methods have different implicit biases than
ERM for the same reasons as in Section 4.3. And similarly, we can show that in order for GRW
methods to be sufficiently different from ERM, the regularization needs to be large enough to sig-
nificantly lower the training performance. Specifically, in the following theorem we show that if the
regularization is too small to lower the training performance, then a wide neural network trained
with regularized GRW and the logistic loss will still be very close to the max-margin linearized
neural network:

SHvm(x) = (éMM, ng(o)(a:» where éMM = arg max { Ilnin yi - (0, V(,f(o) (wl)>} (18)
o]2=1 Lt=1m

Note that fyv does not depend on qgt). Moreover, using the result in the previous section we can
show that a linearized neural network trained with unregularized ERM will converge to fym:

Theorem 9. Suppose there exists My > 0 such that ||V9f(o)(zc) H2 < M for all test point . For
a wide NN satisfying Assumption 2, and for any GRW satisfying Assumption 1 with the logistic loss,
ifdy =dy = =dp =dand VofO(x1), - ,Vef O (x,) are linearly independent and the
learning rate is sufficiently small, then for any 6 > 0 there exists a constant C' > 0 such that: with
probability at least (1 — §) over random initialization, as d — oo we have: for any € € (0, . if

the empirical training error satisfies limsup,_, .. ﬁ(fr(eg) < €, then for any test point x such that

| fame ()| > C - (—log 2¢)~1/2, r(etg) (x) has the same sign as fym(x) when t is sufficiently large.

This result says that at any test point  on which the max-margin linear classifier classifies with a
margin of Q((— log 2¢)~1/?), the neural network has the same prediction. And as ¢ decreases, the
confidence threshold also becomes lower. Similar to Theorem 6, this theorem provides the scaling
of the gap between the regularized GRW model and the unregularized ERM model w.rz. €.

This result justifies the empirical observation in Sagawa et al. (2020a) that with large regularization,
some GRW algorithms can maintain a high worst-group test performance, with the cost of suffering
a significant drop in training accuracy. On the other hand, if the regularization is small and the
model can achieve nearly perfect training accuracy, then its worst-group test performance will still
significantly drop.

6 DISCUSSION

6.1 DISTRIBUTIONALLY ROBUST GENERALIZATION AND FUTURE DIRECTIONS

A large body of prior work focused on distributionally robust optimization, but we show that these
methods have (almost) equivalent implicit biases as ERM. In other words, distributionally robust
optimization (DRO) does not necessarily achieve better distributionally robust generalization
(DRG). Our results pinpoint a critical bottleneck in the current distribution shift research, and we
argue that a deeper understanding in DRG is crucial for developing better distributionally robust
training algorithms. Here we discuss three promising future directions to improving DRG.
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The first approach is data augmentation and pretraining on large datasets. Our theoretical findings
suggest that the implicit bias of GRW is determined by the training samples and the initial point, but
not the sample weights. Thus, to improve DRG, we can either obtain more training samples, or start
from a better initial point, as proposed in two recent papers (Wiles et al., 2022; Sagawa et al., 2022).

The second approach (for classification) is to go beyond the class of (iterative) sample reweighting
based GRW algorithms, for instance via logit adjustment (Menon et al., 2021), which makes a
classifier have larger margins on smaller groups to improve its generalization on smaller groups.

An early approach by Cao et al. (2019) proposed to add an O(nlzl/ 4) additive adjustment term to
the logits output by the classifier. Following this spirit, Menon et al. (2021) proposed the LA-loss
which also adds an additive adjustment term to the logits. Ye et al. (2020) proposed the CDT-loss
which adds a multiplicative adjustment term to the logits by dividing the logits of different classes
with different temperatures. Kini et al. (2021) proposed the VS-loss which includes both additive
and multiplicative adjustment terms, and they showed that only the multiplicative adjustment term
affects the implicit bias, while the additive term only affects optimization, a fact that can be easily
derived from our Theorem 8. Finally, Li et al. (2021a) proposed AutoBalance which optimizes the
adjustment terms with a bi-level optimization framework.

The third approach is to stay within the class of GRW algorithms, but to change the classifica-
tion/regression loss function to be suited to GRW. A recent paper (Wang et al., 2022) showed that
for linear classifiers, one can make the implicit bias of GRW dependent on the sample weights by
replacing the exponentially-tailed logistic loss with the following polynomially-tailed loss:

Zleft(gy) ’ if yy < ﬂ

Lo p(8,y) = 1 e 19)
’ _— f
Gy (gD =z

And this result can be extended to GRW satisfying Assumption 1 using our Theorem 8. The reason
why loss (19) works is that it changes lim g, o %R, and the new limit depends on the sample weights.

6.2 LIMITATIONS
Like most theory papers, our work makes some strong assumptions. The two main assumptions are:

(i) The model is a linear model or a sufficiently wide fully-connected neural network.

(i1) The model is trained for sufficiently long time, i.e. without early stopping.

Regarding (i), Chizat et al. (2019) argued that NTK neural networks fall in the “lazy training”
regime and results might not be transferable to general neural networks. However, this class of
neural networks has been widely studied in recent years and has provided considerable insights into
the behavior of general neural networks, which is hard to analyze otherwise. Regarding (ii), in some
easy tasks, when early stopping is applied, existing algorithms for distributional shift can do better
than ERM (Sagawa et al., 2020a). However, as demonstrated in Gulrajani & Lopez-Paz (2021); Koh
et al. (2021), in real applications these methods still cannot significantly improve over ERM even
with early stopping, so early stopping is not the ultimate universal solution. Thus, though inevitably
our results rely on some strong assumptions, we believe that they provide important insights into the
problems of existing methods and directions for future work, which are significant contributions to
the study of distributional shift problems.

7 CONCLUSION

In this work, we posit a broad class of what we call Generalized Reweighting (GRW) algorithms
that include popular approaches such as importance weighting, and Distributionally Robust Opti-
mization (DRO) variants, that were designed towards the task of learning models that are robust to
distributional shift. We show that when used to train overparameterized linear models or wide NN
models, even this very broad class of GRW algorithms does not improve over ERM, because they
have the same implicit biases. We also showed that regularization does not help if it is not large
enough to significantly lower the average training performance. Our results thus suggest to make
progress towards learning models that are robust to distributional shift, we have to either go beyond
this broad class of GRW algorithms, or design new losses specifically targeted to this class.
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A RELATED WORK

A.1 SUBPOPULATION SHIFT

In this work, we mainly focus on the subpopulation shift problem, which has two main applications:
group fairness and long-tailed learning (learning with class imbalance). In both applications, the
dataset can be divided into several subgroups, and this work considers minimizing the worst-group
risk, defined as the maximum risk over any group.

Group Fairness. Group fairness refers to the scenario where the dataset contains several “groups”
(such as demographic groups), and a model is considered fair if its per-group performances meet
certain criteria (a “fairness” notion). Group fairness in machine learning was first studied in Hardt
et al. (2016) and Zafar et al. (2017), where they required the model to perform equally well over all
groups. Many previous papers proposed a number of fairness notions, such as equal opportunity,
statistical parity, etc. Among them, Hashimoto et al. (2018) studied another type of group fairness
called Rawlsian max-min fairness Rawls (2001), which does not require equal performance but
rather requires high performance on the worst-off group. The subpopulation shift problem we study
in this paper is naturally connected to the Rawlsian max-min fairness. A large body of recent work
have studied how to improve this worst-group performance Duchi & Namkoong (2018); Oren et al.
(2019); Liu et al. (2021); Zhai et al. (2021a). Recent work however observe that these approaches,
when used with modern overparameterized models, easily overfit Sagawa et al. (2020a;b). Apart
from group fairness, there are also other notions of fairness, such as individual fairness Dwork et al.
(2012); Zemel et al. (2013) and counterfactual fairness Kusner et al. (2017), which we do not study
in this work.

Long-tailed Learning. Long-tailed learning refers to the scenario where different classes have
different sizes, and usually there are some “minority classes” with extremely few samples that are
much more difficult to learn than the other classes. Using GRW such as importance weighting for
long-tailed learning is a very old idea which dates back to Xie & Manski (1989). However, recently
Byrd & Lipton (2019) found that the effect of importance weighting for long-tailed learning dimin-
ishes as training proceeds, which leads to a line of recent work on how to improve the generalization
in long-tailed learning (Cao et al., 2019; Menon et al., 2021; Ye et al., 2020; Kim & Kim, 2020; Kini
et al., 2021). Most of these papers share a common idea: Forcing the model to have larger margins
on smaller groups, so that its generalization on smaller groups can be better. Self-supervised learn-
ing is also used in long-tailed learning. For instance, Liu et al. (2022) found that self-supervised
learning can achieve good performances in long-tailed learning, Wang et al. (2021) used contrastive
learning for long-tailed learning, and Li et al. (2021b) used self-distillation.

A.2 DOMAIN GENERALIZATION

Domain generalization is the second common type of distribution shift. In domain generalization
and the related domain adaptation, a model is tested on a different domain than what it is trained
on. The most common idea in domain generalization is invariant learning, which learns a feature
extractor that is invariant across domains, usually by matching the feature distribution of different
domains. Since we have no access to the target domain, in invariant learning we assume that we
have access to multiple domains in the training set, and we learn a feature extractor with a small
variance across these domains. Examples include CORAL (Sun & Saenko, 2016), DANN (Ganin
etal., 2016), MMD (Li et al., 2018) and IRM (Arjovsky et al., 2019). However, Gulrajani & Lopez-
Paz (2021); Koh et al. (2021) empirically showed that most of these methods cannot do better than
standard ERM, and Rosenfeld et al. (2021) theoretically proved that IRM cannot do better than ERM
unless the number of training domains is greater than the number of independent features.

