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Abstract—Due to the increasing penetration of volatile dis-
tributed photovoltaic (PV) resources, real-time monitoring of
customers at the grid-edge has become a critical task. However,
this requires solving the distribution system state estimation
(DSSE) jointly for both primary and secondary levels of dis-
tribution grids, which is computationally complex and lacks
scalability to large-scale systems. To achieve real-time solutions
for DSSE, we present a novel hierarchical reinforcement learning-
aided framework: at the first layer, a weighted least squares
(WLS) algorithm solves the DSSE over primary medium-voltage
feeders; at the second layer, deep actor-critic (A-C) modules
are trained for each secondary transformer using measurement
residuals to estimate the states of low-voltage circuits and capture
the impact of PVs at the grid-edge. While the A-C parameter
learning process takes place offline, the trained A-C modules are
deployed online for fast secondary grid state estimation; this is
the key factor in the scalability and computational efficiency of
the framework. To maintain monitoring accuracy, the two levels
exchange boundary information with each other at the secondary
nodes, including transformer voltages (first layer to second layer)
and active/reactive total power injection (second layer to first
layer). This interactive information passing strategy results in a
closed-loop structure that is able to track optimal solutions at
both layers in a few iterations. We have performed numerical
experiments using real utility data and feeder models to verify
the performance of the proposed framework.

Index Terms—Actor-critic method, joint distribution system
state estimation, distributed PV generation, secondary distribu-
tion network

NOMENCLATURE

A-C Actor-critic
BCSE Branch current state estimation
DSSE Distribution system state estimation
DNN Deep neural network
KDE Kernel density estimation
LV Low voltage
MV Medium voltage
PV Photovoltaic
PDF Probability density function
SM Smart meter
TDE Temporal difference error
cccn External input vector for secondary transformer
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G Gain matrix
H Jacobian matrix
IRe,n, IIm,n Real and imaginary current components of

secondary transformer n.
J Sum of squared residuals
lc Learning rate of A-C module
NMV Number of nodes in MV system
NLV Number of nodes in LV system
p̂ŝpŝps Active power injections of secondary trans-

formers
q̂ŝqŝqs Reactive power injections of secondary trans-

formers
r̂n Approximate measurement residuals of sec-

ondary transformer n
rn Actual measurement residuals of secondary

transformer n
uuun Exploratory perturbation for secondary trans-

former n
Vn Estimated voltage of secondary transformer n
W Weight matrix
WMW Weight matrix of MV network sensors
Wps ,Wqs Weight matrices of secondary network states
xpxpxp Vector of primary network states
xs,nxs,nxs,n Real and imaginary current components of

secondary network n
zs,nzs,nzs,n SM voltage and energy measurements of sec-

ondary network n
zMVzMVzMV MV network sensor measurements
Aµ,AΣ DNNs for parameterizing µn and Σn
αααn Parameters of critic for secondary transformer

n
δ Threshold for BCSE
πn Policy function of actor for secondary trans-

former n
µn Mean vector of secondary transformer n states
θnθnθn, γnγnγn Learning parameters of DNNs in actor
Σn Covariance matrix of secondary transformer n

states
ΣIRe,n

,ΣIIm,n
Components of Σn corresponding to the states
IRe,n and IIm,n

σ2
ps,n , σ

2
qs,n Variances of net active and reactive power for

secondary transformer n
∇αnαnαnC Gradient of the critic DNN
∇θnθnθnπn Gradient of policy function with respect to θnθnθn
∇γnγnγnπn Gradient of policy function with respect to γnγnγn
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I. INTRODUCTION

As more stochastic customer-owned distributed resources,
such as photovoltaic (PV) power generators, are connected
to low voltage (LV) secondary distribution grids, an urgent
need grows for accurate and efficient system monitoring [1].
Specifically, topological details of secondary networks and the
real-time measurements of customers have to be incorporated
into distribution system state estimation (DSSE) to accurately
capture voltage fluctuations across LV systems and quantify
the impacts of these variations on medium voltage (MV)
primary distribution feeders. Recent years have seen a rapid
growth in the deployment of smart meters (SMs), providing a
good opportunity to achieve this [2].

A. Literature Review and Challenges

Most existing works have provided distribution system state
estimation (DSSE) solutions only in a disjoint manner (i.e., by
decoupling primary and secondary networks); these works can
be roughly categorized into two general groups: (1) Primary
Grid DSSE: multiple DSSE methods have been provided for
MV primary distribution feeders, while aggregating all LV
resources at the secondary transformers and disregarding the
secondary grid topology and parameters [3]–[11]. The basic
approach is to compensate for lack of a detailed secondary
model in DSSE by estimating LV network losses, which can
then be used as pseudo-measurements to revise measurement
aggregation [12]. (2) Secondary Grid DSSE: Another group
of papers has explored DSSE techniques for LV secondary
networks while simplifying primary MV feeders [13]–[19].
Here, the primary feeder has been generally modeled as a
constant voltage source to which the secondary network is
connected.

