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Abstract—The knowledge of distribution grid models, includ-
ing topologies and line impedances, is essential for grid mon-
itoring, control and protection. However, such information is
often unavailable, incomplete or outdated. The increasing de-
ployment of smart meters (SMs) provides a unique opportunity
to tackle this issue. This paper proposes a two-stage framework
for distribution grid modeling using SM data. In the first stage,
the network topology is identified by reconstructing a weighted
Laplacian matrix of distribution networks. In the second stage, a
least absolute deviations (LAD) regression model is developed for
estimating line impedance of a single branch based on the non-
linear (inverse) power flow model, wherein a conductor library
is leveraged to narrow down the solution space. The LAD re-
gression model is originally a mixed-integer nonlinear program
whose continuous relaxation is still non-convex. Thus, we spe-
cially address its convex relaxation and discuss the exactness. The
modified regression model is then embedded within a bottom-up
sweep algorithm to achieve the identification across the network
in a branch-wise manner. Numerical results on the IEEE 13-bus,
37-bus and 69-bus test feeders validate the effectiveness of the
proposed methods.

Index Terms—Distribution grid, inverse power flow, line
impedance estimation, topology identification, smart meter, con-
vex relaxation.

I. INTRODUCTION

With the increasing penetration of distributed energy re-
sources (DERs), grid monitoring and energy management are
imperative to distribution system operation [1]. However, such
functionalities require complete and accurate knowledge of
distribution grid models, including network topologies and
line parameters. Unlike transmission systems that enjoy a high
level of data redundancy, distribution grid models could be in-
accurate or even unavailable [2]. Some utilities only have sim-
ple one-line diagrams of their systems without detailed line pa-
rameters; other utilities may have system models, but they are
often incomplete or outdated due to the frequent system ex-
pansion and reconfiguration. Field inspection is a conventional
approach to draw the model information, which is laborious,
costly, and time-consuming, especially for large-scale systems
[3]. This suggests an urgent need of efficient and tractable
approaches for distribution grid modeling.

In recent years, the deployment of advanced monitoring and
metering infrastructures, e.g., smart meters (SMs) and micro-
phasor measurement units (µPMUs), provides an opportunity
to extract the distribution grid models from field measure-
ments [4]. Some studies extend the classical state estimation
tools [5]–[8] to infer the status of switches, shunt capaci-
tors/reactors, etc. [9]–[12]. However, this paper considers a
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different problem: the general distribution grid modeling con-
sisting of a full topology and parameter identification of the
whole network from scratch instead of only detecting the sta-
tus of switchable devices. This cannot be easily handled by
generalizing the state estimation tools.

Recently, data-driven approaches for network topology and
parameter identification have attracted a lot of attention. These
methods can be roughly classified into two categories accord-
ing to whether they require complex voltage and current mea-
surements (i.e., phase angle information). The studies of the
first category rely on high-granularity synchrophasor measure-
ments [13]–[16]. In [13], a multi-run optimization method was
proposed to estimate line parameters of a three-phase distribu-
tion feeder based on the synchronized voltage phasors and line
flow measurements. The authors in [14] proposed to identify
network topology based on both fundamental and harmonic
synchrophasor data by solving a mixed-integer linear program.
With the help of phase angle information, the work of [15]
jointly estimates the network topology and parameters by di-
rectly reconstructing the admittance matrix. In [16], a simi-
lar joint estimation was achieved by carrying out the topol-
ogy and parameter identification alternately. Note that these
phasor-based methods require a high or even full coverage of
µPMUs, which is cost-prohibitive, especially for low-voltage
(LV) grids. In addition, the existing joint topology and param-
eter estimation methods need to solve a large-scale central-
ized optimization program and may require iterations between
topology and parameter identification; thus, the computational
complexity significantly grows with the network size.

Rather than using synchrophasor measurements, another
line of research managed to identify topology or parame-
ters using voltage magnitude and power measurements [17]–
[23]. In [17], a mixed-integer quadratic programming (QP)
model was developed to identify network topology with the
known line impedance information. In [18], a structure learn-
ing method was developed to estimate the grid topology
by assuming the nodal power injections are uncorrelated or
with non-negative covariances. In [19] and [20], correlation
analysis-based algorithms were proposed to identify the grid
topology using SM data, under the assumption that the corre-
lation/similarity between customers’ voltage profiles increases
as the electrical distance decreases. In [21], a Markov ran-
dom field-based algorithm was proposed to detect the topology
based on uncorrelated power loads. Notice that such statisti-
cal assumptions may be challenged by the high penetration of
behind-the-meter DERs. The authors in [22] formulated the
parameter identification problem as a maximum likelihood es-
timation model based on the linearized power flow. In [23], an
error compensation model was developed to achieve a robust
estimation of distribution line parameters.

