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Abstract—Determining optimal phases for a discrete reconfig-
urable intelligent surface (RIS) in RIS-aided wireless systems is
known to be a challenging problem. This paper develops a novel
probabilistic reformulation technique to transform such discrete
optimization problems into continuous domain problems. The
idea is to treat optimization variables as a categorical random
vector with independent but non-identically distributed (i.n.i.d.)
entries and replace the objective function with its expectation. In
the unconstrained case, we rigorously establish the equivalence
between the original problem’s unique optimal solution and the
corresponding degenerate probability density function (PDF) of
the transformed problem. Furthermore, we derive key analytical
moments and gradients associated with the quadratic form and
binary random vectors that are useful in the optimization of RIS-
aided wireless systems. In order to concretely demonstrate the
benefits of the proposed technique, we reformulate a canonical
discrete RIS-aided signal-to-interference-plus-noise ratio (SINR)
maximization problem and solve the reformulated problem with
the gradient descent (GD) technique. Our solution includes
an analytical approach that relies on closed-form approxima-
tions for the expectation, incorporating moment results, and a
stochastic sampling method based on a log-derivative gradient
estimator. Numerical results show that our expectation-based
algorithms outperform state-of-the-art conventional algorithms,
thereby demonstrating the effectiveness of our approach.

Index Terms—Reconfigurable intelligent surface, discrete op-
timization, categorical random variables.

I. INTRODUCTION

RISs have recently gained significant attention in the field
of wireless communication systems, offering the potential to
improve signal quality, coverage, and capacity. These surfaces
are composed of electronically controllable passive elements
that can adaptively manipulate the propagation of electromag-
netic waves, providing a more efficient and flexible means
of communication. However, owing to hardware constraints
and the necessity for lower implementation complexity, RIS
elements typically can only provide discrete phase-shifts,
which in turn renders the optimization of RIS configurations
a demanding discrete problem. Not surprisingly, existing dis-
crete RIS optimization algorithms often face scalability issues
or rely on rounding procedures after solving relaxed continu-
ous optimization problems, leading to significant performance
degradation. Despite these limitations, continuous optimization
algorithms with rounding procedures, such as closest point
projection (CPP), remain popular due to their speed and
practical feasibility, even though this two-fold approximation
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lacks mathematical rigor in some cases [1]. A notable excep-
tion is the semidefinite relaxation (SDR) method combined
with the Gaussian randomization procedure, which exhibits
multiple approximation accuracy results [2]. However, the high
computational complexity of SDR hinders its scalability.

Driven by the need for scalable and rigorous algorithms that
deliver quality solutions for discrete optimization problems,
we introduce a probabilistic reformulation technique that trans-
forms a general unconstrained discrete optimization problem
into an equivalent continuous stochastic optimization problem
in terms of the optimal solution. While our reformulation
could potentially be integrated with other algorithms, we
concentrate on incorporating it with the GD algorithm to
capitalize on its speed and convergence properties. As a result,
we present both the analytical GD and the stochastic sampling
approach, which outperform traditional algorithms for a typical
SINR maximization subproblem in canonical discrete RIS-
aided wireless scenarios. While our proposed reformulation
technique is inspired by discrete RISs, it is expected to find
applications in other domains because of its fundamental
nature.

A. Related Work and Motivation

Considering the focus of this paper, the two research
directions that are highly relevant to the discussion include
optimizing discrete RISs and exploring the intersection of
probability and optimization.

To begin with the first direction, the authors of [3] investi-
gated a discrete RIS-aided OFDM system and optimized the
element-wise exhaustive search in an alternating optimization
framework. RIS phase-shifts in a multiple-input-single-output
(MISO) wireless network were optimized using branch-and-
bound methods that scale exponentially with the number of
RIS elements in [4] and [5]. These solutions work with both
continuous and discrete RIS phase-shifts. The authors in [6]
relaxed the discrete RIS phase-shift constraint to a continuous
one and solved the optimization problem using minorize-
maximization (MM) and accelerated gradient methods for the
spectral and energy efficiency trade-off in a multiple-user
multiple-input-multiple-output (MU-MIMO) setup. However,
these methods are either not scalable or have poor performance
due to the two-fold approximation. Recent efforts [1], [7],
[8] provide scalable optimal discrete RIS beamforming opti-
mization for single-input-single-output (SISO) systems based
on the fixed-rank result of [9]. However, these strategies are



specialized for single-antenna scenarios and are not applicable
for multi-antenna scenarios.

