
1.  Introduction
Uncertainty in cloud feedbacks, especially those associated with tropical and maritime convection (Vial 
et al., 2013), estimated by global climate models (GCMs) has consistently been identified as the largest source 
of uncertainty in climate sensitivity (Dufresne & Bony,  2008; Sherwood et  al.,  2014; Soden & Held,  2006; 
Soden & Vecchi, 2011; Zelinka et al., 2013). This is mainly attributed to the necessity for GCMs to implement 
cloud and convection parameterization schemes due to their coarse horizontal resolution, which is not able to 
resolve the scales of cloud processes (Li et al., 2012; Waliser et al., 2009). Despite improvements in models 
being implemented in the release of phase six of the Coupled Model Intercomparison Project (CMIP6; Eyring 
et al., 2016), the spread in climate sensitivity across those models has only increased, which has been attributed 
to the role of clouds; in particular, increases in uncertainty in the low-cloud feedback (Sherwood et al., 2020; 
Zelinka et al., 2020). A recent expert assessment of climate sensitivity and feedbacks used a Bayesian approach 
to combine multiple lines of evidence, including observations, paleoclimate records, GCM simulations, and 
high-resolution process modeling (Sherwood et al., 2020). This expert assessment identified feedbacks associated 
with tropical deep convection (e.g., anvil clouds) as the largest source of uncertainty in climate feedback estimates 
as a whole. While understanding of processes contributing to cloud feedbacks has advanced (e.g., Dessler, 2013; 
Myers et al., 2021; Tsushima et al., 2014; Zelinka et al., 2020), the persistent uncertainty highlights the continued 
need to improve understanding of convective processes and their representation in climate models, especially 
those governing changes in tropical deep-convective clouds (Bony et al., 2015). In this study we examine the 
cloud feedbacks that occur in high resolution models configured to explicitly model tropical convection.

Abstract  Radiative-convective equilibrium (RCE) is particularly well suited for studying tropical 
deep-convection, a regime of clouds that contributes some of the highest uncertainties to the estimates of 
total cloud feedback. In order to perform a comprehensive calculation and decomposition of cloud feedbacks 
in cloud-permitting models, previously primarily done in global climate models, the configuration of a 
satellite simulator for use with offline data was successfully implemented. The resultant total cloud feedback 
is slightly positive, primarily driven by the longwave effects of increases in cloud altitude. The high-cloud 
altitude feedback is robustly positive and has a central value and uncertainty well-matched with prior estimates. 
Reductions in high cloud amount drive a tropical anvil cloud area feedback that is on average negative, 
consistent with prior estimates. However, a subset of models with finer horizontal grid spacing indicate that a 
positive tropical anvil cloud area feedback cannot be ruled out. Even though RCE is only applicable to tropical 
deep-convective clouds, the RCE total cloud feedback is within the range of prior comprehensive estimates of 
the global total cloud feedback. This emphasizes that the tropics heavily influence the behavior of global cloud 
feedbacks and that RCE can be exploited to learn more about how processes related to deep convection control 
cloud feedbacks.

Plain Language Summary  Clouds act to simultaneously cool and warm the environment by 
blocking sunlight from reaching the surface as well as preventing the Earth from emitting heat away from the 
surface. When the surface temperature warms, different properties of the clouds change in different ways, 
causing their warming and cooling effects to change. How strongly the clouds cool or warm the surface in a 
warming climate is the number one source of uncertainty in estimates of the total change in surface temperature 
to a forced change. This is primarily due to the difficulty the models that are typically used have in simulating 
clouds. Here, a special kind of model that more accurately simulates clouds is used to study the impact of cloud 
changes on the total surface warming. Clouds act to warm the environment primarily due to the upward shift in 
height clouds undergo in a warmer environment.
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Longwave radiation emitted by cloud tops is proportional to cloud top temperature. When the surface warms, 
cloud tops are expected to rise approximately isothermally following the Fixed Anvil Temperature, or FAT, 
hypothesis (Hartmann & Larson, 2002). This is because anvil clouds are found where the radiative cooling rate 
rapidly decreases with height, which is constrained by the water vapor profile and thus linked to temperature via 
the Clausius-Clapeyron relationship. However, the increase in static stability of the upper atmosphere in a warmer 
climate modifies this to cause cloud tops to warm slightly, at a slower rate than the surface (the Proportionally 
Higher Anvil Temperature, or PHAT, hypothesis; Zelinka & Hartmann, 2010). This would cause a positive top 
of atmosphere radiative anomaly due to the reduction of outgoing longwave radiation (OLR) associated with 
the cooler cloud tops compared to if the cloud tops warmed in step with the surface. While some assumptions 
underlying FAT/PHAT have been questioned recently (Jeevanjee & Zhou, 2022; Seeley, Jeevanjee, Langhans, & 
Romps, 2019; Seeley, Jeevanjee, & Romps, 2019), the expectation that cloud tops rise and warm less than the 
surface remains (e.g., Aerenson et al., 2022; Kuang & Hartmann, 2007; Stauffer & Wing, 2022; Wetherald & 
Manabe, 1988; Zelinka & Hartmann, 2011).

Changes in cloud amount with warming are less certain. One theory, based in similar principles as PHAT and 
entitled the “stability iris” theory, suggests that anvil spreading is mechanistically controlled by the vertical 
gradient of clear-sky subsidence (Bony et al., 2016). In the clear-sky region of the tropics, warming by large-scale 
subsidence is required to offset radiative cooling. By mass continuity, the vertical divergence of this clear-sky 
subsidence is provided by the divergence of the upward deep-convective mass flux, and therefore anvil spread-
ing. In a warming environment, increases in static stability mean that less subsidence is required to balance the 
radiative cooling, and thus less convective outflow occurs. Decreases in cloud amount would enhance OLR and 
increase the amount of solar radiation reaching the surface causing both cooling and warming in the longwave 
and shortwave, respectively. Some observational studies have identified a decrease in anvil coverage with warm-
ing (e.g., Igel et al., 2014; Zelinka & Hartmann, 2011), consistent with this theory.

Many of the numerical studies that have investigated these cloud property changes have utilized an idealized 
framework of the tropical atmosphere called radiative-convective equilibrium (RCE). RCE is a statistical 
balance between radiative cooling and convective heating ideally suited to study tropical deep convection (Jakob 
et al., 2019; Tompkins & Craig, 1998). One limitation of RCE simulations is that they typically do not capture 
all regimes of clouds, such as stratocumulus, which is a regime that has been identified as one of the most 
important contributors to the uncertainty in the cloud feedback (in particular, the low-cloud feedback; Bony & 
Dufresne, 2005; Qu et al., 2014; Webb et al., 2006). Thus, RCE is best suited to aiding expert assessment of 
the cloud feedbacks associated with tropical deep-convecting clouds, such as the high-cloud altitude and cloud 
amount feedbacks that remain highly uncertain (Sherwood et al., 2020; Zelinka et al., 2020, 2022). By elimi-
nating complications from heterogeneous boundary conditions or forcing and the resulting large-scale dynami-
cal instabilities, the idealization of RCE is an essential component in model hierarchies (Jeevanjee et al., 2017; 
Maher & Gerber, 2019), in which understanding is built in simpler settings that can be connected across systems 
of incrementally increasing complexity (Held, 2005).

The simplifications of the climate system permitted within RCE simulations supports a range of horizontal resolu-
tions from GCM-scale to less than 1 km (Becker & Wing, 2020; Cronin & Wing, 2017; Tompkins & Craig, 1998; 
Wing et  al.,  2020a). The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP; Wing 
et al., 2018, 2020a) is an unprecedented collection of several types of models, including those that parameterize 
convection as well as those that explicitly resolve convection, all commonly configured in this framework. In all 
the models examined in RCEMIP, the anvil clouds (defined as the upper troposphere maximum in cloud fraction) 
increased in altitude, either isothermally or with slightly higher temperature (Stauffer & Wing, 2022). Approx-
imately two-thirds of the models displayed a decrease in cloud fraction with warming sea surface temperature 
(SST) and were shown to mostly follow the stability iris theory presented above.

With foundational understanding of how clouds are expected to change with warming SST presented consistently 
across RCE simulations, the natural next step is to quantify the cloud feedbacks that result from these changes. 
Previous RCE studies have generally been limited to approximating cloud feedbacks by describing changes in 
the cloud radiative effect (Becker & Wing, 2020), or by analyzing the processes that cause high clouds to change 
with warming (Ohno et al., 2019, 2020, 2021; Ohno & Satoh, 2018). Becker and Wing (2020) used RCEMIP 
to focus on the causes of spread in climate sensitivity in those models. They used the cloud radiative effect and 
climate feedback parameter and found that changes in shallow cloud fraction, and its effect on shortwave fluxes, 
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explained a large portion of the climate sensitivity spread in RCEMIP CRMs. However, simply examining the 
change in the cloud radiative effect cannot provide the complete picture of cloud impacts on climate (Cess & 
Potter, 1988) and relatively few studies have performed a comprehensive calculation of cloud feedbacks in models 
with explicit convection. One such study, Cronin and Wing (2017), used temperature and water vapor kernels to 
compute a kernel-corrected cloud feedback (Soden et al., 2004) for a cloud resolving model (CRM) configured in 
RCE (which, to the best of our knowledge, is the only study that has used a CRM in RCE to explicitly calculate 
cloud feedbacks), and found that the kernel correction was important for making the total cloud feedback positive.