All these papers use the SM measurements to monitor
only one level of the distribution network and do not permit
comprehensive monitoring of the distribution network at the
LV and MV levels. Some previous works can be extended
to a unified model of all primary and secondary circuits.
However, such extensions can lead to computational blow-
up due to the extremely large size of joint primary-secondary
systems, especially for urban systems. In other words, these
methods can take a time delay of several minutes in real-time
applications, which may not truly reflect the current system
states [20]. This lack of scalability contributes to unacceptable
time delays in obtaining system states and hinders the online
monitoring of modern distribution grids. Also, due to their dis-
joint approaches towards system monitoring, previous works
in both groups can fail to accurately capture the potential
mutual impacts of LV and MV networks on each other; fur-
thermore, the mutual impacts of several neighboring secondary
networks connected to the same primary feeder have not been
quantified. Consequently, disjoint DSSE solvers become un-
tenable and less accurate as conventional distribution systems
move towards more active grids with higher penetration of
renewable resources that can cause multi-directional power
flow across the grid and poses a great challenge for high-
confidence pseudo-measurement generation. Under this new
situation, previous modeling assumptions, such as constant

voltage levels in primary feeders, can become too strong. The
impact of secondary network topology on voltage fluctuations
at the grid-edge can no longer be ignored.

To meet these problems, a natural solution is to devise a
DSSE solution that is able to jointly monitor primary and
secondary networks, referred to as joint DSSE. As per our
knowledge on the topic, studies of joint DSSE are still limited.
Few recent papers [21], [22] have proposed distributed multi-
level architectures for performing DSSE at LV and MV levels.
However, in these cases, several critical questions remain open,
which may challenge the practical deployment of these joint
DSSE methods. 1) The DSSE algorithms only have an open-
loop one-directional flow of information from secondary to pri-
mary feeders, which can fail to capture the mutual impacts of
LV-MV and LV-LV networks on each other, as the distribution
grids become more active. 2) Previous joint DSSE methods
focus on using the cloud-based infrastructure to interconnect
the different DSSE levels. Such an infrastructure may impose
additional communication costs on utilities. 3) These methods
require the system to be completely covered by SMs or pseudo
measurements. However, in actual grids, full coverage of SM
and high-confidence pseudo-measure generation are rare. 4)
Specific SM data quality problems, such as asynchronous
errors and missing data, are ignored in these methods, which
renders their practical implementation costly. 5) Primary and
secondary networks have distinct parametric characteristics.
For example, compared to MV systems, the LV networks
have higher R/X values and typical branch impedance levels.
This characteristic difference between primary and secondary
systems can lead to severe ill-conditioning of these joint DSSE
solvers.

B. Overall Structure of the Proposed Hierarchical Joint DSSE
Framework

In this paper, we have proposed a hierarchical reinforce-
ment learning-aided framework for joint DSSE over primary
and secondary distribution systems using customer-side SM
data, as shown in Fig. 1. This work presents in detail how
to coordinate the hierarchical levels of the SE architecture.
Specifically, our framework consists of two layers: at the first
layer, a weighted least square (WLS)-based branch current
state estimation (BCSE) algorithm is performed over the
primary feeder to obtain the states of the MV distribution
network, i.e., real/imaginary branch currents. At this layer, all
the secondary circuits are treated as aggregated nodes with
net equivalent active/reactive power injections provided by the
second layer of the hierarchy. Note that, the load data for each
secondary node is treated as a variable and estimated using
the second layer model. Since the WLS is performed only
over the primary feeder, it is computationally efficient. After
obtaining the states of the primary feeder, the solver passes
down the estimated secondary transformer nodal voltages to
the second layer of the hierarchy. As shown in Fig. 1. This
work presents in detail how to coordinate the hierarchical
levels of the SE architecture. Specifically, our framework
consists of two layers: at the first layer, a weighted least
square (WLS)-based branch current state estimation (BCSE)



3

Secondary 
Transformer

Substation

Primary Network (MV)

Smart Meter Measurement Data  

Layer I: Primary Branch Current-Based DSSE

WLS-based Branch Current State Estimation

Secondary Networks (LV)

Layer II: Secondary Actor Critic DSSE

...
Secondary Network 1

Action 
Selection

Parameter 
Learning

Smart Meter 
Measurements

Forward 
Sweep

Secondary Network N

Action 
Selection

Parameter 
Learning

Smart Meter 
Measurements

Forward 
Sweep

Nodal Net Active-
Reactive Power

Nodal Voltage

Fig. 1. Reinforcement learning-aided hierarchical DSSE framework.

algorithm is performed over the primary feeder to obtain the
states of the MV distribution network, i.e., real/imaginary
branch currents. At this layer, all the secondary circuits are
treated as aggregated nodes with net equivalent active/reactive
power injections provided by the second layer of the hierarchy.
Note that, the load data for each secondary node is treated
as a variable and estimated using the second layer model.
Since the WLS is performed only over the primary feeder,
it is computationally efficient. After obtaining the states of
the primary feeder, the solver passes down the estimated
secondary transformer nodal voltages to the second layer of
the hierarchy.