It is observed that the existing methods in this category ei-
ther conduct topology identification based on some prior line
parameter information (e.g., impedance or R/X ratio), or per-
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form parameter identification with a known topology. A joint
network topology and parameter estimation is still challenging
in the sense that such prior information is usually unavailable
in practice. Statistical methods usually need massive measure-
ment streams, composed of several hours or even many days
of recorded data. This may hinder them from detecting topol-
ogy changes in real time.

In this context, we propose a novel two-stage framework to
identify network topology and parameters in this paper. In the
first stage, we develop a novel topology identification method,
which consists of a linear least squares (LS) model for estimat-
ing a weighted Laplacian matrix (WLM) and a density-based
clustering method for recovering topology from the estimated
WLM. Different with existing methods, the proposed topology
identification initially builds on distribution grids with a ho-
mogeneous R/X ratio, which yields a tractable fitting model.
Then, its robustness against heterogeneous R/X ratios is also
analyzed and demonstrated.

In the second stage, a nonlinear least absolute deviations
(LAD) regression model is developed for parameter estima-
tion of a single branch based on the branch flow model [24].
To improve the accuracy of parameter estimation, the LAD re-
gression model establishes on the nonlinear power flow, which
is therefore nonlinear and nonconvex. Then, we propose a con-
vex relaxation method of the LAD model. A conductor library
is exploited to significantly narrow the solution space of pa-
rameter estimation. Finally, a bottom-up sweep algorithm is
proposed to accomplish the parameter estimation across the
entire system by carrying out the estimation of line impedance
and line flow, alternatively.

The topology identification solves an unconstrained convex
QP program and the density-based clustering method needs to
scan the whole network only once. The parameter estimation
is performed in a branch-wise manner, so that the computa-
tional complexity is approximately linear with the network
size. Therefore, the proposed method enjoys good computa-
tional efficiency and scalability.

The rest of this paper is organized as follows. Section II
gives the preliminaries including the power flow model, some
facts and basic assumptions, used for developing the proposed
method. Sections III and IV present the details of topology
identification and line impedance estimation methods, respec-
tively. Numerical test results are provided in Section V. Some
discussions in terms of robustness and scalability is given in
Section VI, followed by conclusions.

II. PRELIMINARIES

Regarding notation, for a column vector v, let vi denote
its ith entry; and ‖v‖1 and ‖v‖2 denote its L1-norm and L2-
norm, respectively. Given a matrix M, let mij denote its entry
at i-th row and j-th column and [M]i denotes its ith row;
M−1, MT and M−T denote its inverse, transpose and inverse
transpose, respectively. Let 1n be the n × 1 column vector
with all entries being 1 and In be the n × n identity matrix.
The superscript (̂•) denotes the estimation and (•)? means the
optimum.

Consider a radial distribution grid comprised of n+1 buses.
Let N ∪ {0} be the set of buses where the secondary side of
substation transformer is indexed by 0 (the unique slack bus
in the distribution grid) and N := {1, ..., n} denotes the set of

other buses. For any j ∈ N , Cj ⊆ N denotes its children bus
set. Pj denotes the set of buses in the unique path from bus
j to bus 0 (including bus j itself). Without loss of generality,
we uniquely label a branch by its downstream end bus (i.e.,
branch j’s downstream end is bus j). In this way, we are able
to characterize the network only by bus labels.

The proposed topology and parameter identification meth-
ods both build on the branch flow model [24] that relaxes the
voltage angle. For notation convenience throughout this paper,
we modify the original version by splitting the power balance
equations as:

Pj =
∑
k∈Cj

P̄k − pj , P̄j = Pj + rj ·
P 2
j +Q2

j

vj
(1a)

Qj =
∑
k∈Cj

Q̄k − qj , Q̄j = Qj + xj ·
P 2
j +Q2

j

vj
(1b)

vi − vj = 2 (rjPj + xjQj) +
(
r2j + x2j

)
·
P 2
j +Q2

j

vj
(1c)

for any j ∈ N , where pj , qj denote the net real/reactive
power injection at bus j; P̄j , Q̄j denote the real and reac-
tive power flowing from the upstream bus i; Pj , Qj denote
the real and reactive power flowing to the downstream bus j;
rj , xj > 0 are the line resistance and reactance; vi and vj
are the squared voltage magnitude at buses i and j. Differ-
ent than the power flow analysis that solves voltages and line
flows, the line impedance and topology information will be
extracted based on the known voltage and line flows, which
is referred to as inverse power flow [25].

