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ABSTRACT

Future mobile edge computing (MEC) is envisioned to provide
federated intelligence to delay-sensitive learning tasks with multi-
modal data. Conventional horizontal federated learning (FL) suffers
from high resource demand in response to complicated multi-modal
models. Multi-modal FL. (MFL), on the other hand, offers a more
efficient approach for learning from multi-modal data. In MFL, the
entire multi-modal model is split into several sub-models with each
tailored to a specific data modality and trained on a designated
edge. As sub-models are considerably smaller than the multi-modal
model, MFL requires fewer computation resources and reduces
communication time. Nevertheless, deploying MFL over MEC faces
the challenges of device mobility and edge heterogeneity, which,
if not addressed, could negatively impact MFL performance. In
this paper, we investigate an Service Migration-assisted Mobile
Multi-modal Federated Learning (SM3FL) framework, where the
service migration for sub-models between edges is enabled. To ef-
fectively utilize both communication and computation resources
without extravagance in SM3FL, we develop the optimal strategies
of service migration and data sample collection to minimize the
wall-clock time, defined as the required training time to reach the
learning target. Our experiment results show that the proposed
SM3FL framework demonstrates remarkable performance, surpass-
ing other state-of-art FL frameworks via substantially reducing
the computing demand by 17.5% and dramatically decreasing the
wall-clock time by 25.3%.
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1 INTRODUCTION

Mobile edge computing (MEC) has emerged as a promising para-
digm for next-generation computing systems, which brings com-
putation and storage resources to the network edge in proximity
to mobile devices. Driven by its salient features of low latency and
bandwidth saving, MEC enables a diverse range of applications
such as advanced manufacturing [12], intelligent health care [27],
and smart cities [29]. Future MEC is anticipated to support increas-
ingly complex applications with high reliability and robustness,
which necessitates the use of data with multiple modalities [23].
Object tracking in autonomous vehicles, for instance, requires the
integration of data generated by multiple sources, such as cam-
eras, radars, and LiDAR [4]. Similarly, in traffic surveillance tasks,
time-series data, including location, altitude, and velocity, as well
as vision data from cameras, are collected and further analyzed
for pattern recognition [3]. Typically, the volume of multi-modal
data is higher than that of single-modal data, requiring significantly
more computation and storage resources [11].

Federated learning (FL) [17] is surging as a key enabler to learn
from the massive collected data to provide useful insights in MEC,
where edges collaboratively train a powerful learning model under
the coordination of a edge server. When the conventional hori-
zontal FL (HFL) meets multi-modal data, as shown in Fig. 1b, each
edge builds a complex multi-modal model with a huge amount of
parameters and further communicates it with the server back and
forth. However, the limited resources at the edges significantly com-
promise the HFL efficiency. Even worse, inadequate edge resources
pose a substantial risk of HFL failure in the time requirement. Multi-
modal FL is a better FL paradigm to learn from the multi-modal
data. As depicted in Fig. 1a, the entire multi-modal model in MFL
is divided into several sub-models with each corresponding to a
single-modal data. Each edge trains a sub-model and then outputs
an intermediate result. The server deploys a top fusion model to
aggregate intermediate results of all modalities and generate new
gradients for training. This process is iterated until reaching the tar-
get loss. MFL shifts the training of the complicated fusion layer to
the edge server, and only a sub-model is trained on the edge. Thus,
MFL greatly reduces the edge training load. Meanwhile, compared
to exchanging complex models with the edge server in HFL, the
sub-model in MFL significantly reduces the volume of parameters
to be transferred and thus saves transmission time. The comparison
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Figure 1: Illustration of different FL frameworks
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Figure 2: Performance comparison of different FL frameworks

between MFL and HFL in Fig. 2 highlights that MFL utilizes only
one-third of the memory and half the communication resources
required by HFL, as well as reduces half of the wall-clock time,
which is defined as the required training time to achieve a target
loss. Please refer to Section 6 for the settings in this experiment.

Despite its potential benefits, device mobility and edge hetero-
geneity pose a great challenge to efficient MFL. The movement
of mobile devices, such as autonomous vehicles [13] and smart-
phones [2], causes various latencies in uploading data to edges
across rounds. As a mobile device moves farther away, the edge
may experience prolonged waiting times for data to perform lo-
cal training, leading to a significant increase in wall-clock time.
Moreover, edges in an area typically undertake multiple computing
tasks that serve both public and government purposes, such as
real-time transcription services [18] and spectrum management
[20]. The sharing of edge resources is dynamic in nature and may
result in resource depletion, thereby disrupting MFL operation.
Edge resource sharing also exacerbates edge heterogeneity, thereby
rising to the challenge of learning from multi-modal data that re-
quire diverse resources. Obviously, it is not the best option to train
LSTM on resource-exhausted edges while performing simple CNN
on edges with abundant resources, since it would not only waste
edge resources but also increase the local training time divergence
among edges. In the worst case, the whole MFL would fail caused
by insufficient edge resources for training LSTM. Therefore, how to
utilize both the communication and computation resources without
extravagance becomes a critical issue in MFL.

In this paper, we propose a Service Migration-assisted Mobile
Multi-modal Federated Learning (SM3FL) framework as shown in
Fig. 3. The modality-associated sub-models, taken as the service,
will be moved from one edge to another more proper one to balance
the learning performance and the available resources in each round,
which is the idea of “waste not, want not”. To develop an optimal
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service migration strategy for efficient MFL with convergence guar-
antee, we mainly focus on these two problems: Whether to move
the sub-model between edges? and Which is the pair between the
target edge and the sub-model for a specific data modality? To get
answers, we first provide the convergence analysis and reveal the
relationship between the convergence round and data sample size.
An offline wall-clock time minimization problem is then formulated
taking service migration decisions and the sample collection ratio as
variables. Solving this problem requires the information of mobile
devices and edges during the whole training process, which is not
always available. Therefore, we reformulate it as an online problem,
but the above variables are coupled. To tackle this issue, we first
obtain the service migration strategy by coverting the online prob-
lem into a Makespan minimization problem, which can be solved
by a variant of Longest-Processing-Time-first (LPT) algorithm [8].
The optimal sample collection ratio is then determined based on its
slope feature.

