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The electrolyte represents a vital component of every
electrochemical system that determines the funda-
mental properties of the electrode interface and

relevant performance metrics. Remarkably, alkaline aqueous
electrolytes (e.g., KOH and NaOH) are essential to numerous
electrochemical energy devices, including alkaline electrolyzers,
fuel cells, supercapacitors, and alkaline batteries. Alkaline
electrolytes also affect the thermodynamic properties and
kinetics of electrocatalytic reactions, such as the oxygen
evolution reaction (OER), the hydrogen evolution reaction
(HER), the oxygen reduction reaction (ORR), and the CO2
reduction reaction (CO2RR).1−5 The number of studies
focusing on these electrochemical systems has experienced
significant growth in the past decade. However, the lack of
consistency among numerous interdisciplinary research groups
working in this field has led to the misinterpretation of
different processes and the overestimation of performance
metrics, which previous Viewpoints have debated.6−14

Recent studies have shown that alkaline electrolyte
concentrations and compositions should not be considered
trivial because, for example, the presence of metal impurities
and imprecise pH estimations have resulted in inaccurate
descriptions of the electrochemical performance.5,6,15−17

Therefore, there is a need for standardized protocols to
improve and examine the quality of alkaline electrolytes so that
electrochemical energy systems can be objectively evaluated
and compared.12,13 In this Viewpoint, we describe six practices
to prepare, characterize, and validate the quality of alkaline
electrolytes used in electrochemical energy systems (Figure 1).
By adapting previous procedures and performing specific
measurements, we provide a unified protocol to prepare and
purify alkaline electrolytes, standardize their concentrations,
determine their elemental compositions, provide statistical
metrics, and examine their electrochemical properties.

Step 1: Best Practices for Alkaline Electrolyte
Preparation. The preparation of alkaline electrolytes needs
to meet specific requirements to achieve accurate concen-
trations and minimize impurities. We summarize some
essential practices based on traditional procedures presented
in well-known textbooks and our experience. We describe
these practices in detail in the Supporting Information (Section
S1).
First, inaccurate alkali concentrations can lead to erroneous

pH estimation and, therefore, questionable reports of voltage
efficiency and overpotentials of electrocatalysts.6 This problem
is mainly caused by (1) CO2 absorption that modifies the

effective molarity due to dissolved carbonate, (2) incorrect
weighing due to the hygroscopic nature of alkali solids, and (3)
incorrect calculations caused by improper use of compositions
given by companies (see Table S1). CO2 absorption can be
prevented by boiling deionized (DI) water before use and
sparging electrolytes with inert gases. Handling hygroscopic
solids can be improved if measurements are done in low-
humidity environments. Correct solid calculations are done
when accurate alkali purities are retrieved from certificates of
analysis from the manufacturer. Moreover, these three
problems can be effectively controlled by standardizing the
final electrolyte concentration (see Step 3).
Second, impurities induce detrimental effects and impact

reproducibility when studying electrocatalytic materials.10,18−20

For instance, glass etching products and metal impurities can
deactivate electrocatalysts,4,12,21−24 whereas Fe impurities
enhance the OER activity.15,19,25−27 Fe impurities can also
form hydroxyl radicals that poison and degrade critical
components such as cation exchange membranes.28 Al
impurities are also responsible for significant performance
degradation due to changes in the ORR mechanism.29
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Figure 1. Preparing, characterizing, and validating the quality of
alkaline electrolytes through systematic protocols enables con-
sistent evaluation and comparison of electrochemical systems.
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Importantly, some of these effects occur only after long-term
tests. Therefore, special attention must be given to stability
examinations when impurities are present in electrochemical
energy devices.
Alkaline electrolytes can be easily contaminated with

impurities if not prepared and handled correctly. For instance,
it is well-known that strong bases etch glasses, including
borosilicate glass, resulting in unwanted impurities.21,30,31

