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ABSTRACT Due to climate change, drought frequencies and severities are predicted to 
increase across the United States. Plant responses and adaptation to stresses depend 
on plant genetic and environmental factors. Understanding the effect of those fac­
tors on plant performance is required to predict species’ responses to environmental 
change. We used reciprocal gardens planted with distinct regional ecotypes of the 
perennial grass Andropogon gerardii adapted to dry, mesic, and wet environments to 
characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. 
Even though the local microbial pool was the main driver of these rhizosphere com­
munities, the significant plant ecotypic effect highlighted active microbial recruitment 
in the rhizosphere, driven by ecotype or plant genetic background. Our data also 
suggest that ecotypes planted at their homesites were more successful in recruiting 
rhizosphere community members that were unique to the location. The link between the 
plants’ homesite and the specific local microbes supported the “home field advantage” 
hypothesis. The unique homesite microbes may represent microbial specialists that are 
linked to plant stress responses. Furthermore, our data support ecotypic variation in 
the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced 
plant ecotype effects on rhizosphere microbiome recruitment. These results improve our 
understanding of the complex plant host–soil microbe interactions and should facilitate 
further studies focused on exploring the functional potential of recruited microbes. Our 
study has the potential to aid in predicting grassland ecosystem responses to climate 
change and impact restoration management practices to promote grassland sustainabil­
ity.

IMPORTANCE In this study, we used reciprocal gardens located across a steep 
precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, 
and wet regional ecotypes of the perennial grass Andropogon gerardii. We used 16S rRNA 
amplicon sequencing and focused oligotyping analysis and showed that even though 
location was the main driver of the microbial communities, ecotypes could potentially 
recruit distinct bacterial populations. We showed that different A. gerardii ecotypes were 
more successful in overall community recruitment and recruitment of microbes unique 
to the “home” environment, when growing at their “home site.” We found evidence 
for “home-field advantage” interactions between the host and host–root-associated 
bacterial communities, and the capability of ecotypes to recruit specialized microbes that 
were potentially linked to plant stress responses. Our study aids in a better understand­
ing of the factors that affect plant adaptation, improve management strategies, and 
predict grassland function under the changing climate.
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T he rhizosphere is a dynamic region characterized by the complex interactions 
between the plant host and associated microbial communities (1, 2). It has been 

widely recognized that plants directly and indirectly benefit from associated micro­
bial activities and resultant microbial compounds (3, 4). Complex microbe–microbe 
interactions around the rhizosphere facilitate nutrient transformations, uptake, and 
cycling as well as alter soil structure and soil water availability (5, 6). Similarly, plant host–
microbe interactions can also greatly affect the overall plant health and productivity 
(7, 8). Root-associated microorganisms can affect plant resistance to biotic and abiotic 
stress, help with nutrient uptake and even alter plant morphology and phenology (9, 10). 
Given the crucial roles of the root-associated bacterial communities, understanding what 
shapes their assembly, function, and mechanisms, as well as adaptive responses between 
plant host and associated microbes is critical to predicting the response of this system to 
changing environmental conditions (11, 12).

Numerous studies have demonstrated the need to consider the interactive effects of 
the environment and plant host genetics in understanding the root-associated bacterial 
communities. The chemical and physical characteristics of the local soil can directly affect 
plant function, which in turn can have consequential influence on the root-associated 
bacterial composition (11, 13, 14). Plant hosts actively modulate associated microbial 
communities by releasing various signaling molecules (phytohormones) and compounds 
into the soil (11, 15). Phytohormones are structurally diverse secondary metabolites 
released by the plant to activate the immune system (16, 17) in response to microbial 
pathogens (18) and even insect herbivores (19). In addition to direct immune responses, 
plants produce phytohormones and compounds in response to abiotic stress such as 
nutrient or water deficiency, or to promote symbiotic interactions with soil microbes 
(20). Although there are numerous studies on plant host influence on root-associated 
bacterial community composition, little information is available in the natural ecosys­
tems about the interactive impact of the host–environment on these communities. 
The root-associated bacterial community is a subset of microorganisms available in the 
surrounding soil microbial pool (15). Thus, it is no surprise that the same plants perform 
differently in distinct locations. In previous studies, the “home-field advantage” is 
described as stability of the performance of an organism at the “home” environment, and 
decrease in performance away from “home” (21–23). Interestingly, some studies have 
described an increase in efficacy of the plant root host-associated bacterial communities’ 
interaction due to the “home-field advantage” (21, 22). However, questions remain if 
plants locally adapted to the prevailing environmental conditions can take advantage of 
the local soil microbes or if plants preferably favor microbiomes similar to their home 
environment.

Due to climate change, drought frequencies and severity are predicted to increase 
across the United States (24–26). In the Great Plains, drought events limit productivity 
especially in tallgrass prairies (25). Thus, understanding the effect of drought on shaping 
the root-associated bacterial communities and the mechanisms of mutual adaptation 
between plants and associated microbes is critical in the prediction of the ecosystem’s 
response to changing climate. To date, most studies (27–29) on the effect of drought on 
plant–microbe interactions have been under in vitro conditions using model organisms, 
lacking the complexity and dynamics of the natural systems (30, 31).

To address the question if there is a co-adaptation of the plant host and its associated 
root-associated bacterial communities in a non-model plant system, our study took the 
opportunity to investigate the root-associated bacterial composition of three locally 
adapted big bluestem (Andropogon gerardii Vitman) ecotypes planted in reciprocal 
common gardens across the precipitation gradient in the Great Plains. Andropogon 
gerardii is a perennial C4 grass that is widely distributed across the Great Plains of 
North America (32, 33), and covers up to 80% of the biomass in tallgrass prairie (32, 
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34–36). Within the Great Plains, A. gerardii has been growing for over 10,000 years 
along prominent sharp rainfall gradients that range from semiarid to heavy rainfall (37, 
38). Time and environmental heterogeneity have lent support for local adaptation of 
A. gerardii, giving rise to distinct ecotypes (dry, mesic, and wet) (37, 39–41). Previous 
investigations have revealed that A. gerardii ecotypes vary in functional traits that 
influence microbially mediated processes (41, 42). Although there are studies investigat­
ing intraspecific (43) and interspecific [reviewed in (41)] plant responses to climate (44), 
the role of the root-associated bacterial communities in plant host adaptation in the 
natural system remains unclear.