In light of the above discussion, we summarize our key attribu-
tions in this paper as follows:

e We propose a novel service migration-assisted multi-modal
federated learning (SM3FL) framework, which is highly efficient
and applicable for multi-modal learning tasks in MEC.

e We provide the convergence analysis to SM3FL under the
assumption of the non-convex loss function and get the maximum
estimated number of rounds to achieve a target loss.

o We formulate a wall-clock time minimization problem in SM3FL.
We solve it by determining the optimal and service migration strate-
gies and sample collection ratio in each round.

o We conduct extensive experiments to reveal how SM3FL works.
We further demonstrate its advantages in reducing wall-clock time,
communication cost, as well as computation demand.

2 RELATED WORK

Federated Learning over Wireless Network. The deployment of
FL over wireless networks faces the challenge caused by the commu-
nication and computation resource constraints [19]. Quantization
algorithms are developed to minimize the local model transmis-
sion cost between clients and the server in resource-constrained
IoT networks [24]. Assisted by deep reinforcement learning (DRL)
approaches, various resource allocation strategies are designed
for efficient FL over wireless networks [10, 31, 33]. However, most
DRL-based approaches take the offline policy and regard to only the
single-modal data. By contrast, we focus on improving FL efficiency
in an online manner for multi-modal learning tasks.

Edge Computing with Multi-modal Data. Multi-modal data
widely exists in various applications in MEC, including but not
limited to mobile crowd sensing [34], objective trajectory [4], the
smart home [32], the smart city [22], and the smart health [1, 15].
For instance, Zhou et al. in [34] map multi-modal data into the same
feature space and fuse the representations through the bi-linear
pooling technique for the classification tasks. Their experiments
prove that the classification with multi-modal data is more accurate
than the single-modal one. In [26], Mohammad-Parsa et al. explore
a cloud-edge framework for real-time health diagnosis. They apply
an unsupervised feature extraction model for the identification of
Interictal epileptic discharge (IED) and nonIED time intervals using
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EEG and rs-fMRI data, respectively. However, these works place the
model for processing multi-modal data on a single edge, without
considering the high cost of multi-modal learning tasks and the
limited edge resources in the MEC network.

Service Migration in Wireless Network. The device mobility
and the edge server’s limited coverage could lead to significant
network performance degradation [28]. Service migration ensures
high service quality by deciding when or where to migrate the
service. The optimal decision of service migration in the 2D area is
investigated in [25]. They form the migration as a Discrete Time
Markov Decision Process and gain an optimal decision in each
round with Q-matrix. Recently, a few works come out on migrating
local models in FL. Aergia in [7] speeds up the FL process by mi-
grating part of the CNN model to faster clients for efficient training.
They either require devices’ trajectories, contradicting our assump-
tion of unpredictable device locations, or pre-training, unsuitable
for our scenarios demanding fast service deployment.

3 SYSTEM MODEL

Fig. 3 presents a 3-layer MEC network including M mobile de-
vices for multi-modal data collection, e.g., the smartphone and
autonomous vehicles, a set of trusted edges N = {1,2,---, N} for
local training, e.g., the small base stations (SBS) and roadside units
(RSU), and a powerful third-party edge server, such as the remote
cloud of Intelligent Transportation Systems [16]. They collaborately
perform SM3FL over R rounds.

===>» Device Status

=== Edge Status

——> Upload Decision

——> Migration Strategy

N
Device @é?‘(:)-@

Service Migrarion

Figure 3: System overview

3.1 System Overview

Ineachroundr = 1,2,---, R, mobile devicem = 1,2, - - - , M deploys
multi-modal sensors for collecting the same number of K-modality
data samples, written as Sj,, = p’S, where S is the number of
total samples in the environment and p” is the sample collection
ratio. For MEC in large areas, the number of modalities is far less
than the number of deployed edges, for which we assume K <
N. MFL works in the single-modality single-edge manner, that
is each modality is uniquely processed by only one edge. Note
that single-modality multi-edge will lead to huge communication
costs of model duplication and transfer, whereas multi-modality
single-edge will result in resource exhaustion on some edges but
under-utilization on others.

The edge server requests mobile device locations and edge avail-
able computing resources, based on which it makes decisions on
service migration and sample collection for all mobile devices. Par-
ticularly, at the beginning of each round, the edge server decides K

213

out of N target edges to learn from K modalities, respectively, de-
noted as {nz, k € K} € N, for which we use (nI’C, k) to denote each
edge-modality pair. Once model migration is completed, the device
uploads each modality to the associated edge for local training
based on the collection ratio p” provided by the edge server.

3.2 Learning Model

Let X ={X1,..., XK} € RS*D represent all available multi-modal
data in the environment, where D denotes the dimension of feature
space. X € RS*Pk indicates the data of modality k and Zle Dy =
D. In round r, device m collects a subset X}, € RS=*P ¢ X con-
sisting of S},, samples. Device m then sends each modality data to
the associated target edge "lrc' After contaminating data of modality
{ern,k}%:l € RS %D« the edge forwards

each data sample xlrc’i € RPk through its neural network 6 € RVk

k from all devices X]C =

to generate the embedding Ay (0y; xIC’i), which is then sent to the
edge server. The edge server maintains a fusion model parame-
terized by 6 € RYr, which is a function of K embeddings. We

represent the entire model as © = [Of, 01,...,0¢] € RY, where
V' = V¢+ 2k Vi The above learning model structure can be referred
to Fig. 1a. The long-term object of MFL is

S
: 1 i i
min F(6,Sy) = 5 ;:1 f(Op;h1(01;x)); ... s b (0K xg)), (1)

where F(-) is the overall loss of all samples; f(-) denotes the loss
function on the edge server; and y € RS represents the label set.
The derivative of modality k evaluated by © is given as