Some facts and assumptions throughout this paper are clar-
ified as below:
• The proposed method only considers balanced distribu-

tion networks. This is due to the invisibility of the grid-
edge phase angle information. In this work, the available
data source required only consists of voltage magnitude
and power measurements recorded by SMs. In practice,
this method can be applied for balanced medium-voltage
(MV) systems or single-phase LV grids.

• It is assumed that there is a full coverage of SM with
nodal net load and voltage magnitude measurements. This
assumption is consistent with the recent expansion of
smart grid monitoring devices. By the end of 2020, about
107 million SMs had been deployed, covering about 75%
of U.S. households [26]. Further, although reactive power
measurement is rarely collected in practice, SMs are, in
fact, able to measure reactive power in real time. Utili-
ties do not activate this function due to financial and data
storage concerns.

• Typically, SMs are installed on the LV customer side. So,
SM data should be aggregated if they are used for MV
grids. For example, the customer power measurements
are aggregated at secondary transformer level.

• The SM data used for identification is assumed to be per-
fect since data quality problems are not the primary focus
of this work. Though this may not be the case in practice,
a number of advanced data pre-processing [27]–[30] and
pseudo measurement generation methods [31]–[33] can
be implemented first to mitigate the impact of and data
quality issues (e.g., asynchrony, bad data, missing data).
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• A library of line conductor types is assumed to be known,
which is typically available in practice, in the sense that
the conductor types are often well recorded by utilities.

III. NETWORK TOPOLOGY IDENTIFICATION BASED ON
WEIGHTED LAPLACIAN MATRIX

In this section, we firstly develop an optimization-based
topology identification method for distribution grids with the
homogeneous R/X ratio, and then discuss its robustness against
the variability of R/X ratios.

A. Link Between Grid Topology and Power Flow

Assuming the line loss is negligible compared to line flow1,
a linear approximation of (1) that neglects the nonlinear terms
in (1) is conducted as,

v ' 2A−TRA−1p + 2A−TXA−1q−v0A−Ta0 (2)

where v := [v1, . . . , vn]T , p := [p1, . . . , pn]T , and q :=
[q1, . . . , qn]T denote the vectors collecting squared bus voltage
magnitudes, real power and reactive power injections at buses
1, ..., n, respectively; [a0,A

T ]T ∈ {0,±1}(n+1)×n is the in-
cidence matrix of the radial-topology graph where aT0 denotes
the first row of the incidence matrix; R := diag(r1, ..., rn)
and X := diag(x1, ..., xn) are diagonal matrices with j-th di-
agonal entry being the resistance and reactance of j-th branch.

Regarding the sort order within p,q and v, it should be clar-
ified that the entries within vectors p,q and v can be sorted
without any prior restriction. To be more clear, buses 1, ..., n
can be arbitrarily labelled regardless of the actual bus posi-
tion in the network. The only requirement is that they should
be organized in a coherent way, meaning pj , qj and vj that
characterize bus j should come from the same SM.

For a radial distribution network, the reduced incidence ma-
trix A := [aij ]n×n is non-singular [35] and A−Ta0 = −1n.
Therefore, a variant of (2) reads,

1

2
AX−1AT︸ ︷︷ ︸

Y

(v − v01n) = AX−1RA−1︸ ︷︷ ︸
Φ

p + q (3)

where Y := [yij ]n×n is a weighted Laplacian matrix of the
network with the entries being:

yij = yji =


−1/xj , if j ∈ Ci∑

k∈{j}∪Cj
1/xk, if i = j

0, otherwise.

(4)

Mathematically, the rationale behind Y is: for any two dis-
tinct buses i and j, yij < 0 if they are (directly) physically
connected and otherwise, yij = 0. In a physical sense, Y is
structurally close to the admittance matrix but without con-
sidering the line resistance. Therefore, if one can (approxi-
mately) identify Y that uniquely characterizes the connectiv-
ity, the topology can be extracted accordingly. This inspires a
Y-based topology identification method.