These can also originate from incorrect cleaning of glassware
or using chemicals with low purities.22 Thus, we recommend
replacing glassware (i.e., volumetric flasks, beakers, stir rods,
vials, and bottles) with plasticware whenever possible,
especially when concentrated alkaline electrolytes are used
for long periods.21 Cleaning glassware and plasticware with
strong acid solutions is also highly recommended. Researchers
must carefully select acids with high purity to avoid a
systematic error. We recommend using trace-metal grade
nitric acid, although other mixtures, such as aqua regia, can be
used to wash electrodes and cells.32 Finally, we encourage the
use of glass-free components in electrochemical cells. For
instance, previous studies have used PTFE cells to avoid glass
etching in alkaline media.15,19,21,25,33,34 Note that Fe, Ti, Mn,
and other metal impurities have been found in other materials
often regarded as “metal-free,” such as 3D printing filaments
and other polymers.35,36 Therefore, we encourage future
studies to always examine the impact of impurities, especially
after prolonged testing.

Step 2: Removing Fe Impurities. The work by
Trotochaud et al. revealed a worrying fact: numerous studies
of Ni-based electrocatalysts showing “outstanding” OER
activities were likely affected by Fe impurities.15 Thus, this
field urgently needs to recognize and account for the effect of
impurities in electrochemical energy systems. However,
through an exhaustive literature survey using SciFinder, we
found that roughly ∼6% of the publications mention using
some electrolyte purification routine. Hence, it is likely that a
large number of studies on electrochemical energy devices
report erroneous performance metrics, impeding the advance-
ment of the field.
The Boettcher group proposed an effective method to

remove Fe from KOH electrolytes,15,37 alleviating the
challenges of comparing electrocatalytic activity. Although
this method has proven reliable, we have observed that
reproducibility varies when some steps are not performed
systematically. Thus, we adapted the Fe purification protocol
from the Boettcher group by adding specific steps to improve
reproducibility and maximize Fe removal. The routine is
detailed in Section S2, and a suggested workflow is shown in
Scheme S1. Certain variables were optimized to validate the
effectiveness of our protocol (see Step 4). Still, this is not the
only method to remove Fe. Electrochemical purification
methods or removal assisted by chemical agents and resins
have been reported.19,22,32,38 Note, however, that specific
electrochemical setups could be hard to replicate, and adding
chemicals could potentially interfere with tests.18,39 Thus, we
recommend limiting their use to studies where superior
removal is needed. In Steps 4 and 6, we experimentally
demonstrate that our routine meets satisfactory impurity levels
with minimal impact during electrochemical tests, making it
adequate for most studies. Nevertheless, we know that the
performance of this routine could vary if alkaline electrolytes
with different compositions are used. Therefore, we encourage

determining the exact composition after purification (see Step
4).

Step 3: Alkaline Electrolyte Standardization. Once the
alkaline electrolyte has been purified, the exact concentration
must be determined. Knowing precise alkali concentrations
provides reliable pH values and, therefore, an accurate
description of the electrode potentials (e.g., conversion to
the reversible hydrogen electrode, RHE).8 This is a critical step
because most studies typically round concentrations, although
this may not be true due to the problems discussed in Step 1. A
simple but rigorous method to determine the alkali
concentration is the weak acid−strong base volumetric
titration, which is widely described in classical chemistry
textbooks. Our group uses a protocol to standardize
monoprotic alkaline electrolytes (e.g., NaOH, KOH) against
a nonhygroscopic primary standard (see Section S3 and Figure
S1). We demonstrate the accuracy of this method by both
conventional volumetric titrations and a pH probe (Figure S3).
Both approaches exhibit comparable repeatability.
We found that 1 M KOH solutions prepared from different