One problem of invariant learning methods is that they do not necessarily align the classes. For a
source domain P and a target domain ), even if we have successfully learned a feature extractor
® such that ®(P) ~ P(Q), there is no guarantee that ¢ can map the samples in P and @ from
the same class to the same location in the feature space. In the worst case, ® can map the positive
samples in P and the negative samples in () to the same location and vice versa, in which case
100% accuracy over P means 0% accuracy over (). The goal of class alignment is to make sure
that samples from the same class are mapped together, and far away from the other classes. For
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example, Tzeng et al. (2015) used soft labels to align the classes, Long et al. (2016) minimized the
class-based cross entropy on the target domain while keeping the source and target classifiers close
with a residual block, and Motiian et al. (2017) adopted a similarity penalty to keep samples from
different classes away from each other.

A.3 IMPLICIT BIAS UNDER THE OVERPARAMETERIZED SETTING

For overparameterized models, there could be many model parameters which all minimize the train-
ing loss. In such cases, it is of interest to study the implicit bias of specific optimization algorithms
such as gradient descent i.e. to what minimizer the model parameters will converge to Du et al.
(2019); Allen-Zhu et al. (2019). Our results use the NTK formulation of wide neural networks Jacot
et al. (2018), and specifically we use linearized neural networks to approximate such wide neural
networks following Lee et al. (2019). There is some criticism of this line of work, e.g. Chizat
et al. (2019) argued that infinitely wide neural networks fall in the “lazy training” regime and results
might not be transferable to general neural networks. Nonetheless such wide neural networks are
being widely studied in recent years, since they provide considerable insights into the behavior of
more general neural networks, which are typically intractable to analyze otherwise.

A.4 COMPARISON WITH HU ET AL. (2018)

A prior work Hu et al. (2018) also proved that GRW is equivalent to ERM under certain conditions.
However, we would like to point out that this work is substantially different from Hu et al. (2018).
Hu et al. (2018) proved that in classification that uses the zero-one loss, GRW methods such as DRSL
are equivalent to ERM, in the sense that the minimizer of the DRSL risk is also the minimizer of the
average risk. However, this does not mean that DRSL and ERM will always converge to the same
point, as there could be multiple minimizers. Their result relies on the zero-one loss, which leads to
a monotonic linear relationship between the DRSL risk and the average risk. Moreover, their result
is only about the relationship between two minimizers, and they did not prove that DRSL and ERM
can actually converge to these global minima.

On the other hand, in our results, we first show that without regularization, GRW and ERM will
converge to the exact same point, so that they have equivalent implicit biases, which is a much
stronger result. Then we show that even with regularization, if the regularization is not large enough,
GRW will still converge to a point that is very close to the point ERM converges to. Our results do
not depend on the loss function, and work for both the squared loss for regression and the logistic
loss for classification (and can be extended to other losses). Instead, our results depend on the
optimization method (must be first-order or gradient-based) as well as the model architecture (linear
or wide NN), since we need to explicitly prove that both GRW and ERM can reach the global minima
if trained under a small learning rate for sufficiently long. In a word, Hu et al. (2018) proves the
equivalence between GRW and ERM under the zero-one loss with a monotonic relationship between
the two risk functions, while our results focus on the optimization and training dynamics, and prove
that GRW and ERM have almost equivalent implicit biases.

B EXTENSION TO MULTI-DIMENSIONAL REGRESSION / MULTI-CLASS
CLASSIFICATION

In our results, we assume that f : R? — R for simplicity, but our results can be very easily extended
to the case where f : R? — RF. For most of our results, the proof consists of two major com-
ponents: (i) The linearized neural network will converge to some point (interpolator, max-margin
classifier, etc.); (ii) The wide fully-connected neural network can be approximated by its linearized
counterpart. For both components, the extension is very simple and straightforward. For (i), the
proof only relies on the smoothness of the objective function and the upper quadratic bound it en-
tails, and the function is still smooth when its output becomes multi-dimensional; For (ii), we can
prove that sup, || f(z) — fin()|2 = O(d~'/*) in exactly the same way. Thus, all of our results
hold for multi-dimensional regression and multi-class classification.

Particularly, for the multi-class cross-entropy loss, using Theorem 8 we can show that under any
GRW satisfying Assumption 1, the direction of the weight of a linear classifier will converge to the
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Figure 3: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO)
with the logistic loss and the polynomially-tailed loss. First row: Logistic loss; Second row:

Polynomially-tailed loss. All norms are Lo norms. 6 is a unit vector which is the direction of

following max-margin classifier:

Ovm = argmin{' min {f(:z:l)yl — max f(:ci)y/] 0l = 1} (20)
o =l o

which is still independent of ¢;.

C MORE EXPERIMENTS

We run ERM, importance weighting and Group DRO on the training set with 6 MNIST images
which we used in Section 4.1 with the logistic loss and the polynomially-tailed loss (Eqn. (19), with
a =1, 8 = 0 and 4, being the logistic loss shifted to make the overall loss function continuous) on
this dataset for 10 million epochs (note that we run for much more epochs because the convergence
is very slow). The results are shown in Figure 3. From the plots we can see that:

* For either loss function, the training loss of each method converges to 0.

* In contrast to the theory that the norm of the ERM model will go to infinity and all models
will converge to the max-margin classifier, the weight of the ERM model gets stuck at
some point, and the norms of the gaps between the normalized model weights also get
stuck. The reason is that the training loss has got so small that it becomes zero in the
floating number representation, so the gradient also becomes zero and the training halts
due to limited computational precision.

* However, we can still observe a fundamental difference between the logistic loss and the
polynomially-tailed loss. For the logistic loss, the norm of the gap between importance
weighting (or Group DRO) and ERM will converge to around 0.06 when the training stops,
while for the polynomially-tailed loss, the norm will be larger than 0.22 and will keep
growing, which shows that for the polynomially-tailed loss the normalized model weights
do not converge to the same point.

* For either loss, the group weights of Group DRO still empirically satisfy Assumption 1.

D PROOFS

In this paper, for any matrix A, we will use || A||2 to denote its spectral norm and || A|| to denote
its Frobenius norm.
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D.1 BACKGROUND ON SMOOTHNESS

A first-order differentiable function f over D is called L-smooth for L > 0 if

fw) < @)+ (Vi@)y o)+ 5 ly-al}  VayeD e

which is also called the upper quadratic bound. If f is second-order differentiable and D is a convex
set, then f is L-smooth is equivalent to

v V2f(x)v <L V||v||2 =1,V € D (22)

A classical result in convex optimization is the following:

Theorem 10. [f f(x) is convex and L-smooth with a unique finite minimizer x*, and is minimized
by gradient descent T, 1 = x; — 1V f (1) starting from xo where the learning rate n < +, then
we have

1
f@r) < f@) + x5 llwo - x| (23)

which also implies that x1 converges to x* as T — oc.

D.2 PROOFS FOR SUBSECTION 4.1

D.2.1 PROOF OF THEOREM 1

Using the key intuition, the weight update rule (7) implies that 6+ — () ¢ span{x,,--- , z,} for
all ¢, which further implies that ) — #(®) € span{x,,--- ,,,} for all t. By Cramer’s rule, in this
n-dimensional subspace there exists one and only one 6* such that #* — §(°) span{xy, - -, &n}

and (0* x;) for all i. Then we have

HXT(W — 0"

=[x —y) - (xTor v < ||xTeO —y| +|x T~ ¥, 0
2 2 24)

because || X "6 — YH; = 2nR(f(x;0)). On the other hand, let s™ be the smallest singular value

of X. Since X is full-rank, s™* > 0, and || X T(8() —67)||, > s™||0) — 6*||,. This shows

that Hﬁ(t) —0* H2 — 0. Thus, ) converges to this unique 6*. O

’ 2

D.2.2 PROOF OF THEOREM 2

To help our readers understand the proof more easily, we will first prove the result for static GRW

where ql@ = q; for all ¢, and then we will prove the result for dynamic GRW that satisfy ql@ — q;

ast — oo.

Static GRW. We first prove the result for all static GRW such that min; ¢; = ¢* > 0.

We will use smoothness introduce in Appendix D.1. Denote A = >, H:L-Z||§ The empirical risk
of the linear model f(x) = (0, x) is

FO) =) qi(z]0—y)’ (25)
i=1
whose Hessian is
ViF(©0) =2 gz (26)
i=1

So for any unit vector v € R?, we have (since ¢; € [0, 1])

v ViF(O0)v =2 gi(x]v)? <2) gl < 24 27)
i=1 i=1
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which implies that F'(0) is 2A-smooth. Thus, we have the following upper quadratic bound: for any
91, 92 € Rd,
F(62) < F(01) + (VoF(61),02 — 01) + A 165 — 61 (28)

Denote g(6")) = (X T —Y) € R™. We can see that H\/Qg(ﬁ(t))Hz = F(0®), where where

VQ = diag(\/q1, ,\/qn). Thus, VE(0) = 2XQg(6). The update rule of a static GRW
with gradient descent and the squared loss is:

Ut = (") — nZ qiwi(f —y;) =0 —nXQg(0") (29)

Substituting 61 and 65 in (28) with (") and #(*+1) yields
2
F(OUD) < F(O) - 20g(60)TQTX T XQq(0) + A|[nXQe(0™)| G0y
2
Since 1, - - - , x,, are linearly independent, X TX is a positive definite matrix. Denote the smallest

elgenvalue of XTX by Amin g0, = Va*F(0®), so we
have g(0)TQTX T XQg(6") z q*/\mmF(9<t>). Thus,

. 2 2
FOUD) < F(OD) = 2pg* A0 F(0D) 1 Ar? HX\/QH H\/Qg 9<t>)H
2

<F(9<t>) Mg AT F(9D) 4 Ap? HX\fH FOW) an
F(OW) — 2ng* X" F(01) + An? || X |7 F (0))
— (1 _ 277q*)\min +A2772)F(0(t))

* ymin

Let g = . For any < 19, we have F((*D) < (1 — ng* \™™)F(6®) for all ¢, which
implies that lim;_, o, F’ (0(”) = 0. This implies that the empirical training risk must converge to 0.

