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A B S T R A C T   

Synthesis of iron oxides with specific phases and particle sizes is a crucial challenge in various fields, including 
materials science, energy storage, biomedical applications, environmental science, and earth science. However, 
despite significant advances in this area, much of the current palette of particle outcomes has been based on time- 
consuming trial-and-error exploration of synthesis conditions. The present study was designed to explore a very 
different approach to 1) predict the outcome of synthesis from specified reaction parameters based on using 
machine learning (ML) techniques, and 2) correlate sets of parameters to obtain products with desired outcomes 
by a newly designed recommendation algorithm. To achieve this, four ML algorithms were tested, namely 
random forest, logistic regression, support vector machine, and k-nearest neighbor. Among the models, random 
forest outperformed the others, attaining 96% and 81% accuracy when predicting the phase and size of iron 
oxide particles in the test dataset. Surprisingly, the permutation feature importance analysis revealed that vol
ume, which may strongly relate to pressure, was one of the important features, along with precursor concen
tration, pH, temperature, and time, influencing the phase and size of iron oxide particles during synthesis. To 
verify the robustness of the random forest models, prediction and experimental results were compared based on 
24 randomly generated methods in additive and non-additive systems not included in the datasets. The pre
dictions of product phase and particle size from the models agreed well with the experimental results. 
Furthermore, a searching and ranking algorithm was developed to recommend potential synthesis parameters for 
obtaining iron oxide products with the desired phase and particle size from previous studies in the dataset. This 
study lays the foundation for a closed-loop approach in materials synthesis and preparation, beginning with 
suggesting potential reaction parameters from the dataset and predicting potential outcomes, followed by con
ducting experiments and analyses, and ultimately enriching the dataset.   

1. Introduction 

Controlled synthesis of nanomaterials with precisely defined size and 
phase has received significant attention for diverse applications in 
catalysis, energy storage, biomedicine, and environmental remediation. 
The size and phase of nanomaterials are critical factors that affect their 
optical, electronic, magnetic, and catalytic properties, and 

consequently, their performance [1–4]. For instance, size-dependent 
behavior, such as the quantum confinement effect in semiconductor 
nanocrystals, can be harnessed in applications like solar cells, light- 
emitting diodes, and other optoelectronic devices [5–7]. Smaller nano
particles also have a higher surface-to-volume ratio leading to a higher 
number of surface atoms that define particle reactivity and catalytic 
activity [8–10]. Furthermore, the phase of a material profoundly 
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influences its catalytic activity and selectivity, as different crystal 
structures can expose unique active sites and alter the adsorption and 
desorption kinetics of reactants and products [1,9,11,12]. Phase- 
dependent properties such as electrical conductivity, magnetism, and 
mechanical strength significantly impact the performance of a material 
in applications such as energy storage, sensing, and drug delivery 
[13,14]. Complicating matters is the fact that particle size can affect 
relative phase stabilities through the surface free energy contribution to 
the total free energy of the nanomaterial [15,16]. Therefore, achieving 
control over both the size and phase of nanomaterials is fundamentally 
important, but is also a complex endeavor that has traditionally relied on 
empirical trial-and-error approaches to achieve a desired result. 

Controlling the properties of iron oxide particles is a prominent case 
in point. Tailored synthesis of iron oxide particles enables exploitation of 
their full range of remarkable magnetic, electrical, and catalytic prop
erties [17]. Among the different iron oxide phases, hematite (α-Fe2O3) 
has been extensively studied due to its stability, nontoxicity, photo
electric properties, and potential applications in photocatalysis, gas 
sensing, antibacterial, and nanofluid applications [18–20]. However, 
achieving precise phase control to yield pure hematite particles as 
opposed to other iron oxide phases [e.g., maghemite (γ-Fe2O3), goethite 
(α-FeOOH), akageneite (β-FeOOH), lepidocrocite (γ-FeOOH), magnetite 
(Fe3O4), and ferrihydrite], while also controlling particle size and size 
distribution, remains challenging [21]. In recent years, significant 
progress has been made in developing various synthesis strategies for 
iron oxides, including hydrothermal synthesis, sol–gel method, and co- 
precipitation [22–24]. Nonetheless, because this has relied largely on 
empirical synthesis strategies, progress has not only been gradual and 
time-consuming but has also left uncertainty regarding the extent to 
which the full palette of particle properties has been sampled. A robust 
and accurate predictive model for optimizing the synthesis protocol of 
iron oxide nanoparticles to obtain the desired phase and particle size is 
still lacking. Consequently so is our fundamental understanding of the 
relevant nucleation and growth pathways that control particle out
comes, and the range of currently untapped additional possibilities. 