A few other studies using different model configurations (non-RCE) that explicitly simulated convection have 
also quantified cloud feedbacks. In one such series, using the global model NICAM with explicit convection at 7 
and 14 km horizontal grid spacing, the longwave cloud feedback for clouds with a cloud-top pressure (CTP) less 
than 440 hPa was found to be 1.7 W m −2 K −1 (Tsushima et al., 2014) which is stronger than that found in CMIP3 
(−0.1 to 0.9 W m −2 K −1; Zelinka et al., 2012a). This is primarily associated with an increase in high clouds 
(as opposed to the decrease found in GCMs), regardless of the baseline amount of high clouds (NICAM tends 
to overestimate while the GCMs underestimate). In a different set of NICAM experiments, Chen et al. (2016) 
instead found the longwave cloud feedbacks for clouds with CTP less than 440 hPa to be ∼0.60 W m −2 K −1, 
which lies within the uncertainty of the average of CMIP5/CFMIP2 (the second phase of the Cloud Feedback 
Model Intercomparison Project). They found that the cloud feedback tends to be sensitive to the horizontal grid 
spacing (also found in Noda et al., 2014; Zhou et al., 2014), the microphysics scheme implemented, and the 
treatment of the ice radii (whether it is fixed or a profile). This is also consistent with results found in Jeevanjee 
and Zhou (2022).

In addition to sensitivity to microphysics schemes, a comprehensive decomposition of the cloud feedback 
was found to be sensitive to boundary layer and turbulence schemes within a super-parameterized (SP) model 
(Bretherton & Blossey,  2014). For this model, unlike in NICAM, the longwave (and shortwave) cloud feed-
back were moderately positive (0.30 and 0.19 W m −2 K −1, respectively) and comparable to the traditional GCM 
version of the SP model as well as the model mean cloud feedbacks in CMIP5 (Zelinka et al., 2013). Here, the 
impact on the longwave by increases in high cloud altitude explains a large portion (relative to other components 
of the feedback) of the total net cloud feedback. (Note, the values for Tsushima et al. (2014) are limited to the 
tropics while the values for Bretherton and Blossey (2014) are a global average.)

Despite the limited applicability of RCE, there is merit to using RCE as a simplified framework of the tropi-
cal climate that is ideally situated to study deep-convection and its impact on the cloud feedbacks. RCEMIP 
is an unprecedented collection of commonly-configured models run in RCE which presents the opportunity 
to elucidate further understanding of the cloud feedbacks associated with tropical deep-convecting clouds. In 
particular, the inclusion of models with explicit convection in RCEMIP may add another source of information 
to assessments and conclusions about the cloud feedback. This study seeks to understand cloud feedbacks in 
RCE by performing an explicit calculation of cloud feedbacks across RCEMIP simulations. This, to the best of 
our knowledge, is the first time such a calculation has been performed across an ensemble of CRMs. Section 2 
describes the RCEMIP data set while Sections 3 and 4 describe the implementation of an offline satellite simula-
tor and cloud radiative kernels suitable for this type of model simulation. Sections 5 and 6 characterizes the cloud 
feedbacks and their decomposition in RCE and compares them to those derived by CMIP models before closing 
with a discussion in Sections 7 and 8.

2.  The RCEMIP Archive
The RCEMIP archive (Wing et al., 2018, 2020a) consists of over 30 models consistently configured in the RCE 
framework. There are models with explicit convection as well as models with parameterized convection, however, 
the nature of the cloud feedback computation (described in Sections 3 and 4) limits the models used to the models 
with explicit convection that provide instantaneous 3D snapshots. Specifically, the data fields used are six-hourly 
instantaneous 3D snapshots of temperature, pressure, water vapor (specific humidity), cloud liquid water, and 
cloud ice water from the last ∼25 days of the simulations, where the metrics used in this study are temporally 
averaged from this range. The resolution of the GCMs (∼1° × 1°) is too coarse to resolve clouds, requiring the 
implementation of a parameterization. This requires an assumption of the sub-grid scale distribution of clouds 
which does not have an offline capability and the grid box-averaged cloud water content is not suitable for use in 
offline radiation calculations, as required for the cloud feedbacks calculated in this study.
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For the models with explicit convection, there is a “small” domain (RCE_small, ∼100 × 100 km 2 with 1 km 
horizontal resolution and ∼74 vertical levels), in which aggregation isn't expected to spontaneously organize 
(self-aggregation), and a “large” domain (RCE_large, ∼6,000 × 400 km 2 with 3 km horizontal resolution and 
∼74 vertical levels), where convection does aggregate, that is initialized from a profile that is temporally- and 
domain-averaged from the RCE_small simulations. Each simulation is run at three different SSTs (295, 300, 
and 305 K) to represent different climates. The SST is constant everywhere and remains uncoupled with the 
atmosphere. The focus of this study is to establish fundamental expectations for cloud feedbacks in RCE without 
considering the influence of organized convection and so will focus on the 12 CRM RCE_small simulations, four 
small domain CRMs with a higher vertical resolution (RCE_small_vert, ∼146 levels), and three small domain 
large eddy simulations (LES) with a higher vertical and horizontal resolution (RCE_small_les, 200 m horizontal 
resolution and ∼146 levels). The convection in all the simulations examined here remains unorganized. More 
details on the RCEMIP simulations can be found in the protocol and overview papers (Wing et al., 2018, 2020a).

3.  The ISCCP Histogram
The cloud feedbacks are calculated following the procedures of Zelinka et al. (2013), which uses histograms from 
the International Satellite Cloud Climatology Project simulator (ISCCP; Klein & Jakob, 1999; Webb et al., 2001) 
and cloud radiative kernels partitioned into 49 CTP and optical depth (τ) bins. Cloud radiative kernels relate 
perturbations in cloud amount of each type to the associated radiative effect. The RCEMIP protocol did not call 
for any satellite simulator to be run, nor do all the models necessarily have the means to implement satellite 
simulators in general, necessitating the need to create a simulator for use with offline data, described below and 
in Appendix A. It is useable with any data set that has profiles of temperature, cloud water, and water vapor.

3.1.  The Offline ISCCP Simulator

As detailed in Appendix A, the procedure for calculating cloud optical depth and CTP offline are identical to 
the current online implementation of the ISCCP simulator (Klein & Jakob, 1999; Webb et al., 2001), except the 
algorithm is simplified by excluding the clear-sky brightness temperature procedures which were later added to 
the simulator following Schwarzkopf and Ramaswamy (1999). Also, rather than using the look-up tables for the 
shortwave cloud optical depth and longwave emissivity parameterizations (as used by SAM-CRM's interface with 
the online ISCCP simulator), the offline simulator uses the equations directly from Fu (1996) and Slingo (1989), 
which are the same parameterizations, just implemented differently. The decision to exclude the clear-sky bright-
ness temperature procedures was to create a simulator as simple as possible using easily-understood radiative 
transfer concepts (i.e., return to the original design and implementation of Klein & Jakob, 1999).

In addition to the models from the RCEMIP archive, new simulations of SAM6.11.2 (Khairoutdinov & 
Randall, 2003), following the RCEMIP protocol (Wing et al., 2018), are used. These auxiliary simulations, referred 
to as SAM-CRM-COSP, implement the ISCCP simulator (Klein & Jakob, 1999; Webb et al., 2001) online, which is 
used to test the development of an Approximate ISCCP Simulator (AIS, described below) for use with offline data.