1Since line losses are usually much smaller than power flows, the approx-
imation error is relatively small, typically at the order of 1% [34].

B. Identification Model
We thus attempt to develop a regression model of Y based

on (3) and the measurements of p,q,v and v0 that can be ob-
tained from SM data. It minimizes the mismatch between both
sides of (3). Unfortunately, Φ involves the network topology
and parameters that are unknown yet.

But interestingly, suppose the network has a homogeneous
R/X ratio, i.e.,

r1
x1

= · · · = rn
xn

= λ, (5)

Φ reduces to

Φ = A

r1/x1 . . .
rn/xn

A−1 = λIn. (6)

Accordingly, (3) becomes,

Y(v − v01n) = 2(λp + q). (7)

This exactly eliminates the requirement of prior information
regarding A, R and X, and relies on p,q,v and v0.

Then, defining the mismatch vector regarding k-th sample,

e(k) := Ŷ
(
v(k) − v(k)0 1n

)
− 2λp(k) − 2q(k), ∀k (8)

and e := [(e(1))T , ..., (e(K))T ]T where K � n is the total
number of samples, a linear LS regression model of Y reads,

minimize
Ŷ,λ

||e||22. (9)

Clearly, this fitting model is an unconstrained convex QP pro-
gram that can be efficiently solved.

C. Recovering Topology From Weighted Laplacian Matrix
Recovering the topology from Ŷ can be cast as an anomaly

detection problem based on the property in (4). Considering
the sparsity of the distribution grid topology, a density-based
spatial clustering of applications with noise method [36] is uti-
lized here, which is tabulated as Algorithm 1. The rationale be-
hind our task is that most of the entries in Ŷi for all i, are con-
centrated on a small range, which can be grouped into several
clusters that represent the unconnected buses; the non-diagonal
entries that do not belong to these clusters are declared as
anomalies which indicate the connectivity. To achieve this,
the method uses a minimum density level estimation based
on two user-defined hyperparameters, a threshold for the min-
imum number of neighbors, γ, and the radius, ξ. ŷij with more
than γ neighbors within ξ distance are considered to be a core
point. All neighbors within the ξ radius of a core point are con-
sidered to be part of the same cluster as the core point. Based
on multiple core points, all entries in Ŷ can be separated by
clusters of lower density. The cluster with the minimum en-
tries is considered to contain the connected buses. Overall, our
method leverages the density drop between the unconnected
and the connected entries in Ŷ to detect the cluster bound-
aries for recovering topology from estimated weighted Lapla-
cian matrix. Unlike other clustering algorithms that assume
normally shaped clusters, this method is capable of finding
clusters with arbitrary shapes and sizes. Moreover, it does not
require a priori specification on the number of clusters, there-
fore ensuring the robustness and practicality [37]. Note that it
does not enforce radiality.



IEEE TRANSACTIONS ON POWER SYSTEMS 4

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

Branch No.

r j
(1

0
−
2
p
.u
.)

Real Value
With Library

Without Library

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

Branch No.

x
j

(1
0
−
2
p
.u
.)

Real Value
With Library

Without Library

Fig. 1. Least-squares-based line parameter estimation results of the modified IEEE 13-bus test feeder (see Section V for details) based on the linearized
inverse power flow model with and without the help of a R/X ratio library.

Algorithm 1 Recovering Topology From Ŷ by Clustering
Initialization: Initialize i← 1, j ← 1, γ, ξ
repeat

[S1]: Select the ith row of Ŷ.
repeat

[S2]: Pick ŷij and retrieve all direct density-reachable
points using ξ.

[S3]: Based on γ, if ŷij is a core point, a cluster is formed;
otherwise, update j ← j + 1.

until j = n or no new point can be added to any cluster
[S4]: Update i← i+ 1.

until i = n.

D. Robustness Analysis on Heterogeneous Networks
As mentioned above, the proposed regression model is de-

rived on the assumption of a homogeneous R/X ratio, which
may not be true in practical networks. However, a distribution
grid at a given voltage level has the relatively heterogeneous
R/X ratios [38], which is widely believed to hold in many
practical cases (see [39] for some examples). In what follows,
we will show that our proposed method has some robustness
against the heterogeneous R/X ratios.

