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Abstract—Customer-level rooftop photovoltaic (PV) has been
widely integrated into distribution systems. In most cases, PVs
are installed behind-the-meter (BTM), and only the net demand
is recorded. Therefore, the native demand and PV generation
are unknown to utilities. Separating native demand and solar
generation from net demand is critical for improving grid-
edge observability. In this paper, a novel approach is pro-
posed for disaggregating customer-level BTM PV generation
using low-resolution but widely available hourly smart meter
data. The proposed approach exploits the strong correlation
between monthly nocturnal and diurnal native demands and
the high similarity among PV generation profiles. First, a joint
probability density function (PDF) of monthly nocturnal and
diurnal native demands is constructed for customers without
PVs, using Gaussian mixture modeling (GMM). Deviation from
the constructed PDF is utilized to probabilistically assess the
monthly solar generation of customers with PVs. Then, to
identify hourly BTM solar generation for these customers, their
estimated monthly solar generation is decomposed into an hourly
timescale; to do this, we have proposed a maximum likelihood
estimation (MLE)-based technique that utilizes hourly typical
solar exemplars. Leveraging the strong monthly native demand
correlation and high PV generation similarity enhances our
approach’s robustness against the volatility of customers’ hourly
load and enables highly-accurate disaggregation. The proposed
approach has been verified using real native demand and PV
generation data.

Index Terms—Rooftop photovoltaic, distribution system, Gaus-
sian mixture model, maximum likelihood estimation.

I. INTRODUCTION

IN practice, customer-level rooftop PVs are integrated into
distribution systems at behind-the-meter (BTM), where

only the net demand is recorded. The measured net demand
equals native demand minus the PV generation, which are
unknown to utilities separately. The native demand refers
to the original demand consumed by home appliances. The
invisibility of native demand and BTM solar generation poses
challenges in distribution network design [1], [2], operation
and expansion [3], [4], [5], load/PV generation forecasting [6],
[7], and demand response [8], [9]. Thus, disaggregating PV
generation from net demand is of significance to utilities.
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Previous works regarding PV generation disaggregation can
be classified into two categories based on the scale of solar
power: Class I - Customer-level approaches: Customer-level
BTM PV generation disaggregation can provide more fine-
grained spatial granularity to utilities. Thus, the separated PV
generation and native demand for individual customers can
be aggregated to obtain the estimate at any higher levels, i.e.,
service transformer, feeder, or substation. In [10], customer PV
generation is estimated by combining a PV performance model
with a clear sky model, and using meteorological/geographical
data. In [11], a non-intrusive load monitoring (NILM) ap-
proach is proposed to disaggregate customers’ PV generation
from their net demand using measurements with 1-second
resolution. In [9], [12], a data-driven method is proposed for
estimating the capacity and power output of residential rooftop
PVs using customers’ net load curve features. In [13], [14], a
physical PV performance model is combined with a statistical
load estimation model, along with weather data to identify key
PV array parameters. The disadvantages of previous customer-
level approaches are as follows: dependency on the availabil-
ity of accurate native demand exemplars, unavailability of
PV model parameters, requiring high-resolution sensors and
weather data. These obstacles make the previous methods
susceptible to the uncertainties of customer behavior and
rooftop solar power generators, which result in a decline in
disaggregation accuracy.

Class II - System-level approaches: Many previous works
have proposed methods to disaggregate solar power from
net demand at transformer-, feeder-, or regional-levels. In
[15], a data-driven approach is presented for separating the
aggregate solar power of groups of customers using their
service transformer measurements. In [16], an exemplar-based
disaggregator is proposed to separate the output power of an
unobservable solar farm from the feeder-level µPMU measure-
ments, using power measurements of nearby observable PV
plants and irradiance data. In [6], a regional-scale equivalent
PV station model is proposed to represent the total generation
of small-scale PVs. The model parameters are optimized using
known solar power data. In [17], a data-driven approach is
proposed to estimate the total rooftop PV generation in a re-
gion by installing temporary sensors to measure representative
solar arrays. Furthermore, previously in [18], we developed
a game-theoretic data-driven approach for disaggregating the
PV generation of sizeable groups of customers using solar and
load exemplars. However, Class II approaches lack sufficient
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accuracy for performing customer-level PV disaggregation.
Considering the shortcomings of previous approaches, we

propose a novel customer-level solar power disaggregation
technique. Our basic idea is to first estimate each customer’s
monthly BTM PV generation and then decomposes it into
hourly solar power using solar exemplars. Note that unlike
native demand exemplars, solar exemplars can be easily con-
structed from observable PVs, due to the strong spatial corre-
lation in weather data in geographically bounded distribution
systems. The key in eliminating native demand exemplars from
the disaggregation process is based on an observation from
our real smart meter data: the monthly nocturnal and diurnal
native demands are highly correlated; since customers with and
without PV have very different diurnal smart meter readings
(yet similar nocturnal records), the observed correlation can
be used for identifying the monthly BTM solar generation.