Machine learning (ML) has emerged as a promising approach to 
address the challenges of predicting synthesis-structure-property re
lationships of nanomaterials. ML utilizes computer algorithms and 
mathematical models to uncover the underlying relationships between 
features and labels, such as synthesis conditions and morphological 
parameters [25,26]. This predictive capability is particularly useful 
when the relationships between variables and outcomes are complicated 
or unknown [27,28]. With the advent of high-throughput experimental 
setups and an increase in experimental data sources, ML models can take 
advantage of the large amount of available data [29–31]. Various ML 
models, such as logistic regression [32], random forest [33], k-nearest 
neighbor [34], Gaussian processes [35], support vector machines [36], 
deep neural network [37], and Bayesian optimization [38], have been 
proposed for the analysis of different nanomaterials and their specific 
properties. For instance, Sun et al. combined various ML models and 
physics-based simulations to achieve efficient and accurate high- 
throughput production of silver nanoparticles, among studies of other 
metal participles [39]. Wang et al. developed an unsupervised ML model 
for transmission electron microscopy (TEM) image analysis and classi
fication of the gold nanoparticles [40]. Lee et al. used ML to quantita
tively analyze the morphology of gold nanoparticles via TEM images and 
achieved high precision [41]. Pellegrino et al. studied the performance 
of ML models for predicting the morphology of TiO2 nanoparticles ob
tained with different synthesis parameters [42]. Recently, Lu et al. and 
Wu et al. successfully trained models with various algorithm to predict 
the structure of 2D materials based on reaction conditions and to 
determine the stability of 2D materials from their crystallography 
structures [43,44]. These studies demonstrate the potential of ML in 
revealing the underlying relationships between synthesis conditions and 
the properties of iron oxide nanomaterials. 

Another common question in materials synthesis and preparation is 

how to choose the right experimental conditions. The selection of 
appropriate synthesis parameters is key to obtaining materials with 
desired properties. Currently, researchers need to extract and summa
rize the optimal sets of synthesis parameters manually. This is a time- 
consuming and error-prone process. Recently, advanced ML tools have 
been used to efficiently gather synthesis parameters from thousands of 
studies [45]. However, such large datasets make manual verification 
virtually impossible. Therefore, it is important to develop an objective 
method to evaluate, rank, and recommend conditions with a higher 
likelihood of synthesizing desired products. To our knowledge, only a 
few studies have discussed the recommendation of synthesis parameters 
from the existing datasets [46,47]. 

In this study, we utilized an iron oxide synthesis dataset, which we 
collected from published sources and unpublished data from our labo
ratory, to explore potential solutions for two important tasks: (i) pre
dicting the outcomes of different synthesis parameters, and (ii) 
determining the optimal parameters for a desired product. To address 
the first task, we trained and tested various ML models, including lo
gistic regression, random forest, k-nearest neighbor, and support vector 
machine. These models predicted the synthesis outcomes, such as the 
formation of hematite and the size of particles, based on experimental 
parameters. We also conducted permutation feature importance analysis 
to identify the most critical features that the models relied on to predict 
particle size and phase from synthesis conditions. Additionally, we 
conducted correlation analysis to examine the relationships between 
important features. To verify the accuracy of our random forest model, 
we compared its predictions with experimental results from 24 
randomly generated methods in both additive-added and additive-free 
systems, which were not included in the original dataset. The model’s 
predictions of product phase and particle size aligned well with the 
experimental results. For the second task, we developed a searching and 
ranking algorithm that can identify potential synthesis parameters for 
iron oxides with desired phase and particle size. The combination of 
these two solutions has the potential to form a “closed-loop” method that 
integrates parameter selection from the dataset, outcome prediction, 
experiment execution, and dataset enrichment. 

2. Experiments and methods 

2.1. Chemicals and materials 

Ferric chloride anhydrous, sodium dodecyl sulphate (SDS), and so
dium citrate, and sodium hydroxide were purchased from Sigma-Aldrich 
Chemical Reagent Co., Ltd. All chemicals are analytical purity and can 
be used directly without any further treatment. Deionized (DI) water 
used in this work was prepared using a Barnstead water purification 
system. 

2.2. Synthesis of iron oxides 

In a typical procedure, anhydrous ferric chloride and additives were 
dissolved in 15 ml of DI water under magnetic stirring at room tem
perature. The pH of the solution was then adjusted to the desired value 
by slowly adding 5 M NaOH and monitoring with a Thermo Scientific 
Orion Star A221 pH meter. The resulting solution was transferred into a 
20 ml Teflon liner stainless steel autoclave and kept at the specific 
temperature and time. The products were washed three times by DI 
water and the final products were collected by centrifugation at 8000 
rpm. 

2.3. Characterization 

Powder XRD of all as-prepared samples was performed on a Philips 
X’pert Multi-Purpose Diffractometer (MPD) (PANAlytical) equipped 
with Cu Kα radiation operating at 50 kV and 40 mA. Scanning Electron 
Microscopy (SEM) imaging was conducted on the FEI Helios NanoLab 
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600i dual-beam focused ion beam precision manufacturing instrument 
operating at 5 kV and 86 μA. To improve the electronic conductivity of 
the samples before SEM imaging, a thin carbon layer (about 5 nm) was 
deposited on the particle surface by using a carbon coater (208C; Ted 
Pella, Inc.). 

2.4. Data set characterization and collection 

Data on the synthesis methods, phase and particle size of iron oxide 
nanomaterials have been collected from previously reported studies as 
well as experimental data collected in the laboratory at Pacific North
west National Laboratory, USA. The dataset includes 780 pieces of data 
corresponding to iron oxides synthesis in different sets of conditions, 
including precursors, additives, solvents, concentrations of each ingre
dient and temperature. The corresponding phases of the iron oxides such 
as hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4). 
Goethite (α-FeOOH), akageneite (β-FeOOH), lepidocrocite (γ-FeOOH), 
ferrihydrite and the size of the nanoparticles were also included in the 
dataset. The dataset was consisted of about 729 sets of data from pre
vious publications reporting the iron oxides synthesis from 2010 to 2020 
as well as the 51 sets of laboratory experimental data. 