Venturing beyond the existing discrete RIS literature, let us
move on to the second direction. The authors of [2] establish
that the SDR formulation is a stochastic version of the original
non-convex quadratic program. The authors of [10], [11] pro-
pose a probabilistic data association algorithm to tackle binary
quadratic programs iteratively, achieving near-optimal results.
Additionally, [12] presents a stochastic learning framework for
binary optimization problems, treating the optimization vari-
able as a random variable and taking expectation on it. While
these works motivate further exploration at the intersection of
probability and optimization, they do not offer a technique for
solving general unconstrained discrete optimization problems,
especially in the context of discrete RIS.

To bridge this gap, we develop a rigorous probabilistic
technique that converts discrete optimization problems into the
continuous probability domain. We showcase the effectiveness
of this technique in a canonical discrete RIS-aided wireless
system for an SINR maximization problem.

B. Contributions

Our work presents a comprehensive probabilistic reformula-
tion technique for general unconstrained discrete optimization
problems. This technique replaces the objective function with
its expectations by re-imagining the optimization variables as
categorical random variables with i.n.i.d. entries, thereby trans-
forming the discrete optimization problems into continuous
domain problems. More importantly, we rigorously establish
the equivalence between a discrete unconstrained problem with
a unique optimal solution and the reformulated problem in
terms of the optimal point. We also derive various analytical
moments and their gradients associated with the quadratic
form and binary random vectors that are essential intermediate
results for our GD algorithms. We apply this approach to an
SINR maximization problem as a canonical case study, and we
propose a stochastic sampling and an analytical GD approach
to solve the reformulated problem. The analytical GD algo-
rithm utilizes the first and second-order Taylor approximations
of the expectation of the SINR, while the stochastic approach
uses an estimator of the gradient. The numerical results
demonstrate that our expectation-based algorithms outperform
the state-of-the-art conventional approaches evaluated, offering
significant advantages over existing techniques. These results
confirm that when calculating the analytical expectation is
challenging, employing an analytical approximation still leads
to an improvement in performance. In situations where the
analytical expectation is relatively simple to compute or can
be estimated accurately using simpler analytical expressions,
the solutions are expected to be close to optimal.

Notations: The distribution of a standard complex normal
random variable is denoted by CN (0, 1). The matrix, scalar
and vector entities are denoted by X, x, and x, respectively.
All the vectors are column vectors unless defined explicitly.
For a vector x, diag (x) denotes a diagonal matrix with the
entries of x as its diagonal elements. For a matrix X, XH , XT ,

Re (X), Tr (X), diag(X), and X ⪰ 0 denote its conjugate
transpose, transpose, real part, trace, diagonal elements as a
vector, and positive semidefiniteness, respectively. Addition-
ally, Xwd = X − diag(X). The expectation operation is
denoted by E[·], var(·) denotes a total variance operator which
evaluates the trace of the variance-covariance matrix of the
random vector argument, and the operator ⊙ denotes element-
wise multiplication between two matrices. The L2 norm is
denoted by ∥·∥2. The identity matrix and all-one column vector
of dimension N are denoted by IN and 1N , respectively.

II. PROBABILISTIC REFORMULATION FOR
UNCONSTRAINED DISCRETE OPTIMIZATION

We begin with a general unconstrained discrete optimization
problem where we make no assumptions about the objective
function’s convexity. The optimization variable is a vector of
length n and each of the entry can take a discrete value among
the set C = {c1, c2, . . . , cb}.

min
x ∈ Cn

f(x). (1)
Our main goal is to reformulate the problem in a form that
does not deal with the discrete domain and shares the optimal
solution with the original problem. To that end, we propose to
re-imagine entries of x as i.n.i.d. categorical random variables
with the following joint probability density function (PDF):

P(x|P)=

n∏
i=1

b∑
j=1

δ(xi−cj)pi,j , pi,j ∈ [0, 1],

b∑
j=1

pi,j = 1, (2)

where the (i, j)-th entry of the matrix P is denoted by pi,j ,
the i-th entry of x is denoted by xi ∈ C, and δ(·) is the Dirac
delta function. We then reformulate the original problem into
a stochastic optimization problem:

min
pi,j ∈ F

ξ(P) = Ex∼P(x|P) [f(x)] , (3)

where F is the set of possible pi,j’s defined by (2). The
connection between (1) and (3) and their solution sets are
summarized in the following lemma.