S
1 . .
VKF(0,S:y) = ¢ D VifOpsha(01:x)); s hic(Oks xk)). (2)
i=1

3.3 Communication Model

The communication time per round is comprised of service migra-

tion and data uploading. We ignore the time spent in embedding

transmission between edges and server due to its tiny size.
Service Migration. Denote the edge for modality k in last round

r=1, nz_l = n’ indicates no migration performed for modality

asn

k in round r. Otherwise, the local model for modality k is migrated

from nz_l to nlrc. Given the local model size v in bytes, the reference
-

k

migration speed 7y, in bytes/second, the service migration time is,

distance dy, the distance dyr1 e between n’ "1 and nz, and the
kM

v log,(1+d r-1 /do)
0 (k) = Tk e

®)

Tn
Data Uploading. In round r, mobile device m uploads samples
of each modality ern . to the associated target edge, respectively.
We denote size of each sample in ern © k=1,2---,Kas qg. The
overall size of X ’rn P is py,Sqx. Each device deploys MIMO antennas
for sample transmission. Given the transmission bandwidth B,
and power Pp,, the time in sending X r’n * is calculated as

PrSqk
Pph(d’ )’
m,ny

No

Tl:p,m(n]’;’ k) = (4)

B log, (1 +
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where d’
round r; h(d’
is positively related to the distance, such as the Rayleigh fading

channel; and Ny denotes additive white Gaussian noise (AWGN).
The communication time of edge-modality pair (n}, k) is

m (”2, k) = (5)

where max function indicates the longest time in sending modality
k to target edge nj among all devices. It is because the target edge
cannot perform training until getting the modality from all devices.

i is the distance between device m and target edge n in

) denotes the corresponding channel gain, Wthh

(nk, k) + max up m(nk, k),

3.4 Computation Model

Due to the resource sharing between other edge computing tasks
and MFL tasks, the available computing resource on each edge
varies across rounds, which is depicted by computation capabil-
ity &, in cycles/second. We assume that each edge performs E
epochs of local training to update © every round. With GPU com-
putation density ;. cycles/sample for model 0%, we calculate the
computation demand of each epoch as S" 9. in cycles, where S” =
ZM .Sl = p"MS represents the total samples from all devices.
The computatlon time on edge nj_in round r is calculated as
7o, k) = B0k = prean ), ©)
&h 54

We ignore the computation time spent by the edge server due
to its sufficient computation resources. Another reason is that the
fusion model on the server is much simpler than the learning models
on edges. For example, the RNN model processing time series data
on edges is much more complicated than the MLP-based fusion
model on the edge server.

:E(

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence rate of SM3FL. For
simplicity, we use k to refer to the target edge nj_that trains the
local model for modality k.

AsinEq. (2), edge k needs the embedding set from all target edges,
including itself and the model from server 0}, to calculate the partial

gradient g; (©", S™). We denote the set of required components as

= (0 h1(O7:x));. .. s hx (B xi)) ). Yl

Weuse @ to represent the subset of ®” without the embeddings

from edge k. Denote the local gradient as g ({0} [®" , },S"), the
expectation over S” on edge k is expressed as

ViF({0197, 1.8 = & ng({erld’ 18N, ®

where {0} |®", } indicates that embeddings ®” , remain static when

edge k updates its local gradient 9,2 in round r.
The update of the global model ©" can be decomposed to the col-

laboration of the updates on the local model 6 . Here we introduce
a global gradient G represented by the set of local gradients

= [91({07107 1. S");. .1 gk (O 1P }. ST ©
With Eq. (9), the global update becomes
ol =0 -G, (10)
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where 17 = [51;...;nK] is a set of learning rate w.r.t sub-models on
all edges. The local update for edge k with a single step is
=0; — kg ({03127, 1. S). (11)

According to [5, 6, 14], we make the following common assump-
tions on the model and simply denote the local gradient as g (6}).

Assumption 1 (L-Smoothness). The global model is L- smooth
with positive constants L and L, k € K, which is described as:

[IVF(©1) — VF(O1)]| < L||©1 — ©2]|, V01,02,
IV F(©1) = Vi F(©1)]| < Lk [|©1 — O2]|, YO1, O2.

r+l1
ek

(12)
(13)

Assumption 2.1 (Uniform Sample Distribution). We assume that
after sufficient rounds 7, the sampling distribution of each sample
x! approaches the uniform distribution as p” (x|r = 7) = 1/S.

Assumption 2.2 (Unbiased Gradient). The expectation of the
stochastic gradient is presented as

1
r r — r
By (904 SN = 5— D Zs, VL F(0,S).
When Assumption 2.1 holds, the expectation can be simplified as

525 f(O,8) = ViF(8.S).  (15)

Assumption 2.3 (Bounded Variance). Given the unbiased gradi-
ent, we further obtain a bounded variance as

(14)

Esr 9k (6. S8")] =

o2

S

o is a small constant regarding variances of the sampling process.
Lemma 1. The local gradient evaluated by global model ©” in
Eq. (2) and by local model 6 cannot be regarded as unbiased. This
is because the evaluation of gk(GIrC) contains stale embeddings from
other edges, which introduces bias from the local gradient on the
global view. Following the proof in [14], such bias is bounded as

Esrllgi (0}, S) = ViF(0}. S)I* < (16)

K 2

o
E ) el ViF(O7) - gr(0p)1* < 2E°(K +3) anLZ
k=1

+2E22qk(A+3L )E||VF(6! )||2+2K? (17)

k=1

where A = Zle Ly is a constant determined by local smoothness.
Theorem 1. With the above assumptions, when the minimum

2 2\ _
min L?+4(C+3LE)-L

learning rate among all edges satisfies ;] il , we
&
have the followmg bound on the gradlent of global loss
R-1
= Z E||VF(@)|* < [F(®°> - F(8R)]
2 3,2,0°
+(2+4E%(K +3) Zkzl ”kLk)y_s' (18)

y is the sum of learning rates over all edges. On the right-hand
side, the first item indicates the convergence rate and the second
item is the residual error. Please refer to Appendix A.1 for the proof.

Remark 1 (Impact of modalities). The number of modalities K is
positively related to both the convergence rate and the residual error.
The model with more modalities will result in a faster convergence
but a higher residual error, making SM3FL more challenging.
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Corollary 1 (Maximum rounds for target loss). For the multi-
modal learning model, set  as the convergence loss. When S > ae™!
is satisfied, the number of rounds to achieve the target loss is

R(Sk)::gﬁéi:i—

. 19
—aqe! (19
Here, we regard (2+4E%(K+3) ZIk(:l ’7]3<L12< %2 and %E[F(G)O) -
F(OR)] as two positive constant « and , respectively. The proof is
given in Appendix A.2.

