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Abstract—We present a comprehensive approach to the mod-
eling and design of clustered molecular bio-nanonetworks in
which nano-machines of different clusters release an appropriate
number of molecules to transmit their sensed information to
their respective fusion centers. The fusion centers decode this
information by counting the number of molecules received in
the given time slot. Owing to the propagation properties of the
biological media, this setup suffers from both inter- and intra-
cluster interference that needs to be carefully modeled. We first
develop a novel spatial model for this setup by modeling nano-
machines as a Poisson cluster process with the fusion centers
forming its parent point process. For this setup, we then derive a
new set of distance distributions in the three-dimensional space,
resulting in a remarkably simple result for the special case of
the Thomas cluster process. Accordingly, total interference from
previous symbols and different clusters is characterized and its
expected value is obtained. Then, using the expected value, a
simple detector suitable for biological applications is proposed.
The impact of different parameters on the performance of the
detector is also investigated.

Index Terms—Molecular communications, clustered nanonet-
works, stochastic geometry, Thomas cluster process.

I. INTRODUCTION

Molecular communications (MC) has attracted significant
research interest due to its numerous applications in biological
and communication engineering such as nanoscale sensing,
drug delivery, and body area networks [2]. In MC, biological
nano-machines (NMs) release molecules into the environment
to realize nano-scale information transfer. Information can be
encoded in the concentration or type of the molecules or
at the time instants at which they are released. A detector
decodes the information transmitted by a NM based on the
number of captured molecules. Some examples of modulation
and inter-symbol interference (ISI) mitigation techniques can
be found in [3], [4]. These works focus on a single pair of
transmitting and receiving NMs. On the other hand, nano-
networking and internet of bio-nano things paradigms require
information collection from multiple arbitrarily-located NMs
sensing potentially different phenomena [5]. Hence, interaction
and interference of released molecules of multiple NMs over
time play a crucial role in the performance characterization
and design of bio-nanonetworks.

An extended version of this work appears in [1].

Several prior works consider single source interference [6]
and fixed-location configurations with a limited number of in-
terfering NMs [7], [8]. Due to the randomness and irregularity
in the locations of NMs, stochastic geometry approaches based
on the Poisson point process (PPP) assumption have also been
considered for the modeling and analysis of nanonetworks [9]–
[14]. However, these early stochastic geometry-based works
lack in two important aspects that inspired this paper. First,
these works did not explore the dependence of detectors
on interference even though interference causes significant
increase in the molecule count. Second, despite the usefulness
of the PPP for modeling the uniform deployments of NMs,
it cannot model deployments where fusion centers (FCs)
are located at places with high NM density to sense and
process their information. The latter is particularly important
for capturing the fact that many biological phenomena, such
as abnormalities, are localized and multiple cooperative NMs,
e.g., each monitoring a different feature of a target, might
be required for fast, accurate, and diverse sensing [15]. For
instance, one can think of multiple tumors in the body as
targets, which might need to be monitored for smart drug
delivery. In such cases, it is important to take into account
non-uniformity as well as the correlation that exists between
the locations of the NMs and FCs. Models based on Poisson
cluster processes (PCPs) [16] have recently been well studied
for wireless networks over two-dimensional (2D) regions [17]–
[19]. In these works, the network usually follows a Thomas
cluster process (TCP) [16] or Matérn cluster process (MCP)
[16]. Further, key distance distributions for both TCP and
MCPs have been derived in the recent years [20], [21].

In this paper, we consider a bio-nanonetwork setup consist-
ing of multiple NMs forming clusters around their respective
FCs in a three-dimensional (3D) biological media. In each time
slot, one NM is assumed to transmit its sensed information
to its respective FC. This not only results in inter-cluster
interference from the simultaneous transmissions in the current
time slot but also both inter- and intra-cluster interference
from the transmissions corresponding to the previous time
slots. A rigorous analysis of these interferences requires a
spatial model that is rich enough to capture salient features
of the setup while being tractable enough for mathematical
derivations. Inspired by this, we develop a novel approach



based on PCPs to facilitate tractable modeling and analy-
sis of 3D clustered bio-nanonetworks. We first characterize
relevant distance distributions of 3D PCPs that are inspired
by this setup and provide closed-form results for 3D TCPs.
In particular, we identify a specific structure for 3D TCPs
that provides a remarkably simple distribution. Both ISI and
interference from interfering NMs in different clusters are
characterized, and the expected value of intra- and inter-cluster
interferences are derived. Then accordingly, a low-complexity
detector for FCs is designed that can efficiently adjust to
the interference. We also investigate the impact of different
parameters of the system model on the performance in terms
of the error probability and the expected value of interference.
As expected, our analysis reveals that a higher intensity of
cluster centers, distance of a reference NM to the center of its
cluster, or number of time slots has a degrading effect on the
performance. Also, increasing the time slot duration decreases
the error probability.