Here, we (i) investigated the relative importance of the environment and ecotypic 
variation of A. gerardii on establishing the plant root-associated bacterial communities; 
and (ii) compared the abilities of three regional A. gerardii ecotypes planted reciprocally, 
to recruit microbes in local and non-local environments. We hypothesized that A. gerardii 
ecotypes would perform better in rhizosphere microbial recruitment of unique microbes 
at the site closely matching their “home” environment, highlighting the effect of the 
plant genetic background or ecotype on rhizosphere community assembly.

MATERIALS AND METHODS

Study sites, samples collection, and processing

We sampled three A. gerardii reciprocal gardens in the summer of 2019 before the 
flowering of the grass. The gardens had been established in 2009 and continually 
maintained at the three sites: Hays, KS (H) at Kansas State University Agriculture 
Experimental Station (38°85′N, 99°34′W), Manhattan, KS (MHK) at USDA Plant Materials 
Facility (39°19′N, 96°58′W), and Carbondale, Illinois (C) at Southern Illinois University 
Agriculture Research Station (37°73′N, 89°17′W), giving us an excellent opportunity 
to study the interactive effects of local environment and hosts on the root-associ­
ated bacterial communities (Table S1). Experimental details of the reciprocal garden 
experiment have been published in Galliart et al. (39). Briefly, in 2009, seeds were 
collected from four populations, which jointly defined each of the three regional 
ecotypes. Morphological traits of the populations vary among ecotypes, but populations 
do not differ within ecotypes, thus confirming the regional nature of the ecotypes (38, 
40, 45). Seeds were collected from mixed grass prairie in Central Kansas (referred to as 
CKS/Dry: CDB, REL, SAL, WEB), tallgrass prairie in Eastern Kansas (EKS/Mesic: CAR, KON, 
TAL, TOW), and Southern Illinois savanna (SIL/Wet: 12MI, DES, FUL, WAL) (acronyms of 
populations are listed in Table S1) across the natural rainfall gradient with 580 mm/year, 
871 mm/year, and 1,167 mm/year of mean annual precipitation, respectively. Selected 
populations originated from intact prairies within an 80-km radius of each reciprocal 
garden site (37). Seeds representing the three ecotypes and twelve populations were 
germinated and grown in a greenhouse using potting mix (Metro-Mix 510). Established 
3- to 4-month-old seedlings were then planted at each of the three reciprocal garden 
sites (size: 4 × 8 m), in which 12 plants (4 populations × 3 ecotypes) were planted in a 
complete randomized block design with 10 blocks (rows) for a total of 120 plants per 
site. Plants were planted 0.5 m apart along each row, and the soil around the plants 
was covered with the water-permeable landscape cloth for weed control. After almost 
10 years after establishment in 2009, we sampled A. gerardii root-associated bacterial 
communities in the reciprocal gardens for this experiment.

To track microbial communities, we collected the top-most soil layer (top 15 cm) due 
to the highest microbial activity in this layer of soil. We collected a single core (15 cm 
deep × 1.25 cm diameter) as close as possible to each plant. The side of the plant was 
picked randomly to ensure sample heterogeneity. Each core represented an independent 
sample, i.e., cores were not pooled with other cores. Seven plants had not survived 
the transplanting or through the 10 years in the common gardens. However, the plant 
mortality differed in the Pearson’s chi-squared test neither for ecotype (χ2-squared = 4.44, 
df = 2, P-value = 0.109) nor population (χ2-squared = 9.43, df = 12, P-value = 0.665), 
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suggesting that mortality was random without predictable patterns across ecotypes or 
populations. In addition, we obtained 10 additional soil cores (15 cm deep × 1.25 cm 
diameter) randomly within each site to characterize the soil pH, texture, and moisture 
content at the site level. All collected samples were sealed in ziplock bags on site, 
transported on ice, and stored at −20°C until processed.

We extracted total DNA from 0.150 g of roots and rhizosphere soil from all 353 
samples using an Omega E.Z.N.A. Soil DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA) as 
per the manufacturer’s protocol with a slight modification. Roots were picked manually 
from the collected soil cores, shaken to remove non-adhering soil, and weighed for the 
DNA extractions. Any soil that remained attached to the roots was considered rhizo­
sphere soil (46, 47). We mechanically lysed the cells on a Qiagen TissueLyser II (Qiagen, 
Hilden, Germany) using glass beads for 2 min at 20 rev/s prior to any downstream DNA 
extraction steps. Even though the mechanical lysis was a step in the DNA extraction 
process, the grass roots were never fully homogenized in the process; therefore, our 
results represent mainly rhizosphere microorganisms and may have excluded many 
endorhizosphere organisms. The extracted DNA was eluted to a 100-µL final volume. The 
DNA yield and concentration were measured using a Nanodrop and a Qubit dsDNA BR 
Assay Kit. Extracted DNA was sequenced (2 × 250 cycles) with the 16S rRNA V4 region 
amplified using the primers 515F and 806R at the Kansas State University Integrated 
Genomics Facility. Some of the acquired rhizosphere samples did not produce adequate 
DNA extracts for metabarcoding or failed to produce metabarcode sequencing data. 
In our downstream statistical analyses, we used analysis of variance (ANOVA) and its 
permutational analog (PERMANOVA), which are robust even for heteroscedastic data and 
non-balanced designs (48), to characterize our data sets due to the uneven numbers 
of remaining replicates within each site, ecotype, and population. Altogether, our data 
included a total of 284 A. gerardii rhizospheres across the three sites (Table S2).

Soil chemistry and soil properties analyses

We performed soil %C, %N analysis on an aliquot of rhizosphere soil samples. For soil 
chemistry, the rhizosphere soil samples were homogenized from each soil core (total 
n = 360) through a 4-mm sieve to homogenize the soil and remove rocks and large 
pieces of roots and followed by handpicking small roots from each soil sample. Due 
to the abundance of root material in the sampled cores, the number of weights of 
some soil samples was not enough to accurately measure the soil chemistry. We did 
not observe the pattern across low weight samples and therefore removed them from 
following processing resulting in a total of 278 samples used for the soil chemistry. A 
15-g subsample of sieved soil was then dried at 55°C for a week. Soil samples were then 
homogenized to a fine powder in a mixer mill (SPEX Instruments, Metuchen, NJ, USA) 
and re-dried them at 55°C. Dried and ground soil (55 mg) were used for the %C and 
%N measurement using dry combustion followed by gas chromatography on a Thermo 
Scientific FlashSmart 2000 CN Soil Analyzer (Milan, Italy). To correct %C and %N data 
for outliers, we removed all the values that were ±2 standard deviations from the mean 
within each site prior to the analysis. As a result, we removed 34 samples from %C (total 
samples for %C = 244; H = 79; C = 59; MHK = 106) and 30 samples from %N (total 
samples for %N = 249; H = 83; C = 59; MHK = 106) (Table S4). The C:N ratio was calculated 
manually using %C and %N values (total samples for C:N = 244). We used the ANOVA in 
R Studio for the overall statistical analysis (with site, ecotypes, populations nested within 
populations, and blocks as factors) as well as the effect of ecotype at each site, followed 
by pairwise comparisons using Kruskal–Wallis test (49).