Let λ := (λ1 + · · ·+ λn)/n be the mean of R/X ratios and
accordingly, let λj := λ + ∆λj , ∀j, where ∆λj denotes the
deviation to λ. Therefore, we have,

Φ = λIn + ∆λ (10)

where ∆λ := Adiag(∆λ1, . . . ,∆λn)A−1.
Proposition 1: Matrix ∆λ := [∆ij ]n×n is a matrix with the

entries being,

∆ij =

∆λi −∆λCi∩Pj
, if i ∈ Pj

∆λi, if i = j
0, otherwise.

(11)

The proof is provided in the appendix. Observe (11), ∆λ

can be used to quantify the heterogeneity of R/X across the
whole network. For a netwrok with relatively homogeneous
R/X ratios, λj ' λ, ∀j and consequently, |∆λi| ' 0 and
|∆λi −∆λj | ' 0, ∀i, j. Therefore, ∆λ will not significantly
affect the solution of (9) provided the program is numerically
stable. And for a strictly homogeneous network, (10) com-
pletely reduces to (6).

IV. LINE IMPEDANCE ESTIMATION: LAD REGRESSION
MODEL AND BOTTOM-UP SWEEP FRAMEWORK

Here, we develop a regression model for line impedance es-
timation of a single branch–a LAD model with mixed-integer
semidefinite programming (MISDP) formulation. It is then em-
bedded with a bottom-up sweep algorithm to accomplish the
parameter estimation across the entire network.

Keep in mind that the proposed regression model is built
on full nonlinear inverse power flow instead of its linearized
counterpart, in the sense that the latter may be unable to accu-
rately recover the parameters, especially when the regression
problem is ill-posed [40]; see Fig. 1 for a numerical exam-
ple on the IEEE 13-bus feeder. Note that, the non-convexity
of the nonlinear inverse power flow model makes the regres-
sion problems NP-hard even after continuous relaxation. This
motivates us to specially address its convexification.

A. Regression Model for A Single Branch

The line impedance estimation establishes on the voltage
drop relationship (1e). Define the vector of model mismatch
ej := [e

(1)
j , ..., e

(K)
j ]T for all j ∈ N with

e
(k)
j := v

(k)
i − v

(k)
j − 2

(
r̂jP

(k)
j + x̂jQ

(k)
j

)
−
(
R̂j + X̂j

)
·
(
P

(k)
j

)2
+
(
Q

(k)
j

)2
v
(k)
j

, ∀k (12)

where xj and rj denote the estimation of rj and xj ; R̂j := r̂2j
and X̂j := x̂2j .

The impedance estimation minimizes the L1-norm (LAD)
of ej , which is expected to hold the following features. On the
one hand, the nonlinearity of the inverse power flow is well-
captured to guarantee estimation accuracy. On the other hand,
the library of R/X ratios (obtained from the line conductor
library) is exploited to significantly narrow the solution space;
otherwise, the solution may easily fall into some remote local
optimum. Therefore, the line impedance estimation, which is
inherently a combinatorial optimization problem, can be cast
as a mixed-integer nonlinear programming (MINLP) model by
introducing the binary variables α1, .., αH ,

minimize
αh,rj ,xj ,Rj ,Xj

f(ej) := ||ej ||1 (13a)
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subject to R̂j = r̂2j (13b)

X̂j = x̂2j (13c)

r̂j =
H∑
h=1

λhαhx̂j (13d)

H∑
h=1

αh = 1, αh ∈ {0, 1}, ∀h. (13e)

The Big-M technique is exploited to linearize the bilinear
term αhxj as,

−Mj(1− αh) ≤ r̂j − λhx̂j ≤Mj(1− αh), ∀z (14)

where Mj is a large real number.
While (13) can be handled by some general MINLP solvers,

there is no guarantee of global optimality since its continuous
relaxation counterpart is still non-convex due to the quadratic
constraints (13b) and (13c). Therefore, in what follows, we
will discuss the convexification.

To make the optimization model tractable, we first rewrite
the cost function in an equivalent form without L1-norm op-
erator by introducing the auxiliary variables θ(1)j , ..., θ

(K)
j :

f(θ
(1)
j , . . . , θ

(K)
j ) =

K∑
k=1

θ
(k)
j (15)

with the additional constraints,

θ
(k)
j ≥ e(k)j , −θ(k)j ≤ e(k)j , ∀k. (16)

To tackle the non-convex quadratic equalities (13b) and
(13c), we propose to convexify them via SDP relaxation. We
first rewrite (13b) and (13c) as,

Wr
j :=

[
1 r̂j
r̂j R̂j

]
� 0, rank {Wr

j} = 1, ∀j (17a)

