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ABSTRACT

Synthesis of iron oxides with specific phases and particle sizes is a crucial challenge in various fields, including
materials science, energy storage, biomedical applications, environmental science, and earth science. However,
despite significant advances in this area, much of the current palette of particle outcomes has been based on time-
consuming trial-and-error exploration of synthesis conditions. The present study was designed to explore a very
different approach to 1) predict the outcome of synthesis from specified reaction parameters based on using
machine learning (ML) techniques, and 2) correlate sets of parameters to obtain products with desired outcomes
by a newly designed recommendation algorithm. To achieve this, four ML algorithms were tested, namely
random forest, logistic regression, support vector machine, and k-nearest neighbor. Among the models, random
forest outperformed the others, attaining 96% and 81% accuracy when predicting the phase and size of iron
oxide particles in the test dataset. Surprisingly, the permutation feature importance analysis revealed that vol-
ume, which may strongly relate to pressure, was one of the important features, along with precursor concen-
tration, pH, temperature, and time, influencing the phase and size of iron oxide particles during synthesis. To
verify the robustness of the random forest models, prediction and experimental results were compared based on
24 randomly generated methods in additive and non-additive systems not included in the datasets. The pre-
dictions of product phase and particle size from the models agreed well with the experimental results.
Furthermore, a searching and ranking algorithm was developed to recommend potential synthesis parameters for
obtaining iron oxide products with the desired phase and particle size from previous studies in the dataset. This
study lays the foundation for a closed-loop approach in materials synthesis and preparation, beginning with
suggesting potential reaction parameters from the dataset and predicting potential outcomes, followed by con-
ducting experiments and analyses, and ultimately enriching the dataset.

1. Introduction

consequently, their performance [1-4]. For instance, size-dependent
behavior, such as the quantum confinement effect in semiconductor

Controlled synthesis of nanomaterials with precisely defined size and
phase has received significant attention for diverse applications in
catalysis, energy storage, biomedicine, and environmental remediation.
The size and phase of nanomaterials are critical factors that affect their
optical, electronic, magnetic, and catalytic properties, and
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nanocrystals, can be harnessed in applications like solar cells, light-
emitting diodes, and other optoelectronic devices [5-7]. Smaller nano-
particles also have a higher surface-to-volume ratio leading to a higher
number of surface atoms that define particle reactivity and catalytic
activity [8-10]. Furthermore, the phase of a material profoundly
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influences its catalytic activity and selectivity, as different crystal
structures can expose unique active sites and alter the adsorption and
desorption kinetics of reactants and products [1,9,11,12]. Phase-
dependent properties such as electrical conductivity, magnetism, and
mechanical strength significantly impact the performance of a material
in applications such as energy storage, sensing, and drug delivery
[13,14]. Complicating matters is the fact that particle size can affect
relative phase stabilities through the surface free energy contribution to
the total free energy of the nanomaterial [15,16]. Therefore, achieving
control over both the size and phase of nanomaterials is fundamentally
important, but is also a complex endeavor that has traditionally relied on
empirical trial-and-error approaches to achieve a desired result.

Controlling the properties of iron oxide particles is a prominent case
in point. Tailored synthesis of iron oxide particles enables exploitation of
their full range of remarkable magnetic, electrical, and catalytic prop-
erties [17]. Among the different iron oxide phases, hematite (a-Fep03)
has been extensively studied due to its stability, nontoxicity, photo-
electric properties, and potential applications in photocatalysis, gas
sensing, antibacterial, and nanofluid applications [18-20]. However,
achieving precise phase control to yield pure hematite particles as
opposed to other iron oxide phases [e.g., maghemite (y-Feo03), goethite
(a-FeOOH), akageneite (B-FeOOH), lepidocrocite (y-FeOOH), magnetite
(Fe304), and ferrihydrite], while also controlling particle size and size
distribution, remains challenging [21]. In recent years, significant
progress has been made in developing various synthesis strategies for
iron oxides, including hydrothermal synthesis, sol-gel method, and co-
precipitation [22-24]. Nonetheless, because this has relied largely on
empirical synthesis strategies, progress has not only been gradual and
time-consuming but has also left uncertainty regarding the extent to
which the full palette of particle properties has been sampled. A robust
and accurate predictive model for optimizing the synthesis protocol of
iron oxide nanoparticles to obtain the desired phase and particle size is
still lacking. Consequently so is our fundamental understanding of the
relevant nucleation and growth pathways that control particle out-
comes, and the range of currently untapped additional possibilities.