The collected soil samples reserved for pH, moisture content, and soil texture (total 
n = 30) were sent to Kansas State University Soil Testing Laboratory (www.agronomy.k-
state.edu/services/soiltesting/). The fresh and dry soil weights were recorded to estimate 
the moisture content. The moisture content was calculated using MC = (w – d)/w ∗ 100 
formula, where w and d are the wet and dry weight of soil, respectively. Ten grams of 
soil was used for the pH measurement using the saturation paste method using 1:1 soil 
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and water ratio. Twenty-five grams of soil was used for soil texture, where the ratios of 
sand/silt/clay were measured, and the soil textures were identified using the soil texture 
triangle. We used the ANOVA in R studio for the overall statistical analysis followed by 
pairwise comparisons using Kruskal–Wallis test (v 4.1.1) (49).

Sequence data processing and analyses

We used QIIME 2 v. 2021.4 (50) to process a total of 8,353,179 raw sequences, resulting 
in 5,628,302 bacterial sequences after quality control. We used QIIME 2 plugin cutadapt 
(51) to remove the primer sequences. Any sequences with ambiguous bases, with no 
primer, with greater than 0.1 error rate mismatch with primer or any mismatches to 
the sample-specific 12 bp molecular identifiers were discarded. Following initial quality 
control, we used DADA2 (52) with the same parameters across two different runs and 
truncated the reads to length where the twenty-fifth percentile of reads had a quality 
score below 15 (Forward 231 and Reverse 229). The first run included 24 samples 
and was used as a trial run for the project, and the rest of the project samples were 
sequenced when the quality of the samples was confirmed. Since the same primers 
were used for the first 24 samples, the quality control and primer removal using DADA2 
were performed separately. Samples then were merged together (total n = 284) and 
analyzed as one data set. We used the pre-trained SILVA database (v. 138) in QIIME 2 for 
taxonomic assignment of the bacteria. Sequences were blinded to amplicon sequence 
variants (ASVs) and any unknown or unclassified ASVs were removed from downstream 
analysis. We rarefied the data set to 10,000 reads per sample (resulting in 2,104,416 
high-quality sequences) to minimize biases resulting from differences in sequencing 
depth among samples before estimating diversity indices and downstream analyses 
(53). We used QIIME 2 for the sequence processing pipeline, whereas the subsequent 
statistical analyses for microbial richness, diversity, and composition were performed 
using R studio (54).

We used ANOVA to test for main and interactive effects in observed richness (SObs), 
community (Shannon’s H’), and phylogenetic (Faith’s PD) diversity of the rhizosphere-
associated bacterial communities among the sites [Hays (H), Carbondale (C), and 
Manhattan (MHK)], ecotypes (dry, mesic, wet), and populations (12MI, CAR, CDB, DES, 
FUL, KON, REL, SAL, TAL, TOW, WAL, WEB) nested within ecotype. Following overall 
ANOVA, we used pairwise comparisons using Kruskal–Wallis test to identify factors that 
were driving the significant effects. To identify the specific group driving the significance, 
we ran Pairwise TukeyHSD with the adjustment for the multiple comparisons (R studio v 
4.1.1) (49).

We used the vegan package (55) to estimate the pairwise Bray–Curtis distances to 
compare the bacterial communities among the different factors. We then used the 
ggplot2 package (56) to visualize these data using non-metric multidimensional scaling 
(NMDS) ordinations. We used a non-parametric PERMANOVA to determine whether 
bacterial communities differed compositionally among sites, ecotypes, and populations 
as well as their two- and three-way interactions. In this model, “population” was nested 
within “ecotype.” Following the PERMANOVA, we performed pairwise comparisons using 
the pairwise.adonis function. We also used betadispr function in the vegan package 
(55) to test whether the community dispersion differed between any significant groups. 
To determine if any sites, ecotypes, or ecotypes within each of the sites had ASVs that 
were disproportionately more abundant in one group than in another, we used indicator 
species analysis with the “multipatt()” function in R package “indispecies” (v. 1.7.12) (57).

Oligotyping analyses

We used minimum entropy decomposition (MED) (58) algorithm with default parame­
ters to identify sequence variants among the 16S rRNA amplicon sequences. The MED 
partitions the sequences into discrete sequence groups by minimizing the total entropy 
in the data set. We then concatenated the sequences assigned to a specific genus 
using the Silva (v. 138) reference database and used the supervised oligotyping method 
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available in the oligotyping pipeline version 2.1 (59). In this supervised oligotyping 
method, we used Shannon entropy, with a threshold value of minimum 0.2 and 
minimum substantive abundance threshold of 10, to obtain genus-level oligotypes. We 
selected Pseudomonas and Rhizobium oligotypes for further analysis because of their 
overall high relative abundance across the bacterial ASVs and generated oligotypes 
[Oligos: Pseudomonadales-Oligos (n = 6); Rhizobiales-Oligos (n = 5)].

RESULTS AND DISCUSSION

We analyzed a total of 5,628,302 (19,818 ± 4,531 per sample) high-quality sequences 
assigned to 1,441 ASVs (phyloseq v 1.42.0 (60), R ape (61). Of the recovered reads, an 
average of 90% was annotated to the genus level using the Naivé Bayesian classifier 
(62). Any reads assigned to chloroplasts and mitochondria as well as any unknown 
or unclassified ASVs were removed from downstream analyses. The bacterial taxon 
assignments along with their counts in each sample are provided in Table S3. Our 
data were dominated by the phylum Proteobacteria (45% of all sequences), followed by 
Actinobacteria (15%), Acidobacteria (12%), and Bacteroidetes (6%). A small proportion of 
sequences remained unclassified (0.29%). ASV relative abundances were dominated by 
Proteobacteria (28% of all ASVs), Actinobacteria (14%), Firmicutes (12%), and Bacteroi­
detes (9%). Similar to sequences, the proportion of unassigned ASVs was small (0.3%).