II. SYSTEM MODEL

Important aspects of the system model are discussed next.

A. Spatial Model
We consider a 3D clustered bio-nanonetwork as shown in

Fig. 1, where the locations of NMs are modeled as a PCP in
R3. A 3D PCP Φ can be defined as a union of offspring points
in R3 that are located around parent points, i.e., cluster centers.
The parent point process is a 3D PPP Φp with intensity λp, and
the offspring point processes are conditionally independent.
The set of offspring points of x ∈ Φp is denoted by N x, such
that Φ = ∪x∈ΦpN x, and the conditional probability density
function (PDF) of each element being at a location y+x ∈ R3

is fY(y). After characterizing theoretical results in terms of
general distribution fY(y), we specialize the results to the 3D
TCP where the points are distributed around cluster centers
according to an independent Gaussian distribution

fY(y) =
1

(2π)
3
2σ3

exp

(
−‖y‖2

2σ2

)
. (1)

In the center of each cluster, there is an FC that detects,
gathers and processes the transmitted information of the NMs
of the same cluster. In our analysis, we will model each FC as
a ball of non-zero radius r0 that will place some restrictions
on the placement of FCs and NMs. For instance, NMs cannot
lie inside the FCs. While the exact analysis of this modified
setting is complicated and will lead to significant loss in
tractability, we will include the non-zero radius r0 in many
components of our analysis, thus capturing these additional
restrictions while maintaining tractability.

B. Propagation Model
We consider a time-slotted transmission with time slots of

duration T . This implicitly assumes perfect synchronization of
all NMs, which is a common assumption in the MC literature.
However, it is not required for the accuracy of our results since
the received molecule distribution is primarily determined by
the NM locations.
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Fig. 1. An illustration of clustered bio-nanonetworks projected on a 2D space.

An NM at a location z can release Xz ∈ {x0, x1} molecules
at the beginning of a time slot, x0 for bit 0 and x1 for bit 1,
each with equal probability [22].1 All NMs are assumed to
release the same type of molecule. The molecules released by
the NMs propagate through the biological medium and are
observed at the FCs. We assume that a molecule is absorbed
at an FC and then counted when it hits the surface of the FC.
Let piL(d) denote hitting probability, i.e., the probability that
the molecule with distance d to the FC and released at the i-
th time slot hits the FC during the L-th time slot. The hitting
probability depends on the medium and type of detector [3].
For instance, for a general 3D environment with a point-source
NM and a spherical absorbing FC with radius r0, the hitting
probabilities are given by [23]

piL(d) = g((L− i+ 1)T, d)− g((L− i)T, d),

∀i ∈ {1, ..., L− 1} , (2)

pLL(d) = g(T, d), (3)

where

g(t, d) =
r0
2d

[
exp

(
−
√

µ

D
(d− r0)

)
erfc

(
d− r0√
4Dt

−
√
µt

)

+ exp

(√
µ

D
(d− r0)

)
erfc

(
d− r0√
4Dt

+
√
µt

)]
, (4)

where D is the diffusion coefficient, µ denotes the reac-
tion rate constant of molecular degradation, and erfc(x) =
2√
π

∫∞
x e−t2dt.