At the second layer, the estimated transformer nodal voltage
is utilized as input to update the nodal load data by solving a
machine learning model. Specifically, a deep actor-critic (A-
C) module [23] is trained for each LV network of secondary
transformers. The goal of the A-C model is to estimate the
states of secondary networks (i.e., secondary branch currents)
by minimizing the residuals of customer SM voltage mea-
surements. Unlike WLS, the A-C modules leverage their past
experiences to adaptively improve their future performance
and generalize to unseen situations. The training process
takes place offline and the A-C modules are employed online
to estimate network states. Thanks to the neural network
implementation of the A-C model, the online computation cost
is several orders of magnitude lower than that of the WLS
method. For each LV secondary network, a nonparametric PDF
estimation approach is utilized to generate real and reactive
power injections. The OpenDSS software is then leveraged to
run power flow analysis. The computed voltages are treated
as the voltage measurements, along with the generated load
data of the observable customers and secondary transformers’
terminal voltages generated at the first layer, used for A-C
model offline training. The outputs of the second layer of
the hierarchy, which are passed back to the first layer, are

the net injected active/reactive powers to the primary feeder
for each secondary transformer. These outputs are determined
using the A-C-based estimated states of secondary circuits.
Hence, the interaction between the two layers of the joint
DSSE takes place at the secondary nodes, where nodal voltage
flows from the first layer to the second layer and active/reactive
power injections are passed in reverse. At each iteration of
this closed-loop interaction, each layer revises the states of
the network in response to the received inputs from another
layer.

The main contributions of our joint DSSE framework can
be summarized as follows:

• The proposed method provides comprehensive moni-
toring of the distribution network at the LV and MV
levels. The estimation process has a closed-loop structure
to accurately quantify the mutual impacts of primary-
secondary networks and secondary-secondary networks
on each other.

• Using the proposed A-C method, utilities can achieve a
considerable speed-up in solving the joint DSSE in large-
scale grids, which allows them to monitor the whole
system in real-time. The distributed nature of the pro-
posed framework allows for allocating the computational
burdens of DSSE among multiple A-C modules, which
further reduces the computation time.

• Compared to the traditional WLS-based method, our
deep learning-aided framework eliminates the need for
pseudo-measurements to avoid the additional imputation
error. The offline training procedure is implemented using
simulation data. In addition, our strategy can mitigate the
impact of SM data quality issues, including asynchronous
errors, missing data, and outliers, on the training process.

• The A-C module allows for explicit learning of the
uncertainty of networks’ states caused by measurement
errors through parametric probabilistic policy functions,
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Fig. 2. A three-phase unbalanced MV distribution systems.

which can enhance overall monitoring accuracy.
• The proposed method is able to handle the topology

changes in distribution networks. The rationale behind
this is that the proposed method only utilizes the deep
learning techniques to approximate the secondary-level
estimation process. When a topology change occurs on
the MV system, the Jacobin matrices in the first layer can
be adjusted to accommodate this change.

The rest of the paper is organized as follows: in Section II,
the technical details of the proposed hierarchical joint DSSE
are presented. In Section III, the numerical results have been
analyzed to verify the performance of the joint DSSE method.
In Section IV, paper conclusions are presented.

II. DEEP ACTOR-CRITIC STRATEGY FOR JOINT DSSE

Fig. 2 shows the common structures of distribution systems
at the MV and LV levels. Each LV network is connected to an
MV bus by using a single/three-phase transformer. The goal
of the proposed method is to provide distribution system situ-
ational awareness for both MV and LV networks. In general,
our joint DSSE model consists of two parts: an optimization-
based solution that infers the system states of the primary-level
network, and a deep learning-based method that estimates the
customer-level states and provides feedback to the first model.
Note that, in this work, the topology and line parameters are
considered to be available in a given distribution network. This
assumption is realistic and consistent with the recent expansion
of smart grid monitoring devices. In some cases without
this information, before implementing the proposed method,
our previously designed topology and parameter identification
method [24] can be applied to obtain complete and accurate
system models for MV and LV distribution grids.