Figure  1 compares spatial maps of brightness temperature (used to find CTP, Figures  1a–1c) and CTP 
(Figures 1e–1g) using the offline process including (Offline ISCCP Simulator, “OIS,” Figures 1a and 1e) and 
excluding (Approximate ISCCP Simulator, “AIS,” Figures 1b and 1f) the clear-sky brightness temperature proce-
dures, as well as the difference between the two methods (Figures 1c and 1g). This difference is small (relative to 
the values of brightness temperature and CTP) and is primarily concentrated outside of areas with wide-spread 
clouds (e.g., the convection centered around the red cross in Figures 1a–1c and 1e–1g has a difference of zero 
almost everywhere). Visually, all the features appear in both versions of the simulator (such as the previously 
identified convection) and, although there are areas where the magnitudes differ, the regions of deepest convec-
tion are near-identical and the largest differences tend to occur on the outer parts of the convective regions where 
CTP and TB are highest. The point-wise correlation between the two methods is displayed by plotting the values 
of TB or CTP of AIS versus OIS in Figures 1d and 1h. Each gray circle is a grid point, the black dotted line is 
the one-to-one line, and the blue solid line is the line of best fit. The two simulators are highly correlated, and 
the primary deviation occurs for the warmest TB values, associated with a stronger deviation in the higher CTP 
values. This deviation is also seen in the PDFs of the variables (Figure 2). Although AIS has smaller maxima 
in its brightness temperature distributions, the largest difference is only transposed onto the higher CTP (lower 
clouds) for the CTP distribution (and, primarily in the highest CTP bin, given by the right-most vertical dashed 
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gray line in Figure 2b). Even as AIS shifts the distribution toward higher pressures, the high cloud distribution, 
the region most relevant in RCE, is remarkably consistent between AIS and OIS, as seen in the correlations 
between the two methods (Figures 1d and 1h).

The difference between the offline version and the online version of the ISCCP simulator can be analyzed by 
looking at its impact on the ISCCP histograms of AIS, OIS, and SAM-CRM-COSP (where the ISCCP simulator 
was run online). OIS differs from the online implementation in that OIS is limited to the six-hourly instantane-
ous output while COSP is run online, with the radiation scheme, at a temporal frequency of minutes; that is, the 
temporal sampling of the data is coarser in OIS (and AIS). Stauffer and Wing (2022) used the six-hourly snap-
shots to recompute cloud fraction for the RCEMIP CRMs. They found that, although a slight bias is introduced 
when using the limited temporal sampling, the differences are small and the conclusions from use of the profiles 
in their analysis remained unchanged. Additionally, all calculations made are used across the models, which may 
differ from what an individual model's native implementation may be.

Figures 3a–3c and 3e–3f compares the ISCCP histograms of SAM-CRM-COSP to OIS and SAM-CRM-COSP 
to AIS and Figures 3b–3d compares the ISCCP histograms of OIS to AIS. The offline versions shift the high-
thin clouds upwards (the dipole of decreases and increases in cloud amount in the optically thinnest bin), but 
otherwise does a decent job capturing the relative distribution of cloud amount in CTP-τ space. AIS also holds 
up almost perfectly to OIS (Figures 3d–3f) and the difference in the cloud feedbacks are minimal (not shown), 
justifying the use of the simplified version of the simulator (AIS), which is the version applied to the remaining 
models and discussed in the remainder of this study.

3.2.  The ISCCP Histogram Distribution

Although there are vast differences in the ISCCP histogram from model to model (Figure 4 shows the histograms 
for each model for the 300 K simulations and Figures S1 and S2 in Supporting Information S1 shows the histo-
grams for the 295 and 305 K simulations, respectively), there is one clear characteristic common across the models: 
the cloud distribution is dominated by high and thin to medium-thick clouds. These clouds are probably anvil or 
detached anvils formed by deep convection and have been classified in the earliest use of ISCCP as cirrus-type 
clouds (Hahn et al., 2001; Rossow & Schiffer, 1991). Specifically, the highest (or one of the highest) concentrations 

Figure 1.  Snapshots of brightness temperature (TB) (a–c) and cloud-top pressure (CTP) (e–g) for the Offline ISCCP Simulator (OIS) (a, e) and Approximate ISCCP 
Simulator (AIS) (b, f), which excludes clear-sky brightness temperature processes, and the difference between the two versions (c, g). The red cross in panels (a–c, 
e–g) identifies a common feature between the two methods referred to in the text. The spatial correlation between AIS and OIS for TB (d) and CTP (h) is given by the 
coefficient of determination of the line of best fit between the two simulators (blue solid line). The dotted black line in panels (d, h) is the one-to-one line. The data is 
from day 3.75 of a RCE_small 300 K simulation of SAM-CRM-COSP where the 2D output was saved at the same frequency as the 3D output.
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of cloud amount occurs in the optically thinnest and highest altitude (the lowest pressure) bin (clouds for τ < 0.3 and 
CTP < 180 hPa). Similarly, the distribution of clouds with 180 hPa ≤ CTP < 310 hPa is consistent across the models, 
where, as optical thickness increases, cloud amount decreases. For all models except ICON-NWP (and SAM-CRM 
and MESONH-VERT at 295 K, Figure S1 in Supporting Information S1), the cloud amount in the high-thin regime 
(clouds with CTP < 310 hPa and τ < 1.6) accounts for over 50% of the cloud amount in the domain, and, for 53% 
of the models in the 300 K simulation, that regime accounts for over two-thirds of the total cloud amount (37% of 
models for the 295 K simulations and 63% of models for the 305 K simulations). Figure 4 shows that, except for 
ICON-NWP and MESONH-VERT (and MESONH), the CRM RCE_small simulations in RCEMIP lack meaningful 
amounts of low clouds (CTP ≥ 680 hPa), which are the stratus- and cumulus-type clouds (Hahn et al., 2001; Rossow 
& Schiffer, 1991). It is notable that ICON-NWP uses a cloud scheme (which allows for sub-grid scale cloudiness; 
although this shouldn't impact the cloud condensate, perhaps the interaction within radiation does, for more details 
see supplement of Wing et al., 2020a); whether this has any explicit impact on the cloud distribution is beyond 
the scope of this study. MESONH and MESONH-VERT also have a relatively large cloud amount for lower-level 
clouds (CTP ≥ 310 hPa), which are alto-type and stratus-type clouds (Hahn et al., 2001; Rossow & Schiffer, 1991). 
SAM-CRM and SAM-CRM-VERT are the models with the lowest total cloud amount (by ∼5%–47%), depending 
on the SST, although ∼50% of the models have ∼100% cloud amount when the thinnest bin (τ < 0.3) is included.

Figure 5 is similar to Figure 4 except it displays the difference between the ISCCP histograms of the 295 and 305 K 
simulations (the difference between the 295 and 300 K simulations is shown in Figure S3 in Supporting Infor-
mation S1 and the difference between the 300 and 305 K simulations is shown in Figure S4 in Supporting Infor-
mation S1). With warming, the clouds shift upwards from having 180 hPa ≤ CTP < 440 hPa to CTP < 180 hPa 

Figure 2.  Probability density functions for cloud-top pressure (CTP) (a) and brightness temperature (TB) (c), where the 
distribution for the Approximate ISCCP Simulator (AIS) is the blue line and the distribution for the Offline ISCCP Simulator 
(OIS) is the orange line, and the difference between the AIS and OIS distributions of CTP and TB (b, d). The vertical dotted 
gray lines in (a) and (b) are the cutoffs for the International Satellite Cloud Climatology Project bins. The data is from days 
1.00–3.75 of a RCE_small 300 K simulation of SAM-CRM-COSP where the 2D output was saved at the same frequency as 
the 3D output.
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(compare the blues in the higher pressure bins to the reds in the lower pressure bin) across all the models. This is 
consistent with the upward shift in anvil clouds (which would be clouds with CTP < 310 hPa) found in Stauffer 
and Wing (2022) and expected from physical theory (Hartmann & Larson, 2002; Kuang & Hartmann, 2007). 
While the majority of the models have a dipole structure that looks like DAM (Figure 5a), some models behave 
a little differently. For example, the ICON and MESONH family of models (Figures 5e, 5i, 5m, 5l, 5p, and 5q) 
have an increase, rather than a decrease, in medium-thick clouds (1.6 ≤ τ < 9.4) for 180 hPa ≤ CTP < 310 hPa.

The model mean (across RCE_small, RCE_small_vert, and RCE_small_les simulations, Figure 5t) total cloud 
amount decreases by 2.35% with warming. There is a decrease in total clouds for seven models (36.8% of the 
models), an increase for three models (15.8%), and a net change of ∼0% for nine models (47.4%, however, as seen 
in Figure S1 in Supporting Information S1, these nine models have 100% cloud amount at 295 K so increasing in 
cloud amount is not possible to begin with). In Stauffer and Wing (2022), 67% of the RCE_small domain models 
had anvil cloud fraction that did not increase with warming SST (which would be clouds with CTP < 310 hPa), 
slightly less than the 84% of models that do not have an increase in clouds here. This is because high clouds are 
not the only clouds being considered in the ISCCP histogram (although high clouds certainly account for the 
majority of the cloud amount in RCE_small).

4.  Cloud Feedback Computation
As in Zelinka et al. (2012a), the cloud feedback calculation requires the use of a cloud radiative kernel (CRK). 
Since this study uses an idealized framework, which is a distinctly different climate state than that of comprehen-
sive GCMs, the kernels used in Zelinka et al. (2012a) are not used here. Instead, a CRK is created for each model 
and each SST, individually, with one CRK generated for the entire domain.