Machine learning (ML) has emerged as a promising approach to
address the challenges of predicting synthesis-structure-property re-
lationships of nanomaterials. ML utilizes computer algorithms and
mathematical models to uncover the underlying relationships between
features and labels, such as synthesis conditions and morphological
parameters [25,26]. This predictive capability is particularly useful
when the relationships between variables and outcomes are complicated
or unknown [27,28]. With the advent of high-throughput experimental
setups and an increase in experimental data sources, ML models can take
advantage of the large amount of available data [29-31]. Various ML
models, such as logistic regression [32], random forest [33], k-nearest
neighbor [34], Gaussian processes [35], support vector machines [36],
deep neural network [37], and Bayesian optimization [38], have been
proposed for the analysis of different nanomaterials and their specific
properties. For instance, Sun et al. combined various ML models and
physics-based simulations to achieve efficient and accurate high-
throughput production of silver nanoparticles, among studies of other
metal participles [39]. Wang et al. developed an unsupervised ML model
for transmission electron microscopy (TEM) image analysis and classi-
fication of the gold nanoparticles [40]. Lee et al. used ML to quantita-
tively analyze the morphology of gold nanoparticles via TEM images and
achieved high precision [41]. Pellegrino et al. studied the performance
of ML models for predicting the morphology of TiO, nanoparticles ob-
tained with different synthesis parameters [42]. Recently, Lu et al. and
Wu et al. successfully trained models with various algorithm to predict
the structure of 2D materials based on reaction conditions and to
determine the stability of 2D materials from their crystallography
structures [43,44]. These studies demonstrate the potential of ML in
revealing the underlying relationships between synthesis conditions and
the properties of iron oxide nanomaterials.

Another common question in materials synthesis and preparation is
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how to choose the right experimental conditions. The selection of
appropriate synthesis parameters is key to obtaining materials with
desired properties. Currently, researchers need to extract and summa-
rize the optimal sets of synthesis parameters manually. This is a time-
consuming and error-prone process. Recently, advanced ML tools have
been used to efficiently gather synthesis parameters from thousands of
studies [45]. However, such large datasets make manual verification
virtually impossible. Therefore, it is important to develop an objective
method to evaluate, rank, and recommend conditions with a higher
likelihood of synthesizing desired products. To our knowledge, only a
few studies have discussed the recommendation of synthesis parameters
from the existing datasets [46,47].

In this study, we utilized an iron oxide synthesis dataset, which we
collected from published sources and unpublished data from our labo-
ratory, to explore potential solutions for two important tasks: (i) pre-
dicting the outcomes of different synthesis parameters, and (ii)
determining the optimal parameters for a desired product. To address
the first task, we trained and tested various ML models, including lo-
gistic regression, random forest, k-nearest neighbor, and support vector
machine. These models predicted the synthesis outcomes, such as the
formation of hematite and the size of particles, based on experimental
parameters. We also conducted permutation feature importance analysis
to identify the most critical features that the models relied on to predict
particle size and phase from synthesis conditions. Additionally, we
conducted correlation analysis to examine the relationships between
important features. To verify the accuracy of our random forest model,
we compared its predictions with experimental results from 24
randomly generated methods in both additive-added and additive-free
systems, which were not included in the original dataset. The model’s
predictions of product phase and particle size aligned well with the
experimental results. For the second task, we developed a searching and
ranking algorithm that can identify potential synthesis parameters for
iron oxides with desired phase and particle size. The combination of
these two solutions has the potential to form a “closed-loop” method that
integrates parameter selection from the dataset, outcome prediction,
experiment execution, and dataset enrichment.

2. Experiments and methods
2.1. Chemicals and materials

Ferric chloride anhydrous, sodium dodecyl sulphate (SDS), and so-
dium citrate, and sodium hydroxide were purchased from Sigma-Aldrich
Chemical Reagent Co., Ltd. All chemicals are analytical purity and can
be used directly without any further treatment. Deionized (DI) water
used in this work was prepared using a Barnstead water purification
system.

2.2. Synthesis of iron oxides

In a typical procedure, anhydrous ferric chloride and additives were
dissolved in 15 ml of DI water under magnetic stirring at room tem-
perature. The pH of the solution was then adjusted to the desired value
by slowly adding 5 M NaOH and monitoring with a Thermo Scientific
Orion Star A221 pH meter. The resulting solution was transferred into a
20 ml Teflon liner stainless steel autoclave and kept at the specific
temperature and time. The products were washed three times by DI
water and the final products were collected by centrifugation at 8000
rpm.

2.3. Characterization

Powder XRD of all as-prepared samples was performed on a Philips
X’pert Multi-Purpose Diffractometer (MPD) (PANAlytical) equipped
with Cu Ka radiation operating at 50 kV and 40 mA. Scanning Electron
Microscopy (SEM) imaging was conducted on the FEI Helios NanoLab
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600i dual-beam focused ion beam precision manufacturing instrument
operating at 5 kV and 86 pA. To improve the electronic conductivity of
the samples before SEM imaging, a thin carbon layer (about 5 nm) was
deposited on the particle surface by using a carbon coater (208C; Ted
Pella, Inc.).

2.4. Data set characterization and collection

Data on the synthesis methods, phase and particle size of iron oxide
nanomaterials have been collected from previously reported studies as
well as experimental data collected in the laboratory at Pacific North-
west National Laboratory, USA. The dataset includes 780 pieces of data
corresponding to iron oxides synthesis in different sets of conditions,
including precursors, additives, solvents, concentrations of each ingre-
dient and temperature. The corresponding phases of the iron oxides such
as hematite (a-FepO3), maghemite (y-FeyOs3), magnetite (Fe3Oy).
Goethite (a-FeOOH), akageneite (p-FeOOH), lepidocrocite (y-FeOOH),
ferrihydrite and the size of the nanoparticles were also included in the
dataset. The dataset was consisted of about 729 sets of data from pre-
vious publications reporting the iron oxides synthesis from 2010 to 2020
as well as the 51 sets of laboratory experimental data.