Differences in precipitation are associated with distinct soil chemistry and 
texture parameters across sites

Our overall analysis (with site, ecotypes, populations nested within populations, and 
blocks as factors) highlighted that site was the main driver of the soil chemistry 
parameters (ANOVA, pH: F2,27 = 226.31; P < 0.001; Moisture content: F2,27 = 124.90; P 
< 0.001) (Fig. 1; Table 1; Table S4). As expected, due to the precipitation gradient from 
east to west, we observed a reciprocal decrease in pH from Hays to Carbondale (H: 7.6 ± 
0.11; MHK: 6.96 ± 0.21; C: 5.47 ± 0.29; C vs MHK: P < 0.001; C vs H: P < 0.001; H vs MHK: 
P < 0.001). We also observed differences in the soil texture across sites. Both Carbondale 
and Hays were identified as Silt Loam (C: Silt = 73.7%; Clay = 15.1%; Sand = 11.2%; H: Silt 
= 70.1%; Clay = 17.3%; Sand = 12.6%), whereas Manhattan had more sandy soil and was 
identified as Sandy Loam (MHK: Silt = 8.2%; Clay = 15.1%; Sand = 57.9%). Consistent with 
our observations on soil texture and pH, we further showed differences in the moisture 
content among the sites—Carbondale had the highest moisture content, followed by the 
Hays and Manhattan. Even though we expected Manhattan to have a higher moisture 
content than Hays, water retention would not be optimal in the Manhattan sandy soil.

Next, we compared the carbon (%C) and nitrogen (%N) content as well as the C:N 
ratio in the rhizosphere surrounding soil (ANOVA, %C: F2,222 = 290.03; P < 0.001; %N: 
F2,225 = 495.31; P < 0.001; C:N: F2,221 = 51.36; P < 0.001) (Fig. 1; Table 1; Table S4). We used 
pairwise comparison tests and showed that Carbondale was significantly higher in %C 
and %N than Hays (%C–C: 3.57 ± 0.794; H: 2.89 ± 0.74; %N–C: 0.27 ± 0.05; H: 2.48 ± 0.06; C 
vs H: P < 0.001) and Manhattan (%C–MHK: 1.31 ± 0.34; %N–MHK: 0.10 ± 0.02; C vs MHK: P 
< 0.001), while Manhattan was also lower than Hays in %C (H vs MHK: P < 0.001) and %N 
(H vs MHK: P < 0.001). C:N ratio also differed across all locations, and was higher in 
Manhattan than in Carbondale (C:N–MHK: 14.13 ± 2.193; C: 13.01 ± 0.94; MHK vs C: P < 
0.001) and Hays (C:N–H: 11.90 ± 1.125; C vs H: P < 0.001), while Carbondale was also 
higher than Hays (C vs H: P < 0.001). In contrast to the clear differences among the sites, 
we observed higher %C and C:N in wet compared to dry ecotype (ANOVA: %C: F2,223 = 
3.47; P = 0.03; Dry vs Wet: P = 0.028; ANOVA: C:N: F2,223 = 5.29; P = 0.005; Dry vs Wet: P = 
0.011), while %N was not statistically different among ecotypes across all locations 
(ANOVA: %N: F2,247 = 2.55; P = 0.079) (Fig. 1; Table 1; Table S4).

Due to the extremely strong site effect, we believe that the differences among dry 
and wet ecotypes were driven by the sites; therefore, in order to focus exclusively on the 
effect of ecotype, we split our data set and analyzed them at individual sites. The 
“homesite” soil characteristics play an important role in plant adaptation to the 
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environment and ecotypic divergence (37). Therefore, the differences in the ecotypic 
physiology, such as root length and litter deposit biomass that varied across ecotypes 
even when growing at the same site, could potentially result in differences of the 
microbial recruitment (38, 41). In our analysis by site, we observed that the differences in 
%C were driven by the wet ecotype in Manhattan which was higher when compared to 
dry and mesic ecotypes (MHK: ANOVA %C: F2,85 = 5.59; P = 0.005; Wet vs Dry: P = 0.002; 
Wet vs Mesic: P = 0.002). In addition, we observed that %N and C:N were also significantly 
different across ecotypes. Similar to %C, differences were driven by the higher values 
associated with wet ecotype (MHK: ANOVA %N: F2,85 = 7.76; P < 0.001; Wet vs Dry: P = 
0.003; Wet vs Mesic: P = 0.003; C:N: F2,84 = 6.60; P = 0.003; Wet vs Dry: P = 0.018) (Fig. 1; 
Table 1; Table S4). As expected from the combination of higher water content, lower pH, 
and soil texture factors, Carbondale was associated with the higher %C and %N parame­
ters (63). We surmise that the soil texture was one of the main factors that contributed to 
the significance of the wet ecotypic soil chemistry difference in Manhattan. The finer soils 
are associated with the higher stabilization of soil organic matter (SOM) and total %C 
storage (64); therefore, we did not observe differences between ecotypes in the Silt Loam 
soil of Carbondale or Hays. In the sandy soil of Manhattan, the differences in the soil 
carbon deposit would become more distinct between ecotypes and result in higher wet 
ecotypic carbon deposits due to the wet plant host having a higher overall biomass (64, 

FIG 1 (A) Soil chemistry and water content among three sites located across the precipitation gradient: Hays, Manhattan, and Carbondale. Soil pH, %C, %N, and 

the water content. (B) %C and %N concentration across dry, mesic, and wet ecotypes.
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65). Additionally, although the root C:N strongly differed among the ecotypes across sites 
(66), our data provided no support for differences in the rhizosphere soil %N among the 
ecotypes, suggesting that the rhizosphere soils are resistant to the N rhizodeposits, and 
such changes in the rhizosphere soil may take longer than the decade that the experi­
ment has been in place (67, 68).