Dynamic GRW. Now we prove the result for all dynamic GRW satisfying Assumption 1. By
Assumption 1, for any € > 0, there exists t. such that for all ¢ > ¢, and all 4,

¢ € (g —e,qi+¢) (32)

®

This is because for all 7, there exists ¢; such that forall t > t;, g, € (g; — €,¢; + €). Then, we can

define t. = max{ty,--- ,t,}. Denote the largest and smallest eigenvalues of X T X by A™a* and

*

A and because X is full rank, we have A™" > 0. Define ¢ = min{%-, %W} and then ¢,
is also fixed.

We still denote Q@ = diag(q1, - ,¢,). When t > t., the update rule of a dynamic GRW with
gradient descent and the squared loss is:

P+l — () _ nXQ(t)(XTQ(t) -Y) (33)

where Q(t = Q®, and we use the subscript € to indicate that HQ QH < €. Then, note that we
2

can rewrite Q6 as Qgt) =4/ 36 -\Fas long as € < ¢* /3. This is because ¢; +¢ < /(q; + 3€)g;
and ¢; — € > /(q; — 3¢)q; forall € < ¢;/3, and ¢; > ¢*. Thus, we have

9+ — 9O Xy Qz(;te) VQg(0Y)  where Q) = 4/ Q;(g? V/Q (34)

Again, substituting #; and 65 in (28) with (") and #(*+1) yields

2

FOD) < F(0V) = 209(0")TQTX X/ Q) VQy(0?) + A anx/ Q5 V/Qg(6")
2
(35

18
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Then, note that

gONTQTXTX (\/@ \/(?) VQg(0")
<|va'xrx (Vor - va)| |vasen;

(36)
2
< |val, Ix x| Vel - va| |vase);
2
S)\max\/gF(a(t))
where the last step comes from the following fact: for all € < ¢;/3,
V@i +3e =@ <V3e and /g — /g — 3¢ < V3e (37)
And as proved before, we also have
g0 TQTXTXQqg(0") > " A F (") (38)
Since e < %, we have

. 1 .
g(0)TQTXT X/ QE)VQg(OV) = (" A = AVBe) F(0) = S F(0) (39)

Thus,

FOUD) < F(0D) — ng* A™nF(00) + An? | X1/ QLY

|vastoo],

2
2

. 40
< (1L g N AP2(1 4 3) F(6) “

< (1 _ nq*)\min + 2A2772)F(0(t))
forall e < 1/3. Letng = %. For any 1 < 1o, we have F(#(H1D) < (1 — ng*A™ /2)F(61)

for all t > t., which implies that lim;_, ., F'(#®)) = 0. Thus, the empirical training risk converges
to 0. O

D.3 PROOFS FOR SUBSECTION 4.2
D.3.1 PROOF OF LEMMA 3
Note that the first [ layers (except the output layer) of the original NTK formulation and our new

formulation are the same, so we still have the following proposition:

Proposition 11 (Proposition 1 in Jacot et al. (2018)). If o is Lipschitz and d; — oo forl =1,--- | L
sequentially, then for all | = 1,--- , L, the distribution of a single element of h' converges in
probability to a zero-mean Gaussian process of covariance Y that is defined recursively by:

do (41)

where f is sampled from a zero-mean Gaussian process of covariance ¥—1).

Now we show that for an infinitely wide neural network with L > 1 hidden layers, o converges
in probability to the following non-degenerated deterministic limiting kernel

O =Ejosclo(f(@)o(f(z')] + B 42)

Consider the output layer hX+1 = W7L~cr(hL) + Bb%. We can see that for any parameter ; before
d

the output layer,
LT

Vo, kL = diag(5(h))

vﬂ,vmhLzo (43)
L
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And for WL and b%, we have

1
Virh* ! = ——o(h" and  Vpch'l = 44
wiL \/@J( ) bl B (44)
Then we can achieve (42) by the law of large numbers. O

D.3.2 PROOF OF LEMMA 5

We will use the following short-hand in the proof:
g(0") = fOX)-Y
JOM) = Vo f(X;00) e RPX™ (45)
0l = g™ T1eM)

(t)

For any € > 0, there exists ¢, such that for all t > ¢, and all ¢, ¢; * € (¢; — €, g; + €). Like what we

have done in (34), we can rewrite Q) = Q) = g? -v/Q, where Q = diag(q1,- - ,qn)-

The update rule of a GRW with gradient descent and the squared loss for the wide neural network
is:
pt+1) — () _ 77J(@(t))Q(t)g(g(t)) (46)

and for t > t., it can be rewritten as
o+ = 9 . 7(0W)1/ QLY [\Fg 2) } 47)

First, we will prove the following theorem:

Theorem 12. There exist constants M > 0 and g > 0 such that for all € € (0,€0], n < n* and

any 6 > 0, there exist Ry > 0, D > 0and B > 1 such that for any d > D, the following (i) and
(ii) hold with probability at least (1 — §) over random initialization when applying gradient descent
with learning rate n):

(i) Forallt <'t,, there is

90|, < BRo (48)
t t

N . MB“R

) _ (J—l)H <M pi-1 222 W0 4
;He 00| < RO; <5 (49)

(ii) Forallt > t., we have

t—te

H\/59(9<“)H2 < <1 - WQm) B Ry (50)

t in\ J—te
. . *)\Inm
Hg(a) _ Q(Jfl)H2 <nV1+3eMB*R, Z <1 _nq . )

Jj=te+1 J=te+1 (51)

3\/1 + 3eM B Ry

* )\mll’l

Proof.  The proof is based on the following lemma:

Lemma 13 (Local Lipschitzness of the Jacobian). Under Assumption 2, there is a constant M > 0
such that for any Cy > 0 and any § > 0, there exists a D such that: If d > D, then with probability
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at least (1 — &) over random initialization, for any  such that ||x||, < 1,

[Vor(:0) — Vos(:0)|| < <7

\V/ O, <M 5
Vo f(z;0)l, 7 V0,6 € B(6\9), Cy) (52)

|- 7], <

2

17O)]x < M
where B(0®), R) = {0 : || — 60)||, < R}.
The proof of this lemma can be found in Appendix D.3.3. Note that for any =, f(©)(x) = gb"

where b is sampled from the standard Gaussian distribution. Thus, for any § > 0, there exists a
constant R such that with probability at least (1 — §/3) over random initialization,

oo, <

And by Proposition 3, there exists Do > 0 such that for any d > Dy, with probability at least
(1-4/3),

*)\min
oo, <
F 3
Let M be the constant in Lemma 13. Let ¢g = %. Let B=1+n*M?,and Cy = % +

37%45%). By Lemma 13, there exists D; > 0 such that with probability at least (1 — §/3),
for any d > Dy, (52) is true for all §,6 € B(6(?), Cy).
By union bound, with probability at least (1 — ¢), (52), (53) and (54) are all true. Now we assume

that all of them are true, and prove (48) and (49) by induction. (48) is true for ¢ = 0 due to (53), and
(49) is always true for t = 0. Suppose (48) and (49) are true for ¢, then for ¢ + 1 we have

H9<t+1> _p® < HJ(9<t>)Q<t> . Hg(9<t>)H2 <7 HJ(9<t>)Q(t> B Hg(9<t>)H2 5
<70, ||lo®)|, < 3nB Ry
So (49) is also true for £ 4+ 1. And we also have
[ )||. = [g0+) = 96 + g0

— 7@ (9D — )y g(g(t))HQ
= |-n7@) T I06)Q"g <9<t>>+g<e<t>>H2
< |1 =n1 @) 7TI0)Q"| [a6), (56)
< (1 @y s00Q0) Hg . H

< (a7 e

< L+ M2 g(0)|| < B Ry
2

Therefore, (48) and (49) are true for all ¢ < ¢, which implies that ||\/Qg(6<))]|, < ||g(6¢*)) ||2 <
Bt Ry, so (50) is true for t = t.. And (51) is obviously true for t = t.. Now, let us prove (ii) by
induction. Note that when ¢t > t., we have the alternative update rule (47). If (50) and (51) are true
for t, then for ¢ + 1, there is
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Hg(tJrl) _®

<0700l [Vase], <als00/el] |vase),

< T a0, V@t < arnese (1- B2 e,
(57

So (51) is true for t + 1. And we also have

|Vage )|, = | Vg @) - vVQge®) + Vg™

— [ VQr@ T (9D —9®) 1\ /Qg(e®) H

= =nv/QI(@D)T 1(6)QW g(6®) + \/Qg(0® H
I= QI IO QL| ||V,

% ymin \ *
2
where 6() is some linear interpolation between #() and (*+1). Now we prove that

’I WQIED)TI(60),/ QY L

(58)

IN

S 1- (59)

For any unit vector v € R", we have

v (I —n/QOV/Q)v =1-1nv"/QO\/Qu (60)
Hf’u”z [v/@%, 1], s0 forany n < n*, v (I —nv/QO/Q)v € [0,1 — nA™"g*], which implies
that || — 77\/>@\/>H2 <1 —nAming* Thus,

|1=nv/Qu@) T 169)V/Q),

<|r-nva@eva|,+n|vae-e)va| +x HJ@(J(@WJ(&@) — 76T IOV,

<L A"+ || V@O — 0)VQ)| -+ |[VRUIE)TIE?) - 1(6) 16V,

<1 pAmings 4y H@ - @<°>HF e HJ(9<0>)TJ(9<0>) - J(é(t))TJ(G(t))HF
min e NCAM M2 ) 55 _ p(0) ngeAT
<t-pyning o+ B T (60 - 60+ 0 -6 ) <125
(61)
for au(izmax{Dl,DQ, (1jj§fi€0>4},which implies that
H _7]\/7‘] a(t)\/ Qde
gl— *)\mln H \/»J O(t) g(t) <,/ f) (62)