Lemma 1. The solution sets of the problems (1) and (3) are
denoted by Ωx and ΩP and,

Ωx ⊆ ΩP.

Moreover if the unique optimal solution of (1) is xopt, then
Popt = Degen(xopt) is the unique optimal solution of (3),
where the P = Degen(x) operation implies that the (i, j)-th
entry of P is defined as pi,j = 1 only when xi = cj while all
the other entries are zero.

Proof: We observe that Ωx has bn elements and each of
them corresponds to one of the possible bn combinations that
x can take. In (3), the same objective values can be attained
by the corresponding P = Degen(x) which is the parameter
matrix of n degenerate categorical distributions. From these
arguments, it follows that Ωx ⊆ ΩP.

For any feasible P, it can be shown that,

min
x

f(x) ≤ ξ(P)=
bn∑
k=1

f(x{k})P(x=x{k}|P) ≤ max
x

f(x),

(4)



where x{k} denotes the k-th combination out of possible bn

combinations of x. This stems from the observation that the
expectation is nothing but a convex combination of all the
possible values of f(x). Now assume that xopt is the unique
optimal solution of (1). It follows that, Popt = Degen(xopt)
is an optimal solution of (3). Consider that ∃P0 ̸= Popt,
such that, ξ(P0) = ξ(Popt) = f(xopt). The parameter
matrix P cannot denote n degenerate categorical distributions
as the corresponding x0 = Degen−1(P0) would violate the
uniqueness assumption on xopt. We then consider the non-
degenerate distribution case. As the optimal value p∗ is shown
to be the same for both of these problems, we can assume that
p∗ = f(x{k0}) without any loss of generality. Then,

ξ(P0)=
bn∑
k=1

f(x{k})P(x = x{k}|P0) = f(x{k0}) = p∗ (5)

=⇒
bn∑

k=1,k ̸=k0

(f(x{k})− f(x{k0}))P(x = x{k}|P0) = 0. (6)

As for some k, the value f(x{k}) needs to be equal to
f(x{k0}) for (6) to be true, this would also violate the
uniqueness assumption on k0.

A. Some Useful Results for Quadratic Expressions for Binary
Random Vectors

Many discrete RIS applications focus on binary phase-
shift RIS {−1,+1} for its operational simplicity. Analytical
moments and gradients of binary random vectors are derived
next for use in expectation-based optimization. We begin the
discussion with the covariance matrix in the next section.

Remark 1. For a random vector x ∈ {−1,+1}n with i.n.i.d.
entries and expectation E[x] = y = 2p − 1, the covariance
matrix is

E[xxT ] = (yyT )⊙Em + IN , (7)
where Em is the all-one matrix with a hollow diagonal and
p is defined similarly to (19).

Now, we state the first moment and its gradient in Lemma
2 without proof due to its trivial nature.

Lemma 2. For a random vector x ∈ {−1,+1}n with i.n.i.d.
entries and expectation E[x] = y, the expectation and the
gradient of a sum between a quadratic form and a linear form
are
µqf (G, z,y)=E[xTGx+zTx]=yTGwdy +Tr(G) + zTy,

(8)

ϑqf (G, z,y) =∇yE[x
TGx] = (Gwd +GT

wd)y + z. (9)
where G is a real symmetric matrix.

Next, we derive an expectation that is very important for
covariance calculations between a quadratic form and a linear
form in the next theorem.

Theorem 1. For a random vector x ∈ {−1,+1}n with i.n.i.d.
entries and expectation E[x] = y, the expectation of a product
between a quadratic form and a linear form is
µql(G, z,y) = E[xTGxzTx] = 2yTGwdz+ zTyTr(G)+

1T {(GwdYwd)⊙Ywd}(y ⊙ z), (10)
where G is a real symmetric matrix and Y = y1T .