C. Transmission Scheme
In order to mitigate interference in each cluster of our

clustered MC setup, in each time slot, only one of the NMs of
the cluster is scheduled to release molecules according to its
information availability status. Let the NM at yi

x in the cluster
with x ∈ Φp be selected to release Xx+yi

x
molecules in the

i-th time slot. According to the propagation model and due to
the fact that the input-output relationships between the NMs
and the FCs can be modeled as independent Poisson channels
with additive Poisson noise [3], at the end of L-th time slot,

1Inspired by the current experimental implementations of molecular com-
munications [10]–[13], [22], we consider two-level modulation, which will
also allow us to cleanly describe the effect of different parameters.



we can model the number of received molecules at the FC at
z ∈ Φp as

Y z
L ∼ Poisson



λ0T +
∑

x∈Φp

L∑

i=1

piL(‖x+ yi
x − z‖)Xx+yi

x



 ,

(5)
where λ0T is the mean of the number of noise molecules
during the time slot. In (5), the effect of ISI due to the
transmissions in the previous i ∈ {1, ..., L− 1}-th time slots
is also included.

III. DISTANCE DISTRIBUTIONS

In this section, we present the following theorem on the
conditional PDF of the distance of any (arbitrary) element in
the set N x of the cluster centered at x ∈ Φp to the origin o
and the subsequent corollary as a special case of the theorem
for N o. These results will be used later in derivations of the
expected value of interference in Section IV.

Theorem 1: Conditioned on ‖x‖, i.e., the distance of the
parent point x from the origin, the PDF of the distances d =
‖y + x‖, ∀y ∈ N x, is

fd(y|‖x‖) =
∫ y

z1=−y

∫ √
y2−z2

1

z2=−
√

y2−z2
1

y√
y2 − z21 − z22

×
[
fY

(
z1 − ‖x‖, z2,

√
y2 − z21 − z22

)

+ fY

(
z1 − ‖x‖, z2,−

√
y2 − z21 − z22

)]
dz2dz1; y ≥ 0,

(6)
which is specialized for TCP as

fd(y|‖x‖) =
y√

2πσ‖x‖

[
exp

(
− (y − ‖x‖)2

2σ2

)

− exp

(
− (y + ‖x‖)2

2σ2

)]
; y ≥ 0. (7)

Proof: See Appendix A.
Corollary 1: The PDF of the distances d = ‖y‖, ∀y ∈ N o,

is

fd(y|0) =
∫ y

z1=−y

∫ √
y2−z2

1

z2=−
√

y2−z2
1

y√
y2 − z21 − z22

×
[
fY

(
z1, z2,

√
y2 − z21 − z22

)

+ fY

(
z1, z2,−

√
y2 − z21 − z22

)]
dz2dz1; y ≥ 0, (8)

which is specialized for TCP as

fd(y|0) =
√

2

π

y2

σ3
exp

(
− y2

2σ2

)
; y ≥ 0. (9)

Proof: By putting ‖x‖ = 0 in Theorem 1, we get the
results. However, for the TCP result, we achieve 0

0 and need
to use L’Hopital’s rule as

lim
‖x‖→0

y√
2πσ‖x‖

[
exp

(
− (y − ‖x‖)2

2σ2

)

− exp

(
− (y + ‖x‖)2

2σ2

)]
= lim

‖x‖→0
y×

y−‖x‖
σ2 exp

(
− (y−‖x‖)2

2σ2

)
+ y+‖x‖

σ2 exp
(
− (y+‖x‖)2

2σ2

)

√
2πσ

=

√
2

π

y2

σ3
exp

(
− y2

2σ2

)
. (10)

This completes the proof.

IV. FUSION CENTER DETECTOR DESIGN

Our analysis will focus on the performance of the typical
cluster/FC, which we term as the reference cluster/FC. Thanks
to Slivnyak’s theorem [16], we simply add the reference FC
to the origin along with its cluster N o. Also, we consider the
L-th time slot, where the reference FC desires to detect the
information of a reference NM at location y0 in the reference
cluster. Then, from (5), the number of received molecules at
the reference FC can be rewritten as

Y o
L ∼ Poisson

(
pLL(‖y0‖)Xy0 + IL + λ0T

)
, (11)

where IL = I intra
L + I inter

L is the total interference. The intra-
cluster interference I intra

L from NMs inside the reference cluster
and inter-cluster interference I inter

L from NMs of other clusters
are given by

I intra
L =

L−1∑

i=1

piL(‖yi
o‖)Xyi

o
, (12)

and

I inter
L =

∑

x∈Φp

L∑

i=1

piL(‖x+ yi
x‖)Xx+yi

x
. (13)

Due to the unknown transmitted symbols and locations of
NMs, the value of IL is unknown to the FCs. However, using
the statistical characteristics of the interference IL, we propose
an approximate maximum likelihood (ML) decision rule as