More specifically, the first step is to construct the joint
probability density function (PDF) of monthly nocturnal and
diurnal native demands for customers without PVs. This will
be done using a Gaussian Mixture Model (GMM) technique
[19], which has demonstrated significant flexibility in forming
smooth approximations to arbitrarily-shaped PDFs. The con-
structed joint PDF captures the monthly load characteristics
of customers without PVs; hence, this joint PDF serves as a
benchmark for evaluating the deviations caused by monthly
BTM solar generation for customers with unobservable PVs.
The second step is to project the obtained customer-level
monthly solar estimations onto hourly values; to do this,
the monthly BTM solar generations are represented as a
linear weighted summation of solar exemplars with hourly
resolution. The weights are optimized using a constrained
maximum likelihood estimation (MLE) process, and will be
leveraged to disaggregate the hourly net demand of customers
with BTM PV generators. To enhance the robustness of MLE
against anomalous data, a penalty term is integrated into the
weight identification process. Throughout the paper, vectors
are denoted using bold italic letters, and matrices are denoted
as bold non-italic letters.

The main contributions of our paper are summarized as
follows: (1) Our approach takes full advantage of the strong
similarity among small-scale rooftop PV generations. This
similarity is due to the fact that the PVs installed within a
spatially-bounded distribution system are subject to identical
meteorological inputs. (2) The proposed technique utilizes the
significant correlation between monthly nocturnal and diurnal
native demands. In this way, our approach avoids the direct
use of hourly native demand, which is highly volatile at
the customer level [20], [21]. (3) Our approach innovatively
leverages a soft margin to mitigate the impact of anomalous
data samples of solar exemplars. The introduction of this
penalty term enhances the robustness of our approach against
abnormal measurements.

The rest of the paper is organized as follows: Section II
introduces the overall framework for customer-level BTM PV
generation disaggregation and describes smart meter dataset.
Section III presents the process for constructing joint PDF
of monthly diurnal and nocturnal native demands. Section
IV describes the procedure of formulating and solving MLE
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Fig. 1. Overall structure of the proposed customer-level BTM PV generation
disaggregation method.

to perform disaggregation. In Section V, case studies are
analyzed. Section VI discusses the relevant applications of the
disaggregated estimates and Section VII concludes the paper.

II. OVERALL DISAGGREGATION FRAMEWORK AND
DATASET DESCRIPTION

A. Overall Framework

In distribution systems, residential customers can be typ-
ically categorized into three types: (I) CP is the set of
customers without PVs whose native demand is recorded by
smart meters. (II) CG denotes the small group of customers
with PVs whose PV generation and native demand are both
observable separately. (III) CN represents the set of customers
with PVs whose net demand is recorded by smart meter, while
their native demand and PV generation are not separately
visible. Our goal is to disaggregate PV generation and native
demand from the net demand of individual customers in CN .

The overall process is illustrated in Fig. 1: First, the known
monthly nocturnal and diurnal native demands of customers
in CP are employed to construct a joint PDF using GMM
modeling technique. This joint PDF is constructed based on a
sizeable number of customers without PVs. Then, for each
customer in CN , the unknown PV generation is optimally
estimated by performing MLE, and using the constructed joint
PDF, known monthly net demand and solar exemplars.

B. Dataset Description

The hourly native demand data used in this paper are from
a Midwest U.S. utility [22], and the hourly PV generation data
are from a public dataset [23]. The time range of solar power
is one year, and the time range of native demand of customers
without PVs is three years. The test system consists of 1120
customers, of which 480 are residential customers without
PVs and 237 are residential customers with PVs. Net demand
data is obtained by aggregating customers’ PV generation and
native demand data.

III. STATISTICAL MODELING OF MONTHLY NATIVE
DEMAND

A. Findings from Real Smart Meter Data

One key finding which sets the foundation for the proposed
disaggregation approach is that the correlation between noctur-
nal native demand and the diurnal native demand increases as
the observation timescale increases. This finding is illustrated
in Fig. 2, where, Ph,d, Pd,d, Pw,d, and Pm,d denote the
diurnal native demands measured on hourly, daily, weekly, and
monthly basis, respectively. Ph,n, Pd,n, Pw,n, and Pm,n denote
the nocturnal native demands at the corresponding timescales,
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Fig. 2. Observations from real smart meter data.

respectively. P ′m,d denotes the monthly diurnal net demand of
customers with PVs. Numerically, the correlation coefficients
corresponding to Fig. 2a-2d are 0.56, 0.77, 0.89, and 0.91,
respectively. In our paper, we employ the strong correlation
of monthly native demand to perform disaggregation. The
importance of this correlation is that it can be leveraged
to reveal the monthly BTM generation of customers with
PVs. For instance, consider two customers, one with PV and
one without PV. These two customers can have statistically-
similar monthly nocturnal net demand, however, their monthly
diurnal net demand will be significantly different from a
statistical perspective due to BTM PV generation at daytime.
Specifically, Fig. 2e shows the nocturnal-diurnal net demand
distribution for customers with PV which is significantly
different from Fig. 2d. Thus, the distribution shown in Fig.
2d, which represents the behavior of customers without PV,
can be used as a benchmark to determine whether a customer
has BTM PV generation and estimate the monthly solar
power. These findings have inspired us to construct a joint
distribution of monthly nocturnal and diurnal native demands
of customers without PVs to evaluate the deviation caused
by the BTM PV generation of customers with PVs. These
deviations correspond to monthly BTM solar generation.