2.5. Software libraries

All software libraries used in this study are listed below: Pandas [48],
NumPy [49], scikit-learn [50], openpyxl [51], and Jupyter Notebook
[52]. Pandas, NumPy, and openpyxl were employed for the purpose of
importing, cleansing, and preprocessing data. The scikit-learn library
and Jupyter Notebook were employed to train models based on different
algorithms in an interactive Python environment. Data visualization and
cluster analysis were conducted using Seaborn and Matplotlib [53,54].

2.6. Feature analytics and selection

Eleven features were selected based on our experimental experience
as having potential to significantly impact the synthesis of iron oxides.
These features include precursor species and concentration, surfactant
species and concentration, hydrogen ion concentration, temperature,
reaction time, solvent, and solvent volume. Among the features selected
for this study, precursor and surfactant species, as well as solvent, were
categorical variables. To prepare the data for training the machine
learning models, one-hot encoding was applied to each categorical
variable. This process created additional feature columns from each
categorical variable, with each unique value represented as a binary
feature. For instance, the precursor variable contained several unique
values, including FeCls, Fe(NOs)s, FeSO4, FeC204, K3[Fe(CN)cl, etc.
Consequently, 10 additional feature columns were generated to replace
the original precursor feature column. A value of 1 in a particular pre-
cursor column indicated the use of that precursor in an experiment,
while 0 indicated the use of a different precursor. Normalization was
performed on the training set using the StandardScaler class from scikit-
learn. The resulting standard scaler was then applied to both the training
and test sets. The purpose of this normalization was to minimize any
potential bias towards the test set, which should be considered as un-
known during the training phase. By normalizing both the training and
test sets in the same way, we aimed to ensure that the machine learning
models could make accurate predictions on previously unseen data.

2.7. Stratification, sampling, and training

In our dataset, hematite was the primary synthesis product. How-
ever, to address the issue of dataset imbalance, we used stratified sam-
pling to ensure a relatively equal distribution of hematite and non-
hematite samples in both the training and testing subsets. Specifically,
we allocated 80% of the data to the training subset and 20% to the
testing subset. This approach aimed to improve the robustness of the
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machine learning models by training them on a representative sample of
the data and testing their generalization ability on previously unseen
data.

We trained models based on four ML algorithms, namely k-nearest
neighbor (KNN), logistic regression (LR), support vector machine
(SVM), and random forest (RF) [32-34,36]. We converted the prediction
of whether the experimental conditions led to the formation of hematite
or not into a binary classification. Two methods were employed to
predict the size of nanoparticles, with regression based solely on the RF
algorithm and classification based on KNN, SVM, and RF. In the classi-
fication method, we sorted the nanoparticle sizes into three categories:
nano (less than 100 nm), sub-micron (between 100 nm and 1000 nm),
and micron (greater than 1000 nm). We excluded LR from the classifi-
cation method. LR is mainly a binary classification method, while three
labels were presented in the particle size prediction experiment.

To achieve high accuracy in our analysis, k-fold cross-validation was
then used in this study. We split the training dataset into k (in this study,
k = 5) equally sized subgroups. In each validation subgroup, we used the
confusion matrix to measure accuracy, while the remaining four sub-
groups were used for training the machine learning models. The k-fold
cross-validation process was repeated five times for each algorithm, with
each subgroup used only once for validation. The mean value across the
k-folds was calculated, and the cross-validation process was iterated for
various combinations of hyperparameters. During the training of the
machine learning models for all four algorithms, we performed grid
search cross-validation to evaluate multiple models with different
training parameters. We then selected the best model for each algorithm
and compared their performance (see Table S1 for initial sets of pa-
rameters and the best parameters). To evaluate the performance of the
models, we used the testing dataset, which was not used during the
training process. We measured the prediction performance using accu-
racy, which is defined as the ratio of correctly predicted data to the total
testing data.

To obtain lists of feature importance for each algorithm after
training, we utilized the permutation method available in scikit-learn.
This method involves shuffling each feature per epoch and evaluating
the resulting impact on model accuracy. Features that have a significant
effect on model accuracy when shuffled are considered to be of high
importance, while those that do not significantly affect model accuracy
are considered to be of lower importance. We then performed a corre-
lation analysis on the five most important features (temperature, pre-
cursor concentration, pH, time, and solution volume) using Pearson’s
correlation coefficients. Additionally, a hierarchically clustered heat-
map was generated using seaborn to observe the relationship between
these five conditions and the phase of the iron oxide products. We used
all available features to train all models presented in this study. No
features were removed based on the results of premutation and corre-
lation analysis (see Table S3 to S7).

2.8. Note for correlation analysis

The correlation analysis was performed by using seaborn package
[53]. The Pearson correlation coefficient method was used to obtain the
dendrogram and reveal the relationship among important features. Two
hierarchically clustered heatmaps were obtained to study the influence
of important features on the phase and size of iron oxide particles. We
noticed that the range of values for several features, including volume,
precursor concentration, surfactant concentration, and time, may vary
in a wide range (a magnitude of 3). For better comparison, we took the
logarithm with a base of 10 for these four features. We also shift the
surfactant concentration upward with +1 mM to prevent calculating the
logarithm of 0.