5 PROBLEM STATEMENT AND SOLUTION

In this section, we aim to minimize the wall-clock time in MFL to
facilitate delay-sensitive computing tasks. Specifically, Corollary 1
suggests that a larger sample size reduces the number of rounds re-
quired for a target loss. However, increasing the number of samples
collected in each round causes a higher communication and com-
putation time cost, as illustrated in Eq. (3) and (4). This may not be
feasible for MEC networks with limited resources. Hence, a sample
collection strategy for efficient MFL needs careful consideration.
Additionally, Eq. (3) to (6) demonstrate that the selection of the
target edge for each modality significantly impacts the time spent
on service migration, data uploading, and edge computation, which
necessities the design of an optimal service migration strategy.

5.1 Problem Formulation

We minimize the wall-clock time w.r.t the target edge nz for all
modalities and the sample collection ratio p” in each round by
solving the following optimization problem

R
PL min :E:rzl(TEn(nZ,k)—FYzb(nz,k)), (20a)
pr’ nlr< k=1
st ol #nt, Vk#k, (20b)
p>0,a>0, (20c)
_ ‘ﬁ2+ﬁc+3%)—L
min
T = 2C +6L2 : (20d)
M
S>8" = Zm:l Sho>ael, (20¢)

where Eq. (20b) denotes that each edge learns from a single modality;
Eq. (20c) and Eq. (20d) set the range for «, 8, and nl’cni", respectively;
and Eq. (20e) limits the total number of samples every round for
learning convergence, which is found in Eq. (18) and Eq. (19).

The optimal solution to P1 requires a known round R for target
loss as well as the exact dynamic mobile device locations and edge
computing resources in all rounds, which, however, is agnostic in
real-world scenarios. Instead, we obtain its sub-optimal solution
with the optimal decision for each round, for which we reformulate
P1 into an online optimization problem

QgT:R@%MLM+ﬂH%k»,
Eq.(20b) — (20e).

(21a)
(21b)

Eq. (21a) represents the estimated wall-clock time, which consists of
the estimated convergence round from Corollary 1 and the duration
of the current round given device locations and edge resources. The
edge server estimates the wall-clock time T by supposing mobile

min, ¢,

s.t.
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devices stay in the same location. Thus, the optimal nlr< and p" do
not change across rounds. In round r, in total S* = MSp" data
samples will be collected for training. We estimate the expected
R(S") by replacing S in Eq. (19) with MSp". After substituting R(S")
into Eq. (20a), we rewrite the above optimization problem as

_ P BT (R K +T2 () )

P2: min — , (22)
prAn K P
s.t. Eq.(20b) — (20e). (23)

We let = fe~! and @ = a(MSe)~! for simplicity.

Obviously, the joint optimization of float value p” and {nz }I]le
is a Mix Integer Non-Linear Problem (MINLP). We tackle this issue
by first decoupling the above two variables and solving the optimal
migration strategy followed by the optimal sample collection ratio.
Specifically, we enumerate edges for each modality to generate
an edge-modality matrix. Each element in the matrix records the
time cost for the corresponding edge-modality pair, which is a non-
linear function of p". By proving the convexity w.r.t p”, we can
get an optimal p and the corresponding edge-modality preference
matrix, based on which the edge-mobility pairs minimizing the wall-
clock time are determined. With the given optimal {n;* }Ik(:l’ we
further obtain the optimal p"* from p; Tk’ Vn, k based on its feature
of curvature. The details are discribed in the following.

5.2 Edge-Modality Preference Matrix

As demonstrated in Eq. (22), once the optimal sample collection
ratio p"* is determined, the optimal migration strategy {n}* }le
is deterministic. However, the coupled relationship make it im-
possible to directly obtain the first variable. Therefore, instead of
straightforward representing the migration strategy w.r.t the glob-
ally optimal p"*, we introduce an edge-modality preference matrix
TNxK(P;Tk) = [T(pr':‘k)]NxK to denote the estimated minimal
wall-clock time for every potential edge-modality pair w.r.t its own
optimal sample collection ratio p; Tk in round r. In other words, the
p::k is their preferred sample collection ratio. Consequently, we
convert the MINLP problem into a assignment problem.

From communication model described by Eq. (4) and Eq. (5) as
well as computation models by Eq. (6), the initial edge-modality
matrix TNXK(prrl,k) is represented as

PiB
TNXK(prrz,k) = [T(P,rl,k)]NxK = /ﬁ[Tr(p;k)]NxK
nk
Prih
= . n, — [T4,, + maxy, Tzfp,m(PZ,k) + Tgp(p”;,k)]NxK, (24)
nk

where T"(p] , ) is the estimated time cost of each edge-modality
pair in round r. As each edge-modality pair is enumerated, we
replace nj_and p” in P2 with n and p}, & respectively. Since T}, and
TZ, rely on p | , we integrate them by putting aside p;  as follows

maxy, TJP’m(n, k) = p;’k maxy, h(m, n, k) = pz’kH(n, k), (25)

Ty (0n) = EM(EE) = pf Lo ), (26)



MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

where h(m, n, k) = Sqi/(Bm log,(1 + %)) is the uploading

time for device m. With Eq. (25) and Eq. (263, T (pn k) is written as
T'(p; K = prrl R H (nk) + L7 (n,k)) + T, (n, k).