B. Constructing the Nocturnal-Diurnal Native Demand PDF

We use a parametric PDF estimation technique known as
GMM to construct the joint distribution of known monthly
nocturnal and diurnal native demands of customers without

PVs. A GMM is a linear combination of Gaussian components,
and has demonstrated high flexibility and robustness in mod-
eling arbitrary distributions [24]. Since utilities have access
to a large amount of native demand data, the constructed
GMM-based joint PDF is able to probabilistically describes the
quantitative relationship between the monthly nocturnal native
demand and monthly diurnal native demand for customers
without PVs. The native demand of customers with PVs
also follow this joint PDF, while their observed monthly net
demand can deviate from the joint distribution. Compared
with empirical histograms, the GMM-based PDF only has a
limited number of parameters, therefore, it can be conveniently
leveraged for estimating the BTM PV generation of the
customers with PVs. In our problem, the GMM approximation
model can be described as follows:

f(Pm,n, Pm,d|ΛΛΛ) =
S∑

k=1

θkgk(Pm,n, Pm,d|µµµk,ΣΣΣk), (1)

where, f(·, ·) denotes the approximated joint PDF, Pm,n

and Pm,d denote the monthly nocturnal and diurnal native
demands of customers without PVs (i.e., customers belonging
to CP ), respectively. ΛΛΛ denotes the parameter collection,
{S, θk,µµµk,ΣΣΣk}, which needs to be learned based on known na-
tive demand data. S denotes the total number of Gaussian com-
ponents. θk’s are the weights corresponding to the bi-variate
Gaussian components gk(ZZZ|µµµk,ΣΣΣk) with ZZZ = [Pm,n, Pm,d],
which satisfy

∑S
k=1 θk = 1 and 0 ≤ θk ≤ 1. The bi-variate

Gaussian component is defined as

gk(ZZZ|µµµk,ΣΣΣk) =
1

(2π)|ΣΣΣk|1/2

exp
{
− 1

2
(ZZZ −µµµk)>ΣΣΣ−1

k (ZZZ −µµµk)
}
, (2)

where, µµµk and ΣΣΣk are the Gaussian component mean vector
and covariance matrix, respectively.

To learn ΛΛΛ, first, a dataset is constructed based on smart
meter measurements of customers in CP . In practice, Pm,n

and Pm,d of customers in CP are known to utilities and can
be obtained from hourly smart meter readings in each month:

Pm,n =
∑
t∈In

Ph(t), (3a)

Pm,d =
∑
t∈Id

Ph(t), (3b)

where, Ph(t) denotes the native demand reading at the t’th
hour, In and Id denote the sets of nighttime and daytime hours,
respectively. Then, we can obtain the matrix of monthly de-
mands by concatenating all customers’ monthly native demand
pairs:

Z = [Z(1), · · · ,Z(Nc)]
T (4)

where, Nc denotes the total number of customers, and Z(j)
denotes a matrix of monthly nocturnal and diurnal native
demand pairs of the j’th customer which is organized as
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follows:

Z(j) =


Pm,n(j, 1) Pm,d(j, 1)
Pm,n(j, 2) Pm,d(j, 2)

...
...

Pm,n(j,Nm) Pm,d(j,Nm)


T

(5)

where, Nm is the total number of months. Then, we can
obtain a dataset of observed monthly demand samples,
{ZZZ(1), · · · ,ZZZ(N ′)}, through partitioning Z by rows, where,
N ′ = Nc ×Nm.

Thus, the problem of GMM approximation boils down to
finding optimal parameter collection ΛΛΛ∗ that best fits the ob-
tained dataset of monthly native demands, Z, by assuming that
the data samples are drawn independently from the underlying
distribution. The most well-established idea for learning GMM
parameters is to solve an optimization problem [19], [25],
whereby the objective function can be formulated to maximize
data likelihood, as follows:

max
ΛΛΛ

N ′∏
i′=1

f
(
ZZZ(i′)|ΛΛΛ

)
, (6)

By taking the logarithm of objective function, (6) is rewritten
as follows:

max
ΛΛΛ

N ′∑
i′=1

ln
{
f(ZZZ(i′)|ΛΛΛ)

}
. (7)

The optimization problem in (7) is solved using the
expectation-maximization algorithm [19].