Wx
j :=

[
1 x̂j
x̂j X̂j

]
� 0, rank {Wx

j } = 1, ∀j. (17b)

Then, removing the rank-1 constraints in (17), a MISDP model
whose continuous relaxation is a convex SDP, is given by,

minimize
αh,rj ,xj ,Rj ,Xj ,θ

(k)
j

K∑
k=1

θ
(k)
j (18a)

subject to θ
(k)
j ≥ e(k)j , ∀k (18b)

−θ(k)j ≤ e(k)j , ∀k (18c)

Wr
j � 0 (18d)

Wx
j � 0 (18e)

(13e) and (14). (18f)

In this way, it can be handled by MISDP solvers. The fol-
lowing proposition provides a sufficient condition that guaran-
tees the SDP relaxation is exact while the estimation is error-
free.

Proposition 2: Let µ := [rj , xj , r
2
j , x

2
j ]
T . If µ is the opti-

mal solution of (18), then the SDP relaxation is exact and the
estimation is exact.

The proof is provided in the appendix. Proposition 2 im-
plies that if the measurements are error-free, such sufficient
condition naturally holds because f(µ) = inf f = 0. If the

Algorithm 2 Bottom-Up Sweep Algorithm
Initialization: Initialize d← D.
repeat

[S1]: Update the P
(k)
j and Q

(k)
j by (1a) and (1b) for all

k = 1, ...,K and j in layer d.
[S2]: Calculate rj , xj of each line segment by solving (18)
for all j in layer d.
[S3]: Calculate P̄ (k)

j and Q̄
(k)
j as per (1c) and (1d) for all

k = 1, ...,K and j in layer d.
[S4]: Update d← d− 1.

until d = 0.

measurements are erroneous but the errors do not affect the
optimal solution (i.e., such sufficient condition still holds), the
relaxation is still exact. Furthermore, if the errors are so large
that the resultant optimal solution of (18) is no longer equal to
µ, it is still possible that such relaxation is exact but it depends
on the properties of samples.

B. Bottom-Up Sweep Algorithm
Clearly, developing (18) requires the knowledge of voltage

magnitude and line flow values. Unfortunately, due to the low
coverage of line flow sensors, there are few line flow mea-
surements available. Exceptions are the tail branches since
they have no further downstream neighbors, and thus the line
flows physically equal the power injections at the leaf buses,
which can be measured by SMs. Moreover, as per (1a)–(1b),
the line flow over a given branch can be calculated, provided
all of its neighboring downstream line flows have been known.
These facts motivate the design of a bottom-up (a.k.a. leaf-to-
root) sweep algorithm that manipulates the line flow and line
impedance estimation in an alternating way.

We first partition a radial distribution network into multiple
layers which are labeled as 1, ..., D where D is the maximum
depth [see Fig. 2(a) for an example with D = 4]. Physically,
bus j belongs to layer d” means there are d intermediate line
segments in the path from bus j to the root bus 0. As stated
in Section II, for a radial network, there is a unique path from
any bus j to the root bus 0. Therefore, the partition of layers
is unique as well. The bottom-up sweep algorithm with the
breadth-first search is tabulated as Algorithm 2.

V. NUMERICAL RESULTS

In this section, the proposed topology and parameter iden-
tification methods are verified on the modified IEEE 13, 37
and 69-bus test feeders, which are depicted in Fig. 2. We have
utilized the real SM data from our utility partners in Mid-
west to replace the load data of these benchmark systems.
More precisely, the available customer power measurements
with 1-h resolution are aggregated at secondary transformer
level by summing them at different times. The power flow
analysis takes as input these distribution system models and
the nodal load demand time-series. The computed nodal volt-
ages are treated as the voltage measurements, along with the
load time-series, used for topology and parameter identifica-
tion. In this work, the length of the time window is 200 sam-
ples. Following the previous works [37], the minimum number
of neighbors, γ, and the radius ξ in topology recovery are as-
signed as 2 and 3, respectively. The optimization programs
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Fig. 2. One-line diagrams of the modified IEEE (a) 13-bus, (b) 37-bus and (c) 69-bus test feeders (balanced) where the original 13-bus test feeder is modified
to a 11-bus test feeder by removing the dummy buses 634 and 692 of the original case and the line impedance of 69-bus feeder are slightly modified to achieve
several typical R/X ratios. The resultant R/X ratio libraries are {0.5153, 1.2840, 0.8124, 0.8112, 0.9864, 2.0655}, {1.4536, 1.6222, 2.7482, 1.9691}, and
{0.4000, 0.8000, 0.9000, 2.0000, 2.9000, 3.0000, 3.1000, 3.3000, 3.4000} in the three cases, respectively.
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Fig. 3. Results of topology identification of the modified IEEE 13-bus (left), 37-bus (middle), and 69-bus (right) test feeders. The top part shows the
normalized counterpart of Y? obtained by model (9). The bottom part shows the output of Algorithm 1, which represents the connectivity where “0” denotes
“unconnected” and “1” denotes “connected”.