Proof: The proof begins by transforming the matrix
expressions into a series of summations, taking into account
various scenarios involving the relationships between the in-
dices in the sums, such as when they are equal or distinct
from one another. It then primarily leverages the properties of
x2
i equaling 1. Subsequently, the expression is simplified and

rewritten using a convenient matrix form. For detailed step-
by-step proof, please refer to the journal version available as
an arxiv preprint in [13].

We just state the gradient of the above expectation without
proof in Corollary 1.

Corollary 1. The gradient of the derived expectation in
Theorem 1 can be calculated as:
ϑql(G, z,y) = 2Gwdz+ zTr(G) + ((GT

T ⊙Em)y)⊙ z+

diag(GTdiag(y ⊙ z)Em) + (GT ⊙Em)(y ⊙ z), (11)
where GT = GwdT0, and T0 = diag(y)Em.

Next, we focus on the second moment of a quadratic form
in Theorem 2.

Theorem 2. For a random vector x ∈ {−1,+1}n with i.n.i.d.
entries and expectation E[x] = y, the second moment of a
quadratic form is
µqs(G,y)=E[(xTGx)2] = yT (Gs−F(y))y+Tr(G)2+

2Tr(Z) + (yTGy)2−dTGgd, (12)
where G is a real symmetric matrix, d = y ⊙ y, Gs =
2Tr(G)Gwd + 4Zwd, Z = GwdG

T
wd, F(y) = (y ⊙

y)Tdiag(G)(G+Gwd)+4Uwd, U = [IN ⊗(y⊙y)T ]B, and
Gg = 2Gwd ⊙Gwd. The matrix B is defined through blocks
as

B =

 b1,1, . . . ,b1,N

· · · , · · · , · · · ,
bN,1, . . . ,bN,N .

 , (13)

where the i-th element of bk,j is bi
k,j = GwdijGwdki

.

Proof: The proof involves expanding (xTGx)2 into a
series of summations considering different cases of the sum
indices. Most of these sums can be rearranged in a matrix form
except for the case when all indices are different. This term
can be found by investigating the term (yTGy)2. A detailed
proof is available in the journal version available as an arxiv
preprint in [13].

Now, we derive the gradient of the second moment in the
Corollary 2.

Corollary 2. The gradient of the derived expectation in
Theorem 2 can be calculated as:
ϑqs(G,y) = (Gs +GT

s )y + 2yTGy(G+GT )y−
2yT (G+Gwd)y(diag(G)⊙ y)−dTdiag(G)(G+Gwd)y

− diag(G)Td(G+Gwd)
Ty − 2((Gg +GT

g )d)⊙ y−
8y ⊙ bs − 4(Uwd +UT

wd)y, (14)
where d = y⊙y, and i-th entry of bs is yTBt[i]y−Tr(Bt[i]).
The matrix Bt[i] can be derived by multiplicating the i-th



column of Gwd with the i-th row of Gwd.

Proof: The proof begins with utilizing the chain rule and
writing out the gradient entry-wise. Then it primarily uses the
block structure of U for the entries in the gradient vector. A
complete proof can be found in the journal version available
as an arxiv preprint in [13].

III. SINR MAXIMIZATION WITH RIS OPTIMIZATION

1) Signal model: Optimizing RIS phase-shifts in MIMO
communication is challenging, especially for discrete RISs.
To address this, we break down the problem into smaller,
manageable sub-problems and focus on canonical forms found
in the literature. We use a unified signal model next to
represent various RIS-aided scenarios and sub-problems, such
as device-to-device communication, cellular networks with
antenna selection, and wireless communication with fixed
receive beamformer vector [14]:

yr = (hd0 + hH
0 diag(θ)f0)xs,0+

NI∑
i=1

(hdi
+ hH

i diag(θ)fi)xs,i + w, (15)

where yr is the received signal from the transmitter (Tx) of
interest (denoted by i = 0), hdi

denotes the direct channel
between the i-th Tx and receiver (Rx), hi is the Tx-RIS
channel, fi denotes the RIS-Rx channel, xs,i is the data for the
i-th Tx, E[x2

s,i] = βi, θ is the N -element discrete RIS phase
configuration vector, NI is the number of interferers, and w
is the additive noise. For a general MIMO communication
scenario, these channels can be seen as the actual channels
pre-multiplied and post-multiplied by precoding and receiver
beamformer vectors, respectively.