Based on the identified optimal GMM parameter collection
from (7), ΛΛΛ∗, the joint PDF of monthly nocturnal and diurnal
native demands can be specifically written as

f(Pm,n, Pm,d) =
S∗∑
k=1

θ∗kg
∗
k(Pm,n, Pm,d), (8)

where,

g∗k(Pm,n, Pm,d) =
1

2πσ∗Pm,n,k
σ∗Pm,d,k

√
1− ρ∗k

2

exp

{
− 1

2(1− ρ∗k
2)

[ (Pm,n − µ∗Pm,n,k
)2

σ∗Pm,n,k
2 +

(Pm,d − µ∗Pm,d,k
)2

σ∗Pm,d,k
2

−
2ρ∗k(Pm,n − µ∗Pm,n,k

)(Pm,d − µ∗Pm,d,k
)

σ∗Pm,n,k
σ∗Pm,d,k

]}
, (9)

where, S∗ and θ∗k are the learned number of mixture Gaus-
sian components and mixture weights, respectively. µ∗Pm,n,k

,
µ∗Pm,d,k

, σ∗Pm,n,k
, σ∗Pm,d,k

, and ρ∗k denote the learned mean,
variance, and correlation of Pm,n and Pm,d for the k’th
component, respectively.

Using GMM and the learned parameters, the joint distri-
bution of monthly nocturnal and diurnal native demands is
optimally represented. This joint distribution can serve as
a benchmark for detecting and examining the discrepancy
caused by BTM PV generation.
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Fig. 3. Detailed structure of the proposed solar disaggregation approach for
each customer.

IV. CUSTOMER-LEVEL SOLAR DISAGGREGATION VIA
MLE

In this section, we disaggregate solar generation from net
demand for each customer with BTM PV using the constructed
joint PDF, along with the measured net demand and solar
exemplars. The detailed disaggregation process for each cus-
tomer in CN is illustrated in Fig. 3.

A. MLE for Optimizing Solar Exemplar Weights

In a geographically bounded distribution system, different
PV arrays are subject to identical meteorological inputs. Under
this condition, the signature of an individual PV’s generation
profile is primarily determined by PV array’s maximum power
output and orientation. The maximum power output deter-
mines the magnitude of generation curve [9], and the orien-
tation determines the “skewness” of generation profile [15].
Using the solar power curve of a south-facing PV array as a
benchmark, the solar power curve of an east-facing PV array is
left-skewed. A west-facing PV array has a right-skewed solar
power curve. Therefore, the unknown BTM PV generation
can be reliably represented using known generation profiles
of BTM PVs (belonging to CG) with typical orientations that
serve as exemplars:

Gm,d =
N∑
i=1

ωiG
E
m,i = ωωωTGGGE

m, (10)

where, N is the total number of solar exemplars, ωωω =
[ω1, · · · , ωN ]T denotes an unknown weight vector to be op-
timized, and GGGE

m = [GE
m,1, · · · , GE

m,N ]T denotes the PV
generation vector of solar exemplars, where, GE

m,i is obtained
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Algorithm 1 Disaggregating BTM PV generation and native
demand from net demand for each customer

1: Classify residential customers into three types: CP , CG,
and CN

2: procedure DATA CONVERSION
3: For customers in CP :
4: Pm,n ←

∑
t∈In Ph(t), Pm,d ←

∑
t∈Id Ph(t)

5: For customers in CG:
6: GE

m,i ←
∑

t∈Id G
E
h,i(t) i = 1, · · · , N

7: For customers in CN :
8: Pm,n ←

∑
t∈In P

′
h(t), P ′m,d ←

∑
t∈Id P

′
h(t)

9: end procedure
10: procedure CONSTRUCT NOCTURNAL-DIURNAL NA-

TIVE DEMAND PDF
11: For customers in CP :
12: ΛΛΛ← {θk,µµµk,ΣΣΣk} k = 1, · · · , S
13: ΛΛΛ∗ ← max

ΛΛΛ

∑N ′

i′=1 ln{f(Pm,n, Pm,d|ΛΛΛ)}
14: end procedure
15: procedure PERFORM MLE FOR OPTIMIZING WEIGHTS
16: For customers in CN :
17: Pm,d ← P ′m,d −ωωωT(GGGE

m)
18: Solve optimization in (16) to obtain ωωω∗

19: end procedure
20: procedure ESTIMATE HOURLY BTM PV GENERATION

AND NATIVE DEMAND
21: For customers in CN :
22: Ĝ̂ĜGh ← (ωωω∗)TGE

h , P̂̂P̂Ph ← PPP ′h − Ĝ̂ĜGh

23: end procedure

by converting the known hourly diurnal PV generation into
monthly diurnal solar power exemplars:

GE
m,i =

∑
t∈Id

GE
h,i(t), (11)

where, GE
h,i(t) is the PV generation of the i’th exemplar at

the t’th hour. Therefore, disaggregating BTM PV generation
of each customer in CN comes down to finding optimal coeffi-
cients assigned to known solar exemplars. To do this, first, we
represent the unknown monthly diurnal native demand using
the known monthly net demand and monthly PV generation
of solar exemplars:

Pm,d = P ′m,d −ωωωTGGGE
m. (12)

where, P ′m,d is the known monthly net demand which can be
obtained as follows:

P ′m,d =
∑
t∈Id

P ′h(t), (13)

where, P ′h(t) denotes the recorded net demand at the t’th hour.
Since the monthly nocturnal and diurnal native demands of

customers with PVs probabilistically follow the constructed
GMM-based joint PDF, by substituting (12) into (8), we can
represent the distribution function for customers with BTM
PVs as follows:

f
(
Pm,n, P

′
m,d −ωωωTGGGE

m

)
. (14)

Note that (10)-(14) apply to each month, and we do not add
the dimension of month into these equations for the sake
of conciseness. Then, the exemplar weight optimization is
formulated as an MLE problem over all months, as described
as follows:

ωωω∗ = max
ωωω

{ M∏
t′=1

f(Pm,n(t′), P ′m,d(t′),GGGE
m(t′)|ωωω)

}
, (15)

where, M is the total number of months.
Further, the optimization solution should be subject to

multiple constraints to enforce the identified PV generation to
be non-positive and the estimated native demand to be non-
negative. Finally, by taking logarithm of (15) and introducing
the constraints, the complete optimization problem is elabo-
rated as follows:

max
ωωω

{ M∑
t′=1

ln
[
f(Pm,n(t′), P ′m,d(t′),GGGE

m(t′)|ωωω)
]}
− 1

2
λ||βββ||22,

(16a)

s.t. (ωωωTGE
h )T ≤ 000, (16b)

PPP ′h − (ωωωTGE
h )T ≥ βββ, (16c)

βββ ≤ 000, (16d)

where, GE
h = [GGGE

h (1), · · · ,GGGE
h (Nh)] denotes a matrix of

hourly PV generation solar exemplars’ time series, GGGE
h (τ) =

[GE
h,1(τ), · · · , GE

h,N (τ)]T, τ = 1, · · · , Nh denotes the vector
of solar exemplars’ generation readings at the τ ’th hour,
Nh denotes the total number of hourly demand readings,
PPP ′h denotes the time-series hourly net demand readings and
000 represents a zero vector. In addition to maximizing the
likelihood function shown in (15), a l2-norm penalty term,
− 1

2λ||βββ||
2
2, is added into the objective function, where, λ ≥ 0

is a tuning parameter and βββ is a vector with non-positive
elements. Constraint (16b) ensures that the estimated hourly
PV generation is non-positive. Constraints (16c) and (16d)
ensure that the estimated time-series native demand is larger
than a non-positive vector whose l2-norm is penalized in
the objective function. This penalty term is based on the
following consideration: In practice, it is common for the
solar generation to have data quality problems. For example,
PV arrays can stop running due to solar panel failures, and
the recorded anomalous samples are usually smaller than the
unrecorded expected values. For the customers whose PV
generation is supposed to be disaggregated from the known net
demand, the unwanted PV failure does not cause significant
disaggregation error. This is because the relatively smaller
anomalous PV generation samples cause an unwanted rise
in the net demand readings only for a limited number of
samples. These larger net demand readings can still give
us positive estimated native demand values, since the native
demand is estimated by subtracting the disaggregated BTM PV
generation from net demand. In comparison, the anomalous
readings of solar exemplars can cause a negative estimated
native demand, which brings significant estimation errors.
This is because removing a zero or near-zero PV generation
from a negative net demand measurement gives us a negative
estimated native demand value. Thus strictly constraining
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the estimated native demand to be non-negative can cause
unwanted errors. Therefore, we have leveraged a soft margin
to penalize the effect of anomalous data. Since the purpose of
introducing the penalty term is to allow for a small number
of negative native demand estimates, the value of tuning
parameter, λ, should be chosen in a way to ensure that the
number of negative native demand estimates is close to the
number of solar exemplars’ anomalous data samples. The
MLE problem in (16) is solved via numerical optimization
using interior-point methods.

(a) Empirical histogram

(b) GMM-based estimation

Fig. 4. Joint PDF estimation of monthly nocturnal and diurnal native
demands.

B. Estimating Hourly PV Generation and Native Demand

By solving the optimization (16), we can obtain the op-
timized weight vector, ωωω∗, which is utilized to estimate the
unknown hourly BTM PV generation of customers with PVs:

Ĝ̂ĜGh = (ωωω∗)TGE
h . (17)

Further, the hourly native demand can be estimated by sub-
tracting the disaggregated BTM PV generation from known
net demand readings:

P̂̂P̂Ph = PPP ′h − Ĝ̂ĜGh. (18)

An algorithmic overview of the aforementioned steps of
BTM PV generation disaggregation is summarized in Algo-
rithm 1.