X̂y0 = arg max
j={0,1}

P(Y o
L = y | Xy0 = xj) ≈ arg max

j={0,1}

e−(pLL(‖y0‖)xj+E{IL}+λ0T )(pLL(‖y0‖)xj + E {IL}+ λ0T )y

y!
,

(14)

where the interference IL is approximated by its expected
value E {IL}. It can be obtained as

E {IL} = E
{
I intra
L

}
+ E

{
I inter
L

}
, (15)

where for E
{
I intra
L

}
, we have

E
{
I intra
L

}
= E

{
L−1∑

i=1

piL(‖yi
o‖)Xyi

o

}

= E
{
Xy1

o

}
E
{

L−1∑

i=1

piL(‖y‖)
∣∣∣∣‖y‖ > r0

}



=
x0 + x1

2

L−1∑

i=1

∫∞
r0

piL(y)fd(y|0)dy∫∞
r0

fd(y|0)dy

=
x0 + x1

2
∫∞
r0

fd(y|0)dy

∫ ∞

r0

fd(y|0)
L−1∑

i=1

piL(y)dy, (16)

where the term
∫∞
r0

fd(y|0)dy = P(‖y‖ > r0) is for
the condition that NMs are outside the reference FC, i.e.,
the ball with radius r0 centered at the origin. From (2),∑L−1

i=1 piL(y) = g(LT, y) − g(T, y) in (16). Then, E
{
I inter
L

}

can be obtained as

E
{
I inter
L

}
= E





∑

x∈Φp

L∑

i=1

piL(‖x+ yi
x‖)Xx+yi

x






= E
{
Xx1+y1

x1

}
E





∑

x∈Φp

L∑

i=1

piL(‖x+ y‖)
∣∣∣∣‖y‖ > r0






(a)
=

x0 + x1

2
E
{

∑

x∈Φp

L∑

i=1

(∫ ∞

r0

piL(y)×

fd(y|‖x‖)∫∞
r0 fd(y|‖x‖)dy

dy

)}
(b)
= 4πλp ×

x0 + x1

2
×

∫ ∞

2r0

1∫∞
r0 fd(y|x)dy

L∑

i=1

(∫ ∞

r0

piL(y)fd(y|x)dy
)
x2dx

= 2πλp(x0 + x1)

∫ ∞

2r0

x2
∫∞
r0

fd(y|x)
∑L

i=1 piL(y)dy∫∞
r0 fd(y|x)dy

dx,

(17)

where (a) follows from the fact that the distance of each NM
in the cluster x ∈ Φp to the origin is i.i.d. with distribution
fd(.|‖x‖) in (6) [17], [19] and the term

∫∞
r0

fd(y|‖x‖)dy =
P(‖y+x‖ > r0) is for the condition that NMs are outside the
ball with radius r0 centered at the origin. Then, (b) follows
from the Campbell’s theorem for PPPs [16] and the fact that
FCs have at least 2r0 distance from each other. From (2)-(3),∑L

i=1 piL(y) = g(LT, y) in (17). For relatively large time
slot duration when ISI can be ignored, the expected value of
interference is given as in the following lemma.

Lemma 1: For the TCP model and T → ∞, the expected
value of IL is simplified to

E {IL} = 2πλpr0(x0 + x1)e
σ2

2
µ
D+r0

√
µ
D

∫ ∞

2r0

xA(x)

B(x)
dx,

(18)

where

A(x) = e−x
√

µ
D

(
1− 1

2
erfc

(
x− σ2

√ µ
D − r0√

2σ

))

− 1

2
ex
√

µ
D erfc

(
x+ σ2

√ µ
D + r0√

2σ

)
, (19)

and

B(x) =
σ√
2πx

(
exp

(
− (x− r0)2

2σ2

)
− exp

(
− (x+ r0)2

2σ2

))

+ 1− 1

2
erfc

(
x− r0√

2σ

)
+

1

2
erfc

(
x+ r0√

2σ

)
. (20)

Proof: The result is obtained from the following facts:

lim
t→∞

g(t, y) =
r0
y
exp

(
−
√

µ

D
(y − r0)