* Y min

nqA

* min
<1 — ng- A

+nM3*V3e <1 — (due to (37))

for all € < ¢y. Thus, (50) is also true for ¢ 4 1. In conclusion, (50) and (51) are true with probability
4
at least (1 — §) forall d > D = max{Dl,Dz,(lj}jf,ffy) } 0
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Returning back to the proof of Lemma 5. Choose and fix an € such that ¢ <
+ ymin 2

min{eo,% (W) }, where ¢ is defined by Theorem 12. Then, t. is also fixed. There

exists D > 0 such that for any d > D, with probability at least (1 — ¢), Theorem 12 and Lemma 13

are true and )
H@_@(O)H < & (63)
F 3

which immediately implies that

q* )\min
3

o, < 01+ o o0, <20

We still denote B = 1 + n*M? and Cy = & gt:lRO + 3 1*;136)\MB “Ro Theorem 12 ensures that for
allt, 0®) € B0, Cy). Then we have

I et val <1 waeva

[ vae-emval,

i i (65)
. N nq*)\mm 2,’7q*)\m111
< 1 — p)Min A T A
A 3
so it follows that
I-3y/Qe/ Q| <||[1-1v/Qe" Q| + Hnﬁz@“)) (\/ Q5! - @)
| ? 2 *)\min i *)\min | ’ (66)
<1- 777‘13 Fopme L2y /3¢
eymin )2
Thus, for all € < % (m) , there is
*)\min
HI -n/Qe\/Q| <1-HE— (67)
2
The update rule of the GRW for the linearized neural network is:
O = 05 = 17(0°) QW gin(0)) (68)

where we use the subscript “lin” to denote the linearized neural network, and with a slight abuse of
notion denote g, (01)) = g(6%).

lin

First, let us consider the training data X . Denote A; = giin(0®)) — g(6)). We have

9in(0°D) = gin(0)) = =0T (07) TJ(0) QW gyin (6 (69)
9(040) — g(0) = I (0) T T00)QU (0
where 6() is some linear interpolation between #() and (*+1). Thus,
s = A =n [JEO)TI(0D) = 16 T1(6)] QO g(6") 70
_ nJ(Q(O))TJ(Q(O))Q(t)At
By Lemma 13, we have
HJ(@(t))TJ(g(t)) _ J(g(o))TJ(g(O))HF
s T
< H (70D) = 70)) T+ |6 (69 - 7(0)) HF (71)
F

<OM2Cod—*
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which implies that for all ¢ < ¢,
18l < [[[£ =070 TIEQW] Ai| + 0 [76D)TI0) = 76@) 76| QVg(6™))|
< [T =na@) T )QW| Iadl, + 7|16 TI6D) — T TIE)| a6

< (1+nM?) || A, + 2nM2OOBtROCZ—1/4
<B HAtHQ + 277M20()B Ro —1/4

2

(72)
Therefore, we have
B~ A 1]y, < B7H| A, 4 2nM2CoB  Rod /4 (73)
Since Ay = 0, it follows that for all ¢ < ¢,
A, < 2tnM?Co B  Rod /4 (74)
and particularly we have
H\/éAtf LS Al < 2tnda®CoB~ Rod /4 (75)
For t > t., we have the alternative update rule (47). Thus,
V@A~ VQA =1V/Q [1E)TI(0D) — T(0) TT(60)] QL [VQg(0)] 6

N NN

Let A =1 —ny/QJ(6©)TJ(HCO )\/Q7 I—ny/Q0©/QY. Then, we have

V@A = AV@AAn/@ [16O)T760) — 6O) 6] V@ (VRg(e®)) 1)

Lety = 1 — 2°2™ < 1. Combining with Theorem 12 and (67), the above leads to

[vV@aenl|, < 14l | V@A, +o | V@ [160)T560) - 100y 560)] Vol | [vaue),
<v||v@ad, +n 7)) - 56T ST,

<~ H\/QAtH2 2 M2Cov/T F 3yt Bt Ryd /4

(78)
This implies that

y~ G+ H\/aAt+1H2 <!

Combining with (75), it implies that for all ¢ > ¢,

HQ +M2CoVI 1 36y It Bl Ryd VA (79)

H VQA| < 2yt enM2Co B Ry [t BN + VT Bey Mt — )] d M/ (80)
2
Next, we consider an arbitrary test point « such that ||z||, < 1. Denote ¢, = 153)( ) — fO(x).

Then we have

@) = i) @) = =0V (@:0) "1 (0)Q gin(0") &
PO @) — O (@) = Vo (@:6)TT(6)QVg(6")
which yields
dut =00 = |Vof @0 TI00) = Vos @ o) TI0O)] QUg0)

— Vo f(z;00)TT(0©)QW A,
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For t < t., we have

[l

t—1
0ully <0 Y~ |[[ Vo (@: 8N TT0) = Vof(@:6) T I (0] Q)
s=0

t—1
+0) || Var@:09)TI0)QW|| 1A,
s=0

Y | Vo @:09)Ta(09) = Vo f(@:6) 56| {96, (83)
5=0

> |Var(@: o) |[70)|| 1A,
s=0
t—1 t—1

<2pM>Cod V* > " B*Ro +nM* Y (2snM*CoB*~ Rod /%)
s=0 5=0

So we can see that there exists a constant C; such that ||J;_||, < Cyd=1/4. Then, for t > t., we have

1821, = 18I, [V (s 0)T 7(09)) — Vo f(a:00)T10)] /@5 |vasen],
+n§ Vo f(z;00)T 700 @ H\/7A H

s=t¢

t—1
<2pM>Cod '/*/1+3e > B Ry

s=t,
t—1 )
+MPVT53e Y (275*%7;1\42003%1%0 [t B+ VT +3ey (s —t)] d*1/4)
s=te
(84)
Note that Z?i o t7" is finite as long as y € (0, 1). Therefore, there is a constant C' such that for any
t, 16:]l, < Cd—1/* with probability at least (1 — &) for any d > D. O

D.3.3 PROOF OF LEMMA 13

We will use the following theorem regarding the eigenvalues of random Gaussian matrices:

Theorem 14 (Corollary 5.35 in Vershynin (2010)). If A € RP*Y is a random matrix whose entries

are independent standard normal random variables, then for every t > 0, with probability at least
1 — 2exp(—t2/2),

VD — T —t < APR(A) S NT(A) < p+ gt (85)

By this theorem, and ~also note that WL is a vector, we can see that for any 0, there exist D > 0and
M, > 0 such that if d > D, then with probability at least (1 — §), for all § € B(6(*), Cy), we have

W', <3Vd (o<i<L-1) and |WE|,<Cy<3Vd (86)

as well as

|8, <MV (=0, L) (87)
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Now we assume that (86) and (87) are true. Then, for any @ such that ||z||» < 1,

3 =
Il = | e+ 500 < IOl + 1807, < (2 + )V
e WfW%”ﬂ“ < LW,z
|||, = [lo(h) = o(0) + 0(0")], < Lo [B![|, +o(@)Vd  (v1>1)
where Ly is the Lipschitz constant of o and o(0') = (¢(0),--- ,0(0)) € R%. By induction, there

exists an M5 > 0 such that HmlH2 < Mg\/gand Hh’le < MQ\/ngI‘ alll=1,---, L.

Denote a! = Vi f(z) = VphE+L Foralll = 1,--- | L, we have o! = diag(& (hl))V\V;alJrl

where 6(z) < Lo for all x € R since o is Lo-Lipschitz, a’™! = 1 and HozLH2
‘ diag(c’r(hL))WTL~T < {ifLo. Then, we can easily prove by induction that there exists an
d {la

M3 > 1 such that HalH2 < Mg/%for all [ = 1,---, L (note that this is not true for L + 1
because aZt! = 1).

Forl = 0, Vo f(z) = \/%Tomoa”, 50 ||V f(2)]]y < \/%TO 2], [|let]], < ﬁMg/W. And

forany 1= 1,++, L Vit f(@) = Zalal ™50 [V f@)ll, < Tz |2, [l ], < Mo,

(Note that if M5 > 1, then HaL“H2 < Ms; and since d > 1, there is HalH2 < Msforl < L)
Moreover, forl = 0,--- , L, Vi f(x) = Balt!, s0 |V f(x)]|, < BMs. Thus, if (86) and (87) are
true, then there exists an My > 0, such that ||V f(x)||, < M4/+/n. And since ||z, ||, < 1 for all 4,
so [|J(0)|| p < M.