A. Primary Network BCSE

At the first layer of the hierarchical joint DSSE, a WLS-
based BCSE algorithm is performed over the MV network to

minimize the sum of squared residuals (J) [25], [26]. In this
paper, vector is in bold.

min
xpxpxp

J = (zpzpzp − hhh(xpxpxp))
>W (zpzpzp − hhh(xpxpxp))

s.t. zpzpzp =

 zMVzMVzMV

p̂ŝpŝps
q̂ŝqŝqs


W =

 WMV 000 000
000 Wps 000
000 000 Wqs


(1)

where, xpxpxp is a vector denoting the primary network states,
including real and imaginary branch current values, zpzpzp is a vec-
tor containing the MV network sensor measurements (zMVzMVzMV ),
including supervisory control and data acquisition (SCADA)
and distribution level phasor measurement units (µPMUs),
and the estimated total active/reactive power injections of
secondary transformers (p̂ŝpŝps, q̂ŝqŝqs) that are provided by the second
layer of the hierarchy. hhh is the primary network measurement
function that maps state values to measurements. W is a
weight matrix that represents the solver’s confidence level in
each element of zpzpzp, which consists of sub-matrices WMV ,
Wps , and Wqs corresponding to zMVzMVzMV , p̂ŝpŝps, and q̂ŝqŝqs, respectively.
Here, WMV is determined by the nominal accuracy levels
of MV network sensors, e.g., the weight assigned to the
measurements received from a specific sensor is selected as the
inverse of measurement error variance for that sensor [25]. The
elements of Wps , and Wqs are determined by the estimated
uncertainty of the secondary network states as elaborated in
Section II-B.

Given the formulation (1), the WLS-based solver performs
the following steps to estimate the states of the primary
network:
• Step I: Receive the latest values of p̂ŝpŝps, q̂ŝqŝqs, Wps , and Wqs

from the second layer of the hierarchy (see Section II-B).
• Step II: Random state initialization (xpxpxp[0], k ← 1).
• Step III: At iteration k, update the measurement function

Jacobian matrix, H:

H =
∂hhh(xpxpxp[k − 1])

∂xpxpxp
(2)

The elements of the Jacobian matrix for the BCSE
method can be obtained for arbitrary feeders with known
topology. More details of these elements can be referred
to [27]. Hence, when the distribution system undergoes
reconfiguration, the Jacobin matrix can be easily adjusted
to accommodate this change1.

• Step IV: Update the gain matrix, G:

G(x) = H>(xpxpxp[k − 1])WH(xpxpxp[k − 1]) (3)

• Step V: Update the state values using the gain and
Jacobian matrices to reduce measurement residuals:

xpxpxp[k] = xpxpxp[k− 1] +G−1H>W (zpzpzp −hhh(xpxpxp[k− 1])) (4)

1Given that the secondary transformers are generally equipped with protec-
tion devices, when an outage happens in a radial system, a protective device
isolates the faulted area along with the loads downstream of the fault location
(i.e., the whole secondary distribution system). In other words, the topology
of the secondary distribution systems is typically constant.
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• Step VI: k ← k+1; go back to Step III until convergence,
i.e., ||xpxpxp[k]−xpxpxp[k−1]|| ≤ δ, with δ being a user-defined
threshold.

• Step VII: Given the estimated values of the branches,
perform a forward sweep [25] to obtain the voltages
of secondary transformers throughout the network. Pass
down the estimated voltage of the n’th secondary trans-
former (Vn) to the corresponding A-C module in the
second layer of the joint DSSE hierarchy.

To deal with unbalanced systems, as pointed out in [28],
a three-phase distribution line model that considers the self
and mutual impedance is used in BCSE. All aforementioned
equations still hold. Also, BCSE permits solving coupled and
decoupled versions of the WLS by including and ignoring
mutual impedances. Compared to traditional state estimation
solutions that use node voltages, BCSE adopts branch current
as state variables, which is a more natural way of DSSE
formulation for distribution systems [2]. The simplification of
the measurement functions helps improve computation speed
and memory usage. Therefore, BCSE is more suitable for
large-scale distribution grids.

B. Reinforcement Learning-Aided State Estimation for Sec-
ondary Networks

The computational complexity of the conventional WLS
technique is mainly determined by the matrix inversion, which
induces a complexity of O((NMV +NLV )3). NMV and NLV
refer to the number of nodes in the MV and LV system,
respectively. In general, NLV � NMV . Thus, running a BCSE
algorithm over the whole primary and secondary networks at
the same time is a computationally intensive task, especially
for large-scale urban systems (i.e., the value of NLV can be
in the thousands). To solve this challenge, the second layer
of the hierarchy is designed with the objective of simplifying

and speeding-up the joint DSSE process to achieve real-time
monitoring, as shown in Fig. 3.