)
, (21)

where g(t, y) is the channel function in (4) and
∫ ∞

r0

x2fd(y|x)
L∑

i=1

pi(y)dy =
r0x√
2πσ

×
∫ ∞

r0

e−
(y−x)2

2σ2 −
√

µ
D (y−r0) − e−

(y+x)2

2σ2 −
√

µ
D (y−r0)dy =

r0x√
2πσ

∫ ∞

r0

e−
(y−(x−σ2

√
µ
D ))

2

2σ2 +σ2

2
µ
D−(x−r0)

√
µ
D

− e−
(y+(x+σ2

√
µ
D ))

2

2σ2 +σ2

2
µ
D+(x+r0)

√
µ
D dy =

(c)
=

r0x

2
e

σ2

2
µ
D−(x−r0)

√
µ
D

2√
π

∫ ∞

−
x−σ2

√
µ
D

−r0
√

2σ

e−t2dt

− r0x

2
e

σ2

2
µ
D+(x+r0)

√
µ
D

2√
π

∫ ∞

x+σ2
√

µ
D

+r0
√

2σ

e−t2dt

=
r0x

2
e

σ2

2
µ
D−(x−r0)

√
µ
D

(
2− erfc

(
x− σ2

√ µ
D − r0√

2σ

))

− r0x

2
e

σ2

2
µ
D+(x+r0)

√
µ
D erfc

(
x+ σ2

√ µ
D + r0√

2σ

)
, (22)

where (c) comes from the variable changes t =
y−x+σ2

√
µ
D√

2σ

and t =
y+x+σ2

√
µ
D√

2σ
. Also, we have the fact

∫ ∞

r0

fd(y|x)dy =
1√
2πσx

∫ ∞

r0

ye−
(y−x)2

2σ2 − ye−
(y+x)2

2σ2 dy

=
σ√
2πx

∫ ∞

r0

y − x

σ2
e−

(y−x)2

2σ2 − y + x

σ2
e−

(y+x)2

2σ2 dy

+
1√
2πσ

∫ ∞

r0

e−
(y−x)2

2σ2 + e−
(y+x)2

2σ2 dy

=
σ√
2πx

(
e−

(x−r0)2

2σ2 − e−
(x+r0)2

2σ2

)

+
1

2

(
2√
π

∫ ∞

− x−r0√
2σ

e−t2dt+
2√
π

∫ ∞

x+r0√
2σ

e−t2dt

)

=
σ√
2πx

(
e−

(x−r0)2

2σ2 − e−
(x+r0)2

2σ2

)

+
1

2

(
2− erfc

(
x− r0√

2σ

)
+ erfc

(
x+ r0√

2σ

))
. (23)

From (18), it can be seen that the expected interference
linearly increases with λp and x0+x1

2 .



TABLE I
PARAMETER VALUES

λp r0 ‖y0‖ D µ σ T L {x0, x1}
2× 10−6 µm3 5 µm 2r0 40× 10−12 m2

s 0.1 s−1 20 µm 0.5 s 5 {0, 40}

Assuming the order x0 < x1, it can be shown that the rule
in (14) can be further simplified to

X̂y0 =

{
x0 if y < th,
x1 if y ≥ th, (24)

where the threshold is as

th =
pL(‖y0‖)x1 − pL(‖y0‖)x0

ln
(

pL(‖y0‖)x1+E{IL}+λ0T
pL(‖y0‖)x0+E{IL}+λ0T

) . (25)

This simple detector has low complexity to be implemented
on an NM.

V. NUMERICAL RESULTS

In this section, we provide numerical results for specific
scenarios of clustered bio-nanonetworks with the parameter
values given in Table 1, unless otherwise stated. We use
Monte Carlo simulations to evaluate the error probability of
the proposed detector in (24)-(25). For completeness, note that
the analytical results for the error probability are available in
the expanded version of this article [1].

In Fig. 2, the error probability is shown as a function of the
number of time slot L for D = 10×10−12 and 40×10−12. It
is observed that the error probability increases as the number
of time slots increases. It is because the interference from ISI
increases. Other observation is related to the increase of the
diffusion coefficient D that can significantly decrease the error
probability. It is due to the direct effect of increase in D on the
increase in the hitting probability pLL in (3) and accordingly
the improvment of the link from the reference NM.