Next, we consider the difference in Vy f(x) between 6 and 6. Let f W x, h, & be the function
and the values corresponding to 6. There is

th _ ,*11H2 _ H\/IGTO(WO “ WOz + B(b° — B°) 2
<l el e oo, = () o,
|pi =R LWt — 3t + Lt - @+ pt— )

2

d Vd

1w, 1 — 2], +

(89)

2

Ll N P L

1
- \f Vd
<8lle' =&, + 0+ )00 =D

e = &', = |or!) —o(h)| < Lo |0 ! =1)

By induction, there exists an M5 > 0 such that ||a:l - a~:l||2 < M5 HH — éH for all .
2
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L+1

For o, we have a =altl =1,andforall ] > 1,

T
w ~ 141

\/;ia

+ ||diag( ("))

T ~
ot — &||, = [[diag(s (1)) Y=ol — diag(s(h1))

2
WlT

N

(Wl ?[WZ)T Gl
d
+ ||diag((s(hY) — (y(ﬁl)))@aﬁl

NG

< 3Lo|latt = &MY, + (MsLod /2 4 8Ms Mz Lad /1) |6 - 4|
2

< | diag(s (") == (it — 1)

2 2

2

(90)
where L is the Lipschitz constant of . Particularly, for [ = L, though a&**! = 1, since HWL H
3d'/4, (90) is still true. By induction, there exists an Mg > 0 such that Hal —al H2 < Jg}% 0 — éH2

for all [ > 1 (note that this is also true for [ = L + 1).
Thus, if (86) and (87) are true, then for all 8,0 € B(A(®), Cy), any @ such that ||z||, < 1, we have

N 1
[Fwo (@)~ Vi f), = o= lwa’ T~ 2a'T],
1 1
< g et = el 1)

and for! =1,---, L, we have

1

- leal+1T ~l~l+1T||
d

|[vwis @) - V@), =

1
<

= (2l llo™* = &, + l=" = afll, &7 ,) (99

< (Mot Mot o],

Moreover, forany [ = 0, --- , L, there is

-, < 2

Vi f(@) = Vi f(@)||, = B[l He i, (93)

Overall, we can see that there exists a constant M; > 0 such that Hng(:v) — V@f@)“ <

0 — aH 0

, 50 that HJ(G) H M7

D.3.4 PROOF OF THEOREM 4

First of all, for a linearized neural network (11), if we view {Vyf(© (z;)}?, as the inputs and

{yi — O (z;) + (0, Vg £O(2,;))}7_; as the targets, then the model becomes a linear model. So
by Theorem 2 we have the following corollary:

Corollary 15. If Vo (x1),--- ,VefO(x,) are linearly independent, then there exists 1y >

0 such that for any GRW satisfying Assumption 1, and any n < no, 0) converges to the same
interpolator 0* that does not depend on ;.
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Let 1 = min{ng,n*}, where 7y is defined in Corollary 15 and n* is defined in Lemma 5. Let
ISE)(:B) and féﬁéRM(:c) be the linearized neural networks of f®(x) and £\, (z), respectively. By

Lemma 5, for any § > 0, there exists D > 0 and a constant C' such that

sup |10 (@) — £ ()| < cd M/
>0
(t) (t) 7-1/4 4
sup | fingrm (€) — EkM(w)‘ <cd Y
>0
By Corollary 15, we have
tlifgc flgfl) (z) — 1%511)5RM($)‘ =0 (95)
Summing the above yields
lim sup ‘f(t)(a:) - fégM(w)’ < 20d- /4 (96)
t—o0
which is the result we want. O

D.4 PROOFS FOR SUBSECTION 4.3

D.4.1 A NEW APPROXIMATION THEOREM

Lemma 16 (Approximation Theorem for Regularized GRW). For a wide fully-connected neural
network f, denote J(0) = Vof(X;0) € RP*™ and g(0) = Vy{(f(X;0),Y) € R". Given that
the loss function € satisfies: Vog(0) = J(0)U(0) for any 6, and U(0) is a positive semi-definite
diagonal matrix whose elements are uniformly bounded, we have: for any GRW that minimizes the
regularized weighted empirical risk (13) with a sufficiently small learning rate n, there is: for a
sufficiently large d, with high probability over random initialization, on any test point x such that
]2 <1,

sup | fioes (@) — £ (@)| < cd /4 ©7)
>0

where both fézzeg and fr(CQ are trained by the same regularized GRW and start from the same initial

point.

First of all, with some simple linear algebra analysis, we can prove the following proposition:

Proposition 17. For any positive definite symmetric matrix H € R"*", denote its largest and
smallest eigenvalues by \™** and \™™. Then, for any positive semi-definite diagonal matrix Q =
diag(qi, - ,qn), HQ has n eigenvalues that all lie in [min; g; - A™", max; ¢; - A™?*].

Proof.  H is apositive definite symmetric matrix, so there exists A € R"*" suchthat H = AT A,
and A is full-rank. First, any eigenvalue of AQA " is also an eigenvalue of AT AQ, because for
any eigenvalue A of AQA T we have some v # 0 such that AQA "v = \v. Multiplying both sides
by A" on the left yields AT AQ(A"v) = A(A"v) which implies that \ is also an eigenvalue of
AT AQ because ATv # 0as \v # 0.

Second, by condition we know that the eigenvalues of ATA are all in [)\mi“7 A™X] where Amin >,
which implies for any unit vector v, v' AT Av € [A™" \™X]which is equivalent to || Av||, €
[V Amin y/\max] Thus, we have 'vTAT_QAv € [A™m min; g;, A™® max; ¢;], which implies that
the eigenvalues of AT QA are all in [A™" min; ¢;, \™* max; ¢;].

Thus, the eigenvalues of HQ = AT AQ are all in [A\™" min; ¢;, \™* max; ¢;]. O
Proof of Lemma 16 By the condition ¢ satisfies, without loss of generality, assume that the ele-
ments of U (#) are in [0, 1] for all §. Then, let n < (p + A™® + Ama) =L ([f the elements of U (6)

are bounded by [0, C], then we can let < (p + CA™® + CA™@)~1 and prove the result in the
same way.)
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With L, penalty, the update rule of the GRW for the neural network is:
0D =00 —nJ (0)QWg(6)) — nu(6™) — ) (98)

And the update rule for the linearized neural network is:
O =04 — 1T (0)QWg(05)) — npu(6fy) — 6) (99)

lin

By Proposition 11, f(x; ) converges in probability to a zero-mean Gaussian process. Thus, for any
0 > 0, there exists a constant Ry > 0 such that with probability at least (1 4/3), H g(0) H < Ryp.
Let M be as defined in Lemma 13. Denote A = nM Ry, and let Cy = m Lemma 13°. By Lemma

13, there exists D; such that for all d > D, with probability at least (1 —6/3), (52) is true.

Similar to the proof of Proposition 17, we can show that for arbitrary 6, all non-zero eigenval-
ues of J(0O)QWU (9).] (0(0)) are eigenvalues of .J(6(° ))TJ(G(O))Q(t)U(é) This is because for
any A # 0, if JOOYQWU()J(0)Tv = Iv, then J(O©)T J(OQWU(H)(J(0®)Tv) =
AJOO)Tw), and JO©O)Tw # 0 since \v # 0, so A is also an eigenvalue of
J(OONYT 7(6©)QM U (h). On the other hand, by Proposition 3, J(8()T.7(4©)Q"U(6) con-
verges in probability to ©QY U () whose eigenvalues are all in [0, \™**] by Proposition 17. So
there exists Do such that for all d > Ds, with probability at least (1 — §/3), the eigenvalues of
JOOHYQWU(H)J(6©)T are all in [0, \™#* + A\™] for all £.

By union bound, with probability at least (1 — ¢§), all three above are true, which we will assume in
the rest of this proof.

First, we need to prove that there exists Dy such that for all d > Do, SUpP;>0 He(t) —9© H2 is
bounded with high probability. Denote a; = #®*) — §(°). By (98) we have

aryr =(1 = nua; — n[J (1) — J(0©)]QWg(6")) (100)
—nJ(0)QW[g(6") — g(0)] — nJ (6°)QW g(6)

which implies
lazslly <||(1 = )T = 51O )QOUE)IE)T]| Jaly

+77HJ(9(”) - J(G“)))HF ‘ 9( 1w

9O, +nse] Joe ],

where 0(*) is some linear interpolation between #() and #(?). Our choice of 7 ensures that np < 1.

Now we prove by induction that |ja.|l, < Cp. It is true for ¢ = 0, so we need to prove that if
lat]ly < Co, then |lagq1]l, < Co.

For the first term on the right-hand side of (101), we have

(1 =m0t = ) QUUENIE)T, <1 = ) |1 - 61 QUUE) 60T

2

w6, [ - a6,
(102)

Since 1/(1 — nu) < (A™ 4+ \max) =1 by our choice of 7, we have

HI - #J(Q(O))Q(t)U(é(t))J(G(O))T <1 (103)
—np

2

On the other hand, we can use (52) since |ja;|l, < Co, so HJ(Q(O))HF HJ(é(t)) - J(G(O))H <

F
% Cy. Therefore, there exists D3 such that for all d > D3,
| =T =9I (0 QUU@D)1@D)T| <1 (104)

2 2
SNote that Lemma 13 only depends on the network structure and does not depend on the update rule, so we
can use this lemma here.
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For the second term, we have

R e e e |

<Jo] Joa] Joo -] ero<acien
And for the third term, we have
n a0 a0, < naero=a (106)
Thus, we have
fousaly < (1= ) ol + PR 4 4 (107

So there exists Dy such that for all d > D, [|as41]ly < (1 — %) [Jac|l, + 2A. This shows that if
lat||y < Co is true, then |las41 |, < Cp will also be true.

In conclusion, for all d > Dy = max{Dy, Dy, D3, ||, < Co is true for all ¢. This
also implies that for C; = M Cy + Ry, we have ||g(19(t))||2 < (4 for all ¢ by (105). Similarly, we
can prove that [|6\" — 6 ||, < Cq for all ¢.

lin

Second, let A, = 0) _ 9t Then we have

lin

Aps1 — Dy = (I (O0D)QWg(8D) — J(0)QWg(61)) — uAry) (108)

which implies

Aver = (1 =m)I = (0 )QUUE)IE)T] Ay +n(J(6D) = 1(6™)Q g(6")
(109)
where () is some linear interpolation between 6*) and Hl(ifl). By (104), with probability at least
(1 =) for all d > Dy, we have

18cilla < || @ =m0 = n70)QUU@D)T@)T|| Al + 716 = 70| a0
(1 - *> Al +n—= M CoCh
2 \/ (110)

Again, as Ay = 0, we can prove by induction that for all ¢,

2MCyC1 -
1A, < =224 14 (111)
1
For any test point  such that ||z||, < 1, we have
freg( ) lsril)-eg( ) = f(il),a(t) fhn( hn)
< f(mv a(t)) - flin(w; e(t)) + flin(m. a(t)) - flm(m 91(111))
(112)
< |F(@:0) = fina:09)| + || Vo @:0)|_ |0 oty
< f(@509) = fin(@; 00) | + M| A
For the first term, note that
F(@:09) = F(@:0)) = Vo f(:00) (00 — 9) s
fin(@;09) = fin(@;0©)) = Vo f (2;69) (0 — 61)
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where §(*) is some linear interpolation between #) and 6(°). Since f(a;0(©)) = fin(a; 0),
~ M
[ F(@:01) = fin(@:0)| < |[Vof (@:0) = Vo (@:6®)| o0 6| < Z=cd 14
2 2" Y4