Inspired by the recent success of machine learning tech-
niques in the areas of image processing and computer vision,
we have leveraged a reinforcement learning technique, the A-
C method to handle the low observability problem in real-
world distribution systems. Specifically, the A-C parameter
learning process takes place offline, and the trained A-C
modules are deployed online for fast secondary grid state
estimation. For each secondary transformer, an A-C module
is trained offline using simulation data. More precisely, fol-
lowing previous works [29]–[31], a nonparametric probability
density function (PDF) estimation approach, known as kernel
density estimation, is utilized to learn the conditional PDF
of customer consumption and PV outputs given the time of
the day, using the historical data from observed distribution
systems. Such a nonparametric strategy can deal with the non-
Gaussian distribution of renewable power. To avoid under-
smoothing or over-smoothing issues, a calibration process has
been performed to optimize the value of kernel bandwidth by
minimizing the overall modeling bias [32]. In some systems
without reactive power measurements, empirical load power
factors are utilized to calculate the reactive power. Based on
the conditional estimated PDFs, a transformation method is
then applied to obtain real and reactive data for each customer.
By using Monte Carlo simulations, the computed voltages are
treated as the voltage measurements, along with the generated
net demand data of the observable customers 2 and secondary
transformers’ terminal voltages generated at the first layer,
used for A-C model offline training. Thus, after model training,
the data resource required for online state estimation only
include the measurements of the observable customers and the

2Since residential PVs are typically integrated into distribution systems
behind-the-meter, where only the net demand is recorded by SMs. The net
demand equals native demand minus the PV generation.
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estimated secondary transformers’ voltages, which eliminates
the need for pseudo-measurements and handles the low observ-
ability problem. It should be noted that additional available
information, such as high-confidence pseudo-measurements,
can also be added to improve the performance of the model,
but is not required. One advantage of this training strategy
is to mitigate the impact of SM data quality issues, such
as asynchronous errors, missing and bad data, on the model
development process. Further, in the online application, the
proposed method can be easily integrated with previous data
recovery methods to address the SM data quality problems
[33], [34].

As detailed below, the A-C module is a combination of
policy-based and value-based reinforcement learning, which
has advantages from both. Specifically, A-C module consists of
two deep learning components that are trained cooperatively:
(1) the actor represents the secondary state estimation policy
function (πn), which receives external inputs for the n’th
secondary circuit, including the SM voltage/energy measure-
ments (zzzs,n), and the estimated transformer voltage from the
first layer (Vn), and maps them to secondary states, xxxs,n.
Here, xxxs,n are the real/imaginary components of secondary
circuit branch currents. This mapping is formulated as a
Dn-dimensional parametric multivariate Gaussian probability
distribution function, where xxxs,n ∈ RDn [35]:

xxxs,n ∼ πn(µnµnµn,Σn)

=
1√

|Σn|(2π)Dn

e−
1
2 (xxxs,n−µnµnµn)>Σ−1

n (xxxs,n−µnµnµn) (5)

where, cccn = [zzzs,n Vn], and µnµnµn and Σn are the n’th secondary
circuit state mean vector and covariance matrix, respectively.
In this paper, these two statistical factors are parameterized
using two deep neural networks (DNNs), Aµ and AΣ, with
parameters θnθnθn and γnγnγn:

µµµn = Aµ(cccn|θnθnθn) (6)

Σn = AΣ(cccn|γnγnγn) (7)

Basically, parameters θnθnθn and γnγnγn are the weight and biases
assigned to the synapses in the DNNs, which need to be
learned. This enables the operator to accurately quantify, not
only the expected value of the secondary circuit states, but also
their uncertainty, which is a critical element in grids with high
renewable penetration. (2) The critic is a DNN denoted by C
with parameters αnαnαn for the n’th circuit, which quantifies how
well the actor is performing. In our problem, the critic tries to
predict the secondary network estimation residuals based on
the inputs to the second layer:

r̂n = C(cccn|αnαnαn) (8)

where, r̂n represents the approximate residuals; ideally, if the
critic has perfect performance, then, r̂n = rn, meaning that
the predicted residuals are equal to the realized measurement
residuals rn.

Given the defined A-C modules, the computational process
at the second layer of the hierarchy consists of a state
estimation stage (A), which is performed jointly with the first

layer, and a parameter update stage (B), which is confined to
the second layer alone.
• Stage A - [Joint DSSE]
• Step A-I: Input the learned A-C parameters θnθnθn, γnγnγn, and
αnαnαn.

• Step A-II: Receive the updated Vn from the first layer,
and construct the external input vector, cccn.

• Step A-III: Construct the policy function πn, according
to (5), using parameters θnθnθn and γnγnγn and external inputs
cccn.

• Step A-IV: Sample secondary circuit states in real-time
using the constructed policy function, xxxs,n ← πn.

• Step A-V: Use generated states to perform a forward
sweep [25] over the secondary circuit to obtain the net
active/reactive power injections at the transformer node,
p̂s,n and q̂s,n, as follows:

p̂s,n = VnIRe,n (9)

q̂s,n = VnIIm,n (10)

where, IRe,n ∈ xxxs,n and IIm,n ∈ xxxs,n are the estimated
net real and imaginary current components of n’th sec-
ondary transformer.