The error probability as a function of time slot duration T
for ‖y0‖ = 2.5r0 and 3r0 is studied in Fig. 3. It is observed
that as T increases, the error probability decreases. It is due to
the fact that the hitting probabilities piL in (2) decrease, which
decreases the ISI. Also, when the reference NM is located
closer to the reference FC, the performance improves since
pLL increases. In Fig. 4, the expected number of interference
molecules in (15) and its Monte Carlo simulation, and the
threshold given in (25) are shown as a function of T for
‖y0‖ = 2.5r0. It reveals that ignoring exclusion zones of
the interfering FCs in the analysis was without any loss
of accuracy. Also, we can observe that as T increases, the
expected number of interference molecules increases and the
threshold follows the increasing trend by unit step function
increments. Also, the duration of constant thresholds increases.

In Fig. 5, the error probability as a function of the parent
intensity λp is plotted for σ = 3r0 and 5r0. The error
probability increases with the increase in λp. It is because
the number of interfering clusters increases. Also, increasing
σ improves the performance. This is intuitive because the
probability of the event that the reference FC is located farther
from the NMs of the reference cluster increases with σ and
this leads to decrease in piL in (2).
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VI. CONCLUSIONS

In this paper, we used tools from stochastic geometry to
develop the first comprehensive framework for the modeling
and design of MC in bio-nanonetworks whose NMs form
clusters around their respective FCs. In order to capture the
coupling in the locations of NMs and their respective FCs, we
modeled NMs as a PCP with the FCs forming the parent point
process. This departs significantly from the known approaches
that rely on PPP-based models and often ignore the complex
dependence of detectors on interference. For the proposed
model, we first characterized the distributions of the distances
from a reference FC to various intra- and inter-cluster NMs.
We also identified a specific structure for 3D TCPs that
provided a remarkably simple expression for the distance
distribution. Then, based on the expected value of intra- and
inter-cluster interferences, we proposed a simple detector for
FCs that is suitable for biological applications. Our analysis
revealed that decreasing the intensity of cluster centers or the
distance of the NM from the center of its cluster and also
increasing the time slot duration improve the error probability.



APPENDIX A
PROOF OF THEOREM 1

Defining z = x + y ∈ R3, where z = (z1, z2, z3)
and x = (x1, x2, x3), the conditional cumulative distribution
function (CDF) of the distance d = ‖z‖ with realization
y =

√
z21 + z22 + z23 is

P(d < y | x) =
∫ y

z1=−y

∫ √
y2−z2

1

z2=−
√

y2−z2
1

∫ √
y2−z2

1−z2
2

z3=−
√

y2−z2
1−z2

2

fY(z1 − x1, z2 − x2, z3 − x3)dz3dz2dz1

(a)
=

∫ y

z1=−y

∫ √
y2−z2

1

z2=−
√

y2−z2
1

∫ √
y2−z2

1−z2
2

z3=−
√

y2−z2
1−z2

2

fY(z1 − ‖x‖, z2, z3)dz3dz2dz1 = P(d < y | ‖x‖)
= Fd(y|‖x‖), (26)

where (a) is due to the fact that fY(y) is rotationally invariant.
It is notable that the result of (26) is dependent on the norm
of x. Then, by taking a derivative of the CDF Fd(y|‖x‖), the
conditional PDF fd(y|‖x‖) is obtained with the help of the
Leibniz integral rule [24] and simplifications.

For the special case of TCP, by substituting the following
fY from (1) as

fY(z1 − ‖x‖, z2, z3) =
1

(2π)
3
2σ3

exp

(
− (z1 − ‖x‖)2 + z22 + z23

2σ2

)
, (27)

into (6), we obtain

fd(y|‖x‖) =
2y

(2π)
3
2σ3

exp

(
−y2 + ‖x‖2

2σ2

)∫ y

z1=−y

exp

(
‖x‖z1
σ2

)∫ √
y2−z2

1

z2=−
√

y2−z2
1

1√
y2 − z21 − z22

dz2dz1, (28)

where
∫√y2−z2

1

z2=−
√

y2−z2
1

1√
y2−z2

1−z2
2

dz2 = π. Then, we obtain

fd(y|‖x‖) =
y√

2πσ‖x‖
exp

(
−y2 + ‖x‖2

2σ2

)
×

[
exp

(
y‖x‖
σ2

)
− exp

(
−y‖x‖

σ2

)]
, (29)

which leads to the final result.
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