For simplicity, we denote ‘I’U " =H"(n,k) +L"(n,k) and ‘I’s =
T"S™(n, k). We then are able to obtam the edge-modality preference
matrix by solving the following problem P3

27)

(Pl )%
P3:minT(p) ) = —(‘I’” +‘I’”) Vnk  (28a)
prrLk ’ pn}k
s.t.  Eq.(20b) — (20e). (28b)

Now, we attempt to prove that there exists a optimal and unique
o for each edge-modality pair. The first and second derivative of
T(p; k) w.r.t prrl  inEq. (28b) are

dT(n k) Yar(P))’ = 20¥ " — ¥ 29)
dpr (p" - @)? '
ETnk) Y@+
- > 0. (30)
dzpr (pr — ()l)3
d*T(n,k)

Since > 0, T(n, k) is a convex function of p". Hence, by

a'Zpr
setting Eq. (29) equal to 0, we are able to obtain the optimal p*,

for each (n, k) in Tnxg as

AL S,r
o \Ijn,k + a‘I’n’k

o,r 4

nk

(1)

r¥  _
pn,k =a+

which is the solution to P3. By substituting p* into Eq. (24), the
edge-modality preference matrix obtained in round r becomes

TNXK(P;T/C) =
¥ P e or | wsr
[( or ST oy +2a)(ﬁ\}' +“II )]NXKa
Ot‘I’ +‘I’nk \Pn,k

(32)

where each element T(p], ) represents the minimal time cost of

the potential edge- modahty pair (n,k).

5.3 Service Migration and Sample Collection

We now explore the optimal service migration strategy through
the given edge-modality preference matrix. Since each modality
is parallelly processed by edges, the overall wall-clock time is de-
termined by the slowest modality, who has the longest estimated
wall-clock time. Thus, the optimization problem P2 can be regarded
as minimizing the maximum estimated wall-clock time over a set
of modalities, which drops into a Makespan minimization problem.

In accordance with the idea of LPT algorithm, which provides
a polynomial time-complexity solution to the Makespan problem,
we propose the following modality assignment procedure. First, we
denote the set of modality existing in the preference matrix Tyxx
as K. For each modality k € Kr, we select out a set of edges with
minimum estimated wall-clock time, where

{n}.} = {argmin, T(n, k), k € Kr}. (33)

216

Hansong Zhou, Xiaonan Zhang

Algorithm 1 Sample collection and Server migration strategy

Input: Edge resource &, device distance to edges D7, ,,, target loss &
Output: Number of samples to be collected S”, edges to work for MFL N”
in this round
1: Initialize the selected edge set N" = 0
2: Calculate the H”, L", and T/,,, for all potential edge-modality pairs with
Eq. (25), Eq. (26) and Eq. (3).
: Find the optimal p'r:k for each edge-modality pair (n, k) with Eq. (31)
: Generate the preference matrix Tnxx by Eq. (32)
:forjdo=1,2,...,K
Obtain edge-modality candidates for remaining modalities by Eq. (33)
Sort the candidates by estimated time in descending order.
Select out the first pair (n; , j) with the longest wall-clock time.
Add the edge n; into final edge list N7
Remove the corresponding modality and edge from Tnx k-
end for
Set the sample collection ratio as p”™*
N'Y, )
13: Obtain the optimal number of samples S” = p”MS
Return: S”, N7

RN 2

10:
11:

12: = mm{argmax ~{P% n €

nk’

Algorithm 2 Service Migration-assisted Mobile MFL (SM3FL)

Input: Server fusion model 8¢, edge models {6 }sz1 and learning rate set
{nk }fﬂ, for K modalities, target loss ¢, epochs per round E.
Output: Trained global model ©, wall-clock time Ty,c.
1: Training round r = 0. Wall-clock time Ty, = 0
2: while F(O©") > ¢ do
3:  Edges report available computing resource £}, to the edge server
4:  Devices report current locations to the edge server
5:  Edge Server determines the sample collection threshold S” and the
target edges set N7 through Algorithm 1
6: Edges perform service migration based on N
7:  Devices collect and upload data to target edges
8:  After receiving S” samples from devices, the edge server and edges
perform training by (9) for E epochs

9:  Update the wall-clock time by Tye = Tave + T3y, + Tcrp
10 r=r+1
11: end while

We then sort them in a descending order as {”lrc(i)’ i=1,....|%rl},
where i is the order. Since the wall-clock time is decided by the
slowest modality, the edge-modality pair represented by {n; (0)}
is first settled. After that, we remove the corresponding edge and
modality from the preference matrix and we have Kr = Kr/k. The
above steps are repeated until all modalities are assigned to edges.

Given the optimal target edge for each modality, we now decide
the optimal p™* from [p; *k] NxK- The key challenge lies in: no
matter which p::k is selected, it is not the optimal one for other edge-
modality pairs. Hence, p™* will always increase the wall-clock time
for those edge-modality pairs. To address this issue, we minimize
the total increment of wall-clock time T in all optimal edge-modality
pairs. Since p" > 20( the first derivative w.r.t p” in Eq. (29) is a

linear function of ‘{’ w1th the positive slope, demonstrating that
a hlgher cost of ‘I’v 4 leads to the faster changes of T under different
pr k Therefore, we select the p k associated with the modality that

results in the highest ‘I’n - By doing this, we mitigate the increment
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Figure 4: Sample collection

of T for other edge-modality pairs. An example is shown in Fig.
4, vision is the modality that causes the highest ‘P:,rc brought by
the largest sample size. While selecting its corresponding p"™* as
the optimal value might increase the overall wall-clock time, p"™*
guarantees the minimum increment of T.

5.4 Complexity analysis

The complexity of Algorithm 1 is mainly derived from three parts,
which are obtaining the upload time for each edge-modality pair
in Eq. (4), determining the service migration as in Line 5-11 of Al-
gorithm 1, and setting the sample collection ratio as in Line 12 of
Algorithm 1. The max operation in Eq. (4) requires going through
all devices for all edge-modality pairs, resulting a complexity of
O(NKM). As for the service migration strategy, Eq. (33) has a
complexity of O(NK) and selecting out the pair with longest es-
timated wall-clock time has that of O(K). Since it is repeated for
all K modalities, the complexity of service migration is O(NK?).
Following with it, the complexity of deciding the sample collection
ratio is O(N). Therefore, the complexity of Algorithm 1 becomes
O(NK(M + K)). When the M > K as followed by the real-world
scenarios, the overall complexity approximates O (NKM).

6 EVALUATION

In this section, we evaluate the performance of the SM3FL frame-
work on a desktop with the GeForce RTX 3060 graphic card.