V. CASE STUDY

In this section, the proposed customer-level rooftop BTM
solar power separation approach is verified using real smart
meter and PV generation data described in Section II.

A. Assessing Statistical Behavior of Customers

The empirical histogram and the GMM-based estimation of
f(Pm,n, Pm,d) are shown in Fig. 4a and Fig. 4b, respectively.
Comparing these two figures, it can be seen that GMM is able
to accurately model the joint distribution of monthly nocturnal
and diurnal native demands using smooth parametric Gaussian
density functions. Also note that the joint PDF surface is
quite narrow, i.e., the data is highly concentrated around the
linear representative of nocturnal and diurnal demands. This
corroborates the high correlation between monthly nocturnal
and diurnal native demands observed in Fig. 2d.

B. BTM PV Generation Disaggregation Validation

Using the constructed GMM-based joint PDF, along with
the known monthly net demand of customers with PVs and
PV generation of solar exemplars, we can solve the MLE
problem described in (16). When selecting solar exemplars,
it is demonstrated that on average, three exemplars can suffi-
ciently represent the PV generation profiles, and introducing
additional solar exemplars does not bring further disaggre-
gation accuracy improvement [18]. Thus, we have selected
three typical solar power curves from CG corresponding to
PVs facing east, south and west, respectively. Fig. 5 shows
disaggregated PV generation and native demand curves of one
customer over two weeks, along with corresponding actual
profiles. In Fig. 5a, it can be seen that the disaggregated
curve closely fits the actual profile, regardless of the solar
volatility on some days. This shows the accurate diaggregation
capability of our proposed method and also corroborates
our observation that PV generation profiles with similar PV
array orientations are highly correlated. Fig. 5b shows the
disaggregated and actual native demand profiles. It can be
observed that despite the uncertain and volatile pattern of
native demand, the disaggregated curve can still fit the real
profile.

It is of importance to examine the representative feature
of typical solar exemplars. In (10), the unknown BTM PV
generation is represented using known generation profiles
of solar exemplars. Therefore, these PV generation profiles
which serve as exemplars should be distinguishable, otherwise,
multiple solutions of weights with the same losses can be
derived in the MLE optimization process. We have employed
a dimensionality reduction technique known as t-SNE to
visualize the dissimilarities among PV generation profiles of
solar exemplars [26]. Note that each time point is treated as
one dimension in our problem. The dimensions of hourly and
monthly PV generation time series are reduced for convenient
visualization, as shown in Fig. 6. Fig. 6a shows the reduced
two-dimensional solar power exemplars based on the hourly
PV generation of PVs facing east, south and west. As can
be seen, the solar exemplars are demonstrated to be distinct.
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Time (hour)

Disaggregated Actual

(a) PV generation

Time (hour)

Disaggregated Actual

(b) Native demand

Fig. 5. Two-week disaggregated PV generation and native demand curves, along with corresponding actual curves.

(a) Hourly (b) Monthly

Fig. 6. Visualizing the distinguishability of time-series PV generation curves
of solar exemplars.

Similarly, the monthly PV generation of solar exemplars also
demonstrate distinguishable features, as shown in Fig. 6b.
This is consistent with our observation that solar generation
profiles are primarily determined by PV panel orientations in
geographically bounded distribution systems.

It is of significance to test whether the proposed approach
can track the appropriate exemplars (east, south or west)
in the disaggregation process. Fig. 7a shows PV generation
curves of the three exemplars facing east, south and west.
We can see that PVs with different orientations show distinct
profile skewness. Fig. 7b shows the disaggregated and real
PV generation curves of a PV facing east, along with the
optimized weights assigned to the three solar exemplars. It
can be seen that the weight corresponding to the first exemplar
(i.e., PV facing east) is much larger compared to the other two
weights, which validates the tracking ability of our proposed
approach. This verification can also be observed in Fig. 7c
and 7d, which show the weights, disaggregated and actual PV
generation curves of PVs facing south and west, respectively.
In all cases, our method has accurately detected the correct
underlying BTM PV panel orientations.

The proposed customer-level BTM solar separation ap-
proach is applied to all 237 customers with PVs, and the
disaggregation accuracy for each customer is evaluated in
terms of mean absolute percentage error (MAPE), which is
calculated as follows:

MAPE =
100%

N ′h
·
N ′h∑
t=1

∣∣∣∣∣ Ôh(t)−Oh(t)

1
N ′h

∑N ′h
t=1 |Oh(t)|

∣∣∣∣∣ (19)

where, N ′h denotes the total number of non-zero PV generation
observations for an individual customer, Oh can be Ph or Gh.
Fig. 8 shows the distribution of disaggregation error for all
customers in terms of MAPE. As can be seen, majority of
the MAPEs are less than 20%. This effectively demonstrates
the generalization ability of our proposed method. Table I
summarises the empirical cumulative distribution function
(CDF) of disaggregation MAPE. As can be seen, for the
disaggregated hourly PV generation, 80% of the MAPEs
are less than 13.5%. Regarding the disaggregated hourly
native demand, 80% of the MAPEs are less than 14.9%.
This effectively verifies the disaggregation accuracy of our
proposed approach.