To create the kernel, top of atmosphere radiative fluxes are calculated using the RRTMG (Iacono et al., 2008) 
radiation scheme as interfaced by climlab (Rose, 2018), which requires profiles of cloud liquid and ice water 

Figure 3.  International Satellite Cloud Climatology Project (ISCCP) histograms for the 300 K simulation of SAM-CRM-COSP (a), Offline ISCCP Simulator 
(OIS) (b), and Approximate ISCCP Simulator (AIS) (c) as well as the difference between the AIS and OIS histograms (d), the difference between the OIS and 
SAM-CRM-COSP histograms (e), and the difference between the AIS and SAM-CRM-COSP histograms (f). The number at the top of each histogram is the total cloud 
amount (or the total difference in cloud amount), which is the sum of all the bins in the histogram. The data is averaged over day 75 to the end of the simulation.
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Figure 4.  International Satellite Cloud Climatology Project (ISCCP) histograms for the 300 K simulations of RCE_small (a–l), RCE_small_vert (m–p), RCE_small_les 
(q–s), and the model mean (t). The shading is cloud amount, in percent, binned by cloud-top pressure (hPa, y-axis) and cloud optical depth (x-axis). The number at the 
top of each histogram is the total cloud amount, which is the sum of cloud amount in all the bins of the histogram.
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Figure 5.  The difference between the 305 and 295 K International Satellite Cloud Climatology Project (ISCCP) histograms of RCE_small (a–l), RCE_small_vert 
(m–p), RCE_small_les (q–s), and the model mean (t). The shading is the change in cloud amount, in percent, binned by cloud-top pressure (hPa, y-axis) and cloud 
optical depth (x-axis). The number at the top of each histogram is the total change in cloud amount, which is the sum of cloud amount in all the bins of the histogram.

 19422466, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003738, W
iley O

nline Library on [05/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Advances in Modeling Earth Systems

STAUFFER AND WING

10.1029/2023MS003738

10 of 24

paths, temperature, and trace gases, as well as surface emissivity and albedo properties. The water paths are 
derived from water content and atmospheric density, using the optical depth parameterizations described in 
Appendix A, where ice water is identified using the temperature threshold of 260 K. The trace gas profiles use 
the settings prescribed in the RCEMIP protocol (Wing et al., 2018) and the liquid and ice radii are determined 
in the same manner as AIS (Appendix A). There is no sub-grid scale cloudiness, a pixel is either cloudy or not 
cloudy, so the McICA scheme is not implemented. The atmospheric data required from an individual model are 
domain- and temporally-averaged profiles of temperature and water vapor (specific humidity).

Following Zelinka et al.  (2012a), RRTMG is run for the 64 different CTP-τ combinations, where the all-sky 
kernel has a single-layer cloud placed in the pressure layer given by a particular CTP and cloud water and cloud 
ice are prescribed by a given τ. The radiative fluxes for the corners of each CTP-τ bin are averaged together to 
obtain the 49 ISCCP bins. The clear-sky kernel runs RRTMG with cloud liquid water and cloud ice water zeroed 
out everywhere, from which the all-sky kernel is subtracted to obtain the cloud radiative kernel. This, when 
divided by 100% in a particular CTP-τ bin, describes the sensitivity of top of atmosphere fluxes due to an increase 
in cloud amount by 100%.

Figure 6 shows the anomaly from the model-mean net CRK (Figure 6t) for each model, averaged across the three 
SSTs (Figures S5 and S6 in Supporting Information S1 show the same but for the longwave and shortwave CRKs, 
respectively). The differences in the CRK between models and SSTs are minor (by much less than 10%) for the 
majority of models, so this study will use the average net, longwave, and shortwave CRK across models and 
SSTs (Figure 6t, Figures S5t and S6t in Supporting Information S1, respectively) for all models' cloud feedback 
computation. While it is technically more accurate to use a unique CRK for each model, using the model-mean 
CRK ensures that the differences in cloud feedbacks across models result only from differences in the cloud 
distribution and its changes. Table S1 in Supporting Information S1 shows the model-mean CRK is a representa-
tive CRK by comparing the cloud feedbacks of Figures 7a–7e, which uses the model-mean CRK, to those cloud 
feedbacks using a model's individual CRK.

The kernels are then multiplied by the difference between a warm and cold ISCCP histogram to produce 
cloud-induced radiative flux anomalies (the net, longwave, and shortwave cloud feedback histograms are shown 
in Figures S7–S9 in Supporting Information S1, respectively). The cloud feedbacks are decomposed into cloud 
amount, cloud altitude, cloud optical depth, and residual components, following the modifications of Zelinka 
et al. (2013) to Zelinka et al. (2012b), described by Equation 1 (Equation B10 of Zelinka et al., 2013):

Δ𝑅𝑅𝐶𝐶 = 𝐾𝐾0Δ𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 + Σ
𝑃𝑃

𝑝𝑝=1

(

𝐾𝐾 ′
𝑝𝑝Σ

𝑇𝑇
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𝑝𝑝𝑝𝑝

)

+ Σ
𝑇𝑇

𝜏𝜏=1

(

𝐾𝐾 ′
𝜏𝜏Σ

𝑃𝑃

𝑝𝑝=1
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𝑝𝑝𝑝𝑝

)

+ Σ
𝑃𝑃

𝑝𝑝=1
Σ
𝑇𝑇

𝜏𝜏=1
𝐾𝐾 ′

𝑅𝑅
Δ𝐶𝐶∗

𝑝𝑝𝑝𝑝

� (1)

where each term describes the cloud amount, cloud altitude, and cloud optical depth, and residual components 
of the cloud feedback, respectively. The middle two terms on the right-hand side, which represent the cloud alti-
tude and cloud optical depth feedbacks, are multiplying an effective cloud radiative kernel which accounts for 
variations in either CTP or τ (𝐴𝐴 𝐴𝐴 ′

𝑝𝑝 and 𝐴𝐴 𝐴𝐴 ′
𝜏𝜏 , respectively) by the changes in cloud amount at each CTP or τ 𝐴𝐴

(

Δ𝐶𝐶∗
𝑝𝑝𝑝𝑝

)

 . 
The first term, the cloud amount feedback, multiplies the cloud radiative kernel weighted by the fraction of cloud 
amount in each bin (K0) by the total change in cloud amount. For more details, see Zelinka et al. (2012b, 2013).

Each component describes the cloud feedback arising due to changes in one property (cloud amount, cloud alti-
tude, or cloud optical depth) when the others remain constant. Given the minimal low-cloud amount present in 
RCE_small simulations (Figure 4), the cloud feedback discussion will focus on the cloud feedbacks considering 
all the clouds. The further decomposition of the cloud feedbacks into low-clouds (CTP ≥ 680 hPa) and non-low 
clouds (CTP < 680 hPa), following Zelinka et al. (2016) are shown in Figures S10 and S11 in Supporting Infor-
mation S1, and confirms that the cloud feedbacks in these simulations are dominated by free-tropospheric clouds.

5.  Cloud Feedbacks in RCE
The model-mean net cloud feedback is 0.14 ± 0.20 W m −2 K −1 when a large negative outlier (ICON-NWP) is 
removed; when ICON-NWP is included the net total cloud feedback is 0.09 ± 0.27 W m −2 K −1 (Figure 7a). There 
are three models (including ICON-NWP) with a negative cloud feedback, averaging −0.29 ± 0.21 W m −2 K −1, 
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Figure 6.  The difference between a model's net cloud radiative kernel (a–s) and the model-mean (t) for RCE_small (a–l), RCE_small_vert (m–p), and RCE_small_les 
(q–s). All histograms are averaged across the three SSTs. The shading is the change in top of atmosphere net radiative flux due to a 100% increase in cloud amount, in 
W m −2 K −1% −1, binned by cloud-top pressure (hPa, y-axis) and cloud optical depth (x-axis). Note: the color bar in panels (a–s) range from −0.3 to 0.3 while panel (t) 
range from −3 to 3.
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and nine models with a positive cloud feedback, averaging 0.22 ± 0.16 W m −2 K −1. Figure S10 in Supporting 
Information  S1 shows the mean, median, and interquartile range (IQR) of the RCE_small feedbacks. These 
magnitudes (of both the positive and negative cloud feedbacks) are quite small compared to, for example, the 
net total cloud feedback value of 0.56 ± 0.36 W m −2 K −1 found in the CMIP6 models (Table 1), which is up to 
four times that found in RCE. However, as will be discussed in Section 8, caution must be taken when comparing 

the  total cloud feedback of RCE to that of comprehensive climate models 
and, as will be shown, RCE is much more comparable when the appropriate 
context is given.