2.5. Software libraries 

All software libraries used in this study are listed below: Pandas [48], 
NumPy [49], scikit-learn [50], openpyxl [51], and Jupyter Notebook 
[52]. Pandas, NumPy, and openpyxl were employed for the purpose of 
importing, cleansing, and preprocessing data. The scikit-learn library 
and Jupyter Notebook were employed to train models based on different 
algorithms in an interactive Python environment. Data visualization and 
cluster analysis were conducted using Seaborn and Matplotlib [53,54]. 

2.6. Feature analytics and selection 

Eleven features were selected based on our experimental experience 
as having potential to significantly impact the synthesis of iron oxides. 
These features include precursor species and concentration, surfactant 
species and concentration, hydrogen ion concentration, temperature, 
reaction time, solvent, and solvent volume. Among the features selected 
for this study, precursor and surfactant species, as well as solvent, were 
categorical variables. To prepare the data for training the machine 
learning models, one-hot encoding was applied to each categorical 
variable. This process created additional feature columns from each 
categorical variable, with each unique value represented as a binary 
feature. For instance, the precursor variable contained several unique 
values, including FeCl3, Fe(NO3)3, FeSO4, FeC2O4, K3[Fe(CN)6], etc. 
Consequently, 10 additional feature columns were generated to replace 
the original precursor feature column. A value of 1 in a particular pre
cursor column indicated the use of that precursor in an experiment, 
while 0 indicated the use of a different precursor. Normalization was 
performed on the training set using the StandardScaler class from scikit- 
learn. The resulting standard scaler was then applied to both the training 
and test sets. The purpose of this normalization was to minimize any 
potential bias towards the test set, which should be considered as un
known during the training phase. By normalizing both the training and 
test sets in the same way, we aimed to ensure that the machine learning 
models could make accurate predictions on previously unseen data. 

2.7. Stratification, sampling, and training 

In our dataset, hematite was the primary synthesis product. How
ever, to address the issue of dataset imbalance, we used stratified sam
pling to ensure a relatively equal distribution of hematite and non- 
hematite samples in both the training and testing subsets. Specifically, 
we allocated 80% of the data to the training subset and 20% to the 
testing subset. This approach aimed to improve the robustness of the 

machine learning models by training them on a representative sample of 
the data and testing their generalization ability on previously unseen 
data. 

We trained models based on four ML algorithms, namely k-nearest 
neighbor (KNN), logistic regression (LR), support vector machine 
(SVM), and random forest (RF) [32–34,36]. We converted the prediction 
of whether the experimental conditions led to the formation of hematite 
or not into a binary classification. Two methods were employed to 
predict the size of nanoparticles, with regression based solely on the RF 
algorithm and classification based on KNN, SVM, and RF. In the classi
fication method, we sorted the nanoparticle sizes into three categories: 
nano (less than 100 nm), sub-micron (between 100 nm and 1000 nm), 
and micron (greater than 1000 nm). We excluded LR from the classifi
cation method. LR is mainly a binary classification method, while three 
labels were presented in the particle size prediction experiment. 

To achieve high accuracy in our analysis, k-fold cross-validation was 
then used in this study. We split the training dataset into k (in this study, 
k = 5) equally sized subgroups. In each validation subgroup, we used the 
confusion matrix to measure accuracy, while the remaining four sub
groups were used for training the machine learning models. The k-fold 
cross-validation process was repeated five times for each algorithm, with 
each subgroup used only once for validation. The mean value across the 
k-folds was calculated, and the cross-validation process was iterated for 
various combinations of hyperparameters. During the training of the 
machine learning models for all four algorithms, we performed grid 
search cross-validation to evaluate multiple models with different 
training parameters. We then selected the best model for each algorithm 
and compared their performance (see Table S1 for initial sets of pa
rameters and the best parameters). To evaluate the performance of the 
models, we used the testing dataset, which was not used during the 
training process. We measured the prediction performance using accu
racy, which is defined as the ratio of correctly predicted data to the total 
testing data. 

To obtain lists of feature importance for each algorithm after 
training, we utilized the permutation method available in scikit-learn. 
This method involves shuffling each feature per epoch and evaluating 
the resulting impact on model accuracy. Features that have a significant 
effect on model accuracy when shuffled are considered to be of high 
importance, while those that do not significantly affect model accuracy 
are considered to be of lower importance. We then performed a corre
lation analysis on the five most important features (temperature, pre
cursor concentration, pH, time, and solution volume) using Pearson’s 
correlation coefficients. Additionally, a hierarchically clustered heat
map was generated using seaborn to observe the relationship between 
these five conditions and the phase of the iron oxide products. We used 
all available features to train all models presented in this study. No 
features were removed based on the results of premutation and corre
lation analysis (see Table S3 to S7). 

2.8. Note for correlation analysis 

The correlation analysis was performed by using seaborn package 
[53]. The Pearson correlation coefficient method was used to obtain the 
dendrogram and reveal the relationship among important features. Two 
hierarchically clustered heatmaps were obtained to study the influence 
of important features on the phase and size of iron oxide particles. We 
noticed that the range of values for several features, including volume, 
precursor concentration, surfactant concentration, and time, may vary 
in a wide range (a magnitude of 3). For better comparison, we took the 
logarithm with a base of 10 for these four features. We also shift the 
surfactant concentration upward with +1 mM to prevent calculating the 
logarithm of 0. 