The disaggregation accuracy for each customer is also
evaluated using RMSE, which is computed as follows:

RMSE =

√√√√Σ
N
′
h

t=1(Ôh(t)−Oh(t))2

N
′
h

. (20)

Fig. 9 shows the empirical distributions of the RMSE of
disaggregated estimates based on all customers’ computed
RMSEs. It can be seen that most PV generation and native
demand RMSEs are less than 0.5 and 1.5, respectively. Also,
the empirical CDF of disaggregation RMSE is calculated for
a comprehensive examination, as shown in Table II.
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(d) A PV facing west

Fig. 7. The proposed approach can correctly track proper solar exemplars
to perform disaggregation.
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Fig. 8. Empirical distribution of MAPE of disaggregated estimates.
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Fig. 9. Empirical distribution of RMSE of disaggregated estimates.

TABLE I
EMPIRICAL CDF OF DISAGGREGATION MAPE

Empirical CDF 0.2 0.4 0.6 0.8 1.0

MAPE of Ĝh (%) 2.5 4.8 9.7 13.5 33.4

MAPE of P̂h (%) 3.1 8.3 12.3 14.9 29.1

C. Testing the Robustness of the Proposed Approach

It is common for a practical metering system to have a
small number of anomalous measurements in solar exemplars,
as shown in Fig. 10, where the unrecorded expected generation
is denoted as a red circle. The typical reason for anomalous
solar power data samples is PV failure, which causes the
recorded data samples to be smaller than the unrecorded
expected values. As previously elaborated in Section IV, a
penalty term is included in (16) to mitigate the effect of solar
exemplar’s anomalous samples. Therefore, it is crucial to test
the usefulness of the penalization mechanism. Note that the
results in Section V-B are obtained using (16) with a penalty
term. Thus, to conduct a performance comparison, we alter
(16) to obtain a new optimization formulation with the penalty
term omitted, as expressed as follows:

max
ωωω

M∑
t′=1

ln
[
f(Pm,n(t′), P ′m,d(t′),GGGE

m(t′)|ωωω)
]
, (21a)

s.t. (ωωωTGE
h )T ≤ 000, (21b)

PPP ′h − (ωωωTGE
h )T ≥ 000. (21c)

TABLE II
EMPIRICAL CDF OF DISAGGREGATION RMSE

Empirical CDF 0.2 0.4 0.6 0.8 1.0

RMSE of Ĝh 0.06 0.12 0.21 0.31 4.51

RMSE of P̂h 0.10 0.28 0.73 1.08 3.85

Fig. 10. A solar exemplar with an anomalous sample due to PV failure.
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(a) PV generation

(b) Native demand

Fig. 11. The introduction of penalty term significantly improves disaggre-
gation accuracy and robustness.

Then, using the solar exemplar with an anomalous sample in
Fig. 10, we utilize (16) and (21) to perform disaggregation,
respectively. Fig. 11 compares three-day disaggregated PV
generation and native demand curves based on (16) and (21),
respectively. The actual solar power and native demand curves
are also plotted as benchmarks. In Fig. 11a, it can be seen
that the disaggregated PV generation curve using (16) can
closely fit the actual curve except for at the hour that the
solar exemplar’s anomalous sample appears. In comparison,
the disaggregated PV generation curve using (21) significantly
deviates from the actual benchmark. Regarding the disaggre-
gated native demand, we can draw the same conclusion by
observing Fig. 11b. The overestimation of PV generation and
native demand using (21) is due to the constraint that forces the
estimated native demand to be strictly non-negative, as shown
in Fig. 11b. In contrast, our approach presented in (16) allows
a negative native demand estimate to mitigate the anomalous
samples’ impact. To sum up, the introduction of penalty into
the MLE optimization significantly enhances the robustness of
our proposed approach against anomalous data.