2.9. Design of searching and ranking recommendation algorithm

The recommendation algorithm took the desired phase and particle



J. Liu et al.

size of iron oxide as input. The ranking algorithm allowed us to quantify
the degree of deviation of each parameter from its corresponding
average value, using the standard deviation as a measure of variability,
to recommend the most suitable conditions for achieving the desired
phase and particle size of iron oxide. It then searched the entire dataset
and selected all possible sets of conditions that met the desired criteria.
We calculated the average (avg.) and standard deviation (std.) of the
major features, including time, temperature, pH, precursor concentra-
tion, and volume, from the selected sets of parameters. To evaluate how
a specific parameter of a specific set differs from the averaged value, we
used a ranking algorithm as shown in Eq. (1):

Ofeature e}

Sfeature =

Where Sgqnre is the score of the specific parameter in the specific set,
Veature is the raw value of the feature, WVEfeqture and ofequre is the average
and standard derivation of the feature. The scores from every parameter
in the set were then added up and formed the final score of the set of
features:

Se = Zsfw,m,,- ()

A high score (S,) indicates that the parameters in this set are
generally closer to the averaged value and more previous studies used
similar parameters to synthesize the desired products. In contrast, a low
score suggests that the parameters are farther from the averaged values
and less studies used similar parameters to synthesize the desired
products.

(@)
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3. Results and discussion
3.1. Machine learning models

We collected data from 780 iron oxide synthesis experiments (as
shown in Fig. 1a), with each set of data comprising experiment condi-
tions (features), e.g., precursor concentration, pH, reaction temperature,
etc., and corresponding resultant parameters (labels), such as particle
phase and size. Given that training ML models requires a substantial
amount of data, we had to be mindful of our dataset’s small size, which
precluded the use of more sophisticated algorithms like neural networks
[55-58]. Consequently, we opted for four algorithms suitable for a small
dataset as illustrated in Fig. 1b: KNN, LR, SVM, and RF [32-34,36]. KNN
is an instance-based classification algorithm that assigns labels to unseen
features based on their similarity to known features with certain labels.
LR is a generalized linear model that exclusively handles binary classi-
fication. It builds a function to calculate the probability of features
belonging to one of the two bins and uses this to categorize unseen
features. SVM is a kernel-based algorithm that maps features to a higher
dimension and generates rules to classify them. We used a radial kernel
for our SVM model. RF models comprise many decision trees, with their
results combined to make the final prediction. To test the performance of
these models, we first assessed their accuracy in binary classification,
determining whether experimental conditions led to hematite formation
or not.

The Random Forest model outperformed all three other models for
this binary classification question, with an accuracy of 96% (see
Table S2). The KNN model predicted the formation of non-hematite
compounds with 83% recall, while the recall for predicting the forma-
tion of hematite compounds was 90% (Fig. 1c). The LR model had more
divergent prediction accuracies, with a recall of only 60% for detecting
the formation of non-hematite (Fig. 1d). In contrast, the model achieved
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Fig. 1. Prediction of formation of hematite based on experimental conditions by different ML methods. (a) A dataset of iron oxide synthesis conditions obtained from
previous studies and our experimental results. (b) ML algorithms used in this study, including k-nearest neighborhood (KNN), logistic regression (LR), support vector
machine (SVM), and random forest (RF). (c) to (f) Confusion matrices for models from KNN (c), LR (d), SVM (e), RF (f) to predict the formation of hematite.
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94% recall in predicting the formation of hematite compounds. The SVM
model achieved 75% recall in detecting the formation of non-hematite
and 95% recall in predicting the formation of hematite (Fig. 1e). The
RF model demonstrated the highest accuracy, with an recall of 92% for
predicting non-hematite formation and 98% recall for predicting he-
matite formation. The overall accuracy of the RF model was 96%
(Fig. 1f).

We employed the permutation method to derive feature importance
rankings for the four models (Fig. 2). This technique entails shuffling the
values of a single feature while keeping the others constant, and then
observing the resulting impact on model accuracy. Features that exhibit
a significant effect on model accuracy are deemed highly important,
whereas those with minimal effect are considered less important. As a
result, we are able to uncover the relationships between features
(experimental conditions) and labels (phases of products). This
approach proves valuable in determining such relationships, especially
considering the “black box” nature of the machine learning models
employed in this study. Despite the relative simplicity of the models
used, they rely on thousands, if not tens of thousands, of internal pa-
rameters to establish functions that connect features and labels [59]. It
may also reveal previously ignored relationships between features
(precursors, additives, and conditions) and labels (phase of iron oxide).

The feature importance analysis reveals that temperature, pH, pre-
cursor concentration, and time are crucial features for predicting the
formation of hematite for most models. In the KNN model (Fig. 2a),
temperature is the most important feature, followed by pH, volume,
precursor concentration, and time. Interestingly, the model considers
volume an important feature, despite the presence of precursor con-
centration. A possible explanation is that the majority of the dataset
involved hydrothermal synthesis using autoclaves, where the solution-
to-autoclave volume ratio determines the pressure inside the autoclave
[60]. Given that pressure is a key factor in hydrothermal reactions, the
algorithm chose volume as a feature for predicting hematite formation
[61].