2.9. Design of searching and ranking recommendation algorithm 

The recommendation algorithm took the desired phase and particle 
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size of iron oxide as input. The ranking algorithm allowed us to quantify 
the degree of deviation of each parameter from its corresponding 
average value, using the standard deviation as a measure of variability, 
to recommend the most suitable conditions for achieving the desired 
phase and particle size of iron oxide. It then searched the entire dataset 
and selected all possible sets of conditions that met the desired criteria. 
We calculated the average (avg.) and standard deviation (std.) of the 
major features, including time, temperature, pH, precursor concentra
tion, and volume, from the selected sets of parameters. To evaluate how 
a specific parameter of a specific set differs from the averaged value, we 
used a ranking algorithm as shown in Eq. (1): 

sfeature =
σfeature

|Vfeature−avgfeature |
(1)  

Where sfeature is the score of the specific parameter in the specific set, 
Vfeature is the raw value of the feature, avgfeature and σfeature is the average 
and standard derivation of the feature. The scores from every parameter 
in the set were then added up and formed the final score of the set of 
features: 

Sset =
∑

i
sfeature,i (2) 

A high score (Sset) indicates that the parameters in this set are 
generally closer to the averaged value and more previous studies used 
similar parameters to synthesize the desired products. In contrast, a low 
score suggests that the parameters are farther from the averaged values 
and less studies used similar parameters to synthesize the desired 
products. 

3. Results and discussion 

3.1. Machine learning models 

We collected data from 780 iron oxide synthesis experiments (as 
shown in Fig. 1a), with each set of data comprising experiment condi
tions (features), e.g., precursor concentration, pH, reaction temperature, 
etc., and corresponding resultant parameters (labels), such as particle 
phase and size. Given that training ML models requires a substantial 
amount of data, we had to be mindful of our dataset’s small size, which 
precluded the use of more sophisticated algorithms like neural networks 
[55–58]. Consequently, we opted for four algorithms suitable for a small 
dataset as illustrated in Fig. 1b: KNN, LR, SVM, and RF [32–34,36]. KNN 
is an instance-based classification algorithm that assigns labels to unseen 
features based on their similarity to known features with certain labels. 
LR is a generalized linear model that exclusively handles binary classi
fication. It builds a function to calculate the probability of features 
belonging to one of the two bins and uses this to categorize unseen 
features. SVM is a kernel-based algorithm that maps features to a higher 
dimension and generates rules to classify them. We used a radial kernel 
for our SVM model. RF models comprise many decision trees, with their 
results combined to make the final prediction. To test the performance of 
these models, we first assessed their accuracy in binary classification, 
determining whether experimental conditions led to hematite formation 
or not. 

The Random Forest model outperformed all three other models for 
this binary classification question, with an accuracy of 96% (see 
Table S2). The KNN model predicted the formation of non-hematite 
compounds with 83% recall, while the recall for predicting the forma
tion of hematite compounds was 90% (Fig. 1c). The LR model had more 
divergent prediction accuracies, with a recall of only 60% for detecting 
the formation of non-hematite (Fig. 1d). In contrast, the model achieved 

Fig. 1. Prediction of formation of hematite based on experimental conditions by different ML methods. (a) A dataset of iron oxide synthesis conditions obtained from 
previous studies and our experimental results. (b) ML algorithms used in this study, including k-nearest neighborhood (KNN), logistic regression (LR), support vector 
machine (SVM), and random forest (RF). (c) to (f) Confusion matrices for models from KNN (c), LR (d), SVM (e), RF (f) to predict the formation of hematite. 
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94% recall in predicting the formation of hematite compounds. The SVM 
model achieved 75% recall in detecting the formation of non-hematite 
and 95% recall in predicting the formation of hematite (Fig. 1e). The 
RF model demonstrated the highest accuracy, with an recall of 92% for 
predicting non-hematite formation and 98% recall for predicting he
matite formation. The overall accuracy of the RF model was 96% 
(Fig. 1f). 

We employed the permutation method to derive feature importance 
rankings for the four models (Fig. 2). This technique entails shuffling the 
values of a single feature while keeping the others constant, and then 
observing the resulting impact on model accuracy. Features that exhibit 
a significant effect on model accuracy are deemed highly important, 
whereas those with minimal effect are considered less important. As a 
result, we are able to uncover the relationships between features 
(experimental conditions) and labels (phases of products). This 
approach proves valuable in determining such relationships, especially 
considering the “black box” nature of the machine learning models 
employed in this study. Despite the relative simplicity of the models 
used, they rely on thousands, if not tens of thousands, of internal pa
rameters to establish functions that connect features and labels [59]. It 
may also reveal previously ignored relationships between features 
(precursors, additives, and conditions) and labels (phase of iron oxide). 

The feature importance analysis reveals that temperature, pH, pre
cursor concentration, and time are crucial features for predicting the 
formation of hematite for most models. In the KNN model (Fig. 2a), 
temperature is the most important feature, followed by pH, volume, 
precursor concentration, and time. Interestingly, the model considers 
volume an important feature, despite the presence of precursor con
centration. A possible explanation is that the majority of the dataset 
involved hydrothermal synthesis using autoclaves, where the solution- 
to-autoclave volume ratio determines the pressure inside the autoclave 
[60]. Given that pressure is a key factor in hydrothermal reactions, the 
algorithm chose volume as a feature for predicting hematite formation 
[61]. 