69-bus test feeders, which are depicted in Fig. 2. The power
flow analysis takes as input these distribution system models
and the nodal load demand time-series with 1-h resolution and
totally 200 samples, obtained by aggregating the load of a cer-
tain number of customers from a utility in Midwest, U.S. The
computed voltages are treated as the voltage measurements.
The optimization programs are solved by YALMIP Toolbox
in MATLAB, along with the solver MOSEK [21].

A. Results of Topology Identification

The topology identification results of the modified IEEE 13-
bus, 37-bus and 69-bus test feeders are depicted in Fig. 3. For
data visualization, the min-max normalization [22] is utilized
to rescale the entries of Y?

i to be within [0,1] for all i.
The left-hand part of Fig. 3 illustrates matrices Y? of each

test feeder solved by the proposed model (9), which are the
sparse symmetric matrices. Then, by using Algorithm 1, the
estimated Laplacian matrix of each test feeder is obtained,
as shown in the right-hand part of Fig. 3. The performance is

Fig. 3. Results of topology identification of the modified IEEE 13-bus (left), 37-bus (middle), and 69-bus (right) test feeders. The top part shows the normalized
counterpart of Ŷ. The bottom part shows the output of Algorithm 1, which represents the connectivity.

are solved by YALMIP Toolbox in MATLAB, along with the
solver MOSEK [41].

A. Results of Topology Identification

The topology identification results of the modified IEEE 13-
bus, 37-bus and 69-bus test feeders are depicted in Fig. 3. For
data visualization, the min-max normalization [42] is utilized
to rescale the entries of [Ŷ]i to be within [0,1] for all i.

The upper part of Fig. 3 illustrates the rescaled variant of
matrices Ŷ of each test feeder. Then, by performing Algo-
rithm 1, the estimated connectivity between any two buses
of each test feeder is obtained (see the bottom part of Fig.
3 where “0” denotes “unconnected” and “1” denotes “con-
nected”). The performance is validated by comparing the esti-
mated connectivity and the real connectivity. In this work, the
proposed method achieves a 100% accurate topology recov-

ery for all the three distribution feeders. Note that, this verifies
our method’s robustness against heterogeneous R/X ratios.

B. Results of Line Parameter Estimation

The line parameter estimation results of the modified IEEE
13-bus, 37-bus and 69-bus test feeders are depicted in Fig.
4. As can be seen from Fig. 4, the SDP-based LAD model
precisely recovers the line impedance of each branch, under
all the three test cases. In terms of rj , the largest relative errors
(among all branches) are 3.33 × 10−5%, 3.40 × 10−4% and
1.44× 10−4% for the modified IEEE 13-bus, 37-bus and 69-
bus test feeders, respectively; and as for xj , the largest relative
errors are 3.33 × 10−5%, 3.40 × 10−4% and 7.06 × 10−5%,
respectively.

To quantify the exactness of SDP relaxation in (18), that is
how close are the matrices Wr

j and Wx
j to rank one, one can
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Fig. 4. Results of line parameter estimation of 13-, 37- and 69-bus test feeders.

compute the ratio between their largest two eigenvalues, i.e.,
σ2(W)/σ1(W). The maximum values of σ2(Wr)/σ1(Wr)
among all branches are 6.77×10−11, 6.33×10−10 and 1.49×
10−10 for the 13-bus, 37-bus and 69-bus test feeders; and the
maximum values of σ2(Wx)/σ1(Wx) among all branches are
6.20× 10−11, 9.44× 10−10 and 1.47× 10−10, respectively. It
is demonstrated that the SDP relaxation is exact.