• Step A-VI: To construct Wps and Wqs , the variances
of p̂s,n and q̂s,n need to be obtained. Noting that the
uncertainty of LV circuits states are explicitly quantified
by the covariance matrix of the policy function, πn, we
have:

σ2
ps,n = (Vn)2ΣIRe,n

(11)

σ2
qs,n = (Vn)2ΣIIm,n

(12)

where, σ2
ps,n and σ2

qs,n are the variances of the net active
and reactive power for the n’th LV system, and ΣIRe,n

and ΣIIm,n
are components of Σn corresponding to

the states IRe,n and IIm,n, respectively. These variables
are determined using AΣ(cccn|γnγnγn). Therefore, the weights
assigned to ps,n and qs,n in the WLS-based solver of
layer I are equal to σ−2

ps,n and σ−2
qs,n , respectively.

• Step A-VII: Pass the net active/reactive power injection
of all secondary transformers to the first layer of the
joint DSSE framework, p̂ŝpŝps = [p̂s,1, ..., p̂s,N ] and q̂ŝqŝqs =
[q̂s,1, ..., q̂s,N ]. Go back to Step A-II until Vn is stabilized.

• Stage B - [A-C Parameter Update]
• Step B-I: After the state estimation process has con-

verged, re-sample states using the latest policy function,
xxxs,n ← πn +ununun, where ununun is a exploratory perturbation
generated using a zero-mean uniform distribution. This
perturbation allows the A-C module to actively search for
potential improvements in the learned policy and escape
local minimums.

• Step B-II: Estimate the secondary DSSE residuals from
the critic, using cccn and DNN parameters αnαnαn, according
to (8).

• Step B-III: Use generated state sample and the latest
value of Vn from Step A-VII, to perform a forward
sweep over the secondary circuit to obtain the estimated
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voltages; use the estimated nodal voltages to obtain the
realized residual, rn.

• Step B-IV: Obtain the temporal difference error (TDE),
δn = rn − r̂n, and use it to update the parameters of the
critic:

αnαnαn ← αnαnαn + lcδn∇αnαnαn
C(cccn) (13)

where, lc is a learning rate, and ∇αnαnαnC is the gradient
of the critic DNN with respect to its parameters. This
computation is performed using back-propagation over
the DNN [23].

• Step B-V: Update the parameters of the actor, using the
TDE:

θnθnθn ← θnθnθn + laδnununun∇θnθnθnπn(cccn) (14)

γnγnγn ← γnγnγn + laδnununun∇γnγnγnπn(cccn) (15)

with la denoting the rate of policy learning. To obtain
the gradient of policy function with respect to DNN
parameters, [θnθnθn, γnγnγn], chain rule is applied to the two sets
of parameters separately:

∇θnθnθnπ(cccn) =
Σ−1
n (xxxs,n −µµµn)√
|Σn|(2π)Dn

e−
M
2 ∇θnθnθnAµ(cccn) (16)

∇γnγnγnπ(cccn) =

−Σ−1
n (I − (xxxs,n −µµµn)(xxxs,n −µµµn)>Σ−1

n )e−
M
2

2
√
|Σn|(2π)Dn

∇γnγnγnAΣ(cccn)

(17)

where, M = (cncncn − µµµn)>Σ−1
n (cncncn − µµµn) is an auxiliary

matrix. Note that ∇θnθnθnAµ and ∇γnγnγnAΣ in (16) and (17)
are obtained using back-propagation over the two DNNs
of the actor.

• Step B-VI: Move to the next time-step; go back to Step
A-I.

Fig. 4 shows the temporal functionality of the proposed A-C
method. As can be seen, the parameters of DNNs are updated
and replaced across time steps, while on the other hand, the bi-
layer estimation takes place at each time step given the latest

values of parameters. This enables the hierarchical framework
to adapt to changes in the feeder across time, while offering
fast real-time monitoring capability to utilities. Thus, in rare
cases with secondary topology changes, the proposed method
can continuously update the parameters of both DNNs to
adapt to the new topology. Unlike most supervised learning-
based DSSE methods that require retraining DNNs for new
topologies, our approach provides a low-cost solution for
topology change in both primary and secondary networks.

C. Convergence Analysis

The two layers of our model continuously exchange bound-
ary information, including transformer voltages (first layer to
second layer) and active/reactive total power injection (second
layer to first layer). A major challenge in this model is to
ensure the convergence of system monitoring, especially at the
earlier stage of training when unreliable estimates generated
by A-C modules may cause numerical instability for WLS.
To avoid this, we have designed a confidence weight-based
strategy. The basic idea is to integrate the TDE from the
second layer (i.e., A-C modules) into the confidence matrix
of the first layer (i.e., WLS). The TDE is able to measure
how well the DNNs infer system states over time, which is
a good metric for determining the reliability of the estimated
secondary network states. Therefore, the A-C modules with
lower TDE will receive higher confidence weights at the WLS.
Also, as we mentioned before, the A-C modules are pre-
trained using simulation data, which further reduces the risk
of numerical instability during online estimation.