The LR model is the only model that shows a different set of feature 
importance ranks than those of the other models. Although temperature 
is still the most important feature, the ranking of the other features is less 
intuitive. After temperature, this model relies on whether water and 

ethanol are used as solvents, or whether Fe(NO3)3 and poly
vinylpyrrolidone (PVP) are used during the synthesis. In addition, the LR 
model relies less on these features to predict hematite formation. The 
value of the importance of temperature is about two thirds than that of 
the KNN models (0.09 vs. 0.14). Hence, we believe that the LR model 
does not fully recognize the pattern of iron-oxide synthesis, especially 
for the non-hematite part (see Fig. 1d and Table S2). 

The SVM model relies on similar features to the KNN model to pre
dict the outcome of iron oxide synthesis, as shown in Fig. 2c. However, 
the presence of FeCl3 is more important than reaction time. The SVM 
model also relies more on the first five features than KNN to predict the 
phase of iron oxide, as the values of importance of the first five features 
are higher in the SVM model. As a result, the SVM model shows a higher 
accuracy in terms of binary phase prediction (see Table S2). 

The RF model which preforms the best accuracy on phase identifi
cation, uses the commonly known important features (precursor con
centration, temperature, time, volume, and pH) equally, with the 
highest and lowest feature importance scores of 0.17 and 0.11, respec
tively. Shuffling any of these five features has a similar effect on the 
accuracy of the model. The rest features show much lower important 
(<0.05, see Table S5). This is consisted with the principle of classical 
nucleation theory (CNT). According to CNT, the phase with lowest 
nucleation barrier will form fist and then consume the precursors to 
avoid the immediate formation of more stable phases. The steady-state 
nucleation rate (J) can be expressed as: 

J = J0exp( − ΔG*/kBT) (3)  

ΔG* = 16πV2
mγ3/ΔG2 (4)  

in which, J0 is per-factor and typically negligible compared to the dif
ference in the exponential term, ΔG* is the nucleation barrier to form a 
spherical critical nucleus; kB is Boltzmann constant; T is the temperature 
γ is the Gibbs surface free energy of nucleus (J/m2); Vm is the molar 
volume (cm3/mol) and ΔG is the thermodynamic driving force of phase 
change. As shown in equation (3) and (4), the precursor concentration, 
temperature, and pH are the dominating features to affect the ΔG, and 
thereby the phase. And the other less important features such as the type 
and concentration of additives has negligible impact on the driving force 
term, showing the good agreement between RF model and CNT. Inter
estingly, the additives like surfactants can also potentially alter the final 
products by changing the surface energy, however RF model didn’t rely 
heavily on this term to predict the phase. This may be due to the limited 
availability of data containing specific additives, particularly surfac
tants, the permutation algorithm may be misled as shuffling the column 
of such categorical features does not result in substantial changes. 

We performed correlation analysis using the Pearson correlation 
coefficient for the five main features determined by the premutation 
method (temperature, volume, precursor concentration, pH, and time) 
[62]. The results show that most of the features are independent from 
each other (Fig. 3a), although a dendrogram was still obtained. Most of 
the correlation coefficients are smaller than 0.1, indicating a negligible 
correlation. This is understandable as iron oxides can be synthesized in 
many different combinations of conditions [63]. One exception is tem
perature, which has a relatively strong negative correlation with the 
other features. One possible explanation for the correlation between 
temperature and solution volume could be related to the synthesis 
method used in the majority of the experiments in our dataset. Specif
ically, most of the syntheses used a hydrothermal method with auto
claves. In this method, high temperatures can lead to a significant 
increase of pressure inside the autoclave. If the volume of the solution is 
also high, this can exacerbate the pressure increase and may even cause 
leaking. As a result, the experimental conditions used in these experi
ments may have been limited by the maximum allowable temperature 
and volume for the given autoclave setup. Further experiments are 
needed to confirm this hypothesis [60]. Additionally, the negative 

Fig. 2. Premutation feature importance of four binary classification models. (a) 
to (d) Important features in of k-nearest neighborhood (a), logistic regression 
(b), support vector machine (c), and random forest (d) model. 
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correlation between temperature and time could likely be explained by 
the reaction kinetics of iron oxide synthesis. Increasing the temperature 
during the synthesis process is generally favorable for the formation of 
iron oxide crystals, which can reduce the reaction time required to 
achieve a desired outcome. 

A hierarchically clustered heatmap (see Fig. 3b) provided insight 
into the relationship among pH, temperature, and the formation of he
matite or other iron oxide phases, consistent with the principle of clas
sical nucleation theory [21]. Our results show that, under low pH (below 
4.0), most of the synthesized products were hematite (indicated in red). 
Conversely, at higher pH levels (above 4.0), the proportion of non- 
hematite products (indicated in blue) increased. The preference for 
acid solutions in hematite synthesis is due to the thermodynamic sta
bility of hematite under low pH conditions. In addition, acidic condi
tions dissolve iron-containing precursors and promote the nucleation 
and growth of hematite crystals. However, the oversaturation state of 
the solution decreases with decreasing pH. A higher temperature is 
desired to overcome the thermodynamical barrier of nucleation to form 
the stable hematite phase [21,64]. In the higher pH range, the solution is 
oversaturated in terms of all ferric oxides. In such case, the surface en
ergy will have a higher impact on the phase selection. Because the 
metastable phase has lower surface energies than thermodynamically 
stable phase hematite, the barrier to form a critical nucleus of meta
stable phase is lower. The metastable phase will form first and simul
taneously depletes the concentration of precursor, which hinders the 
formation of hematite at relatively high pH conditions. 