varieties and manufacturers exhibited different molarities
(Figure S4). This lack of accuracy results from different alkali
compositions and water absorption, demonstrating the
importance of standardizing alkaline electrolytes and following
the guidelines from Step 1. Figure S5 shows the effect of
rinsing the Ni(OH)2 precipitate with KOH after washing with
deionized water during Fe purification. When the precipitate is
washed with 5 mL of KOH three times, the alkali
concentration after purification remains close to the concen-
tration of unpurified KOH (Figure S5a). However, when the
precipitate is not washed, the resulting purified electrolyte is
diluted due to water remaining in the precipitate (Figure S5b).
Hence, it is essential to perform purification systematically to
avoid changes to the final composition and to determine the
exact alkali concentration via titration.
To assist in applying these standardization routines in the

field, we provide a spreadsheet to estimate alkaline electrolyte
molarities (∼1 M) using volumetric and pH titrations.
Notably, the Menezes group published a Viewpoint high-
lighting the relevance of determining accurate pH values of
alkaline electrolytes. They provided a convenient spreadsheet
to calculate pH values using activity coefficients (e.g., from
concentrations in mol/kg or mol/L).6 Once the electrolyte pH
is known, accurate reference potentials can be estimated by
calibrating the reference electrode with the standard hydrogen
electrode as described elsewhere.40 Thus, we recommend
combining these resources to ease the conversion of electrode
potentials. Finally, note that estimating alkali concentrations
would improve not only the reproducibility of electrochemical
tests but also the description of the electrocatalytic activity
because reactions such as the OER and the CO2RR are highly
sensitive to the electrolyte pH.5,16,41,42

Step 4: Determining Compositions through ICP-MS.
Determining the exact composition of alkaline electrolytes is
critical to examine the effects of impurities on electrochemical
energy systems. Inductively coupled plasma mass spectrometry
(ICP-MS) is a robust elemental analysis technique for
quantifying trace metal ions. However, analyzing strong base
solutions is challenging due to the complex ion matrix and high
total dissolved solids (TDS), often requiring additional
separation methods.19,43,44 Our group developed a solution-
mode ICP-MS method to analyze ∼1 M KOH and NaOH
electrolytes without affecting the detection limits necessary for
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trace-metal analysis. As detailed in Section S4, this method
uses a simple dilution routine (Scheme S2) to decrease TDS
levels and a collision/reaction cell to remove polyatomic
interferences, resulting in detection limits below 1 ppb for all
trace-metal impurities (Table S2). We used this method to
determine the composition of these electrolytes under different
conditions. Figures 2 and S6 show the concentrations of major

elements found in unpurified and purified electrolytes. Detailed
compositions are shown in Table S3. Remarkably, concen-
trations as low as 1 ppb were estimated. After following our
purification protocol, the Fe concentration in the unpurified
KOH electrolyte (∼60 ppb) decreased nearly six times (∼9
ppb). The concentrations of other elements remain almost
constant, and only Ni, Cu, B (KOH) and Zn, Li (NaOH)
exhibit significant differences before and after purification.
We also examined the effects of the practices discussed in

previous steps. Using glassware to prepare alkaline electrolytes
increases the concentration of B, Al, and Si compared with
electrolytes prepared using plasticware (Figure S7). Fe and Ni
concentrations in KOH electrolytes from different manufac-
turers vary significantly (Figure S8). Even ultrahigh purity
(UHP) KOH is not entirely free from Fe (∼18 ppb).
Furthermore, we examined the effect of the resting time and
KOH concentration during Fe purification. Figure S9a shows
that Fe remains constant below 10 ppb only after 48 h of
resting. Figure S9b reveals that the Fe concentration increases
with the KOH concentration, suggesting that Fe removal
efficiency decreases with concentrated KOH, and thus, more
Ni(OH)2 precipitate is needed to remove Fe effectively.
Overall, estimations of trace impurities can be made in ∼1 M
KOH and NaOH electrolytes using ICP-MS. We encourage
future studies to examine metal contents not only in
electrocatalysts but also in alkaline electrolytes.