2) System model: We consider a generic system model
dictated by the signal model (15). We consider the RIS phase
vector θ = [θ1 θ2 . . . θn . . . θN ]T with θn ∈ {−1,+1}. For
ease of notation, we also define hci =

(
hH
i diag(fi)

)H
With

this discrete RIS, the SINR can be expressed as,

γ =
β0|hd0

+ hH
c0θ|

2

NI∑
i=1

βi|hdi
+ hH

ciθ|2 + σ2
w

=
fs(θ)

fI(θ)
=

θTR0θ + cT0 θ

θTKθ + sTθ
,

(16)

where Ri = βiRe
(
hcih

H
ci +

|hdi
|2

N IN

)
, K =

NI∑
i=1

Ri+
σ2
w

N IN ,

σ2
w is the variance of the additive Gaussian noise, ci =

2βiRe(conj(hdihci)), and s =
NI∑
i=1

ci.

3) RIS optimization: In this subsection, our objective is
to maximize the SINR given in (16) while the RIS elements
are discrete in nature. The optimization problem is described
below:

min
θ∈{−1,+1}N

− fs(θ)

fI(θ)
. (17)

As the domain of this problem is discrete and the problem is
a fractional quadratic program, a common way to solve this
problem is to relax the discrete domain and then project the
solution to the closest discrete point. The relaxed version is

Algorithm 1: E-GD
Input: Ri, ci, ϱ, ε, ϵth, βinit, G ∀i
Output: θ̄i+1

Initialize t = 1, δGD = 1, and y
(t)
s = yinit.

while δGD ≤ ϵth
do

Initialize β(1) = βinit, df = −1.
Calculate ∇ysJl(y

(t)
s ) from (22) or (23).

while df ≤ 0
do

ynew = y
(t)
s − β(t)∇ys

(
y
(t)
s

)
.

Find yproj by clipping the vector ynew in
[−1N ,+1N ].
df =

−Jl(y
(t)
s )− εβ(t)∥∇ys

Jl(y
(t)
s )∥22 + Jl(yproj).

β(t) = ϱβ(t).
y
(t+ 1

2 )
s = y

(t)
s − β(t)∇ys

Jl(y
(t)
s ).

y
(t+1)
s ∈ min

vy∈[−1,+1]N
∥vy − y

(t+ 1
2 )

s ∥2.
t = t+ 1.
δGD = ∥y(t+1)

s − y
(t)
s ∥22.

ps =
y(t)
s +1
2 .

Based on this probability parameter vector p, sample
G RIS phase-shift vectors.
Choose the best RIS phase-shift vector θbest among
them based on the resulting SINR.
θ̄i+1 = θbest.

solved through GD in [14]. Note that, we also consider SDR
in the simulation results. We approach this problem with our
reformulation (3) and transform this problem into a continuous
domain problem. The reformulated problem is as follows:

min
ys∈[−1,+1]N

− Eθ∼PB(θ|ps)

[
fs(θ)

fI(θ)

]
, (18)

where ys = 2ps − 1 and θ is assumed to be distributed with
the joint PDF

PB(θ|ps)=

N∏
n=1

(δ(θn−1)ps,n + δ(θn+1)(1− ps,n)) , (19)

where ps,n ∈ [0, 1] is the n-th entry of ps and θn ∈ {−1,+1}.
We propose two approaches to solve (18): a) stochastic sam-
pling approach, and b) analytical GD approach. The former
approach generally does not require an explicit expression of
the gradient whereas the latter does. In the stochastic sampling
approach, generally, an estimator of the gradient is used in the
GD algorithm. Such a procedure has appeared in [12] for a
binary random vector in the context of the Bayesian optimal
design of experiments utilizing the standard combination of
log-derivative trick and Monte Carlo (MC) sampling [15]. To
our knowledge, the current paper is the first work to use this
reformulation and the stochastic approach in the RIS context.
So, we only delve into the analytical optimization approach
in this case. In this analytical GD approach, calculating the
direct expectation of a ratio of correlated random variables is
difficult. So, we consider the Taylor series approximations of



such an expectation [16]. Both the first-order approximation
J1(ys) and second-order approximation J2(ys) are stated
below:

J1(ys) =
E[fs(θ)]

E[fI(θ)]
=

µqf (R0, c0,ys)

µqf (K, s,ys)
,

J2(ys)=J1(ys)−
E[fs(θ)fI(θ)]

E2[fI(θ)]
+

E[f2
I (θ)]E[fs(θ)]

E3[fI(θ)]
.