The LR model is the only model that shows a different set of feature
importance ranks than those of the other models. Although temperature
is still the most important feature, the ranking of the other features is less
intuitive. After temperature, this model relies on whether water and
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Fig. 2. Premutation feature importance of four binary classification models. (a)
to (d) Important features in of k-nearest neighborhood (a), logistic regression
(b), support vector machine (c), and random forest (d) model.

Chemical Engineering Journal 473 (2023) 145216

ethanol are used as solvents, or whether Fe(NOs)s and poly-
vinylpyrrolidone (PVP) are used during the synthesis. In addition, the LR
model relies less on these features to predict hematite formation. The
value of the importance of temperature is about two thirds than that of
the KNN models (0.09 vs. 0.14). Hence, we believe that the LR model
does not fully recognize the pattern of iron-oxide synthesis, especially
for the non-hematite part (see Fig. 1d and Table S2).

The SVM model relies on similar features to the KNN model to pre-
dict the outcome of iron oxide synthesis, as shown in Fig. 2c. However,
the presence of FeCls is more important than reaction time. The SVM
model also relies more on the first five features than KNN to predict the
phase of iron oxide, as the values of importance of the first five features
are higher in the SVM model. As a result, the SVM model shows a higher
accuracy in terms of binary phase prediction (see Table S2).

The RF model which preforms the best accuracy on phase identifi-
cation, uses the commonly known important features (precursor con-
centration, temperature, time, volume, and pH) equally, with the
highest and lowest feature importance scores of 0.17 and 0.11, respec-
tively. Shuffling any of these five features has a similar effect on the
accuracy of the model. The rest features show much lower important
(<0.05, see Table S5). This is consisted with the principle of classical
nucleation theory (CNT). According to CNT, the phase with lowest
nucleation barrier will form fist and then consume the precursors to
avoid the immediate formation of more stable phases. The steady-state
nucleation rate (J) can be expressed as:

J = Joexp( — AG" [kgT) 3)
AG" = 162V2y’ |AG (C))

in which, Jy is per-factor and typically negligible compared to the dif-
ference in the exponential term, AG* is the nucleation barrier to form a
spherical critical nucleus; kg is Boltzmann constant; T is the temperature
y is the Gibbs surface free energy of nucleus (J/m?); Vy, is the molar
volume (cm®/mol) and AG is the thermodynamic driving force of phase
change. As shown in equation (3) and (4), the precursor concentration,
temperature, and pH are the dominating features to affect the AG, and
thereby the phase. And the other less important features such as the type
and concentration of additives has negligible impact on the driving force
term, showing the good agreement between RF model and CNT. Inter-
estingly, the additives like surfactants can also potentially alter the final
products by changing the surface energy, however RF model didn’t rely
heavily on this term to predict the phase. This may be due to the limited
availability of data containing specific additives, particularly surfac-
tants, the permutation algorithm may be misled as shuffling the column
of such categorical features does not result in substantial changes.

We performed correlation analysis using the Pearson correlation
coefficient for the five main features determined by the premutation
method (temperature, volume, precursor concentration, pH, and time)
[62]. The results show that most of the features are independent from
each other (Fig. 3a), although a dendrogram was still obtained. Most of
the correlation coefficients are smaller than 0.1, indicating a negligible
correlation. This is understandable as iron oxides can be synthesized in
many different combinations of conditions [63]. One exception is tem-
perature, which has a relatively strong negative correlation with the
other features. One possible explanation for the correlation between
temperature and solution volume could be related to the synthesis
method used in the majority of the experiments in our dataset. Specif-
ically, most of the syntheses used a hydrothermal method with auto-
claves. In this method, high temperatures can lead to a significant
increase of pressure inside the autoclave. If the volume of the solution is
also high, this can exacerbate the pressure increase and may even cause
leaking. As a result, the experimental conditions used in these experi-
ments may have been limited by the maximum allowable temperature
and volume for the given autoclave setup. Further experiments are
needed to confirm this hypothesis [60]. Additionally, the negative
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Fig. 3. Correlation analysis of important features, including temperature, volume, precursor concentration, pH value, and time. The dendrogram with Pearson
correlation coefficient (a) and cluster map (b) were generated based on the whole iron oxide synthesis dataset.

correlation between temperature and time could likely be explained by
the reaction kinetics of iron oxide synthesis. Increasing the temperature
during the synthesis process is generally favorable for the formation of
iron oxide crystals, which can reduce the reaction time required to
achieve a desired outcome.