Step 5: Statistical Quality Control. Due to the growth of
interdisciplinary research in this field, we urge the community
to adopt analytical quality control measures. The fifth step
involves using statistics to describe the accuracy, repeatability,
and reproducibility of electrolyte preparation. We recommend
using the following (see Section S5 and the spreadsheet in the
Supporting Information): (1) descriptive statistics (e.g., mean,

standard deviation, relative standard deviation) and standard
uncertainties, (2) performing the Grubbs’ test to identify
outliers, (3) control charts to track changes in electrolyte
compositions, and (4) Student’s t tests to compare means and
determine statistical significance among groups. We also
encourage the readers to report uncertainties properly.20,45

Adopting these guidelines will improve reproducibility and
enable meaningful comparisons in the field.

Step 6: Validation through Electrochemical Testing.
Although elemental analysis provides precise electrolyte
compositions, such analysis may not be readily available for
everyone. However, conventional electrochemical tests, such as
cyclic voltammetry (CV), can be used to detect Fe impurities
on Pt, Au, and Ni electrodes.4,15,19,25,32,38 Remarkably, the
electrochemical behavior of Ni in alkaline media has been
extensively examined. Activation of Ni electrodes in alkaline
media results in a thin Ni(OH)2 film, while subsequent
charging results in an NiOOH-type structure, which is the
OER-active phase.25 As described by Bode,46 pure Ni(OH)2
and NiOOH have ordered (β) and disordered (α/γ) phases,
and their populations can be changed via aging or redox
transformations (e.g., charge/discharge and overcharge),
resulting in characteristic redox peaks (Scheme 1). We

examined the electrochemical behavior of Ni foam electrodes
using purified and unpurified electrolytes (experimental details
in Section S6; see Supporting Note 1 and Figure S10 for
important electrode considerations).
Cycling in purified and unpurified KOH results in different

CV shapes (Figure 3). As depicted in Figures 3a and S11 (see
Supporting Note 2 for detailed peak description), redox peaks
at ∼1.4 and ∼1.6 V vs. RHE increase in intensity due to
promotion of the ordered β/β phase during aging in Fe-
purified KOH (∼9 ppb Fe).15,25 As depicted in Figures 3b and
S12, aging in unpurified KOH (∼60 ppb Fe) obscures redox
peaks at ∼1.6 V vs. RHE due to a significant decrease of the
OER overpotential and anodic shift of Ni2+/3+ redox peaks due
to suppression of the Ni2+/3+ redox reaction by Fe (see

Figure 2. Concentrations of primary elements in unpurified and
purified alkaline electrolytes from solution-mode ICP-MS analysis:
(a) 1 M KOH and (b) 1 M NaOH.

Scheme 1. Bode Scheme of the Ni2+/Ni3+ Redox Transition
Illustrating the Different Phases of the Layer Stacking and
Expected Voltammogram Shapes
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Supporting Note 3).25,33 As shown in Figure S13, anodic Ni
redox peak and OER overpotential changes can be easily
tracked using CV. We also examined the activation of Ni foam
in UHP KOH (∼18 ppb Fe) using CV (Figure S14). Although
peaks characteristic of the ordered β/β phase were seen, we
found a subtle decrease of the OER overpotential after an
additional 2000 cycles (see Figure S15 and Supporting Note
4). Purified and unpurified NaOH electrolytes also exhibited
distinct CV shapes and Ni redox peak shifts (Figures S16 and
S17). Finally, electrochemical impedance spectroscopy (EIS)
was utilized to complement these tests (see Figure S18, Table
S4, and Supporting Note 5). Although the double-layer
capacitance (Cdl) of Ni foam after CV increases in all
electrolytes, only activation in unpurified KOH results in
lower charge transfer resistance (Rct) due to improved OER
kinetics.26