ICON-NWP is an outlier due to a large negative shortwave cloud optical 
depth feedback. This particular model is associated with a relatively signifi-
cant amount of thin and medium-thick clouds (τ < 9.4) throughout the depth 
of the troposphere (Figure  4e). ICON-NWP is also the only model with 
substantial changes in medium-thick clouds for CTP ≥ 440 hPa (Figure 5e). 
The increase in medium-thick clouds for CTP ≥ 800 hPa (the lowest alti-
tude bin) is especially unique to this model (this feature is also apparent 
in temporal- and domain-averaged profiles of cloud fraction, where ICON-
NWP has a low-level peak in cloud fraction nearly twice the value of the 
next-highest models, potentially due to the use of a cloud scheme, see Figure 
2c of Stauffer & Wing, 2022).

5.1.  The Cloud Altitude Feedback

The cloud altitude feedback (Figure  7c) is robustly positive in the long-
wave, as is expected due to fundamental physical understanding of how 
cloud altitude changes with warming (for an in-depth review, see Sherwood 

Figure 7.  The total cloud feedback (a, f) decomposed into its contributions by cloud amount (b, g), cloud altitude (c, h), and cloud optical depth (d, i), as well as its 
residual (e, j) following Zelinka et al. (2013). The top row (a–e) contains the cloud feedbacks for RCE_small only, with individual models represented by the smaller 
symbols, with color varying depending on model. The larger, offset, symbols are the model-mean cloud feedback, whose color represents the radiative flux cloud 
feedback of that cluster (blue for the longwave cloud feedback, black for the net cloud feedback, and red for the shortwave cloud feedback). The bottom row (f–j) 
contains the models that have RCE_small_vert (leftward pointed triangle) and/or RCE_small_les (rightward pointed triangle) simulations, as well as the native cloud 
resolving model (CRM) (square). They are clustered by the radiative flux component of the cloud feedback and normalized by the absolute value of the RCE_small 
cloud feedback.

High-cloud 
altitude

Tropical anvil 
cloud area Total cloud

RCE_small (τ > 0.0) 0.20 ± 0.11 −0.07 ± 0.12 0.09 ± 0.27

RCE_small (τ > 0.3) 0.18 ± 0.11 −0.06 ± 0.12 0.05 ± 0.24

CMIP5 0.16 ± 0.10 −0.05 ± 0.05 0.29 ± 0.27

CMIP6 0.23 ± 0.09 −0.03 ± 0.07 0.56 ± 0.36

avg(CMIP5/6) 0.20 ± 0.10 −0.04 ± 0.06 0.46 ± 0.36

Sherwood et al. (2020) 0.20 ± 0.10 −0.20 ± 0.20 0.45 ± 0.33

Note. The definition of the feedbacks in this table are derived from the three 
decomposed cloud feedbacks following the procedure used for the CMIP 
models (Zelinka et  al., 2022). Values are notated as μ ± σ, where μ is the 
central value and σ is the uncertainty in the central value using the standard 
deviation.

Table 1 
RCE-Relevant Cloud Feedback Values (W m −2 K −1) for the Models 
Assessed in This Study, Those Computed by the CMIP5 and CMIP6 Models 
as Presented by Zelinka et al. (2022), and the Expert Assessed Cloud 
Feedbacks Presented by Sherwood et al. (2020)
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et al., 2020). High clouds are expected to increase in altitude with nearly isothermal cloud top temperatures or 
with cloud top temperatures that increase at a rate less than surface warming (Hartmann & Larson, 2002; Kuang 
& Hartmann, 2007; Zelinka & Hartmann, 2010). In RCEMIP, the increase in anvil cloud altitude with warming 
SST is the most robust anvil cloud tendency (Stauffer & Wing, 2022), where all models had an increase in anvil 
cloud altitude and the majority of them did so with a slight increase in anvil cloud temperature. Less longwave 
radiation is emitted to space than an atmosphere that warms in the upper levels at the same rate as the surface, 
which would serve as a positive feedback. The shortwave cloud altitude feedback is negative, but with a very 
small magnitude.

5.2.  The Cloud Amount Feedback

The cloud amount feedback (Figure 7b) is a complex feedback consisting of competing longwave and shortwave 
responses, with a net result near zero, which is consistent with observational constraints (McKim et al., 2023). 
The inter-model spread for the net cloud amount feedback is small, relative to the longwave and shortwave compo-
nents (Figure 7b and Figures S10d–S10f in Supporting Information S1). Despite the spread and lack of consensus 
on a sign for the longwave and shortwave components, the magnitudes still remain equal and near-opposite for 
most of the models, resulting in the near-cancellation. The mean and IQR across models is negative for the long-
wave cloud amount feedback and (generally) positive for the shortwave cloud amount feedback (Figures S10d and 
S10f in Supporting Information S1) arising from the decrease in anvil cloud amount across most models (Stauffer 
& Wing, 2022). There are two models that have a cloud amount feedback whose sign opposes that of the mean: 
SCALE and WRF-COL-CRM where the latter is also an outlier as defined as being outside 150% of the IQR 
(Figures S10d–S10f in Supporting Information S1), due to cloud amount increasing, as opposed to decreasing, 
with warming (Figures 5b and 5d).

5.3.  The Cloud Optical Depth Feedback

Finally, in RCE, the cloud optical depth feedback (Figure 7d and Figures S10j–S10l in Supporting Infor-
mation  S1) is the cloud feedback with the largest inter-model spread as well as the largest magnitudes. 
The model-mean net cloud optical depth feedback is negative, driven by the negative longwave component 
and offset by the positive shortwave component. This is associated with a general thinning of clouds with 
warming SST (not shown). There are six models (CM1, DAM, ICON-LEM, ICON-NWP, SAM-CRM, and 
UCLA-CRM) with shortwave and longwave cloud optical depth feedback signs that are opposite those of 
the model-mean. This is associated with the distribution of thinner clouds (τ < 23) in those models decreas-
ing with warming, sometimes accompanied by an increase in thicker clouds (τ ≥ 23). The reduction in the 
relative occurrence of thinner clouds implies the clouds are thicker overall, and thus leads to the reduced 
OLR and absorbed solar radiation. These models behave in a way such that the strength of the short-
wave component overpowers the longwave component, recovering a negative net cloud optical depth feed-
back, the same sign as the model-mean. Four models (SCALE, UKMO-CASIM, UKMO-RA1-T-hrad, and 
WRF-COL-CRM) have a positive net cloud optical depth feedback (opposite of the model-mean), despite 
the signs of the longwave and shortwave components following that of the model-mean, due to the strength 
of the shortwave component.

5.4.  The Cloud Feedback Residual

The residuals (Figure 7e) are generally small and, on average, slightly positive in the longwave and net and near-
zero in the shortwave. For most models, the decomposed cloud feedbacks have an associated residual that is less 
than a third of the respective decomposed and total cloud feedbacks. The average residual is ∼±0.05 W m −2 K −1 
with an inter-model spread extending to ∼±0.2 W m −2 K −1, which is similar to the residuals found in a similar 
decomposition for CFMIP1, which had a model mean of less than 0.1 W m −2 K −1 and a model spread extending 
to ∼±0.25 W m −2 K −1 (Zelinka et al., 2016).
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6.  Sensitivities of the Cloud Feedback
6.1.  Base Temperature Dependence

Section 5 discussed the cloud feedback from 295 to 305 K; the sensitivity of the cloud feedback to different base 
surface temperatures can be looked at by analyzing the cloud feedbacks from 295 to 300 K and 300 to 305 K, 
separately (Figure S11 in Supporting Information S1). The model-mean and inter-model spread of the cloud 
feedbacks for each Δ5 K warming are comparable to each other and that of the Δ10 K warming with no stand out 
features that would imply differing sensitivity of the cloud response to warming SST with a warmer base state. 
Put differently, there is no temperature with a stronger feedback; it depends on the individual cloud regime and 
flux component, but, in the net, the cloud feedbacks are equal across the warming ranges. The inter-model spread 
for a given Δ5 K cloud feedback is similar to the Δ10 K, although sometimes, but not always, the spread can be 
higher for the larger temperature range.

6.2.  Model Resolution Dependence

Despite the higher resolution of CRMs being a step-up from GCMs, there are still parameterizations that, on the 
finer scale, play important roles in various cloud regimes, especially low clouds. For example, as overviewed by 
Cronin and Wing (2017), CRMs still have to parameterize some processes, such as turbulence (Romps, 2014). 
RCEMIP has the advantage of containing a few models that have simulations with higher resolutions in both the 
vertical (RCE_small_vert) and horizontal (RCE_small_les). Figures 7f–7j shows the decomposed cloud feed-
backs for the four models that have these higher resolution versions. Note: each cloud feedback for a set of 
RCE_small, RCE_small_vert, and RCE_small_les simulations is normalized by the absolute value of the cloud 
feedback associated with the respective RCE_small value such that if, for example, a RCE_small_les model has a 
value greater than one, then that model has a positive cloud feedback whose magnitude is greater than that of the 
RCE_small model associated with the RCE_small_les model. The cloud feedbacks associated with RCE_small 
will be ±1, by definition, depending on the sign of the feedback.