We employed permutation analysis and correlation analysis to 
explore previously undiscovered relationships between reaction condi
tions and the resulting phases of iron oxide. This approach allowed us to 
gain valuable insights into the mechanisms underlying iron oxide for
mation. Despite certain features, such as the type of surfactant, being 
considered unimportant, we still believe they may have a role in the 
process of iron oxide formation. This apparent lack of importance could 
be attributed to the limited size of our training dataset, which might 
have led to some surfactants being underrepresented. We are cautious 
about removing these features from the model, as doing so could 
potentially compromise the accuracy of our results. Therefore, to 
maintain the integrity of our analysis and to avoid any biases in feature 

selection, we chose not to perform any screening or elimination of fea
tures based on permutation and correlation analysis. Instead, we utilized 
all available features to train our models comprehensively for this study. 
This decision ensures that we do not overlook any potential relation
ships between the features and the phases of iron oxide, and it allows us 
to draw more robust conclusions from our analysis [62,65]. 

Particle size significantly influences the catalytic performance of iron 
oxide products, so it is important to know the size of the particles before 
conducting experiments [24,66–68]. Predicting the particle size of 
synthesized iron oxides based on the reaction conditions is of great in
terest. In this study, we initially attempted to use a random forest 
regression algorithm to train models for predicting the exact particle size 
based on the experimental conditions. The features used to train the 
particle size prediction models are exactly the same as the phase pre
diction. However, as shown in Fig. S1, the random forest regression 
model was unable to accurately predict the particle size of iron oxide 
particles from the test dataset. We hypothesized that the small size of our 
dataset may have contributed to the low accuracy of the random forest 
regression model, as the insufficient information prevented training the 
model effectively. To address this issue, we converted the prediction of 
particle size from a regression question into a classification question. By 
sorting the particle size into three categories: nano (less than 100 nm), 
submicron (100 nm to 1000 nm), and micron (greater than 1000 nm), 
we were able to use three machine learning algorithms to train models 
for predicting particle size based on the experimental conditions, 
including SVM, KNN, and RF (Fig. 4a). LR was excluded from the 
analysis for two reasons. Firstly, the performance of the LR model for 
binary phase classification was poor. Secondly, the LR model is gener
ally not suitable for multi-class classification without employing several 
tricks, such as transforming the multi-class problem into multiple binary 
classification problems. 

During the training process, the SVM algorithm failed to converge 
and produced no model (Fig. 4b). The KNN algorithm converged during 
training, but the resulting model has relatively low overall accuracy 
(62%), with recalls of 61% (nano), 63% (sub-micron), and 67% (micron) 
for predicting particle sizes from conditions in the test dataset (see 
Fig. 4c). In contrast, the RF-based model demonstrated the highest ac
curacy among the three algorithms, with an overall accuracy of 81%. 

Fig. 3. Correlation analysis of important features, including temperature, volume, precursor concentration, pH value, and time. The dendrogram with Pearson 
correlation coefficient (a) and cluster map (b) were generated based on the whole iron oxide synthesis dataset. 
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The RF-based model achieved recalls of 80%, 83%, and 75% for pre
dicting nano, sub-micron, and micron particles, respectively (see 
Fig. 4d). 

The feature importance analysis of the RF-based model showed that 
the pH, time, precursor concentration, volume, and temperature are the 
key features contributing to the categorization of the size of particles 
(see Fig. S2a). The pH has the highest importance (0.18), followed by 
time (0.17), precursor concentration (0.16), volume (0.13), and tem
perature (0.11). The pH is well-known to affect the phase of iron oxide, 
which, in turn, influences the size of particles. A high concentration of 
Fe3+ and long reaction time favor the growth of iron oxide particles with 
a large diameter, vice versa [69,70]. Similar to pH, the main effect of 
temperature is changing the possible phase of the products and therefore 
influences the size of particles. The impacts of volume (corresponding to 
pressure) during the hydrothermal synthesis are less studied than the 
rest of the important features. As the model heavily relies on this feature 
to predict the diameter of the particles, more experimental studies are 
needed to understand the relationship between pressure during the 
synthesis and the size of iron oxide particles. Similar to the RF based 
phase prediction model, this particle size prediction also utilized addi
tive concentrations as the 6th important feature (see Table S7). 

The model also used the concentration of surfactants to predict the 
size of the iron oxide particles, but the importance of this feature (0.04) 
was much lower than the others. One plausible reason is that the ma
jority of parameter sets were surfactant-free iron oxide synthesis hoping 
to avoid the contamination of the iron oxide particles by the organic 
molecules. Thus, the number of sets of parameters with surfactant may 
not have been enough to unveil the relationship between surfactants and 
particle size, and the model is not able to fully utilize this feature to 
predict the size of particles. 