Site had a strong impact on the ecotypic root-associated bacterial communi­
ties’ richness and diversity

Site was the main driver of the bacterial communities, with a strong effect on bacte­
rial richness and diversity (ANOVA, SObs: F2,245 = 7.13; P < 0.001; Shannon’s H’ index: 
F2,245 = 26.56; P < 0.001; Faith’s PD index: F2,245 = 4.09; P = 0.018) (Fig. 2A). Pairwise 
tests showed that community richness (SObs) and Shannon’s diversity were lower in 
Manhattan than in the other two sites (Table 2). On the other hand, the phylogenetic 
diversity (Faith’s PD) in Carbondale was marginally higher than in Hays and Manhattan 
(Table 2). Phylogenetic diversity analyses suggested that Manhattan was favorable for 
generalist microbes characterized by the lower diversity (2, 4) due to the intermediate 
soil chemistry and moisture conditions as compared to Hays and Carbondale. The higher 
bacterial phylogenetic diversity we observed in this study could be highly attributed to 
the differences in amount of precipitation and edaphic properties among the sites. Apart 
from the main effects, we also observed some significant interaction terms in the overall 
model. Although, the significant interaction terms were contributed to the location and 
ecotype effects on community richness and phylogenetic diversity (ANOVA, SObs: F10,245 
= 2.83; P = 0.025; Faith’s PD index: F10,245 = 2.72; P = 0.0304), our pairwise comparison 
tests did not identify the significant combinations (Pairwise TukeyHSD, SObs: Padj >0.283; 
Faith’s PD index: Padj >0.280).

Similar to the alpha-diversity, the bacterial communities clustered by site indicate 
that sites had strong effects on bacterial composition (PERMANOVA, R2 = 0.42; F2,245 = 
102.53; P = 0.001; Fig. 2B). Our pairwise comparisons further corroborated that all sites 
had significantly different bacterial compositions (Pairwise Adonis, C vs H: R2 = 0.435; P 
= 0.001; Padj = 0.003; C vs MHK: R2 = 0.313; P = 0.001; Padj = 0.003; H vs MHK: R2 = 0.274; 
P = 0.001; Padj = 0.003). We also conducted a dispersion analysis, and observed that 
bacterial communities in Manhattan (F2,279 = 3.899; P = 0.015) were more heterogeneous 

TABLE 1 Statistical analyses (ANOVA and pairwise test) reveal locations (C, Carbondale; H, Hays; MHK, Manhattan) that had a strong influence on the soil 
chemistry and water content parameters

Index ANOVA Pairwise test
  Df Sum Sq Mean Sq F-value P-value C H

pH Location 2 23.88 11.94 226.31 7.50E-06 2.00E-16 -   H
Residuals 27 1.43 0.05 2.90E-14 1.20E-06   MHK

Moisture content Location 2 474.61 237.3 124.9 2.26E-14 6.30E-11 -   H
Residuals 27 51.3 1.9 5.70E-15 2.20E-05   MHK

C% Location 2 22542.1 11271.1 290.03 2.20E-16 7.70E-07 -   H
Residuals 222 8627.3 38.9 2.00E-16 2.00E-16   MHK

N% Location 2 1.53 0.81 495.31 2.20E-16 0.002 -   H
Residuals 225 0.37 0.002 2.00E-16 2.20E-16   MHK

C/N Location 2 229.07 114.53 51.37 2.20E-16 0.00037 -   H
Residuals 221 491.14 2.22 1.14E-02 4.50E-11   MHK

Index ANOVA Pairwise test
  Df Sum Sq Mean Sq F-value P-value Dry Mesic

C% Ecotype 2 8.922 4.4612 3.47 0.03 0.27 -   Mesic
Residuals 224 13.308 1.29 0.028 0.185   Wet

N% Ecotype 2 0.423 0.021 2.55 7.90E-02   Mesic
Residuals 227 1.88 0.008   Wet

C/N Location 2 33.52 16.76 5.29 5.68E-03 0.408 -   Mesic
Residuals 223 706.23 3.17 0.011 0.55   Wet
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than in Carbondale (P = 0.020). Similar to richness, the variation in bacterial community 
compositions among the sites was likely a result of precipitation-associated biotic and 
abiotic differences (69) as well as interspecific microbial competition (2, 4). For example, 
the mean precipitation in Carbondale is 1,167 mm/year, double that in Hays (580 mm/
year). This precipitation gradient as well as differences in the soil chemistry and texture 
among the three sites (Fig. 1; Table S4) would result in differences in pH which is a key 
factor influencing bacterial diversity (70, 71) (Table 2). Here, we showed that the site had 
a strong effect on bacterial diversity and composition. We next address if there are any 
bacterial populations that differed in relative abundance among the sites.

Our indicator taxon (alpha = 0.005) analyses identified 194 taxa that differed among 
the sites. The majority of the taxa were associated with the wettest and driest sites 
[Carbondale (n = 181); Hays (n = 151)], whereas fewer were associated with the mesic 
intermediate site [Manhattan (n = 38)] (Table S5), suggesting that Carbondale and 
Hays harbored higher number of habitat specialist microbes due to the prevailing 
environmental conditions (72, 73). Of our three common gardens, Manhattan had the 
most intermediate conditions for growth of A. gerardii, where plants were less likely 
to experience abiotic stress including water availability stress in Hays and waterlog­
ged conditions in Carbondale. We further observed that the majority of soil bacterial 
indicator ASVs were assigned to the following five phyla: Acidobacteria (total n = 31; 
C = 21, H = 5, MHK = 5); Actinobacteria (total n = 66; C = 15, H = 47, MHK = 4); 
Planctomycetota (total n = 20; C = 13, H = 7, MHK = 0); Proteobacteria (total n = 109; C = 
53, H = 41, MHK = 15); and Verrucomicrobia (total n = 23; C = 14, H = 9, MHK = 0) (Table 
S5). It is unsurprising that these phyla dominated our indicator taxon analysis since 
they are ubiquitous among rhizosphere-associated bacterial communities (42, 74–76). 
However, these indicators were not evenly distributed across sites, suggesting that this 
pattern was due to the soil moisture affecting the bacterial distribution. Soil moisture 
can directly affect the soil microbial composition and functionality by differentiating 
drought tolerance among taxonomic and functional groups of microorganisms (77, 78). 
For example, limited soil moisture restricts the solute mobility and therefore decreases 
substrate supply to the soil microbes. Therefore, highly moisture-sensitive Gram-negative 
bacteria populations (Acidobacteria, Planctomycetes, Verrucomicrobia) were affected by 
the limited water, resulting in lower number indicators in Hays and disproportionately 
higher in Carbondale (79–81). In line with this argument, we also observed that Gram-
positive bacteria (Actinobacteria) were disproportionately more abundant in Hays than 
in Carbondale and Manhattan (82).