A hierarchically clustered heatmap (see Fig. 3b) provided insight
into the relationship among pH, temperature, and the formation of he-
matite or other iron oxide phases, consistent with the principle of clas-
sical nucleation theory [21]. Our results show that, under low pH (below
4.0), most of the synthesized products were hematite (indicated in red).
Conversely, at higher pH levels (above 4.0), the proportion of non-
hematite products (indicated in blue) increased. The preference for
acid solutions in hematite synthesis is due to the thermodynamic sta-
bility of hematite under low pH conditions. In addition, acidic condi-
tions dissolve iron-containing precursors and promote the nucleation
and growth of hematite crystals. However, the oversaturation state of
the solution decreases with decreasing pH. A higher temperature is
desired to overcome the thermodynamical barrier of nucleation to form
the stable hematite phase [21,64]. In the higher pH range, the solution is
oversaturated in terms of all ferric oxides. In such case, the surface en-
ergy will have a higher impact on the phase selection. Because the
metastable phase has lower surface energies than thermodynamically
stable phase hematite, the barrier to form a critical nucleus of meta-
stable phase is lower. The metastable phase will form first and simul-
taneously depletes the concentration of precursor, which hinders the
formation of hematite at relatively high pH conditions.

We employed permutation analysis and correlation analysis to
explore previously undiscovered relationships between reaction condi-
tions and the resulting phases of iron oxide. This approach allowed us to
gain valuable insights into the mechanisms underlying iron oxide for-
mation. Despite certain features, such as the type of surfactant, being
considered unimportant, we still believe they may have a role in the
process of iron oxide formation. This apparent lack of importance could
be attributed to the limited size of our training dataset, which might
have led to some surfactants being underrepresented. We are cautious
about removing these features from the model, as doing so could
potentially compromise the accuracy of our results. Therefore, to
maintain the integrity of our analysis and to avoid any biases in feature

selection, we chose not to perform any screening or elimination of fea-
tures based on permutation and correlation analysis. Instead, we utilized
all available features to train our models comprehensively for this study.
This decision ensures that we do not overlook any potential relation-
ships between the features and the phases of iron oxide, and it allows us
to draw more robust conclusions from our analysis [62,65].

Particle size significantly influences the catalytic performance of iron
oxide products, so it is important to know the size of the particles before
conducting experiments [24,66-68]. Predicting the particle size of
synthesized iron oxides based on the reaction conditions is of great in-
terest. In this study, we initially attempted to use a random forest
regression algorithm to train models for predicting the exact particle size
based on the experimental conditions. The features used to train the
particle size prediction models are exactly the same as the phase pre-
diction. However, as shown in Fig. S1, the random forest regression
model was unable to accurately predict the particle size of iron oxide
particles from the test dataset. We hypothesized that the small size of our
dataset may have contributed to the low accuracy of the random forest
regression model, as the insufficient information prevented training the
model effectively. To address this issue, we converted the prediction of
particle size from a regression question into a classification question. By
sorting the particle size into three categories: nano (less than 100 nm),
submicron (100 nm to 1000 nm), and micron (greater than 1000 nm),
we were able to use three machine learning algorithms to train models
for predicting particle size based on the experimental conditions,
including SVM, KNN, and RF (Fig. 4a). LR was excluded from the
analysis for two reasons. Firstly, the performance of the LR model for
binary phase classification was poor. Secondly, the LR model is gener-
ally not suitable for multi-class classification without employing several
tricks, such as transforming the multi-class problem into multiple binary
classification problems.

During the training process, the SVM algorithm failed to converge
and produced no model (Fig. 4b). The KNN algorithm converged during
training, but the resulting model has relatively low overall accuracy
(62%), with recalls of 61% (nano), 63% (sub-micron), and 67% (micron)
for predicting particle sizes from conditions in the test dataset (see
Fig. 4c). In contrast, the RF-based model demonstrated the highest ac-
curacy among the three algorithms, with an overall accuracy of 81%.
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Fig. 4. Prediction of particle size of products based on conditions of reactions. (a) Dividing product particles into three categories based on size. (b) to (d) Prediction
results based on models from SVM (b), KNN (c), and RF (d). Training SVM models were unsuccessful since fitting was not converged.

The RF-based model achieved recalls of 80%, 83%, and 75% for pre-
dicting nano, sub-micron, and micron particles, respectively (see
Fig. 4d).

The feature importance analysis of the RF-based model showed that
the pH, time, precursor concentration, volume, and temperature are the
key features contributing to the categorization of the size of particles
(see Fig. S2a). The pH has the highest importance (0.18), followed by
time (0.17), precursor concentration (0.16), volume (0.13), and tem-
perature (0.11). The pH is well-known to affect the phase of iron oxide,
which, in turn, influences the size of particles. A high concentration of
Fe3* and long reaction time favor the growth of iron oxide particles with
a large diameter, vice versa [69,70]. Similar to pH, the main effect of
temperature is changing the possible phase of the products and therefore
influences the size of particles. The impacts of volume (corresponding to
pressure) during the hydrothermal synthesis are less studied than the
rest of the important features. As the model heavily relies on this feature
to predict the diameter of the particles, more experimental studies are
needed to understand the relationship between pressure during the
synthesis and the size of iron oxide particles. Similar to the RF based
phase prediction model, this particle size prediction also utilized addi-
tive concentrations as the 6th important feature (see Table S7).