(20)
The second-order approximation requires two additional ex-
pectations that are derived along with their gradients in (21).
Using the definitions in (21), we can express the gradients of
the Taylor series approximations as follows:

∇ysJ1(ys)=
ϑqf (R0, c0,ys)− J1(ys)ϑqf (K, s,ys)

µqf (K, s,ys)
, (22)

∇ys
J2(ys) = ∇ys

J1(ys)−
ϑcv

µ2
qf (K, s,ys)

+

µqf (R0, c0,ys)

(
ϑv

µ3
qf (K, s,ys)

− 3v(ys)ϑqf (K, s,ys)

µ4
qf (K, s,ys)

)
+

2cv(ys)ϑqf (K, s,ys)

µ3
qf (K, s,ys)

+
v(ys)ϑqf (R0, c0,ys)

µ3
qf (K, s,ys)

. (23)

Note that, they are stated without proof as they can be
derived trivially with the basic chain rule. Armed with these
gradients, we can develop simple update rules of a projected
GD algorithm next:

y
(t+ 1

2 )
s =y(t)

s − β(t)∇ys
Jl(y

(t)
s ), (24)

y(t+1)
s ∈ min

vy∈[−1,+1]N
∥vy − y

(t+ 1
2 )

s ∥2, (25)

where y
(t)
s = 2p

(t)
s − 1 is the transformed probability vector

at the t-th iteration, β(t) is the step-size and ∇yJl(y
(t)
s ) is

the gradient of the l-th order Taylor approximation of the true
expectation where l ∈ {1, 2}. The steps (24) and the (25) are
considered gradient step and projection step, respectively. For
our box constraints, the projection turns out to be clipping the
vector y

(t+ 1
2 )

s to −1 and +1. We also use Armijo-Goldstein
(AG) line search [17] to find a good step-size while avoiding
saddle points due to its diminishing nature [18]. Complete
details of the GD approach are shown in Algorithm 1. Note
that a feasible discrete θ is also a feasible x and corresponds
to the degenerate PDF itself that generates θ. So, we find the
vector that aligns the phases of the reflected signals with the
phase of the direct signal:

φinit
n = e−j(arg(hc0 )n−arg(hd0

)), ∀n = 1, 2, . . . , N, (26)
where (hc0)n denotes the n-th element of hc0 and project
it to {−1,+1} for a feasible yinit. After the projected GD,
we sample G feasible solutions and choose the best one. The
complete procedure is described in Algorithm 1. Note that
the numerical results associated with the case studies will be
discussed in the next section.

IV. SIMULATION RESULTS

In this section, we compare the performance of our proposed
algorithms to the widely used SDR and CPP methods. The
primary metrics for comparison are the achievable capacity,

denoted as Ccap = log2(1 + γ), and the runtimes of each
algorithm. We set up a simulation scenario where a Tx
communicates with an Rx, aided by an RIS. This scenario is
inspired by the signal model (15) discussed in Section III. It
is important to reiterate that although the Tx and Rxs may
have multiple antennas, our focus on the RIS subproblem
causes the mathematical formulation to resemble a point-to-
point link. We concentrate on the scenario where direct paths
are blocked, as this is when the RIS proves most useful.
Moreover, we operate in a high interference regime, where an
interferer with average power similar to our user is present.
This also highlights the ability of our developed algorithms
to cope with high interference. The simulation parameters
used are βi = pδPL, p = 0 dBm is the transmit power,
δPL = −110 dB, B = 5 MHz, and N0 = −174 dBm/Hz
[19]. The algorithm parameters are ϱ = 0.5, ε = 0.0005,
ϵth = 10−2, βinit = 0.01, and G = 100. Additionally, all
the channels are Rician distributed with the Rician factor of
4 while all the results in this section are averaged over 1000
independent channel realizations. Our proposed first-order and
second-order analytical GD algorithms are denoted by ‘E-GD-
1’ and ‘E-GD-2’, respectively while our proposed stochastic
sampling approach is denoted by ‘SSA-B’. The solution of the
GD algorithm developed in [14] for continuous phase-shifts
projected to the discrete phase-shifts also acts like a baseline
and is denoted by ‘CPP-1’. The CPP of the solution of (17)
when the constraint is relaxed to be continuous is denoted
by ‘CPP-2’. Note that, the only difference between ‘E-GD-1’
and ‘CPP-2’ is the final sampling step as the former treats
the solution as a probability vector, and the latter projects it
to {−1,+1} for a solution. The CPP of the simple signal
alignment scheme in (26) is denoted by ‘SA’. CPP methods
are considered comparison baselines as they are more practical
in terms of speed and are often used in the literature over the
traditional branch-and-bound methods that do not scale well
with the number of elements.