TABLE 2 Statistical analyses (ANOVA and pairwise test) reveal locations (C Carbondale; H, Hays; MHK, Manhattan) that had a strong influence on the 
rhizobiome’s diversity and richness

Index ANOVA Pairwise test
  chi-squared   F(2,245)   P-value   C   H

SObs 10.42 7.13 0.005 H = 2.70; P = 0.1002 - H
H = 9.35; P = 6.70e-o3 H = 4.08; P = 0.0653 MHK

Shannon's H 25.171 26.56 3.42e-o6 H = 0.14; P = 0.7 - H
H = 16.63; P = 6.90e-o5 H = 21.00; P = 1.40e-o5 MHK

Faith's PD 6.7829 4.09 0.03366 H = 4.7; P = 0.044 - H
H = 5.47; P = 0.044 H = 0.30; P = 0.585 MHK

Index ANOVA Pairwise test
  chi-squared   F(2,245)   P-value   Dry   Mesic

SObs 3.46 3.46 0.033 H = 0.30; P = 0.585 - Mesic
H = 3.80; P = 0.078 H = 6.86; P = 0.026 Wet

Shannon's H 0.91 0.91 0.404 H = 1.15; P = 0.285 - Mesic
H = 1.12; P = 0.285 H = 5.40; P = 0.060 Wet

Faith's PD 2.51 2.51 0.108 H = 0.08; P = 0.779 - Mesic
H = 2.79; P = 0.095 H = 4.10; P = 0.130 Wet
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Ecotypes shaped the rhizosphere inhabiting bacterial richness and diversity

While there was a strong site effect on all alpha diversity metrics, a marginal ecotype 
effect was observed only in (SObs) richness (ANOVA, SObs: F2,245 = 3.46; P = 0.033). The 
pairwise comparisons among ecotypes indicated that the mesic ecotype host–root-asso­
ciated bacterial communities had a higher observed richness (SObs) than the wet ecotype 
(Mesic vs Wet: H = 6.86, Padj = 0.026). We observed no differences in bacterial diversity 
and phylogenetic diversity among host ecotypes (ANOVA, Shannon’s H’ index: F2,245 = 
0.91; P = 0.404; Faith’s PD index: F2,245 = 2.51; P = 0.108) (Fig. 3A). It was not surprising 
that the ecotype effect was lower than the site effect. Plant ecotypic effects can often 
be suppressed by the local biotic and abiotic environmental factors. For example, the 
environmental gradient defines the local microbial source pool available to the plant and 
therefore directly affects the source rhizosphere communities (18, 83–85). Taking into 
consideration the overwhelming effect of the local environment (site), we aimed to test 
if our ecotypes differed in bacterial richness (SObs) locally. To do this, we split our data 
set by sites, and performed separate ANOVAs for each site with ecotype, population, 
and their interaction as the explanatory factors. We used this model separately for 
Carbondale, Hays, and Manhattan, to focus on the effect of ecotypes at home and away 
from home sites. Following that, we observed that only in Hays (F2,87 = 15.06; P < 0.001), 
but not in Manhattan (F2,87 = 0.10; P = 0.905) or Carbondale (F2,79 = 0.41; P = 0.668), did 
the ecotypes differ. We further used pairwise tests and identified that the wet ecotype in 
Hays had significantly lower richness (SObs) compared to dry (Wet vs Dry: Padj < 0.001) 
and mesic (Wet vs Mesic: Padj < 0.001) ecotypes. These results highlight the potential 
differences in ecotype recruitment and structuring of the rhizosphere communities even 
when planted in a common environment. The overall effect of ecotype on bacterial 
community composition was also weaker than the site effect in the overall model 

FIG 2 (A) Bacterial α-diversity indices among three sites located across precipitation gradient: Hays, Manhattan, and Carbondale. Species observed richness 

(SObs), Shannon’s H index, and Faith-PD index. (B) Location impact on Andropogon gerardii rhizosphere bacterial composition. NMDS plot of A. gerardii 

rhizosphere communities associated with three site locations across the precipitation gradient: Hays, Manhattan, and Carbondale. NMDS ordinations were 

obtained from Bray–Curtis similarity matrix (P-values: * −0.05, ** −0.01, *** −<0.01).
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FIG 3 (A) Bacterial α-diversity indices among the dry, mesic, and wet ecotypes across all locations. Species observed 

richness (SObs), Shannon’s H index, and Faith-PD index. (B) Ecotype impact on Andropogon gerardii rhizosphere bacterial 

composition. NMDS plot of A. gerardii rhizosphere communities associated with three ecotypes across three site locations. 

NMDS ordinations were obtained from Bray–Curtis similarity matrix (P-values: * −0.05, **−0.01, ***−<0.01).
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(PERMANOVA, R2 = 0.01; F2,245 = 2.91; P = 0.012). We used pairwise comparisons and 
showed that the difference among the ecotypic bacterial composition was driven by the 
wet (Wet vs Dry: R2 = 0.028; Padj = 0.015) and mesic ecotype (Wet vs Mesic: R2 = 0.038; 
Padj = 0.015; Fig. 3B).

When we considered the impact of ecotypes on the unique microbial populations 
at each site, interestingly, we noticed that dry and wet ecotypes harbored more unique 
taxa when they were planted at their “home field,” except for mesic ecotype planted in 
Manhattan (C: Dry = 79, Mesic = 39, Wet = 127), (H: Dry = 121, Mesic = 71, Wet = 49) 
(MHK: Dry = 77, Mesic = 67, Wet = 72) (Fig. 4C). Putting together our results on microbial 
community and indicator taxon analyses, we surmised that interaction between plant 
ecotypes and sites resulted in the wet and dry ecotypes harboring a higher number of 
habitat specialist microbes in Carbondale and Hays (72, 73). While the dry ecotype was 
well-suited to its native environment in Hays, the wet ecotype bacterial communities 
differed, suggesting that the wet ecotypic communities were not well-adapted to an 
environment (Hays) that is extremely different from its native location (Carbondale). 
Therefore, with a mismatch of plant host and root-associated bacterial communities in 
Hays, the wet ecotype would not be able to get a “home-field advantage,” resulting in 
a higher number of generalists—abundant soil microbes that are good at colonizing 
plants (2, 4, 73, 86, 87). Another limiting factor for the wet ecotype to recruit and retain 
native specialist microbes in Hays is driven by lower drought stress tolerance of the 
plant host (37). Due to the physiological local adaptation to the wetter environment, 
wet ecotype might be poorly adapted to the drier environment of Hays—resulting in 
the lower photosynthetic rate (37). We surmise that lesser volume of photosynthetic 
products exuded in the soil by the wet ecotype in Hays would limit the microbial taxa 
the wet ecotype could support in the drier environment (88). In addition, the limited 
photosynthates exuded by the wet ecotype would then be metabolized by the more 
abundant (73) and faster colonizing generalists (89, 90). On the other hand, the dry 
ecotype in Hays produced lesser biomass but maintained higher photosynthetic rates, 
which potentially could result in continuous and steady supply of photosynthate in 
limited quantities favoring slow growing microbial specialists (73). Due to the general 
lower relative abundance of specialists in the samples, statistical analysis on ecotypic 
Shannon’s diversity and Faith PD as well as indicator taxon might not be sensitive 
enough to show the impact of ecotypes on its associated root-associated bacterial 
communities (91–93).