The model also used the concentration of surfactants to predict the
size of the iron oxide particles, but the importance of this feature (0.04)
was much lower than the others. One plausible reason is that the ma-
jority of parameter sets were surfactant-free iron oxide synthesis hoping
to avoid the contamination of the iron oxide particles by the organic
molecules. Thus, the number of sets of parameters with surfactant may
not have been enough to unveil the relationship between surfactants and
particle size, and the model is not able to fully utilize this feature to
predict the size of particles.

We also tried using a hierarchical cluster map to investigate whether
any of the key features may influence the particle size, in a way similar
to how temperature and pH value affect the formation of hematite.
However, such an influence was not able to be revealed, even when we

narrowed down of the dataset and excluded all reactions that produced
non-hematite particles. It seems that the control of particle size is ach-
ieved through a complex combination of all the features, and the cluster
map method may not be capable of revealing such influences.

3.2. Experimental validation of ML models

To further evaluate the performance of the RF-based binary classi-
fication model and particle size prediction model, we synthesized iron
oxides with and without adding surfactants (see Table 1 and 2). We
prepared 18 surfactant-free samples, which are shown in Table 1,
Figs. S3 and S4. The binary phase classification model correctly identi-
fied the formation of hematite from 15 sets of conditions, resulting in an
accuracy of 83%. The model incorrectly classified three sets of condi-
tions, which were the combination of high pH with high temperature
(Exp. 3) and low pH with low temperature (Exp. 4 and 5).

SEM observations suggest that the RF model for predicting particle
size based on experimental conditions is less accurate than the binary
phase classification model. The RF model accurately predicted the size
range of particles in 11 out of 18 samples (Sample 1, 2, 3, 6, 8,9, 10, 12,
14, 15, and 16). For Samples 7 and 13, the model’s predictions were
mixed, with SEM images showing that Sample 7 contained both nano
and sub-micron particles, while Sample 13 was made up of sub-micron
and micron particles. The model also incorrectly predicted the particle
size of Sample 4, 5, 11, 17, and 18.

The RF model accurately predicted the phase and size of iron oxide
particles synthesized with sodium dodecyl sulfate (SDS) while the pre-
dictions for all experiments involving sodium citrate (SC) were inaccu-
rate. Closer examination of the experimental conditions for iron oxide
synthesis with SDS (Exp. 19-21) revealed that the additive may alter the
morphology of the iron oxide particles but not the phase type. The
synthesis conditions of Exp. 19 and 21 were acidic or weak basic envi-
ronments (pH of 2.0 and 8.0 respectively) with relatively high reaction
temperature (180 °C). The combination of these two conditions is
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Table 1

Utilizing random forest-based models to predict phase and size of iron oxide
products on random generated experiments. Volume of solvent and reaction
time were fixed at 15 ml and 16 h, respectively. XRD was used to identify phases
(Figs. S3 and S4), and SEM was utilized to identify size of particles (Fig. S5).

No. FeCl3 pH Temp. Is hem. Predict Exp. Exp.
conc. Q) Predict size phase size
(mM) *

Exp 500 1.1 180 True Micron Hem Micron
1

Exp 428 2.0 180 True Micron Hem Micron
2

Exp 372 12.6 180 True Nano Gt Nano
3

Exp 500 1.1 80 True Micron Gt Sub-p
4

Exp 428 2.0 80 True Micron Gt Nano
5

Exp 372 12.6 80 False Nano Gt Nano
6

Exp 100 1.7 180 True Sub-p Hem Sub-p &
7 Micron

Exp 98 2.1 180 True Sub-p Hem Sub-p
8

Exp 90 12.8 180 False Sub-p Gt Sub-p
9

Exp 100 1.7 80 False Sub-p Aka Sub-p
10

Exp 98 21 80 False Sub-p Aka Nano
11

Exp 90 128 80 False Nano Gt Nano
12

Exp 10 2.4 180 True Sub-p Hem Nano &
13 Sub-p

Exp 10 11.9 180 False Sub-p Gt Sub-p
14

Exp 10 3.7 180 True Sub-p Hem Sub-p
15

Exp 10 24 80 False Sub-p Aka Sub-p
16

Exp 10 11.9 80 False Nano Gt Sub-p
17

Exp 10 3.7 80 False Sub-p Aka Nano
18

* Hem.: Hematite, Gt.: Goethite, Aka.: Akageneite.

known to cause the formation of hematite. In Exp. 20, the reaction
temperature was only 110 °C, favoring the formation of non-hematite
products, such as akageneite in this case. On the other hand, the intro-
duction of SC significantly altered the phase of the iron oxide products,
even when the experimental conditions clearly favored the formation of
hematite. For instance, in Exp. 22, we observed the formation of
magnetite (Fe304) at high reaction temperature and low pH value, while
ferrihydrite was formed in the low-temperature reaction. The reason SC
significantly altered the formation of phases is that this additive can
cause the reduction of Fe>* ions into Fe?*. In contrast, SDS additive does
not react with Fe3* jons. Overall, the RF model exhibited good pre-
dicting accuracy when the additive was not reactive with Fe ions.