The net total cloud feedback (Figure 7f) increases in magnitude with finer horizontal grid spacing (RCE_small 
to RCE_small_vert) and finer vertical grid spacing (RCE_small_vert to RCE_small_les), alike, for all models 
except CM1. When considering the effects of the longwave and shortwave total cloud feedbacks, the magnitude 
for those in CM1 and MESONH increases with finer horizontal grid spacing and the total cloud feedbacks for 
CM1 changes sign for finer vertical grid spacing. ICON-LEM, on the other hand, has a total cloud feedback 
whose magnitude decreases with finer horizontal grid spacing and either has a reduced magnitude (in the long-
wave) or changes sign (in the shortwave) for finer vertical grid spacing. The total cloud feedback in SAM-CRM 
changes sign with finer horizontal and vertical grid spacing in the longwave while, in the shortwave, the magni-
tude reduces for finer horizontal and vertical grid spacing.

The cloud altitude feedback (Figure 7h) robustly increases in magnitude for finer vertical grid spacing (RCE_
small_vert to RCE_small_les). The same occurs for the cloud feedbacks in MESONH and CM1 with for finer 
horizontal grid spacing (RCE_small to RCE_small_vert), but the cloud altitude feedback in SAM-CRM and 
ICON-LEM both have a reduced magnitude for finer horizontal grid spacing (for the longwave and net cloud 
altitude feedbacks, only).

The cloud amount feedback (Figure 7g) is zero for all models except the SAM-CRM family (and CM1-LES, 
but with magnitudes much less than that found in the SAM-CRM family). Those models all have a net-zero 
change in cloud amount with warming SST (Figures 5i, 5j, 5l, 5m, 5n, 5p, 5q, and 5r) due to the cloud amount 
being over 99% at all SST (Figures 4i, 4j, 4l, 4m, 4n, 4p, 4q, and 4r, Figures S1i, S1j, S1l, S1m, S1n, S1p, S1q, 
S1r, S2i, S2j, S2l, S2m, S2n, S2p, S2q, and S2r in Supporting Information S1). Cloud amount in SAM-CRM, 
on the other hand, is well below 100% (Figures 4k, 4o, and 4s, Figure S1k, S1o, S1s and S2k, S2o, S2s in 
Supporting Information S1) and decreases by 10.55% from 295 to 305 K for the RCE_small and RCE_small_
vert simulations and decreases by 14.46% for the RCE_small_les simulation (Figures  5k, 5o, and  5s). For 
SAM-CRM, the magnitude of the cloud amount feedback reduces to near-zero with finer horizontal grid spac-
ing (i.e., SAM-VERT has a cloud amount feedback near-zero). The cloud amount feedback in SAM-LES shares 
a sign with SAM-CRM, but with a reduced magnitude in the net and shortwave, and a larger magnitude in the 
longwave.
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The net cloud optical depth feedback (Figure 7i) increases in magnitude for CM1 and MESONH, reduces in 
magnitude for ICON-LEM, and switches sign for SAM-CRM with finer horizontal grid spacing (RCE_small 
to RCE_small_vert). The sign switches for finer vertical grid spacing (RCE_small_vert to RCE_small_les) for 
ICON-LEM and SAM-CRM, while the magnitude of the net cloud optical depth feedback decreases for finer 
vertical grid spacing for CM1. In the longwave, the cloud optical depth feedback for all models except SAM-CRM 
(which switches sign) increases in magnitude for finer horizontal grid spacing while increasing in magnitude with 
finer vertical grid spacing for all but CM1 (which switches sign). The shortwave cloud optical depth feedback 
for CM1 and MESONH increase in magnitude while it switches sign for ICON-LEM and SAM-CRM. The 
shortwave cloud optical depth feedback does something different for each model for finer vertical grid spacing.

Ultimately, an increase in horizontal resolution results in a more positive cloud feedback in the shortwave (which 
drives the net cloud feedback response) and a more negative cloud feedback in the longwave. For most models, 
this is driven primarily by the cloud optical depth feedback response to finer grid spacing due to the minimal 
changes in the cloud altitude feedback and the near-zero cloud amount feedback. For the most part, the temper-
ature sensitivity of the cloud feedbacks is similar to that discussed for the CRMs only in Section 5, especially 
for RCE_small_les (Figure S12 in Supporting Information S1, right column). For RCE_small (Figure S12 in 
Supporting Information S1, left column) and RCE_small_vert (Figure S12 in Supporting Information S1, middle 
column), there are instances where at least one of the components of the cloud feedback has an opposing sign for 
one or both of the Δ5 K cloud feedbacks compared to the Δ10 K cloud feedbacks.

6.3.  Handling the τ < 0.3 Bin

The optically thinnest clouds are often excluded when computing total cloud fraction from ISCCP histo-
grams because they are not well observed by ISCCP and they are assumed to be radiatively irrelevant. As 
evident in Figure 6, the radiative flux sensitivity to cloud changes for τ < 0.3 is near zero. However, since 
these simulations produce so many thin clouds, the assumption that they are not relevant is re-examined, and 
the sensitivity of the cloud feedbacks to the inclusion or exclusion of that bin is tested. For over 80% of the 
models, more than a third of the total cloud amount occurs in the τ < 0.3 bin (for over 50% of the models, 
over 50% of the total cloud amount occurs in the τ < 0.3 bin). However, for 75% of the models, the net cloud 

Figure 8.  The decomposed cloud feedbacks excluding the thinnest optical depth bin plotted against the cloud feedbacks 
including the thinnest optical depth bin. Each circle is a different model, the blue circles are the longwave cloud feedbacks, 
the black circles are the net cloud feedbacks, and the orange circles are the shortwave cloud feedbacks. The black dashed line 
is the one-to-one line. Note: the axis ranges differ across the panels.
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feedback in the thinnest bin is less than a third of the total net cloud feedback. There are only two models 
whose cloud feedback in the thinnest bin contributes more than the rest of the histogram to the total net cloud 
feedback (SCALE and UKMO-RA1-T-nocloud). Although the impact of including the τ < 0.3 appears to be 
small, understanding the impact of the thinnest clouds on the decomposed cloud feedbacks warrants further 
attention.

Figure 8 shows the cloud feedback components when the thinnest optical thickness bin is excluded against the 
cloud feedbacks when the thinnest optical thickness bin is included. The thinnest optical depth bin primar-
ily affects the cloud amount and cloud optical depth feedbacks (Figures 8b and 8d). When the thinnest bin is 
excluded, the magnitude of the cloud amount feedback (Figure 8b) tends to be larger than when it is included (the 
shortwave cloud amount feedback is more positive and the longwave cloud amount feedback is more negative). 
Conversely, for the cloud optical depth feedbacks (Figure 8d), the magnitudes are reduced when the thinnest bin 
is excluded (the shortwave cloud optical depth feedback is less positive and the longwave cloud optical depth 
feedback is less negative). In some cases, the sign reverses (in both the longwave and shortwave). However, the 
opposing signs (and somewhat equivalent changes in magnitude) of the shortwave and longwave components 
cancel for the net cloud optical depth feedbacks. Similarly, the total cloud feedback (Figure 8a) is largely unaf-
fected by whether or not the τ < 0.3 bin is included in the calculation because the impact on the cloud amount and 
cloud optical depth feedbacks are near-equal and opposite, although we acknowledge this may be a consequence 
of the overall cloud optical depth thinning with warming. The magnitudes of the total cloud feedback are slightly 
enhanced when the thinnest bin is included, but nowhere near the magnitude of the changes seen in the cloud 
amount and cloud optical depth feedbacks.

It is reassuring, however, that these sensitivities are most prevalent in the components of the cloud feedbacks that 
are impacted by the baseline amount of clouds present (the cloud amount and cloud optical depth feedbacks). 
Even though the decomposition isolates contributions due to changes in, for example, cloud optical depth from 
changes in cloud altitude and cloud amount, it does not imply that the baseline amount of clouds wouldn't impact 
the cloud optical depth feedback. More clouds means reduced transmission (or enhanced reflection) of radiation 
through the atmosphere in general. If the only anticipated impact to cloud feedbacks by the inclusion of this thin-
nest bin would be to those components affected by baseline cloud amount, then the cloud altitude feedback should 
be largely unaffected by this bin, which is, indeed, what occurs (Figure 8c).