Thus, we have shown that for all d > Dy, with probability at least (1 — §) for all ¢ and all x,

2M? Cool) 1/4 _ O(J71/4) (115)

18 @) = fi, (@) < (MCS
which is the result we need. O

D.4.2 RESULT FOR LINEARIZED NEURAL NETWORKS

Lemma 18. Suppose there exists My > 0 such that HV@f(O) (x) H2 < My for all test point x. If the
gradients VofO (xy), -, Vof O (x,) are linearly independent, and the empirical training risk of
fhnreg satisfies

lim sup R(flmreg) €, (116)

t—o0

for some € > 0, then for x such that | x|y < 1 we have

lim sup fio (@) — firben(@)| = O(Ve). (117)

First, we can see that under the new weight update rule, 60— 9O S
span{Vy f©O (z1), -+, Vo fO(x,)} is still true for all £. Let #* be the interpolator

in span(Vof©(z1), - ,Vof(z,)), then the empirical risk of 6 is =37 (0 —

0", Vof©(x;))? = = ||ng(0)(X)T(070*)||;. Thus, there exists 7 > 0 such that for
anyt > T,

[0r@ )70 — o) \z < 2ne (118)

Let the smallest singular value of ﬁVQ f©(X) be s™", and we have s™" > 0. Note that the

column space of Vy f(©(X) is exactly span(Vy £ (x,),- -, Vof©(x,)). Define H € RP*"
such that its columns form an orthonormal basis of this subspace, then there exists G € R™*" such

that Vo f(®)(X) = HG, and the smallest singular value of \/IEG is also s™". Since ) — 9(©)
is also in this subspace, there exists v € R™ such that #) — * = Hwv. Then we have v/2ne >

||GTHTHUH2 = HGTUHQ' Thus, ||v||, < gnﬁ, which implies
< \/Z

— cmIin
2 S

Ha@ — o (119)

We have already proved in previous results that if we minimize the unregularized risk with ERM,
then 0 always converges to the interpolator 6*. So for any ¢ > T and any test point & such that
lz|l, < 1, we have

Mov/2¢

Fimee (@) = Siatrma(@)] = 109 =07,V O (@) < =2 (120)
which implies (117). [
D.4.3 PROOF OF THEOREM 6
Given that R( fhnreg) < e for sufficiently large ¢, Lemma 16 implies that

Rl fiee) = RUD)| = Od 4 e+d71/?) (121)
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So for a fixed e, there exists D > 0 such that for all d > D, for sufficiently large ¢,
R(f) < € = R(fimg) < 2 (122)

By Lemma 5 and Lemma 16, we have

E‘;Ig flgxtl%ERM(w) - gz)M(‘L')‘ = O(J_1/4)
- () F—1/4 (123)
Sup |fig(@) — (@) = O(d1%)
>0
Combining Lemma 18 with (123) derives
lim sup | £ () — éQM(;c)| = O0(d V4 + /) (124)
t—o00
Letting d — oo leads to the result we need. O

Remark. One might wonder whether ||V, f(%) (z)||, will diverge as d — oo. In fact, in Lemma
13, we have proved that there exists a constant M/ such that with high probability, for any d there is

V£ (x)||a < M for any @ such that |||y < 1. Therefore, it is fine to suppose that there exists
such an M.

D.5 PROOEFS FOR SUBSECTION 5.1
D.5.1 PROOF OF THEOREM 7

First we need to show that éMM is unique. Suppose both ¢, and 0> maximize min;—i,... p y; -
(0, x;) and 01 # O, ||61]]2 = ||02]|2 = 1. Then consider 8y = 6/||6||2 where 8 = (61 + 62)/2.
Obviously, ||9||2 < 1, and for any i, Yi - <9, .’131> = (yz . <91,$,‘> + Y - <92,.’1}i>)/2, SO Y; - <90,$i> >
min{y; - (01, ;), yi - (02, ;) }, which implies that min;— ... ,, y; - (6o, ;) > min{min;—y ... ,, y; -
(01, ;), min;—1,... »y; - (02, 2;)}, contradiction!

Now we start proving the result. Without loss of generality, let (1, y1), - , (€m, Ym ) be the sam-
ples with the smallest margin to u, i.e.
argminy; - (u,z;) = {1, ,m} (125)
1<i<n
And denote y; - (u, 1) = -+ = Ym - (U, Tp,) = 7Yu. Since the training error converges to 0,

~u > 0. Note that for the logistic loss, if y; - (68, ;) < y; - (0, x;), then for any M > 0, there exists
an Ry; > 0 such that for all R > Ry,

VQ€(<R€7 CL‘Z‘>, yi)
v9€(<R97 xj>7 yj)
which can be shown with some simple calculation. And because the training error converges to
0, we must have ||9(t) H — o0. Then, by Assumption 3 this means that when ¢ gets sufficiently

large, the impact of (z;,v;) to 8*) where j > m is an infinitesimal compared to (x;, ;) where
(t

%

> M (126)

i < m (because there exists a positive constant § such that ¢
Assumption 3). Thus, we must have u € span{x1, - , T }.

) > § for all sufficiently large ¢ by

Let u = ayy121 + -+ + A YmTm. Now we show that o; > 0 forall ¢ = 1,--- ,m. This is

because when ¢ is sufficiently large such that the impact of (x;,y;) to 6®) where j > m becomes
infinitesimal, we have

(t) L (p) $>)
o+ _pt) o p%i exp(y; - (0, x; . 127
¥ oy 00, ) V" (2D

and since ||| — oo as t — oo, we have

(®) )
o < lim 6 xplys 07, @) ai(T) (128)
Teo =To 1+ eXp(yi : <0(t)v $1>) T—oo

t
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where Ty is sufficiently large. Here the notion a; o limy_,o a;(T) means that limp_, o, o (1)

a(T) —
=& for any pair of i, j and a; # 0. Note that each term in the sum is non-negative. This implijes that
all v, - - - , oy, have the same sign (or equal to 0). On the other hand,

Zaﬁu = Z%‘yi (u, ) = (u,u) >0 (129)
i=1 i=1

Thus, a;; > 0 for all 4 and at least one of them is positive. Now suppose u # Oyim, which means that
Ya, is smaller than the margin of fypy. Then, foralli = 1,-- -, m, there is y;-(u, x;) < y;-(Omm, T:).
This implies that

(u,u) = Zaiyi (u, ;) < Z%‘yi (O, i) = (O, ) (130)
i=1 i=1
which is a contradiction. Thus, we must have u = éMM. O

D.5.2 PROOF OF THEOREM &

Denote the largest and smallest eigenvalues of X " X by A™2* and ™", and by condition we have

. ® * yminy 2
AT > 0. Let € = min{ %, (1%217“)2} Then similar to the proof in Appendix D.2.2, there exists ¢,

such that for all ¢ > t. and all 1, qgt) € (¢; — €,¢; + €). Denote Q = diag(q1, - - , ¢n), then for all
t>t,Q® .= QY = VQ Q:(,fe), where we use the subscript ¢ to indicate that HQ?) - QH2 <e.

First, we prove that F'(0) is L-smooth as long as ||x;||2 < 1 for all i. The gradient of F'is
n
VE0) =Y a:Vgl((0, @), yi)x (131)
i=1
Since (g, y) is L-smooth in g, we have for any 61, 65 and any ¢,
({02, i), yi) — L((01, ), yi)

<Vl((Or, i), vi) - ((O2, i) — (01, i) + §(<92,-’Bi> — (01, x;))?

L (132)
= (Val((Br,@:), 9:) - @i, 0> — 01) + 5 (62 — 01, @)

L
SA(Vgl((01, i), yi) - i, 02 — 01) + 3 (|62 — 91”3

Thus, we have

F(02) — F(61) :Zqz' [6((O2, i), yi) — L((O1, i), vi)]

n

L n
<Y ail{Vl((01, i), i) - @i, 05 — 61) + 3 ;% 162 — 61113 (133)

i=1
=(VF(61),02 — 61) + g 162 — 01115
which implies that F'(6) is L-smooth.
Denote §(0) = Vy£(f(X;0),Y) € R, then VF () = XQg(6"), and the update rule is
o+ =9 —pxQMg(a™M) (134)

So by the upper quadratic bound, we have

2
FOU) < F(OY) - n(XQg(0™), XQW3(6")) + % HXQ%(W)Hz (135)
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* )\min

Letn; = ST 3e) N - Similar to what we did in Appendix D.2.2 (Eqn. (40)), we can prove that
for all n < 1, (135) implies that for all £ > ¢, there is
L
= HX\/ QY

*)\min
F(6D) < F(60) - 2— | V/Qa(0"
nq* )\min ~ 2 772L
F(OW) = =5 |VQa(0")|_ + 5 IXl5 (1 +3¢)
*)\min 2
< F(o") - o— || VQa(e")
2
*2>\min 2
a0
This shows that F'(#(*)) is monotonically non-increasing. Since F/(#) > 0, F(6(Y)) must converge
as t — oo, and we need to prove that it converges to 0. Suppose that F’ (9(”) does not converge to 0,

then there exists a constant C' > 0 such that F' (G(t)) > 2C for all t. On the other hand, it is easy to
see that there exists 6* such that £((6*, x;),y;) < C forall i. (136) also implies that ||§(9(t)) ||2 —0

as t — 0o because we must have F/(0()) — F(9(+1) — 0.

vaseo|;
Va0

~—
[ V) o]

(136)

< F(e(t)) _ nq

Note that from (134) we have

He(t—i-l) He(t) o+

+2(XQUg(0),6° — o) + 1 | XQU6 )| (3

Denote .
0) =" a"0((0,2:), ;) (138)

Then F; is convex because /£ is convex and ql(t) are non-negative, and VE, () = XQWg(d®).
By the lower linear bound Fi(y) > Fy(x) + (VFi(x),y — x), we have for all ¢,

2 4C C
(XQUWg(01),0" — o) < Fy(6) - Ft<9“>> S F(07) - 5F(OY) < C - — = -5 (139)

because qft) >q—€> 3qZ and Y1, ql = 1. Since Hg(o(t))HQ — 0, there exists 7' > 0 such

that for all ¢ > T and all np < 7o,
HQ(HU _p* ? < 2 _nc
- 2 3

which means that ||0(t) -0 H — —o0 because ”C is a positive constant. This is a contradiction!