In Fig. 1, we can observe that all the proposed expectation-
based algorithms perform better than the CPP algorithms,
for all N , and the SDR for N > 20. In particular, the
proposed stochastic sampling approach ‘SSA-B’ performs the
best, while our proposed analytical GD algorithms dependent
on the approximations of expectation perform slightly worse.
The scheme ‘CPP-1’ performs worse than ‘CPP-2’ because the
former was developed for continuous RIS phase-shifts with
unit-modulus constraints whereas the domain of the latter is
much smaller and closer to the original problem.

In Fig. 2, we plot the run-time for a single iteration of
all the algorithms with varying numbers of RIS elements.
These results are taken from the simulations needed to create
Fig. 1 on a 3.6GHz Intel Core i7-4790 8-CPU system with
16GB RAM. From this plot, we note that the runtime of our
proposed ‘SSA-B’ is between the ‘E-GD-1’ and ‘E-GD-2’
methods while SDR is prohibitively slow. The runtime of our
proposed ‘E-GD-2’ method is better than SDR but still slower
than its first-order counterpart due to the complex gradient
calculation. The overall performance of our analytical GD



cv(ys)=E[fs(θ)fI(θ)]=
µqs(R0 +K,ys)−µqs(R0 +K,ys)

4
+µql(R0, s,ys)+µql(K, c0,ys)+cT0

(
(ysy

T
s )⊙Em+IN

)
s,

ϑcv = ∇yscv(ys) =
ϑqs(R0 +K,ys)− ϑqs(R0 +K,ys)

4
+ ϑql(R0, s,ys) + ϑql(K, c0,ys) + s⊙ (Em(c0 ⊙ ys))+

c0 ⊙ (Em(s⊙ ys)), v(ys) = E[f2
I (θ)] = µqs(K,ys) + sT

(
(ysy

T
s )⊙Em + IN

)
s+ 2µql(K, s,ys),

ϑv = ∇ys
v(ys) = ϑqs(K,ys) + 2s⊙ (Em(s⊙ ys)) + 2ϑql(K, s,ys). (21)

Fig. 1: Achievable capacity.

Fig. 2: Runtime of algorithms.

algorithms is dependent on the trade-off between the com-
plexity of the gradient and the accuracy of the approximation
for the expectation. These simulation results demonstrate the
superiority of the proposed expectation-based algorithms in
discrete optimization problems.

V. CONCLUSION

In this paper, we proposed a novel probabilistic reformu-
lation technique to tackle general unconstrained discrete opti-
mization problems. Our approach treated the discrete optimiza-
tion variable as a categorical random vector with i.n.i.d. entries
and substituted the objective function with its expectation.
We provided a rigorous mathematical proof demonstrating
the equivalence between the unique optimal solution of an
unconstrained problem and the corresponding degenerate PDF
of the transformed problem. Moreover, we derived analytical
moments and gradients associated with the quadratic form and
binary random vectors, which served as essential intermediate
results. We applied our method to a canonical discrete RIS-
aided SINR maximization problem. To solve the reformulated
problem, we proposed an analytical GD technique, based on
closed-form Taylor series-based approximations for the expec-
tation, and a stochastic sampling approach. Numerical results
revealed that our expectation-based algorithms outperform
other state-of-the-art conventional algorithms, highlighting the

advantages of our approach. Although our focus has been on
RIS applications, the proposed method is applicable to a wide
range of other domains. Future research directions include
developing a more advanced projected GD framework and
investigating alternative gradient estimators to further enhance
the performance and applicability of our technique in solving
diverse discrete optimization problems.
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