D. Performance Comparison

It is vital to compare the performance of our proposed
approach with other methods. Since the proposed approach
in [14] has been demonstrated to have a relatively better per-
formance than previous methods, we first apply the proposed
approach in [14] to conduct PV generation disaggregation
using our dataset and then compare its performance with our
approach. The approach to be compared is denoted as Bi-
Modeling, which employs a statistical model and a physical
model to represent the native load and the PV generation,
respectively. The Bi-Modeling method utilizes the observable
net load series and weather data to optimize model parameters
iteratively. A threshold is set to evaluate whether the two mod-
els reach a consensus. The results obtained by applying the Bi-

Modeling method to our dataset are shown in Fig. 12 and 13.
It can be seen that our approach has a better performance than
the Bi-Modeling method in terms of the MAPE and RMSE
of PV generation by comparing Fig.12a and 13a with Fig. 8a
and 9a, respectively. In terms of native demand disaggregation
error comparisons (obtained from Fig. 8b, Fig. 9b, Fig. 12b,
and Fig. 13b), the results are inconclusive. Further results
in terms of average MAPE and RMSE are examined as
shown in Table III, and it can be seen that our approach
demonstrates smaller disaggregation errors. Note that no single
method alone is best in all situations.

TABLE III
AVERAGE MAPE AND RMSE OF ESTIMATES

Metrics Our Approach Bi-Modeling

Average MAPE of Ĝh (%) 10.2 16.1

Average MAPE of P̂h (%) 9.64 12.4

Average RMSE of Ĝh 0.23 0.38

Average RMSE of P̂h 0.61 0.69
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Fig. 12. Empirical distributions of MAPE of disaggregated estimates
obtained using the Bi-Modeling method.
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Fig. 13. Empirical distributions of RMSE of disaggregated estimates
obtained using the Bi-Modeling method.

VI. APPLICATION DISCUSSION

It is essential to discuss how the disaggregated PV and
native demand can be used in practice. These estimates target
static applications since the sampling rates of widely available
smart meter data are 1-hour, 30-min, or 15-min. To further
explain the usefulness of our approach, we primarily focus on
three specific applications:

A. Native Load Monitoring and Forecasting

Since small-scale rooftop PVs can be disconnected or other-
wise absent without prior knowledge, utilities usually adopt a
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conservative approach in distribution system studies and do not
treat small PVs as reliable sources [3]. As a result, utilities use
the native load for conducting conservative scenario analysis
instead of the net load. Therefore, it is crucial for utilities
to monitor the actual native load. In most cases, small-scale
rooftop PVs are installed BTM, and only the net load is
recorded. Thus, it is necessary to disaggregate the unknown
native load and PV generation from the known net load. Our
proposed approach can directly provide utilities the estimated
native load, which can be further utilized for system operation
and design.

The disaggregated estimates can also be used for native load
forecasting. As the PV penetration level increases, the native
load can be seriously masked by PV generation. Under this
condition, it is necessary to separate the native load from the
net load first and then perform native load forecasting. For this
application, our proposed approach can provide native load
estimates to train native load forecasting models.

B. Demand Response

Due to the existence of BTM PVs, the native demand is
masked by PV generation. However, the majority of demand
response schemes are designed for native load controlling [9].
Under this condition, the unknown native demand hinders
utilities from applying demand response schemes efficiently
because of the invisibility of the real power consumption.
Therefore, the native demand of individual customers needs to
be separated from the net demand, as our proposed approach
fulfills.

C. Service Restoration

Another application is relevant to service restoration. When
restoring cold loads, more power will be drawn by air-
conditioning appliances than in normal operation. This power
increase is caused by the simultaneous restarting of a large
number of appliances and can be several times larger than the
normal load. Thus, this abnormal load should be estimated
for developing optimal service restoration tactics. One typical
way of estimating the abnormal load is to multiply the normal
native load before outage by a ratio from a look-up table [3],
[27]. To do this, we need to separate the normal native load
from the net load. Leveraging the disaggregated native load
estimate obtained from our approach can be used in optimizing
restoration strategies.

VII. CONCLUSION

This paper presents a novel robust approach to disaggre-
gate invisible customer-level BTM PV generation and native
demand from net demand using smart meter data and solar
exemplars. The proposed method employs a limited number
of observable solar power exemplars to represent the invisible
BTM PV generation. Also, the proposed approach innovatively
leverages the significant correlation between nocturnal and
diurnal native demands at the timescale of monthly to alleviate
the hourly native demand’s volatility. In addition, a penalty
term is innovatively integrated into the estimation problem

to tackle anomalous samples of solar exemplars due to PV
failures. The numerical experiments verify that the approach
is able to perform disaggregation with satisfactory accuracy
and robustness, which further improves utilities’ situational
awareness of grid-edge resources.

The key findings of the paper are summarized as follows:
(1) Using real BTM PV generation and native demand data,
we have observed that the hourly generation series of a PV can
be sufficiently represented using solar power outputs of PVs
with similar orientations. In comparison, the hourly customer-
level native demand shows higher volatility. (2) Despite the
uncertainty of hourly native demand, the monthly nocturnal
and diurnal native demands are highly correlated. This has
inspired us to first estimate the monthly PV generation, then
decompose it into hourly solar power. (3) The anomalous
data of PV generation is common in practice, and can cause
significant disaggregation error. This has motivated us to
introduce a penalty term into MLE to reduce the impact of
solar exemplars’ anomalous samples.
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