We also tried using a hierarchical cluster map to investigate whether 
any of the key features may influence the particle size, in a way similar 
to how temperature and pH value affect the formation of hematite. 
However, such an influence was not able to be revealed, even when we 

narrowed down of the dataset and excluded all reactions that produced 
non-hematite particles. It seems that the control of particle size is ach
ieved through a complex combination of all the features, and the cluster 
map method may not be capable of revealing such influences. 

3.2. Experimental validation of ML models 

To further evaluate the performance of the RF-based binary classi
fication model and particle size prediction model, we synthesized iron 
oxides with and without adding surfactants (see Table 1 and 2). We 
prepared 18 surfactant-free samples, which are shown in Table 1, 
Figs. S3 and S4. The binary phase classification model correctly identi
fied the formation of hematite from 15 sets of conditions, resulting in an 
accuracy of 83%. The model incorrectly classified three sets of condi
tions, which were the combination of high pH with high temperature 
(Exp. 3) and low pH with low temperature (Exp. 4 and 5). 

SEM observations suggest that the RF model for predicting particle 
size based on experimental conditions is less accurate than the binary 
phase classification model. The RF model accurately predicted the size 
range of particles in 11 out of 18 samples (Sample 1, 2, 3, 6, 8, 9, 10, 12, 
14, 15, and 16). For Samples 7 and 13, the model’s predictions were 
mixed, with SEM images showing that Sample 7 contained both nano 
and sub-micron particles, while Sample 13 was made up of sub-micron 
and micron particles. The model also incorrectly predicted the particle 
size of Sample 4, 5, 11, 17, and 18. 

The RF model accurately predicted the phase and size of iron oxide 
particles synthesized with sodium dodecyl sulfate (SDS) while the pre
dictions for all experiments involving sodium citrate (SC) were inaccu
rate. Closer examination of the experimental conditions for iron oxide 
synthesis with SDS (Exp. 19–21) revealed that the additive may alter the 
morphology of the iron oxide particles but not the phase type. The 
synthesis conditions of Exp. 19 and 21 were acidic or weak basic envi
ronments (pH of 2.0 and 8.0 respectively) with relatively high reaction 
temperature (180 ◦C). The combination of these two conditions is 

Fig. 4. Prediction of particle size of products based on conditions of reactions. (a) Dividing product particles into three categories based on size. (b) to (d) Prediction 
results based on models from SVM (b), KNN (c), and RF (d). Training SVM models were unsuccessful since fitting was not converged. 
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known to cause the formation of hematite. In Exp. 20, the reaction 
temperature was only 110 ◦C, favoring the formation of non-hematite 
products, such as akageneite in this case. On the other hand, the intro
duction of SC significantly altered the phase of the iron oxide products, 
even when the experimental conditions clearly favored the formation of 
hematite. For instance, in Exp. 22, we observed the formation of 
magnetite (Fe3O4) at high reaction temperature and low pH value, while 
ferrihydrite was formed in the low-temperature reaction. The reason SC 
significantly altered the formation of phases is that this additive can 
cause the reduction of Fe3+ ions into Fe2+. In contrast, SDS additive does 
not react with Fe3+ ions. Overall, the RF model exhibited good pre
dicting accuracy when the additive was not reactive with Fe ions. 

The findings from the feature importance analysis (Fig. 2d), 

correlation analysis (Fig. 3b), and the comparison of model predictions 
versus experimental results (see Tables 1 and 2) indicate that the RF- 
based model is most likely to predict the formation of hematite when 
either of the following conditions is met: low pH or high reaction tem
perature. This observation aligns with the thermodynamic perspective 
on the preferred conditions that induce the formation of various iron 
oxide phases, as discussed previously [21,64]. Notably, the RF model 
also takes into account precursor concentration, volume of solvent (may 
be corresponded to pressure), and reaction time to determine the like
lihood of hematite formation (Fig. 2d). However, no evident relationship 
between the formation of hematite and these features was observed 
during the correlation analysis (Fig. 3d). It is believed that these three 
features exert a more subtle influence on the formation of hematite 
compared to pH and reaction temperature, warranting further 
investigation. 

3.3. Optimizing synthesis algorithm based on dataset 

We have devised a search and ranking algorithm for suggesting 
relevant previous studies from our dataset, aiding in the synthesis of iron 
oxide particles with specific properties, including phase and particle 
size. This algorithm presents the parameters employed in previous 
studies, along with their corresponding digital object identifiers (DOIs) 
(refer to Fig. 5). The algorithm operates on the principle that values 
frequently employed in a particular feature to synthesize the desired 
product are more likely to yield successful outcomes compared to 
infrequently used values. Therefore, if a previous study employs values 
that are consistently employed to synthesize the desired products, it 
receives a high recommendation, and vice versa. 

To implement this idea, we retrieved all possible sets of reaction 
conditions from the iron oxide dataset that could produce the desired 
product and calculated the mean and standard deviation of the features 
from the resulting sub-dataset (Fig. 5a and 5b). We then calculated a 
ranking score for each set of parameters using a detailed algorithm 
outlined in the methods section. The algorithm considers the distance 
between each feature value and its corresponding average value in the 
sub-dataset (Fig. 5c). Sets of parameters with higher ranking scores are 
more likely to have been used in previous studies to synthesize the 
desired product. Conversely, sets of parameters with lower ranking 
scores are less likely to have been used. The output of the algorithm is a 
list of recommended sets of parameters for synthesizing the desired 
product in the previous studies and DOIs of the studies using these pa
rameters. This algorithm can significantly reduce the time and effort 
required to search for specific iron oxide particles. An example of the 
algorithm’s output for synthesizing hematite nanoparticles with di
ameters between 25 nm and 75 nm is shown in Table S4. It should be 
noted that this algorithm is not capable of suggesting synthesis param
eters beyond the range the dataset. 