Fe incorporation also affects bimetallic electrocatalysts if
tested in unpurified KOH, resulting in inaccurate descriptions
due to varying Fe contents.25,27,33,34 Thus, we tested NiFe
foam electrodes (Fe ∼ 2.5%) in unpurified KOH (∼60 ppb
Fe). Figure S19 shows a distinct decrease in the OER
overpotential and anodic peak shifting after CV (see
Supporting Note 6). Physicochemical characterization of the
NiFe foam electrode before and after CV aging reveals an
increase in the Fe content on the electrode surface (Figure
S20). Similarly, EIS analysis shows differences in the Rct values
caused by the increase of the OER activity (Figure S21 and
Table S5). Thus, further Fe incorporation can occur even if the
material already contains Fe, making the estimation of reliable
electrocatalytic metrics difficult. As shown in Figure S22, the
anodic peak for the α/γ phase shifts anodically with the Fe
content and decreases the OER overpotential, hindering the β/
β phase (see Supporting Note 7).
Hence, we recommend monitoring the redox peaks of the β

to γ phase transition at ∼1.6 V vs. RHE (i.e., a3 and a4 peaks in
Figure S11) via CV activation as a convenient method to
detect Fe incorporation. Prolonged CV scans of Ni electrodes
in Fe-purified electrolyte could be reported in the supporting
information by researchers to confirm the absence of Fe
impurities when ICP-MS is unavailable. However, we strongly
encourage complementing both methods whenever possible.
We also encourage researchers to detect trace impurities using
other methods, especially when other electrode materials are
tested (e.g., Pt and Au).
We highlight three essential aspects of metal incorporation.

First, Fe-purified electrolytes should be used to study Ni-based
electrocatalysts, including those already containing Fe, to avoid
variation in Fe compositions. However, Fe dissolution into
purified electrolytes also occurs, leading to changes in Fe

concentrations, especially during prolonged tests.19 Therefore,
electrolyte and surface composition analysis after electro-
chemical tests is encouraged. Second, note that metal
impurities could also affect the energy storage capabilities of
redox capacitors and alkaline batteries.27,47 More studies are
needed because this problem has not been widely examined.
Third, metal incorporation might be inevitable even after
purification or when using UHP electrolytes (see Supporting
Note 4). However, researchers must constantly examine its
extent and impact on electrochemical systems so that fair
comparisons and accurate descriptions of electrocatalytic
activity/stability can be made.4,19

Studies on other electrochemical systems, such as CO2 and
N2 reduction, also depend on alkaline electrolytes and Ni-
based anodes to perform the OER and therefore need to follow
these guidelines.5,12 Note, however, that the effect of other
impurities in these systems remains unclear, and practices such
as electrolyte standardization must consider the presence of
other species (e.g., carbonates when studying the CO2RR).
Therefore, we urge the community to adopt and modify the
practices from this Viewpoint, so that general practices are
established in developing fields and adopted by the
community. Importantly, these effects must be carefully
examined during extended periods so that the electrochemical
description is accurate and reproducible.
In conclusion, alkaline electrolyte properties are often

considered trivial, although their impact on electrochemical
energy systems is critical. Even slight changes and assumptions
of the electrolyte concentration can result in erroneous and
inaccurate descriptions of the electrocatalytic activity (see
Figure S23 and Supporting Note 8). In this Viewpoint, we
show six essential practices to improve the preparation,
characterization, and validation of common alkaline aqueous
electrolytes that research groups can easily apply in the future.
We believe that generalizing these practices would significantly
improve the evaluation and comparison of electrochemical
energy materials and devices operating with alkaline electro-
lytes.

Raúl A. Márquez
Kenta Kawashima orcid.org/0000-0001-7318-6115
Yoon Jun Son orcid.org/0000-0003-1704-2314
Grace Castelino
Nathaniel Miller
Lettie A. Smith orcid.org/0000-0003-0378-072X
Chikaodili E. Chukwuneke orcid.org/0000-0003-0478-
8387

C. Buddie Mullins orcid.org/0000-0003-1030-4801

Figure 3. Extended cycling of Ni foam electrodes in 1 M KOH: (a) purified and (b) unpurified.
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