To test the performance of cloud identification using ISCCP procedures, the cloud amount identified by ISCCP 
is compared to cloud amount as defined by a total cloud water threshold. Following the definition for cfv2 from 
Stauffer and Wing (2022), cloud fraction is defined as the fraction of columns in the horizontal domain that has 
at least one pixel in its column with total cloud water content exceeding 10 −5 gg −1. Figure 9 shows the sum of the 
ISCCP histogram (total cloud amount), including and excluding τ < 0.3, regressed against the cloud fraction of 
the domain as defined using the total cloud water threshold. When the τ < 0.3 bin is removed, the cloud amount, 
as defined by cfv2, is almost perfectly recovered by the sum of the ISCCP histogram (the orange regression line 
is almost perfectly over-laid upon the black one-to-one line) with correlation coefficients greater than 0.9 for all 
models, except MESONH and MESONH-VERT.

On average, across the models, the sum of the ISCCP histogram (i.e., the total cloud fraction) excluding the 
τ < 0.3 bin is ∼45% of the histogram sum including the bin (Figure 9p), across the three SSTs. The total 
cloud feedback when the τ < 0.3 bin is excluded is itself, on average, within 20% of the total cloud feedback 
including that bin (not shown). Despite the cloud distribution primarily being contained in the high and thin 
bins, we have confirmed that these clouds are mostly radiatively irrelevant and excluding them does not qual-
itatively change any of the results. This also gives somewhat a posteriori, and radiation-based, evidence for 
the choice of cfv2 and exclusion of saturation mixing ratio over water in the definition of a cloud (compared 
to the original cloud fraction definition; Stauffer & Wing,  2022). Future work may consider whether the 
production of an abundance of high, thin clouds by CRMs in RCE is realistic or an artifact of the RCE state 
and a bias of CRMs. Nevertheless, even if the radiative impact of the thinnest bin is small, the abundance in 
these simulations suggests that the impact may not be negligible. Indeed, although the general conclusions, 
especially for the total cloud feedback, remain unchanged, there are small impacts to the components of the 
cloud feedback and, thus, the decision to include the optically thinnest bin in the cloud feedbacks computed 
throughout this study.
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Figure 9.
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7.  Discussion
Thus far, the focus was on describing the cloud feedbacks in RCE following their categorization into components 
due to changes in cloud amount, cloud altitude, and cloud optical depth (Schneider & Dickinson, 1974). But how 
do cloud feedbacks in RCE_small compare to those in realistic, comprehensive GCM simulations and expert 
assessment from multiple lines of evidence (such as in Sherwood et al., 2020)?

Great care has to be taken when comparing cloud feedbacks in RCE to cloud feedbacks derived in the CMIP 
models or expertly assessed by multiple lines of evidence due to the limitations of the applicability of RCE. As 
discussed in Section 1, RCE is not applicable to the middle-high latitudes or land regions, nor does it simulate 
stratocumulus clouds. Of the seven cloud feedbacks assessed in Sherwood et al. (2020), two can be assessed in 
the RCEMIP simulations examined here in the same manner as applied to GCMs by Zelinka et al. (2022). These 
cloud feedbacks include the high-cloud altitude feedback and the tropical anvil cloud area feedback (the sum of 
high-cloud amount and optical depth feedbacks). While the high-cloud altitude feedback is averaged globally in 
Sherwood et al. (2020) and Zelinka et al. (2022), the RCE version (which is representative of the tropics only) 
is still considered, especially given how strongly the tropical region contributes to this feedback and regime of 
clouds. Similarly, although the total cloud feedback cannot be directly compared since RCE is missing a signif-
icant amount of cloud types and regions, the tropics contribute a significant amount to the total cloud feedback 
(Sherwood et al., 2020) and, as such, RCE has the potential to add some insight. The value of these feedbacks 
as assessed by Sherwood et  al.  (2020, their Table 1), computed by CMIP5 and CMIP6 (Table 3 of Zelinka 
et al., 2022), and in RCE_small are listed in Figure 10 (and Table 1).

Figure 9.  Sum of the International Satellite Cloud Climatology Project (ISCCP) histogram including and excluding the thinnest optical depth bin plotted against 
the fraction of the domain that has at least one cloudy level, where a cloud is defined by cfv2 in Stauffer and Wing (2022) for each model's 300 K simulation (a–s). 
Individual circles are the sum of the histogram for each time step, the blue line is the regression line for τ > 0.0 versus cfv2, the orange line is the regression line for 
τ > 0.3 versus cfv2, and the black line is the one-to-one line. The numbers at the top of the panels are the correlations of the blue line and orange line from left to right. 
The ratio of the temporally-averaged ISCCP sum excluding the thinnest bin to that including the thinnest bin is in panel (t) for each sea surface temperature (the different 
colors). The x-axis is the ratio for each model, where the model is denoted by a letter which corresponds to the individual model's panel (a–s).

Figure 10.  RCE-relevant decomposed cloud feedbacks for the RCE_small simulations including and excluding τ < 0.3 (the 
values below the gray dashed line) as well as the cloud feedbacks for CMIP5, CMIP6, and the average of CMIP5 and CMIP6 
(Zelinka et al., 2022), and the expert assessed cloud feedbacks (Sherwood et al., 2020). The scatter is the central value while 
the uncertainty bars demarcate ±σ. The total cloud feedback is shaded gray to differentiate from the other cloud feedbacks 
because radiative-convective equilibrium does not include clouds such as land and arctic that are included in the CMIP and 
expert assessed values.
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The model-mean value of the high-cloud altitude feedback (Figure 10a) in RCE_small, and its uncertainty, is 
well-matched with the values obtained from multiple lines of evidence (Sherwood et al., 2020), which includes 
those calculated by GCMs. This lends confidence in using RCE as a tool in studying cloud feedbacks derived 
in this manner with the benefit of having multiple models with higher resolutions and explicit representation of 
convection and as a way to expand understanding of deep-convective contributions to the cloud feedback.

The tropical anvil cloud area feedback (Figure 10b) in RCE_small, on the other hand, has a central value within 
the uncertainty range for the CMIP values (on the high end of the range) as well as the expert assessment (on the 
low end) but its own uncertainty range expands well outside the bounds of the CMIP models. In particular, the 
RCE_small estimates do not rule out a positive tropical anvil cloud area feedback.

When considering only the population of models which have a RCE_small simulation and a higher resolution compan-
ion (RCE_small_vert or RCE_small_les), the story is a little different. Figure S13 in Supporting Information S1 is a 
version of Figure 10 but only for these models. Generally, the model-mean cloud feedbacks of the higher resolution 
models are within the spread of RCE_small, except for the tropical anvil cloud area feedback which is, instead, slightly 
positive for the RCE_small_les simulations. This is opposite to prior estimates (Sherwood et  al.,  2020; Zelinka 
et al., 2022) and indicates that the tropical anvil cloud area feedback is sensitive to resolution. Another distinction is 
the spread in the RCE_small_vert models, which is larger than that of RCE_small or RCE_small_les.

The total cloud feedback is also included (Figure 7c and Figure S13c in Supporting Information S1) which, for 
the expert assessment and CMIP, is simply the sum of all six cloud feedbacks assessed by Sherwood et al. (2020) 
while for the RCE_small models, the total cloud feedback as presented in Section 5 is used (also Figure 7a). As 
discussed above, the total cloud feedback in RCE is not directly comparable to a global mean total cloud feedback 
in realistic simulations. The total cloud feedback used for RCE_small is also not obtained in the same manner as 
done for CMIP. However, it is included here as a number of interest. The spread in RCE_small is considerable and 
spans both positive and negative values with a central value much less than prior studies. Remarkably, however, 
when only considering the population of models with increased horizontal or vertical resolution (Figure S13c in 
Supporting Information S1), the total cloud feedback statistics become more comparable to prior studies, espe-
cially for RCE_small_les (although there are only three models considered here). These central values and the 
majority of the spread still favor the low end of the spread in the prior studies.

Cloud feedbacks in RCE simulations should not be expected to be comparable to global averages in CMIP due 
to the restricted cloud and climate representation. However, the remarkably similar central value and spread of 
the cloud feedbacks between the two simulation types reflects not only the important contribution of tropical 
deep-convective clouds to the total global cloud feedback, but also the power and capability such a simplified 
framework of a single segment of Earth presents in RCE simulations. This framework gets relatively close to 
recovering the total global cloud feedback by just considering the behavior of tropical deep-convective clouds.

8.  Conclusion
In RCEMIP, we found that the net total cloud feedback is, on average, positive, in which the longwave cloud alti-
tude feedback is the single most positive contributor. The cloud amount and cloud optical depth feedbacks have 
substantial cancellation between their longwave and shortwave components, where the net cloud amount feed-
back is near zero (both on average and in most individual models) and the net cloud optical depth feedback is on 
average negative. Note, even though the inter-model mean net total cloud feedback is positive, several individual 
models have negative net total cloud feedbacks.