In order to test this idea, we calculated how many microbial taxa were uniquely 
observed in each site, to provide insights into the environmental and functional selection 
of potential specialists’ microbial populations. We showed that Carbondale (133) 
harbored the highest number of unique microbial taxa, followed by Hays (120) and 
Manhattan (79) (Fig. 4A; Table S6). We then looked at the unique taxa associated with 
ecotypes across all sites. Wet ecotype had the highest number of unique microbes (107), 
followed by Dry (92) and Mesic (66) (Fig. 4B; Table S6). To confirm for the independence 
of the unique microbe group assignments we additionally run the Pearson’s χ2 test for 
both site (P > 0.05) and ecotypes (P > 0.05). Our results highlighted that ecotypes gained 
a “home-field advantage” when planted in their native environment, and were able to 
match the plant host ecotypes to recruit and retain a higher number of unique microbial 
populations. On the other hand, the mesic ecotype was consistently associated with a 
lower number of unique microbial taxa. We hypothesize that the intermediate environ­
ment for A. gerardii in Manhattan resulted in harboring general microbial taxa that could 
be equally associated with all the ecotypes, however lacking the unique microbial 
drivers. Therefore, mesic ecotype was less adapted to recruit microbial specialists, and 
was associated with a lower number of unique taxa across all the sites.
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Matching of the plant host ecotype and root-associated bacterial communi­
ties was evident at the ecotype homesite

We used indicator taxon analysis to give insights into the interactive relationship 
between the ecotypic plant host and its root-associated bacterial communities (Table 
S7). We identified numerous indicators that were significantly different among the 
ecotypes. We further showed that, considering individual sites, there was a strong effect 
of the ecotypes on the indicator taxa. Our study demonstrated that plant host ecotypes 
matched best with their root-associated bacterial communities, showing the highest 
number of indicator taxa, when the plant ecotypes were at their “home field.”

In the indicator taxon analysis (alpha = 0.005) across all the sites, we identified 26 
indicator taxa that differed among the ecotypes. Wet ecotype was associated with the 
highest number of indicators (n = 20), followed by Mesic (n = 6) and Dry (n = 0) ecotypes 
(Table S8). The majority of soil bacterial indicator ASVs were assigned to Acidobacteria 
(total n = 10; Dry = 0, Mesic = 2, Wet = 8) and Proteobacteria (total n = 10; Dry = 0, Mesic 
= 1, Wet = 9). Similarly, taking into consideration the strong effects of sites, we further 
focused our analysis by studying the ecotypic effects at different sites. We split our data 
set by sites, and performed separate PERMANOVAs for each site with ecotype, popula­
tion, and their interaction as the explanatory factors. We used this model separately for 
Carbondale, Hays, and Manhattan, to focus on the effect of ecotypes at home and away 
from home sites. We observed that ecotypes differed at all sites (PERMANOVA, H: F2,109 
= 2.55, P = 0.021; MHK: F2,89 = 2.87, P = 0.014; IL: F2,81 = 2.55, P = 0.015) (Fig. 3). In 

SITEHays Manhattan

Carbondale

ECOTYPE
Dry

Mesic

Wet

FIG 4 Venn diagrams representing the overlapping and unique ASVs (numbers in the circle) among (A) all locations, (B) all ecotypes, and (C) ecotypes in 

Carbondale, ecotypes in Hays, and ecotypes in Manhattan. The circle with a red edge represents the home ecotype for that location. Inserts represent the 

top three families. Partial information on unique ASVs is shown here, full information is in Table S6. Higher numbers of unique ASVs suggest the “home-field 

advantage” of the Andropogon gerardii ecotypes.
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our pairwise comparisons of community composition in Carbondale and Manhattan, wet 
ecotype only differed from mesic (C: Wet vs Mesic: Padj = 0.033, MHK: Wet vs Mesic: Padj = 
0.042), while other ecotypic comparisons across all sites were not significant (Padj > 0.05).

In Carbondale, we further observed that even though the ecotypic bacterial 
communities dispersion was significantly different (F2,79 = 3.84; P = 0.026), the dry 
ecotypic communities were more dispersed than those of mesic and wet ecotypes. In 
addition, we did not identify ecotype-associated indicator taxa in Carbondale among 
the ecotypes (n = 0), highlighting that the differences in ecotypic recruitment might 
be on a smaller scale of unique and lower abundance taxa (Table S8). In Manhattan, 
mesic ecotype was significantly more dispersed (F2,87 = 10.72; P = 0.01) when compared 
to dry and wet ecotypes. In Manhattan, we identified 11 indicator taxa: 4 indicators 
were associated with mesic (Actinobacteria = 2; Proteobacteria = 1; Verrucomicrobia = 
2) and 7 indicators with wet ecotypes (Actinobacteria = 3; Proteobacteria = 3; Cyano­
bacteria = 1). We observed that in Hays, wet ecotype differed in composition from 
dry and mesic ecotypes (Dry vs Wet: P = 0.046, Mesic vs Wet: P = 0.030), but no 
significant differences were observed after adjusting for multiple comparisons (Padj = 
0.05). Interestingly, ecotypes did not differ in Hays (Padj = 0.05). Hays is near the edge of 
continuous distribution of where A. gerardii is commonly found (37), suggesting that the 
drier environment might have a strong impact on diversity of bacterial populations that 
can proliferate under the arid conditions (94, 95). Therefore, in Hays, we hypothesize that 
A. gerardii ecotypes (i) had a lower diversity of bacterial populations for recruitment, (ii) 
experienced high abiotic stress from the drier conditions, and (iii) had to compete for the 
recruitment of the smaller microbial specialist populations. Although our results suggest 
that all ecotypes had a more challenging survivorship in the harsher environment, will 
the dry and wet A. gerardii ecotypes be more resilient and successful in recruiting 
microbes due to their “memory” from surviving in a harsh “home” environment (21, 
96)? Will ecotypes get a “home-field advantage” in the recruitment of microbes at their 
“home” locations?