III. NUMERICAL RESULTS

This section explores the practical performance of our joint
DSSE framework. As detailed below, the test system for this
case study is a three-phase unbalanced distribution feeder that
consists of a 60-node 13.8 kV primary feeder and 44 secondary
circuits with a total number of 238 customers from a utility
partner in the U.S. The topology of the primary feeder and two
exemplary secondary networks are shown in Fig. 5. The real
SCADA/SM data and MV-LV network OpenDSS models of
this distribution feeder are utilized to verify our method. The
data includes customers’ energy/voltage measurements at the
secondary networks, and total primary feeder active/reactive
power and substation voltages. More details on the data are
available online [36]. It should be noted that these real-
world measurement data is naturally imperfect. According
to our utility partners, an error tolerance of ±1% can be
expected. In addition, to further validate our method under
noisy conditions, error samples were generated from a normal
distribution with zero mean and 1% variance and added to
the voltage values obtained from the OpenDSS simulator to
represent standard measurement deviations [37].

To validate our hierarchical reinforcement learning-aided
DSSE framework, we have assumed that 30% of the customers
are randomly selected to install SMs in this feeder. This
assumption is consistent with the number of recently reported
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Fig. 5. Test feeder topology and secondary network examples
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(a) Voltage magnitude component error

(b) Voltage phase component error

Fig. 7. Voltage magnitude and phase estimation using the proposed reinforce-
ment learning-aided hierarchical DSSE model.

SMs in the U.S.3. The locations of SMs are randomly selected.
Distributed solar resources are added to the secondary net-
works to capture the impact of uncertain renewable resources
on DSSE. The penetration level of renewable power is 50%
with respect to the long-term average peak load. The solar
power data is adopted from [39]. In DSSE, the maximum
error values for the real measurements is 3%. In this work, the
hyperparameter set of the A-C modules is calibrated by using
the random search strategy [40]. As a result, the three DNNs,
Aµ, AΣ, and C, consist of 3 hidden layers of 10 neurons. The
learning rates of actor and critic, la and lc, are selected as 0.01
based on the performance of the validation process.

A. The Performance of the Proposed Joint DSSE Method

The A-C module is trained for various secondary networks
in parallel based on the simulation data and tested using the
new data inquiry. In this experiment, for each LV network, the
number of training data is 1000. After model training, Fig.
6 compares the estimated primary-level distribution system
states (i.e., branch current real and imaginary parts) with the
actual state values using the proposed method at a specific
time point. As is demonstrated in the figure, the outcome of
our method closely follows the underlying states. It should
be noted that our test network is a three-phase unbalanced
distribution system and the phase connections of customers
are known. Furthermore, to validate the average performance
of the proposed method, we have tested our method over a
long-term period (more than 1500 time points). The error
distribution is shown in Fig. 7. The Mean Absolute Percentage
Error (MAPE) criterion is used here to evaluate the accuracy
of state estimation:

M =
100%

ns

ns∑
t=1

|
ˆA(t)−A(t)

ˆA(t)
| (18)

where, ˆA(t) and A(t) are the actual state value and the
estimated value. As is demonstrated in these figures, the

3By the end of 2020, an estimated 107 million SMs were deployed with an
annual growth of 8 million devices from the previous year [38]. These SMs
cover about 75% of U.S. households.
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Fig. 8. Sensitivity analysis: quantifying the impact of observability (i.e., smart
meter penetration) on state estimation accuracy.

0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038
Time (Second)

0

10

20

30

40

50

60

70

80

90

Fr
eq

ue
nc

y

 = 0.02026
 = 6.953e-06

(a) Probability density function of online action selection time

0.015 0.02 0.025 0.03 0.035 0.04
Time (Second)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(b) Cumulative distribution function of online action selection time

Fig. 9. Statistical results of online action selection time.

estimation errors for voltage magnitude and phase angle are
1.1% and 0.26%, respectively. These results corroborate the
satisfactory performance of the proposed model over real data.