The cloud altitude feedback exhibits the best agreement across models and is the sole positive contributor to the 
longwave total cloud feedback. This is due to a robust (and expected) increase in cloud altitude accompanied by 
a cloud top temperature increase rate lower than that of surface warming. Decreases in cloud amount result in 
competing longwave and shortwave components of the cloud amount feedback to make the net cloud amount 
feedback near-zero with minimal inter-model spread relative to the shortwave and longwave components. The 
cloud optical depth feedback, on the other hand, has the largest magnitudes and inter-model spread and is, on 
average, slightly negative in the net, driven by the negative longwave component that accompanies cloud thinning 
with warming SST.

The central value and spread of the high-cloud altitude feedback for the RCE_small simulations is well-matched 
with prior work (Figure 10a, Table 1), which lends confidence in the computation of cloud feedback components 

 19422466, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003738, W
iley O

nline Library on [05/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Advances in Modeling Earth Systems

STAUFFER AND WING

10.1029/2023MS003738

20 of 24

in this manner. The tropical anvil cloud area feedback has contributions from two components of the total cloud 
feedback associated with considerable inter-model spread in RCE_small. Nevertheless, the central value is nega-
tive and comparable to that found using GCMs and is within the spread of the assessment incorporating multiple 
lines of evidence. However, there are a few models with positive tropical anvil cloud area feedbacks; in particular, 
the LES models with finer horizontal grid spacing. And, although the total cloud feedback in RCE_small is not 
obtained in the same way as prior work, the results of RCE_small lends increased emphasis on the importance of 
tropical convection to the understanding of the total cloud feedback.

It is important to note that the cloud feedbacks studied here are assessed in RCE_small simulations that do NOT 
exhibit convective organization, which is present in the real tropics (e.g., Holloway et al., 2017; Houze, 2004), 
modulates the observed tropical radiation budget (Bony et al., 2020), and could thus potentially influence the 
value of the cloud feedbacks (e.g., Cronin & Wing, 2017). A subsequent paper will introduce the cloud feedback 
decomposition of the RCE_large CRM simulations in RCEMIP (in which convection aggregates and impacts 
the mean climate state). This will be compared to the cloud feedbacks in a GCM to assess the influence of 
explicit versus parameterized convection in a RCE setting. The RCEMIP cloud feedbacks will also be contex-
tualized by comparing them to results from simulations higher up in the model hierarchy, including a GCM 
aquaplanet simulation from CFMIP3 (Webb et  al.,  2017) as well as other configurations of RCE such as a 
RCEMIP GCM and RCE simulations that introduce an SST gradient. Although further details are reserved for 
that paper, RCE_large simulations have a much more realistic distribution of clouds within their ISCCP histo-
grams, including the introduction of a low cloud regime. Using the results from this paper as a starting point, 
the subsequent paper will aim to not only determine the cloud feedback in an increasingly realistic environment 
(while maintaining the advantage of explicit convection), but will also assess the impact of organized convection 
on the cloud feedback.

Appendix A:  Offline ISCCP Simulator
The primary processes that are derived are (a) a parameterization for cloud optical depth (both liquid and ice) and 
(b) brightness temperature from which CTP is derived. The calculation of brightness temperature (in the infrared) 
and the corresponding cloud top temperature mostly follows the procedures of Klein and Jakob (1999) and Webb 
et al. (2001) and are reviewed here, for clarity.

Cloud ice optical depth (in the visible band) is defined by Equation A1:

𝜏𝜏𝑖𝑖 = 𝐼𝐼𝐼𝐼 𝐼𝐼 (𝑎𝑎0 + 𝑎𝑎1∕𝐷𝐷𝑔𝑔𝑔𝑔)� (A1)

where a0 = −0.291721 × 10 −4 m −1 and a1 = 2.51925 (from Equation 3.9a and Table 3a of Fu, 1996) and IWP is 
vertically resolved ice water path. Cloud liquid optical depth is defined by Equation A2:

𝜏𝜏𝑙𝑙 = 𝐿𝐿𝐿𝐿 𝐿𝐿 (𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖∕𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 )� (A2)

where ai = 2.817 × 10 −2 m 2/g and bi = 1.305 μm 2/g (from Equation 1 and Table 1 of Slingo, 1989) and LWP 
is vertically resolved liquid water path. Ice (Dge) and liquid (Reff) effective radii are computed as in SAM-CRM 
(Khairoutdinov & Randall, 2003), where Reff is a constant equal to 14 μm and Dge is a set profile of ice radii 
defined by Kiehl et al. (1998).

These definitions are constant across all models and are therefore independent of the atmosphere of a particular 
simulation, potentially differing from a model's online calculations of cloud optical properties if their native 
implementation uses different parameterizations.

The top of atmosphere radiance includes contribution from each level as well as the surface, defined by Equa-
tion A3 (Equation A4 of Klein & Jakob, 1999):

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 =

𝑖𝑖
∑

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡𝑖𝑖𝜖𝜖𝑖𝑖𝐵𝐵𝐵𝐵
(

𝑇𝑇 𝑖𝑖
)

+ 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵
(

𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠
)

� (A3)
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where t is the product of the transmission of a level and those levels above it and the top of atmosphere transmis-
sivity (t TOA) is equal to one, defined by Equation A4 (Equation A6 of Klein & Jakob, 1999):

𝑡𝑡𝑖𝑖 =

𝑖𝑖−1
∏

𝑗𝑗=𝑇𝑇𝑇𝑇𝑇𝑇

1 − 𝜖𝜖𝑖𝑖� (A4)

and longwave emissivity is computed from the total visible cloud optical depth, defined by Equation A5:

𝜖𝜖 = 1 − exp(−(𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑙𝑙))� (A5)

BB is a quantity proportional to blackbody emission at 11 μm, defined by Equation A6 (Equation A5 of Klein & 
Jakob, 1999):

𝐵𝐵𝐵𝐵 =
(

exp
(

1, 307.27∕𝑇𝑇 𝑖𝑖
)

− 1
)−1

.� (A6)

Partial transmission through clouds is accounted for by including the surface emission that is transmitted through 
a cloud, defined by Equation A7 (Equation A9 of Klein & Jakob, 1999):

𝐵𝐵𝐵𝐵(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) = (𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 − (1 − 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐) ∗ 𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐵𝐵𝐵𝐵(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠))∕𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐� (A7)

where ϵsfc = 0.99 and ϵcld uses the longwave-adjusted cloud optical depth described by Equation A8 (from Equa-
tion A8 of Klein & Jakob, 1999):

𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐 = 1 − exp(−(𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑙𝑙)∕2.13).� (A8)

Brightness temperature for a clear-sky column (τ ≤ 10 −7) is found using Equation A6 where BB is set to the top 
of atmosphere irradiance found by Equation A3 while brightness temperature for a cloudy column (τ > 10 −7) is 
found using Equation A7. Cloud top pressure is simply the pressure interpolated from the layer of the troposphere 
where the temperature is closest to the cloud top temperature.

The limitations of ISCCP retrievals in the original design of the simulator (Klein & Jakob,  1999; Webb 
et al., 2001) remain, such as the limits of the CTP and τ resolutions and the CTP estimation in a column associ-
ated with the highest (the lowest pressure) clouds masking changes in clouds below this level. Although left for 
future work and implementation, restricting the analysis to these bins simply to mimic the resolution limitations 
of the ISCCP instruments may not be necessary and, going forward, other radiatively-relevant properties and 
resolutions of data could be considered when calculating and decomposing the cloud feedback. Finally, we note 
that one major difference between the simulator here and the traditional implementation in GCMs involve the 
assumptions GCMs have to make about sub-grid scale cloudiness. While the implementation of a simulator in 
a GCM outputs one histogram per grid cell, where the simulator itself divides the grid into multiple columns 
to  account for sub-grid scale properties, the implementation online in SAM-CRM-COSP outputs one histogram 
for the entire domain. In this case, each grid cell of the domain is treated as an individual “sub-grid scale” column, 
which is cloudy for τ > 10 −7, and the entire domain is treated as a large grid cell. As such, since this study focuses 
on the results for RCE_small, so there will only be one histogram per time step where the temporal average over 
the ∼25 days is analyzed.

Data Availability Statement
We thank the German Climate Computing Center (DKRZ) for hosting the standardized RCEMIP data 
(Wing et  al.,  2020b), which is publicly available at http://hdl.handle.net/21.14101/d4beee8e-6996-
453e-bbd1-ff53b6874c0e. Data derived from the RCEMIP data set (Stauffer,  2023) are archived at 
https://doi.org/10.5281/zenodo.8270906.
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