To test that, we performed the indicator taxon analysis on ecotypes at each site 
(Table S9). Dry ecotype recruited 64 indicator taxa ASVs in Hays, 43 in Carbondale and 
only 15 in Manhattan. Similarly, wet ecotype in Carbondale had the highest number 
of indicators (120), followed by Hays (76) and Manhattan (19). Mesic ecotype recruited 
87 indicators in Carbondale, 51 in Hays, and only 7 in Manhattan. The majority of the 
indicator taxa from dry ecotype were Proteobacteria (41), Actinobacteria (32), followed 
by Acidobacteria (12). On the other hand, wet ecotype had disproportionately higher 
relative abundance in Proteobacteria (69) and Actinobacteria (37), followed by Verruco­
microbia (19). Even though lower microbial recruitment in Manhattan could be generally 
due to lower number of indicators in Manhattan as we discussed earlier, it is clear that 
both wet and dry ecotypes recruited more indicator taxa when they were growing 
in their home environments, suggesting how “home field” confer a physiological and 
adaptive advantage to the plant host and associated root-associated bacterial communi­
ties.

Since we observed differences in indicator taxa and unique ASVs across sites and 
ecotypes, we further conducted oligotyping analysis to inspect the concealed diversity 
within ASVs at a higher resolution (Table S10). We noticed that the relative abundance 
of ASVs and oligos associated with Pseudomonadales (12.9 ± 19.0%) and Rhizobiales 
(11.9 ± 3.6%) displayed opposite abundance patterns across the sites (Fig. 5). Pseudomo­
nadales had lower relative abundance of ASVs across samples from Hays and Carbon­
dale compared to samples from Manhattan (Fig. 5A). On the other hand, the relative 
abundance of Rhizobiales was similar throughout Hays and Carbondale and had a 
high degree of differences between samples in Manhattan (Fig. 5B). Interestingly, we 
noticed dissimilarities among sites and ecotypes across both Pseudomonadales-Oligos 
and Rhizobiales-Oligos (Fig. 5). Even though the relative abundance distribution patterns 
of oligos were obviously driven by site, we observed differences in ecotypic recruitment 
across ecotypes. Further work is necessary to provide more insights into recruitment 
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FIG 5 Relative abundance of each oligotype within the Pseudomonadales and Rhizobiales diversity for each sample among three sites located across 

the precipitation gradient. The proportion of the relative abundance of the (A) Pseudomonadales (red, top) and Pseudomonadales-Oligos (bottom) and 

(B) Rhizobiales (purple) and Rhizobiales-Oligos (bottom) suggest the impact of locations and ecotypes on rhizobiome strain-level composition.
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patterns of strain-level Pseudomonadales and Rhizobiales populations by the plant host 
to understand the impact of bacterial populations on hosts’ resilience to environmental 
stresses. However, our results suggested that precipitation-induced stress (drier in Hays 
and wetter in Carbondale) could result in a shift of plant host–bacterial communities’ 
interaction, changing the Pseudomonadales-Oligos and Rhizobiales-Oligos composition. 
For example, in Hays, Pseudomonadales-Oligos-GG were more prominent in the dry 
ecotype as compared to the wet ecotype, while Pseudomonadales-Oligos-AG were 
highly detected in mesic ecotype (Fig. 5A). On the other hand, in Manhattan, Pseudomo­
nadales-Oligos-GA decreased in relative abundance in both dry and wet ecotypes in 
Manhattan, with an increase in relative abundance of Pseudomonadales-Oligos-AA. 
Similarly, in Carbondale, there was a higher relative abundance of Pseudomonadales-
Oligos-AA in the wet ecotype as compared to dry ecotype (Fig. 5A). We further noticed 
that in Hays, there was a higher relative abundance of Rhizobiales-Oligos-ATATC in dry 
ecotype as compared to wet ecotype. However, the relative abundance of Rhizobiales-
Oligos-ATATC was higher in the wet ecotype as compared to dry ecotype in Manhattan. 
Interestingly, Rhizobiales-Oligos-TGATG was substantially higher in relative abundance in 
wet and mesic ecotypes as compared to dry ecotype in Carbondale (Fig. 5B). The 
differences in the Pseudomonadales-Oligos and Rhizobiales-Oligos across the sites 
potentially highlight the tendency of plants to recruit microbial strains that could 
contribute to the plant hosts’ ecotypic resilience (21, 97). The intraspecific genome 
content may be particularly important in understanding these host–microbe interac­
tions. The intraspecific genome content may be particularly important in understanding 
these host–microbe interactions.

Conclusion

Plant responses and adaptation to stress depend on a combination of environmental 
factors and plant genetics (1, 2). While the environment defines the soil-associated 
microbial pool, our results highlighted the plant-host’s ability to recruit soil microbial 
communities under different environmental conditions. We showed that plant hosts 
were more successful in the recruitment of both the general and unique microbial 
populations when grown at their homesite (98). Our observations also suggested the 
“home-field advantage” and mutual association between plant and specific soil microbes 
(21, 22, 97). From our study, we further propose that, at their home sites, ecotypes 
originating from these harsher environments and experiencing constant abiotic stresses 
were better able to recruit specialist microbes with the potential stress relief functions 
(98). We argue that in the study of plant host and root-associated bacterial communities, 
in line with the generalist and specialist hypothesis, plant host’s resiliency under abiotic 
stress is more dependent on specialized microbes (2, 4, 73, 86, 87) rather than the core 
microbiome (15, 99–101). Our study suggests that in terms of the resistance to abiotic 
stress, the key factor is less abundant and specialized microbes with specific functions 
rather than general common microbes which are abundant in soil. We further observed, 
in our study, the fragile relationships between plant hosts and associated specialized 
microbes. Although it might be challenging to tease apart the “specialist vs generalists” 
and “home-field advantage” concepts, we used oligotyping analysis and showed the 
ecotypic variations in recruitment of bacterial stains from the same genera. These 
observations further highlighted the complexity of these ecotype–host relationships. 
After growing in a common garden for over 10 years, we could still see the distinct 
microbial communities recruited by the ecotypes. Therefore, these differences across 
rhizosphere microbiomes recruited by ecotypes across all sites demonstrated that the 
plant host–bacterial interaction is much more exclusive and fragile than we imagined. 
We believe that ecotypes rely on these relationships with microbes to overcome abiotic 
stress (102), and with the change in climate, these relationships might be threatened. 
Taking all these factors into consideration, there is a crucial gap in identifying specialist 
microbes and understanding these relationships and communication signals with plant 
hosts to predict the response of species to the changing climate change.
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