4. Conclusion 

This study addresses two significant challenges in materials synthe
sis: predicting the outcome of a synthesis from specified reaction 

Table 1 
Utilizing random forest-based models to predict phase and size of iron oxide 
products on random generated experiments. Volume of solvent and reaction 
time were fixed at 15 ml and 16 h, respectively. XRD was used to identify phases 
(Figs. S3 and S4), and SEM was utilized to identify size of particles (Fig. S5).  

No. FeCl3 

conc. 
(mM) 

pH Temp. 
(◦C) 

Is hem. 
Predict 

Predict 
size 

Exp. 
phase 
* 

Exp. 
size 

Exp 
1 

500  1.1 180 True Micron Hem Micron 

Exp 
2 

428  2.0 180 True Micron Hem Micron 

Exp 
3 

372  12.6 180 True Nano Gt Nano 

Exp 
4 

500  1.1 80 True Micron Gt Sub-μ 

Exp 
5 

428  2.0 80 True Micron Gt Nano 

Exp 
6 

372  12.6 80 False Nano Gt Nano 

Exp 
7 

100  1.7 180 True Sub-μ Hem Sub-μ & 
Micron 

Exp 
8 

98  2.1 180 True Sub-μ Hem Sub-μ 

Exp 
9 

90  12.8 180 False Sub-μ Gt Sub-μ 

Exp 
10 

100  1.7 80 False Sub-μ Aka Sub-μ 

Exp 
11 

98  2.1 80 False Sub-μ Aka Nano 

Exp 
12 

90  12.8 80 False Nano Gt Nano 

Exp 
13 

10  2.4 180 True Sub-μ Hem Nano & 
Sub-μ 

Exp 
14 

10  11.9 180 False Sub-μ Gt Sub-μ 

Exp 
15 

10  3.7 180 True Sub-μ Hem Sub-μ 

Exp 
16 

10  2.4 80 False Sub-μ Aka Sub-μ 

Exp 
17 

10  11.9 80 False Nano Gt Sub-μ 

Exp 
18 

10  3.7 80 False Sub-μ Aka Nano  

* Hem.: Hematite, Gt.: Goethite, Aka.: Akageneite. 

Table 2 
Utilizing random forest-based models to predict phase and size of iron oxide products on random generated experiments with surfactant. Volume was fixed at 15 ml. 
XRD was used to identify phases (see Fig. S6), and SEM was utilized to identify size of particles (see Fig. S7).  

No. FeCl3 conc. (mM) Time (h) pH Additive* Additive conc. (mM) Temp. (◦C) Is hem. Predict Predict size Exp. phase** Exp. size 

Exp 19 831 7  2.0 SDS 131 180 True Nano Hem Nano 
Exp 20 971 5  8.0 SDS 181 110 False Nano Aka Nano 
Exp 21 501 29  8.0 SDS 121 180 True Sub-μ Hem Sub-μ 
Exp 22 461 37  2.0 SC 141 180 True Sub-μ Mag Nano 
Exp 23 671 41  2.0 SC 191 95 True Micron 2L-Fh Nano 
Exp 24 471 34  10.0 SC 61 110 False Nano 2L-Fh Nano  

* SDS: Sodium dodecyl sulfate, SC: Sodium citrate. 
** Hem: Hematite, Gt: Goethite, Aka: Akaganeite, Mag: Magnetite, 2L-Fh: 2-line Ferrihydrite. 
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parameters, and correlating sets of parameters to obtain products with 
desired outcomes. To predict experimental outcomes, we trained four 
machine learning algorithms, including random forest, logistic regres
sion, support vector machine, and k-nearest neighbor, to predict the 
phase and particle size of iron oxide based on experimental conditions. 
Among these models, random forest demonstrated the best performance, 
achieving 96% and 81% accuracy in predicting the phase and size of iron 
oxides in the test dataset. The permutation feature importance analysis 
revealed that volume, which is plausibly correlated with pressure, ex
hibits a significant influence to the phase and size of iron oxide particles, 
along with precursor concentration, pH, temperature, and time. The 
random forest-based models were further evaluated by experimentally 
synthesizing iron oxide particles in both additive-free and additive 
systems, demonstrating overall good accuracy. Additionally, a searching 
and ranking algorithm was developed to recommend potential synthesis 
parameters from previous studies for obtaining iron oxide products with 
desired phase and particle size from previous studies in the dataset. This 
study lays the groundwork for a closed-loop approach to materials 
synthesis and preparation, from suggesting potential reaction parame
ters in the dataset and predicting potential outcomes, through con
ducting experiments and analysis, to enriching the dataset. 
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Fig. 5. Retrieving desired synthesis parameters to obtain iron oxide particles with specified phase and particle size. (a) Selecting all possible sets of parameters from 
dataset (e.g., hematite with 25 nm to 75 nm diameter). (b) Calculating average and standard derivation from every category of parameter. (c) Illustration of ranking 
parameters in every set and summarize result. The red dots show the set of parameters more likely to synthesize desired product, vice versa for the green dots. 
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