6.1 Experiment Settings

System setting. We deploy a MEC system over a 4G cellular net-
work in an area of 10km X 10km. We involve 50 mobile devices, 8
edges, and an edge server for MFL. The transmission power of each
device Py, is limited to 23dBm and the bandwidth is By, = 20MHz
located at the center frequency of 2100MHz. The power spectral
density of AWGN is set to 10~ 147mW /Hz. The WINNER II model
is adopted to estimate the urban wireless channel.

As shown in Fig. 5, the coordinates of all edges are from (2.5, 2.5)km
to (7.5,7.5)km by step of 2.5km on each axis, excluding the center
point. The computation capability of each edge varies every round,
following the normal distribution with f;, ~ N(10°,3 x 10%) cy-
cles/seconds. We set the reference distance as 3km and the model
migration speed as 100Mb/s. The constant @ and f in Eq. (31) is set
as 0.02 and 100 in SM3FL, respectively. The settings related to the
data modality are given in the followings.

Dataset and models. We evaluate the proposed SM3FL using a
real-world multi-modal dataset CMU-MOSI [30] on both regression
and binary classification tasks. The CMU-MOSI dataset contains
language, vision, and acoustic data from 2199 videos. There are in

Figure 5: Experiment map
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Table 1: Experiment setting for CMU-MOSI dataset

total 1284 samples for training and 686 samples for testing. The
vision and acoustic are pre-embedded to vectors of size 35 and 74,
respectively. The specification of each modality is listed in Table 1.
In particular, GloVe [21] is a pre-trained word-embedding model but
can be fine-tuned with our dataset. Bi-LSTM is the bi-directional
LSTM model. The fusion model refers to the setting in [9]. SGD
optimizer and MSE loss are applied. The epoch for training all
local models and fusion model is set to 5 in each round. We use
Mean Absolute Error (MAE) and accuracy as evaluation metrics for
regression and classification tasks, respectively.

Benchmark schemes. We compare the performance of SM3FL
with the following benchmarks

e FedAvg: The base HFL proposed by [17]. Since edges own the
entire multi-modal models, service migration is not necessary.

e FedBCD: A communication-efficient VFL framework that al-
lows parallel local iterations [14]. However, neither service migra-
tion nor adaptive sample collection is performed by this framework.
The edges for each modality are randomly distributed at the begin-
ning and fixed during training, denoted as {ng }Ik(:l‘

e MFL-NSM: The variant of SM3FL where no service migration
is enabled. The edge-modality pairs are fixed as {ng }Ik<:1 as well.

e MFL-FR: Another variant applying the service migration strat-
egy. In MFL-FR, we directly obtain the edge-modality matrix from
Eq. (24) with a fixed collection ratio without calculating Eq. (31).

6.2 Service Migration Strategy

We give an ablation study of service migration in comparison with
MFL-NSM and MDS, respectively. MDS aims at minimizing the av-
erage communication cost without considering the migration cost.
In detail, the square area is divided into quarters; each edge group
contains the edge at the corner and another two in the same quarter.
The edge group which is the closest to the average coordinates of
all devices will be selected.

In Fig. 6a, we set the target MAE as 1. The overall time in SM3FL
is 243s, around 16.5% less than that in MFL-NSM. We then analyze
the portion of data uploading, service migration, and computation
stages in total time. Here, we take the log function to the time spent
on each stage for clarity. The results are shown in Fig. 6b, where
SM3FL outperforms all other benchmarks in terms of the overall
time. MFL-NSM spends longer time than others in all three stages
because it cannot adapt to the device mobility and thus will only
select edges with sufficient computation resources. Note that the
blind migration carried by MDS severely corrupts the performance.
It is true that MDS reduces the data uploading time compared to
NFL-NSM, but it doesn’t consider the migration cost. This results
in high migration costs and the longest overall time.
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Figure 8: The relationship between migration and sample collection

We then explore how the service migration strategy exploits
the available computation resources on edges. In Fig. 10, the edge
distribution fits well with the computation demand in round 35.
When the available edge computation resource changes in the next
round, the previous edge-modality pairs may bring stragglers to the
training, such as the vision and acoustic modality. SM3FL migrates
their models to edge 6 and 4, respectively, to prevent performance
deterioration. It is worthwhile noting that text is not migrated to
the idle edge 5 with rich resources. The reason is that its migration
cost is higher than the potential benefits as shown in Fig. 10b.
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Figure 10: Effectiveness of service migration strategy in SM3FL

We also record the migration behaviors of each modality in
SM3FL in Fig. 7. The vision modality is migrated 42 times, which is
four times of text and double of acoustic because vision data has
the largest size per sample among all 3 modalities and thus is more
likely to become the slowest modality in each round. Hence, the
benefit brought by migrating the sub-model for vision modality
is higher than other choices. This makes the service migration
strategy prone to migrate the sub-model for this modality. As for
other modalities, the text modality is migrated the least times due
to its high migration costs as shown in Fig. 10b. This explains that
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Figure 9: Comparison of different sample collection decisions

in Fig. 7b, although text migrates much less frequently than audio,
its cumulative time cost is quite close to that of audio modality.

6.3 Adaptive Sample Collection Decision

As mentioned in Section 5, the decisions of sample collection ratio
and edge-modality pairs are coupled. This relationship is depicted
in Fig. 8. From Fig. 8a, p" ranges from 0.041 to 0.046 with an average
value of around 0.044. However, MDS indicates a higher demand
for sample collection as shown in the third bar. It is due to the high
communication cost for migration, which follows the positive rela-
tionship demonstrated by Eq. (31). An explanation for this positive
relationship is that: when the estimated time cost is high, more
samples are asked to be collected to improve the training quality of
the current round, thus the overall time can be minimized.

We then compare SM3FL with MFL-FR and the Full-Data con-
dition. In this comparison, p” = 0.35 is set for MFL-FR, slightly
lower than the range of SM3FL shown in Fig. 8a; Full-Data indicates
that training will not start until all data are collected. From Fig. 9b,
SM3FL demonstrates a similar performance with the Full-Data con-
dition at the scale of the round but reduces 10.4% overall time. As
for the wall-clock time, SM3FL is 16.9% and 10.1% less than MFC-FR
and Full-Data, respectively. Note that MFC-FR has the shortest over-
all time but the longest wall-clock time, because its training quality
of each round suffers from insufficient sample collection. Thus, we
can say, our dynamic sample collection decision minimizes the data
demand without sacrificing the training quality.