(140)

po-e

Thus, F(#®)) must converge to 0, which is result (1).
(1) immediately implies (ii) because / is strictly decreasing to 0 by condition.

Now let’s prove (iii). First of all, the uniqueness of 8 can be easily proved from the convexity of
F(6). The condition implies that y;(fg, ;) > 0, i.e. g must classify all training samples correctly.
If there are two different minimizers 6 and 6% in whose norm is at most R, then consider 67, =

1(0r + 0, ) By the convexity of F', we know that 0, must also be a minimizer, and ||0%;||> < R.
Thus F (k= AP 0%) < F(07%) and || Heﬁ‘ 0%l = R which contradicts with the fact that 6% is a

minimizer.

ll2

To prove the rest of (iii), the key is to consider (135). On one hand, similar to (36) we can prove that
for all t > t., there is

(XQ3(6), X(Q ~ Q)3(6))] <

QW§(6 <t>)Hz (141)

nnn 2
Since we choose € = min{ %, wzi\m} this inequality implies that

om0 x| o o Ve
> 2| Qu0)|| = 4|xQO36). X (@ - @)

(142)
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On the other hand, if n < 7, = 5, we will have

27T, 2 2
7 [xatse], < vae, 043

Combining all the above with (135) yields

F(ee0) — Fe©) < -2 |[vE@e®)| (144)

Denote u = limp_ o ”;ﬁ. Similar to Lemma 9 in Ji et al. (2020), we can prove that: for any
a > 0, there exists a constant p(«) > 0 such that for any @ subject to ||0]|2 > p(«), there is

Fi((1+ a)]|0]2u) < Fi(0) (145)

for any t. Let t, > t. satisfy that for all t > t,, ||[#®)||; > max{p(c),1}. By the convexity of F},
forallt > t,,

(VE(01),60 — 1+ )09 ]20) > F(69) = B((1+ )6V ]2u) 20 (146)

Thus, we have
O =0 u) = (—nVF,(0"),u)
1
> (~VE,(01),00)
Z (SIVEGT). 95 G e,
(et (147)
(1+a)[0®)]

1 2 1 2 1 2 1
S 2 R e
(2 H 2 2 2 2 2) (1+a)||6®]2

By 4(]|0 D |a— 0 ]2)? > 0, we have (3 0D |[;=4 [|0®]5)/16) 2 > |0+]|,~[|6®]|-
Moreover, by (144) we have

— <9(t+1) _ g(t),g(t)>

jot+D — g(t)“j lot+D — g(t)H; P HVFt(e(t))H; o -
2(1+ a)[|6D)] 5 = 2 = 5 Sn(F(9 ) — F(6 )) (148)

Summing up (147) from ¢t = t, tot — 1, we have

o o, — fletll,

oD — [|gte)
<9(t)_9(ta)’u> > H Hz H9 H2+77 (F(H(t)) _F(G(ta))) .

—ey (tcx)
1+« nF(o’)

(149)
which implies that

19 1 1 ||9(t“)||2
- I T R (ta) _ _ (ta)
<||9(”H2’"> = T5a o], <<9 W g >) (150)

Since lim;_, . |0 |2 = co, we have

(t)
lim inf L,u > L (151)
t—00 ||0(t)||2 1+«
Since « is arbitrary, we must have lim;_, o UL wu as long as 7 < min{ny,n92}. O
[o@T, £

D.5.3 COROLLARY OF THEOREM 8

We can show that for the logistic loss, it satisfies all conditions of Theorem 8 and limpg_, o % =

2
< max; -, so £ is smooth.

N . . . 2 ~ _ 1 2
Oy First of all, for the logistic loss we have Vyﬁ(y, y) = m
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Then, we prove that limp_, o %R exists and is equal to éMM. For the logistic loss, it is easy to show
that for any 6’ # Gy, there exists an R(6') > 0 and an §(6) > 0 such that F(R-0) > F(R - Oy)
forall R > R(#') and 6 € B(¢',0(6")).

Let S = {0 : ||f]]a = 1}. For any € > 0, S — B(fyu;, €) is a compact set. And for any 6 €
S — B(Owm, €), there exist R(#) and 6(6) as defined above. Thus, there must exist 61, - - ,0,, €
S—B(éMM, 6) such that S—B(éMM, E) - UZ’;IB(QZ, 5(01)) Let R(E) = max{R(Hl), s 7R(0m)},
then for all R > R(e) and all § € S — B(Oym, €), F(R - 6) > F(R - Oyy), which means that
%R c B(éMM, €) for all R > R(¢). Therefore, limp_, %R exists and is equal to O

Therefore, by Theorem 8, any GRW satisfying Assumption 1 makes a linear model converge to the
max-margin classifier under the logistic loss.

D.6 PROOF OF THEOREM 9
(t)

We first consider the regularized linearized neural network flimeg. Since by Proposition 11 () () is

sampled from a zero-mean Gaussian process, there exists a constant M/ > 0 such that | f(O) (x;)| <
M for all ¢ with high probability. Define

F(0) =Y qil((0, Vo O (@) + fO (i), v:) (152)
=1

Denote p = argminy{F(R -60) : ||| < 1}. when the linearized neural network is trained
by a GRW satisfying Assumption 1 with regularization, since this is convex optimization and the
objective function is smooth, we can prove that with a sufficiently small learning rate, as ¢ — oo,
00 — R-0p + 0 where R = lim;_, oo |6) — 6() ||, (which is the minimizer). And define

v = _Ilmn yi - (O, Vo f O () (153)

First, we derive the lower bound of R. By Theorem 16, with a sufficiently large d, with high
probability R ( r(etg)) < e implies R( fl(t) ) < 2e¢. By the convexity of ¢, we have

inreg

2€ > %ZE“R@R, z;) + fO(xi),y:) > log (1 + exp (‘Tll > ((Rbg, ;) + f(o)(:vi))yi>>

i=1 i=1
| R
> log (1 + exp <n ZR(F)R, Ty — M))
i=1

which implies that R = Q(— log 2¢) forall e € (0, ).

Denote § = ||Oyv—0r||2- Let 6 = w,then we can see that |6/ ||o = /1 — %. Letd = ”99,/"2.
By the definition of Gy, there exists j such that y; - (0, Vo fO(x;)) < ~, which implies
éMM + éR 1
Y-

2 /1 _ %
Thus, we have

_ 2 R
yj - (Or, Vo fO(z;)) < 241 - %7 —y; - (Bnam, Vo f O (z;))
< (2\/1—22—1)7

2
< (2(1—2)—1)7 (since V1 —z < 1—%)
52

= (1—1)7

,Vaf(o)(wj)> <5 (155)

(156)
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On the other hand, we have

g;1og(1 + exp(—y; - (R - Or, Vo O (x;)) — M)) < F(R - 0r)

. (157)
<F(R-0wm) <log(l + exp(—Ry + M))
which implies that
52
q* log (1 + exp (—(1 — Z)Rv — M)) <log(l + exp(—Ry + M)) (158)

and this leads to

*

2 q 2
14+exp(—Ry+M) > (1 + exp (—(1 - %)Ry - M)) > 1+q" exp (—(1 - %)RV - M

(159)
which is equivalent to
52
—Ry+M> —(I—Z)Rfy—M+log(q*) (160)
Thus, we have
§=O0(R™Y?) = O((—log 2¢)~'/?) (161)
So for any test point z, since | Vyf(9) (x)||2 < My, we have
[(Bum — O, Vo f O ()] < 6My = O((—log 2¢)~1/?) (162)
Combined with Theorem 16, we have: with high probability,
limsup [R - fum () — [ ()] = O(R - (~log 2¢)~/% +-d~'/*) (163)

t—o0

So there exists a constant C' > 0 such that: As d — oo, with high probability, for all ¢ € (0, i), if

|fmm()| > C - (—log2¢)~1/2, then fr(etg) () will have the same sign as fym () for a sufficiently
large t. Note that this C' only depends on n, ¢*, v, M and My, so it is a constant independent of
€. O

Remark. Note that Theorem 9 requires Assumption 1 while Theorem 6 does not due to the fun-
damental difference between the classification and regression. In regression the model converges to
a finite point. However, in classification, the training loss converging to zero implies that either (i)
The direction of the weight is close to the max-margin classifier or (ii) The norm of the weight is
very large. Assumption 1 is used to eliminate the possibility of (ii). If the regularization parameter
w is sufficiently large, then a small empirical risk could imply a small weight norm. However, in our
theorem we do not assume anything on 4, so Assumption 1 is necessary.

E A NOTE ON THE PROOFS IN LEE ET AL. (2019)

We have mentioned that the proofs in Lee et al. (2019), particularly the proofs of their Theorem 2.1
and Lemma 1 in their Appendix G, are flawed. In order to fix their proof, we change the network
initialization to (9). In this section, we will demonstrate what goes wrong in the proofs in Lee et al.
(2019), and how we manage to fix the proof. For clarity, we are referring to the following version of
the paper: https://arxiv.org/pdf/1902.06720v4.pdf.

To avoid confusion, in this section we will still use the notations used in our paper.