Although our A-C-aided DSSE method can eliminate the
need for pseudo-measurement generation, the system observ-
ability (i.e., SM penetration ratio) still impacts its performance
due to information loss. To demonstrate the sensitivity of the
joint DSSE accuracy to the system observability, Fig. 8 shows
the secondary-level state estimation accuracy of the proposed
method under various SM penetration ratios by calculating
estimation errors for voltage magnitude and phase angle. SM
penetration is determined by the number of customers and
SMs. In this figure, the blue dashed line describes the state
estimation accuracy of the proposed method under various SM
penetration levels by calculating estimation errors for voltage
magnitude and phase angle. When the system observability is

only 10%, the error is around 5%. When the system observ-
ability is 50%, the error is around 2%. Also, the accuracy of
a previous machine learning-based method is compared with
our solution, as shown by the red dashed line [29]. Based
on the results of the two data-driven methods, it is clear that
the state estimation accuracy decreases as the percentage of
SM penetration decreases. Thanks to its hierarchical nature, in
this case, our method outperforms the existing learning-based
method at all observability levels. Also, these results show
that the proposed method can provide a comprehensive and
accurate monitoring of the distribution network at the LV and
MV levels.

B. Method Comparison

To further demonstrate the performance of the proposed
joint DSSE framework, we have conducted numerical compar-
isons with three state-of-the-art methods, including a multi-
area DSSE method [4], a hybrid framework [41], and an
optimization-based solution [10]. The three methods are sim-
ulated with the same real-world datasets to calculate the
accuracy of the methods. The comparison results are shown
in 10. As demonstrated in the figure, in terms of voltage
magnitude, the average estimation errors are 1.1%, 1.79$,
1.51%, and 1.22% for the proposed solution, [4], [41] and
[10], respectively. In terms of voltage phase angle, the aver-
age estimation errors are 0.26%, 0.59%, 0.46%, and 0.34%,
respectively. In terms of online computation complexity, the
average times are 0.4 seconds, 1.3 seconds, 2.8 seconds,
and 3.5 seconds, respectively. A few observations follow: (1)
The traditional optimization-based method (i.e., [4]) is more
likely to be affected by the high penetration of renewable
power resources than methods incorporating machine learning
techniques, thus reducing accuracy. The rationale behind this
is that it is hard to find a good heuristic initial guess due to
the fast changes in the system states. (2) Among the machine
learning-based methods, the proposed solution can achieve
a better performance compared to the previous works. (3)
Even though previous method (i.e., [10]) can be extended
to a unified model of all primary and secondary circuits for
comprehensive system monitoring, this extension leads to a
significant increase in computational burden. (4) Compared
with the multi-area and the hybrid methods (i.e., [4] and
[41]), the proposed method decomposes monitoring into two
interconnected layers and then limits Jacobian matrix compu-
tations to the primary feeders, thus significantly accelerating
real-time monitoring. This comparison result demonstrates the
competitiveness of our solution.

C. Computational Complexity Analysis

To ensure that the proposed method can provide real-time
monitoring in practice, we have tracked the computation time.
Note that the case study is conducted on a standard PC with
an Intel(R) Xeon(R) CPU running at 3.70 GHz and with 32.0
GB of RAM. Fig. 9 presents the computation time distribution
of the online action selection of A-C modules. Considering
the uncertainty of the computation speed, 3500 Monte Carlo
simulations have been performed. As shown in the figure,
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the majority of online action time are concentrated around
0.02 second. Moreover, based on the cumulative distribution
function of online action time, almost 90% of simulations have
online action time below 0.024 seconds, thus ensuring real-
time system monitoring. Moreover, the computation time of
the whole hierarchical framework is tested and compared to
the WLS-based method [27]. Fig. 11 shows the computation
time distributions of our proposed method and an existing
monitoring model [27] over a 60-node distribution network. As
can be observed, the computation time is reduced from about
3 seconds to about 0.5 seconds. In this case, our framework
is able to significantly improve the computation time by an
average factor of 6 times. It should be noted that our test
system is a middle-size rural distribution feeder that has a
limited number of customers. Since the computation burden
of the optimization method grows exponentially, our method’s
improvements in computation time would be higher in large-
scale urban systems. Such low computational complexity
also can help handle significant system state shift caused by
distributed energy resources and plug-in electric vehicles in a
short period of time [20]. Consequently, our joint DSSE solver
can truly reflect the operating point of the modern distribution
system.

IV. CONCLUSION

In this paper, we have presented a reinforcement learning-
aided hierarchical DSSE solution to jointly monitor the pri-
mary and secondary distribution networks. Compared to pre-
vious works, the proposed solution is scalable to large grids
and can accurately capture the impact of volatile grid-edge
renewable resources on system states. Our model enables
fast online estimation of secondary network states, while
allowing for offline evaluation and updates of DNNs. Further,
the proposed method can eliminate the need for pseudo-
measurements and reduce the impact of data quality issues.
The hierarchical joint DSSE method has been tested using
real SM data and models of distribution grids. It is observed
that after the estimation policy function is fully learned, the
proposed method can accurately estimate the primary and
secondary system states. Moreover, the results show that this
solution is able to outperform previous monitoring methods in
terms of estimation accuracy and computation time.
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