6.4 Performance Comparison

We compare SM3FL with benchmarks on MAE for regression and
accuracy for classification. For fairness, we set p” in both FedBCD
and MFL-FR equal to the average of SM3FL as 0.044. As shown
in Fig. 11a, the wall-clock time of FedAvg is double of the SM3FL.
Compared to FedBCD, either MFL-NSM or MFL-FR can reduce
the wall-clock time by around 10% with the benefits from either
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Framework | Comm.C Comp.C Wall-ClockT MAE
FedAvg 241.152 721.05s 593.28s 0.9253
FedBCD 178.44s 570.10s 311.45s 0.9319
MFL-NSM 162.54s 521.68s 284.01s 0.9324
MFL-FR 163.83s 475.13s 270.38s 0.9307
SM3FL 189.35s 470.53s 247.57s 0.9185

Table 2: Comparison on cost, wall-clock time and final MAE

adaptive sample collection or service migration strategies. On top
of that, SM3FL integrates these techniques and thus surpasses all
benchmark frameworks. As depicted in Table. 2, it reduces 20.8%
wall-clock time from 311s in FedBCD to 247s. Moreover, benefiting
from service migration strategy, SM3FL also lowers 17.5% compu-
tation cost. For the classification task with target accuracy 75%,
SMA3FL is still the best among all frameworks. It reduces around
25.3% wall-clock time of FedBCD. It is worth noting that FedAvg
cannot achieve the target accuracy even after the double wall-clock
time of SM3FL due to the high cost of the model exchange.

7 CONCLUSION

In this paper, we present a service migration-assisted multi-modal
FL framework SM3FL to support delay-sensitive learning tasks with
multi-modal data, which are anticipated in future MEC. In SM3FL,
the entire learning model is spitted into several sub-models, each
trained from single-modal data on a specific edge. The edge server
then fusions those sub-models to fit multi-modal learning tasks.
As learning from data with different modalities require various
communication and computation resources, SM3FL increases the
resource utilization efficiency by assigning each single-modal data
to a proper edge. Moreover, SM3FL enables the service migration
to overcome the learning efficiency degradation brought by device
mobility and edge heterogeneity. Particularly, online strategies of
both service migration and data sample collection are proposed
to minimize the wall-clock time, with which we fully leverage the
available resources for efficient training without causing failures.
Extensive simulations have shown that our proposed SM3FL frame-
work can dramatically reduce both the computation cost and the
wall-clock time compared to other benchmark frameworks.

8 ACKNOWLEDGEMENTS
The work of L. Guo is supported by National Science Foundation
under grant IIS-1949640, CNS-2008049, and CCF-2312616. The work

of X. Zhang is supported by National Science Foundation under
grant CCF-2312617.

REFERENCES

[1] Alaa Awad Abdellatif, Amr Mohamed, Carla Fabiana Chiasserini, Mounira Tlili,

and Aiman Erbad. 2019. Edge Computing for Smart Health: Context-Aware
Approaches, Opportunities, and Challenges. IEEE Network 33, 3 (2019), 196-203.
Sergio Barbarossa, Stefania Sardellitti, and Paolo Di Lorenzo. 2014. Communicat-
ing While Computing: Distributed mobile cloud computing over 5G heteroge-
neous networks. IEEE Signal Processing Magazine 31, 6 (2014), 45-55.

Ilker Bozcan and Erdal Kayacan. 2020. AU-AIR: A Multi-modal Unmanned Aerial
Vehicle Dataset for Low Altitude Traffic Surveillance. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, Virtual, 8504-8510.
Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. 2020.
nuScenes: A Multimodal Dataset for Autonomous Driving. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Virtual,
11618-11628.

Timothy Castiglia, Shigiang Wang, and Stacy Patterson. 2022. Flexible Vertical
Federated Learning with Heterogeneous Parties. https://arxiv.org/abs/2208.12672
Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. VAFL: a Method of
Vertical Asynchronous Federated Learning. https://arxiv.org/abs/2007.06081
Bart Cox, Lydia Y. Chen, and Jérémie Decouchant. 2022. Aergia: Leveraging
Heterogeneity in Federated Learning Systems. In Proceedings of the 23rd ACM/IFIP
International Middleware Conference (Quebec, QC, Canada) (Middleware 22).
Association for Computing Machinery, New York, NY, USA, 107-120.

R.L Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl.
Math. 17, 2 (1969), 416-429.

Wei Han, Hui Chen, and Soujanya Poria. 2021. Improving Multimodal Fusion
with Hierarchical Mutual Information Maximization for Multimodal Sentiment
Analysis. In Proceedings of the 2021 Conference on Empirical Methods in NLP.
Association for Computational Linguistics, Punta Cana, Dominican Republic,
9180-9192.

Mounssif Krouka, Anis Elgabli, Chaouki Ben Issaid, and Mehdi Bennis. 2022.
Communication-Efficient and Federated Multi-Agent Reinforcement Learning.
IEEE Transactions on Cognitive Communications and Networking 8, 1 (2022), 311-
320.

Dana Lahat, Tiilay Adali, and Christian Jutten. 2015. Multimodal Data Fusion:
An Overview of Methods, Challenges, and Prospects. Proc. IEEE 103, 9 (2015),
1449-1477.

Liangzhi Li, Kaoru Ota, and Mianxiong Dong. 2018. Deep Learning for Smart
Industry: Efficient Manufacture Inspection System With Fog Computing. IEEE
Transactions on Industrial Informatics 14, 10 (2018), 4665-4673.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc.
IEEE 107, 8 (2019), 1697-1716.

Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and
Qiang Yang. 2022. FedBCD: A Communication-Efficient Collaborative Learning
Framework for Distributed Features. IEEE Transactions on Signal Processing 70
(2022), 4277-4290.

Qianxia Ma, Yongfang Nie, Jingyan Song, and Tao Zhang. 2020. Multimodal
Data Processing Framework for Smart City: A Positional-Attention Based Deep
Learning Approach. IEEE Access 8 (2020), 215505-215515.