E.1 THEIR PROBLEMS

Lee et al. (2019) claimed in their Theorem 2.1 that under tkje copditions of our Lemma 5, for any
d > 0, there exist D > 0 and a constant C such that for any d > D, with probability at least (1 — §),
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the gap between the output of a sufficiently wide fully-connected neural network and the output of
its linearized neural network at any test point  can be uniformly bounded by

— Jlin

sup |f® (z) — £ (w)‘ <Cd Y2 (claimed) (164)
>0
where they used the original NTK formulation and initialization in Jacot et al. (2018):

w! 1(0)
Rt = ——a! + gb W, ~ N(0,1
Nl an & (0,1) WM =0,---,L) (165

I+1 ll 1 B ~ N(0,1)
:B+ ZO'(h+) i ’

where o = x and f(x) = h+1. However, in their proof in their Appendix G, they did not directly
prove their result for the NTK formulation, but instead they proved another result for the following
formulation which they called the standard formulation:

1
1 _ il ! WO ~ N(0, —
e Y i 0,3, (W=0,---,0)  (166)
z! Tt = g(h!Th) bl ~ N(0,1) o

See their Appendix F for the definition of their standard formulation. In the original formulation,
they also included two constants o,, and o} for standard deviations, and for simplicity we omit
these constants here. Note that the outputs of the NTK formulation and the standard formulation at
initialization are actually the same. The only difference is that the norm of the weight W' and the
gradient of the model output with respect to W are different for all [.

In their Appendix G, they claimed that if a network with the standard formulation is trained by
minimizing the squared loss with gradient descent and learning rate ' = 7/d, where 7 is our
learning rate in Lemma 5 and also their learning rate in their Theorem 2.1, then (164) is true for this
network, so it is also true for a network with the NTK formulation because the two formulations
have the same network output. And then they claimed in their equation (S37) that applying learning
rate i’ to the standard formulation is equivalent to applying the following learning rates

d 1

dmax

n and =

Ny = n (167)

dmax

to W' and b’ of the NTK formulation, where dy,ax = max{do,--- ,dr}.

To avoid confusion, in the following discussions we will still use the NTK formulation and initial-
ization if not stated otherwise.

Problem 1. Claim (167) is true, but it leads to two problems. The first problem is that 77§J =
O(d;L ) since n = O(1), while their Theorem 2.1 needs the learning rate to be O(1). Nevertheless,

max

this problem can be simply fixed by modifying their standard formulation as h!*! = W'x!+3./d; b’
where bé(o) ~ N(0, d[l). The real problem that is non-trivial to fix is that by (167), there is
773[, = dif;x 1. However, note that dj is a constant since it is the dimension of the input space, while
dmax goes to infinity. Consequently, in (167) they were essentially using a very small learning rate

for the first layer W° but a normal learning rate for the rest of the layers, which definitely does not
match with their claim in their Theorem 2.1.

Problem 2. Another big problem is that the proof of their Lemma 1 in their Appendix G is erro-
neous, and consequently their Theorem 2.1 is unsound as it heavily depends on their Lemma 1. In
their Lemma 1, they claimed that for some constant M > 0, for any two models with the parameters

0 and 6 such that 8,0 € B(0©), Cy) for some constant Cj, there is

HJ(G) - J(é)H ‘9 - 5H2 (claimed) (168)

iy
=V

Note that the original claim in their paper was HJ(O) — J(6) H < MVd HG - GNH . This is because
F 2
they were proving this result for their standard formulation. Compared to the standard formulation,
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in the NTK formulation 6 is \/&~ times larger, while the Jacobian J(0) is \/3 times smaller. This
is also why here we have 6,0 € B(8(®), ) instead of 6,0 € B(#(V),Cod—"'/?) for the NTK
formulation. Therefore, equivalently they were claiming (168) for the NTK formulation.

However, their proof of (168) in incorrect. Specifically, the right-hand side of their inequality (S86)
is incorrect. Using the notations in our Appendix D.3.3, their (S86) essentially claimed that

M
Vi
for any 6,0 € B(09,Cy), where o' = Vi h"t! and &' is the same gradient for the second
model. Note that their (S86) does not have the \/&~ in the denominator which appears in (169). This

is because for their standard formulation, 6 is \/&~ times smaller than the original NTK formulation,
while Hal ||2 has the same order in the two formulations because all h' are the same.

lec" = &1

IN

‘9 -y ‘ (claimed) (169)

2

However, it is actually impossible to prove (169). Consider the following counterexample: Since ¢
and 6 are arbitrarily chosen, we can choose them such that they only differ in b’ for some 1 <1 < L.

Then, ’0 Sy H = ‘bll — l~)l1 ’ We can see that h!+! and h!*+! only differ in the first element, and
2
‘hllﬂ - Bll+1‘ = ‘ﬁ(bll — Ell)‘ Moreover, we have Wt = W+ 5o there is
wi+1T ~ Wi+1T
ot — @Mt =diag(6(h'*!)) ——=—a!*? — diag(6(h'H!)) ——=—a!*?

Vid Vi

N Wl-i—lT
_ [diag(d(hl“)) - diag(o'v(hl“))} 70#2 (170)
d
N Wl+1T
+ diag(d(hl+1)) _ (al+2 _ dl+2>
Vd
Then we can lower bound ||/ — &' ||, by
141 A+l R AE| s W
||a 1 _aht ||2 > [dlag(a(h 1)) — diag(a ('t ))} ——alt
Vi )
(171)
5 Wi
- diag(d(hlﬂ))T(aHQ—dl+2)
d 2

The first term on the right-hand side is equal to ‘ [d(hlfrl) - d(ﬁlfl)} <W1l+1/\/c§, al+2>’ where

Wi is the first row of W'+, We know that |[W{™||, = © (\/&) with high probability as its

elements are sampled from A/(0, 1), and in their (S85) they claimed that ||ozl+2H2 = O(1), which
is true. In addition, they assumed that ¢ is Lipschitz. Hence, we can see that

W e <o) =o(fo-d],
? (172)

[diag(5(h')) - diag(e(A™)]

On the other hand, suppose that claim (169) is true, then ||/ — &'2||, = O (cz_l/2 H9 - 9~H2).
Then we can see that the second term on the right-hand side is O (d—l/ 2 HH — 9~H2) because

HWl+1 H2 = O(\/c?) and & () is bounded by a constant as ¢ is Lipschitz. Thus, for a very large d,
the second-term is an infinitesimal compared to the first term, so we can only prove that

Jatt = a1, =0 (|o-d] ) (173)

which is different from (169) because it lacks a critical d=1/2 and thus leads to a contradiction.
Hence, we cannot prove (169) with the d=1/2 factor, and consequently we cannot prove (168) with
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the \/&~ in the denominator on the righE—hand side. As a result, their Lemma 1 and Theorem 2.1
cannot be proved without this critical d~'/2. Similarly, we can also construct a counterexample
where 6 and 6 only differ in the first row of some W,

E.2 OUR FIXES

Regarding Problem 1, we can still use an O(1) learning rate for the first layer in the NTK formulation
given that ||x||, < 1. This is because for the first layer, we have

1 1
Vwo f(x) = —— 2% = —galT (174)
Vdo Vdo

For all [ > 1, we have ||:cl||2 = O(d"/?). However, for [ = 0, we instead have ||a:0||2 = 0O(1).
Thus, we can prove that the norm of Vo f(x) has the same order as the gradient with respect to
any other layer, so there is no need to use a smaller learning rate for the first layer.
Regarding Problem 2, in our formulation (8) and initialization (9), the initialization of the last layer
of the NTK formulation is changed from the Gaussian initialization ij(o) ~ N(0,1) to the zero
initialization ij(o) = 0. Now we show how this modification solves Problem 2.
The main consequence of changing the initialization of the last layer is that (86) becomes different:
instead of HWLH2 < 3\/5, we now have ||VVL||2 <(Cy < 3% In fact, for any r € (0,1/2), we

can prove that H wk || o, < 3d" for sufficiently large d. In our proof we choose r =1 /4.

Consequently, instead of HalH2 < Ms, we can now prove that HalH2 < Msd™=1/2 forall | < L by
induction. So now we can prove |’ —&'||, = O (JT*1/2 H9 - 9~H ) instead of O (HG - 9~H ),

2 2
because

* For | < L, we now have [a!*!||, = O(d"='/?) instead of O(1), so we can have the
additional d"~'/2 factor in the bound.

* For [ = L, although HozL“H2 = 1, note that ||I/VL||2 now becomes O(cfr) instead of
O(d'/?), so again we can decrease the bound by a factor of d"~1/2,

Then, with this critical d"~'/2, we can prove the approximation theorem with the form

sup ‘f”’(w) — fﬁﬁ)(w)’ <Cd? (175)

for any 7 € (0,1/2), though we cannot really prove the O(d~'/2) bound as originally claimed in
(164). So this is how we solve Problem 2.

One caveat of changing the initialization to zero initialization is whether we can still safely assume
that A™™ > 0 where A™" is the smallest eigenvalue of ©, the kernel matrix of our new formulation.
The answer is yes. In fact, in our Proposition 3 we proved that © is non-degenerated (which means
that ©(x, x’) still depends on « and «’), and under the overparameterized setting where dj, > n,
chances are high that © is full-rank. Hence, we can still assume that Amin >,

As a final remark, one key reason why we need to initialize W’ as zero is that the dimension of the
output space (i.e. the dimension of h”*1) is finite, and in our case it is 1. Suppose we allow the
dimension of h*! to be d which goes to infinity, then using the same proof techniques, for the NTK

formulation we can prove that sup, HhL“(t) AR

< C, i.e. the gap between two vectors
2

of infinite dimension is always bounded by a finite constant. This is the approximation theorem we
need for the infinite-dimensional output space. However, when the dimension of the output space is

finite, sup, HhL‘H(t) — hﬁnﬂm

norm of W in order to obtain a smaller upper bound.

< C no longer suffices, so we need to decrease the order of the
2
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