The findings from the feature importance analysis (Fig. 2d),

Table 2
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correlation analysis (Fig. 3b), and the comparison of model predictions
versus experimental results (see Tables 1 and 2) indicate that the RF-
based model is most likely to predict the formation of hematite when
either of the following conditions is met: low pH or high reaction tem-
perature. This observation aligns with the thermodynamic perspective
on the preferred conditions that induce the formation of various iron
oxide phases, as discussed previously [21,64]. Notably, the RF model
also takes into account precursor concentration, volume of solvent (may
be corresponded to pressure), and reaction time to determine the like-
lihood of hematite formation (Fig. 2d). However, no evident relationship
between the formation of hematite and these features was observed
during the correlation analysis (Fig. 3d). It is believed that these three
features exert a more subtle influence on the formation of hematite
compared to pH and reaction temperature, warranting further
investigation.

3.3. Optimizing synthesis algorithm based on dataset

We have devised a search and ranking algorithm for suggesting
relevant previous studies from our dataset, aiding in the synthesis of iron
oxide particles with specific properties, including phase and particle
size. This algorithm presents the parameters employed in previous
studies, along with their corresponding digital object identifiers (DOISs)
(refer to Fig. 5). The algorithm operates on the principle that values
frequently employed in a particular feature to synthesize the desired
product are more likely to yield successful outcomes compared to
infrequently used values. Therefore, if a previous study employs values
that are consistently employed to synthesize the desired products, it
receives a high recommendation, and vice versa.

To implement this idea, we retrieved all possible sets of reaction
conditions from the iron oxide dataset that could produce the desired
product and calculated the mean and standard deviation of the features
from the resulting sub-dataset (Fig. 5a and 5b). We then calculated a
ranking score for each set of parameters using a detailed algorithm
outlined in the methods section. The algorithm considers the distance
between each feature value and its corresponding average value in the
sub-dataset (Fig. 5¢). Sets of parameters with higher ranking scores are
more likely to have been used in previous studies to synthesize the
desired product. Conversely, sets of parameters with lower ranking
scores are less likely to have been used. The output of the algorithm is a
list of recommended sets of parameters for synthesizing the desired
product in the previous studies and DOIs of the studies using these pa-
rameters. This algorithm can significantly reduce the time and effort
required to search for specific iron oxide particles. An example of the
algorithm’s output for synthesizing hematite nanoparticles with di-
ameters between 25 nm and 75 nm is shown in Table S4. It should be
noted that this algorithm is not capable of suggesting synthesis param-
eters beyond the range the dataset.

4. Conclusion

This study addresses two significant challenges in materials synthe-
sis: predicting the outcome of a synthesis from specified reaction

Utilizing random forest-based models to predict phase and size of iron oxide products on random generated experiments with surfactant. Volume was fixed at 15 ml.
XRD was used to identify phases (see Fig. S6), and SEM was utilized to identify size of particles (see Fig. S7).

No. FeCl;3 conc. (mM) Time (h) pH Additive* Additive conc. (mM) Temp. (°C) Is hem. Predict Predict size Exp. phase Exp. size
Exp 19 831 7 2.0 SDS 131 180 True Nano Hem Nano
Exp 20 971 5 8.0 SDS 181 110 False Nano Aka Nano
Exp 21 501 29 8.0 SDS 121 180 True Sub-p Hem Sub-p
Exp 22 461 37 2.0 SsC 141 180 True Sub-p Mag Nano
Exp 23 671 41 2.0 SC 191 95 True Micron 2L-Fh Nano
Exp 24 471 34 10.0 SC 61 110 False Nano 2L-Fh Nano

* SDS: Sodium dodecyl sulfate, SC: Sodium citrate.

" Hem: Hematite, Gt: Goethite, Aka: Akaganeite, Mag: Magnetite, 2L-Fh: 2-line Ferrihydrite.
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Fig. 5. Retrieving desired synthesis parameters to obtain iron oxide particles with specified phase and particle size. (a) Selecting all possible sets of parameters from
dataset (e.g., hematite with 25 nm to 75 nm diameter). (b) Calculating average and standard derivation from every category of parameter. (c) Illustration of ranking
parameters in every set and summarize result. The red dots show the set of parameters more likely to synthesize desired product, vice versa for the green dots.

parameters, and correlating sets of parameters to obtain products with
desired outcomes. To predict experimental outcomes, we trained four
machine learning algorithms, including random forest, logistic regres-
sion, support vector machine, and k-nearest neighbor, to predict the
phase and particle size of iron oxide based on experimental conditions.
Among these models, random forest demonstrated the best performance,
achieving 96% and 81% accuracy in predicting the phase and size of iron
oxides in the test dataset. The permutation feature importance analysis
revealed that volume, which is plausibly correlated with pressure, ex-
hibits a significant influence to the phase and size of iron oxide particles,
along with precursor concentration, pH, temperature, and time. The
random forest-based models were further evaluated by experimentally
synthesizing iron oxide particles in both additive-free and additive
systems, demonstrating overall good accuracy. Additionally, a searching
and ranking algorithm was developed to recommend potential synthesis
parameters from previous studies for obtaining iron oxide products with
desired phase and particle size from previous studies in the dataset. This
study lays the groundwork for a closed-loop approach to materials
synthesis and preparation, from suggesting potential reaction parame-
ters in the dataset and predicting potential outcomes, through con-
ducting experiments and analysis, to enriching the dataset.
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