VI. DISCUSSIONS

A. Robustness

For topology identification, given that the nonlinearity of
power flow is dropped in the regression model, it is unlikely
to solve Ŷ to be exactly equal to the true Y. Yet, in fact,
it does not require an exact estimation, because the topology



IEEE TRANSACTIONS ON POWER SYSTEMS 8

is only sensitive to the structural feature of the matrix rather
than its exact value. Such a feature makes the proposed method
robust against imperfect data to a certain extent.

For line parameter estimation, on the one hand, the conduc-
tor library can reduce the solution space. This may enhance the
numerical stability of the regression model, and reduces the
impact of data quality issues. On the other hand, the proposed
bottom-up sweep algorithm is inherently robust because the
estimation errors regarding downstream branches only affect
the line losses, which slightly contributes to the upstream-end
line flows. It is therefore expected that the effects of estimation
errors can asymptotically diminish.

B. Efficiency and Scalability

Besides the tractable fitting model of Y, the density-based
clustering method used for extracting topology from Ŷ is also
efficient since this method scans the whole dataset only one
time. Further, we have applied an indexing structure that exe-
cutes a neighboring query in O(log n). Consequently, the com-
putational complexity of this anomaly detection is O(n log n)
[37]. In our tests, recovering the topology from the estimated
weighted Laplacian matrix can be done in a few seconds.

The line impedance estimation method has good scalabil-
ity. Via SDP relaxation, the LAD regression model (18) can be
easily handled by off-the-shelf solvers (solved in milliseconds
in our tests). The optimization model is designed and solved
in a branch-wise manner whose computation burden does not
grow with network size [the computation burden of (18) is
only related to the number of samples and the size of library].
Besides, the sweep algorithm only requires very simple alge-
braic operations for line flow computation, which scales well
with the network size as well. Therefore, the total computa-
tion burden for parameter estimation is approximately linear
with the network size.

The high computational efficiency and good scalability en-
able a real-time application of the proposed method after some
system changes (e.g., network reconfiguration).

VII. CONCLUSIONS

In this paper, we propose a data-driven framework to accu-
rately and efficiently find the connectivity of different nodes in
entire or partial networks using SM data. The proposed topol-
ogy identification establishes on reconstructing the weighted
Laplacian matrix of a homogeneous distribution circuit, which
also exhibits provable robustness against heterogeneous R/X
ratios. The mixed-integer nonlinear LAD regression model for
parameter identification is developed and convexified. We then
embed it in a bottom-up sweep algorithm to achieve the line
parameter estimation across the whole network. The test re-
sults validate the effectiveness and accuracy of the proposed
methods.

At present, this work only focuses on balanced radial dis-
tribution grids. In future studies, the proposed method will
be generalized to unbalanced and/or meshed grids, with the
help of limited available µPMU data on a few critical nodes.
Moreover, the proposed method will be enhanced for better
robustness against heterogeneous R/X ratios and various data
quality problems.

APPENDIX

A. Proof of Proposition 1

Let B := A−1. First, as per the linear algebra theory, In →
B can be accomplished via the elementary row operations,
by which, in turn, one can exactly achieve A→ In. Second,
given that A is the reduced incidence matrix of a tree-topology
network, we have aij = −1 if i = j, aij = 1 if i ∈ Pj\{j}
and otherwise, aij = 0. To achieve A→ In, one has to add the
rows j for all j ∈ {j|i ∈ Pj} onto the row i, and then multiply
row i by −1. Accordingly, one can obtain B := [bij ]n×n with

bij =

{
−1, if i ∈ Pj or i = j
0, otherwise.

(19)

And then, we have

aik · bkj =

 1, if k ∈ {i} ∩ Pj
−1, if k ∈ Ci ∩ Pj
0, otherwise

(20)

which indicates it is non-zero if and only if i ∈ Pj . Therefore,

δij = Aidiag(∆λ1, . . . ,∆λn)Bj =

n∑
k=1

aik∆λkbkj

=

∆λi −∆λCi∩Pj , if i ∈ Pj\{j}
∆λi, if i = j

0, otherwise
(21)

for any i, j ∈ N .

B. Proof of Proposition 2

Let f?NLP and f?SDP be the optimal cost function value of
(13) and (18). Obviously, it follows that f?NLP ≥ f?SDP.

It is observed that µ is a feasible solution of (13). If f?SDP =
f(µ) holds, we have

f(µ) ≥ f?NLP ≥ f?SDP = f(µ). (22)

This yields f?NLP = f?SDP = f(µ), and therefore, the relax-
ation is exact while the estimation is exact.
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