Pavel Mach and Zdenek Becvar. 2017. Mobile Edge Computing: A Survey on
Architecture and Computation Offloading. IEEE Communications Surveys and
Tutorials 19, 3 (2017), 1628-1656. https://doi.org/10.1109/COMST.2017.2682318
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. JMLR, Fort
Lauderdale, Florida, USA, 1273-1282.

Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gu-
sev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and
Radu Prodan. 2017. A Serverless Real-Time Data Analytics Platform for Edge
Computing. IEEE Internet Computing 21, 4 (2017), 64-71.

Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. 2020. Federated Learn-
ing for Wireless Communications: Motivation, Opportunities, and Challenges.
IEEE Communications Magazine 58, 6 (2020), 46-51.

Haixia Peng, Qiang Ye, and Xuemin Shen. 2020. Spectrum Management for Multi-
Access Edge Computing in Autonomous Vehicular Networks. IEEE Transactions
on Intelligent Transportation Systems 21, 7 (2020), 3001-3012.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1532-1543.

Nikos Piperigkos, Aris S. Lalos, and Kostas Berberidis. 2021. Multi-modal coop-
erative awareness of connected and automated vehicles in smart cities. In 2021
IEEE International Conference on Smart Internet of Things (SmartloT). IEEE, Jeju,
Korea, 377-382.

Dhanesh Ramachandram and Graham W. Taylor. 2017. Deep Multimodal Learn-
ing: A Survey on Recent Advances and Trends. IEEE Signal Processing Magazine


https://arxiv.org/abs/2208.12672
https://arxiv.org/abs/2007.06081
https://doi.org/10.1109/COMST.2017.2682318

MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

34, 6 (2017), 96-108.

Dian Shi, Liang Li, Maoqiang Wu, Minglei Shu, Rong Yu, Miao Pan, and Zhu

Han. 2022. To Talk or to Work: Dynamic Batch Sizes Assisted Time Efficient

Federated Learning Over Future Mobile Edge Devices. IEEE Transactions on

Wireless Communications 21, 12 (2022), 11038-11050.

Tarik Taleb, Adlen Ksentini, and Pantelis A. Frangoudis. 2019. Follow-Me Cloud:

When Cloud Services Follow Mobile Users. IEEE Transactions on Cloud Computing

7,2 (2019), 369-382.

Md. Zia Uddin. 2019. A wearable sensor-based activity prediction system to

facilitate edge computing in smart healthcare system. J. Parallel and Distrib.

Comput. 123 (2019), 46-53.

Prabal Verma and Sandeep K. Sood. 2018. Fog Assisted-IoT Enabled Patient

Health Monitoring in Smart Homes. IEEE Internet of Things Journal 5, 3 (2018),

1789-1796.

Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. 2018. A survey on

service migration in mobile edge computing. IEEE Access 6 (2018), 23511-23528.

Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and

Xinyu Yang. 2018. A Survey on the Edge Computing for the Internet of Things.

IEEE Access 6 (2018), 6900-6919.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. 2016. MOSI:

Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online

Opinion Videos. https://arxiv.org/abs/1606.06259

Qixun Zhang, Hao Wen, Ying Liu, Shuo Chang, and Zhu Han. 2022. Federated-

Reinforcement-Learning-Enabled Joint Communication, Sensing, and Computing

Resources Allocation in Connected Automated Vehicles Networks. IEEE Internet

of Things Journal 9, 22 (2022), 23224-23240.

Xiaonan Zhang, Sihan Yu, Hansong Zhou, Pei Huang, Linke Guo, and Ming Li.

2023. Signal Emulation Attack and Defense for Smart Home IoT. IEEE Transactions

on Dependable and Secure Computing 20, 3 (2023), 2040-2057.

Hansong Zhou, Sihan Yu, Xiaonan Zhang, Linke Guo, and Beatriz Lorenzo. 2022.

DQN-based QoE Enhancement for Data Collection in Heterogeneous IoT Net-

work. In 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart

Systems (MASS). IEEE, Denver, CO, 188-194.

[34] Jiancun Zhou, Tao Xu, Sheng Ren, and Kehua Guo. 2020. Two-Stage Spatial
Mapping for Multimodal Data Fusion in Mobile Crowd Sensing. IEEE Access 8
(2020), 96727-96737.

[24]

[25

[26

[27]

[28

[29]

[30

[31

[32

[33

A PROOFS OF MAIN RESULTS
A.1 Proof of Theorem 1
Applying the Smoothness assumption to the global loss F, we have

F(O™) — F(0") <(VF(O"),0 ! —0") +L/2||0™! - 0|2

By substituting the global update with the global gradient and

taking the expectation on both sides, we have

E[F(@™) - F(O")] < ~E(VF(O"),iTG") + L/2E||7" G"||*

= _Zlk(:l "
I

Nk — 77

)12 knarn2

- Begvreni-zy B Mo,
k=1

NCORFACAI

(34)

According to the definition of global gradient G in Eq. (9) and
Assumption 2.2, we have E||G"||> > E Zle ||VkF(9;)||2. Replace
the global gradient in Eq. (34), we then obtain

E[F(0"™) - F(®)] <EZ "—’“IIVkF((a’)—gk(G I

ZK Nk —

||VkF(9 %
(35)

_ Nk ry(2
> K v -

L
(EIIVF(O")|* + EIG"|I* ~ EIVF(®") - G"|1*) + ZEll7" G"|1
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By replacing the first item in the above equation with the result
obtained from Lemma 1, we get

K '7kk0

E[F(@"™) - F(@’)]<2E2(K+3)Z .

2
Kk M(C+3LY) o?
+2E ) K€ ||V F (6} +2?

_ Mk 2 K Mk~
M o EIVE@)IF-E

Switch E||VF(©")||% and E[F(©"*1) — F(@’)]. Lety = zf,le ks
the sum of learning rates over all edges, we have

||VkF(9 .

E||VF(ON)|? < %E[F(O’) —F(O™Y)] +4E%(K +3) ZK 3L20—2
- Y k=1 Mk Y

Ko 2
Zk  ((C+3LY) + Ly — m) Bl Vi (6] >||2+27

When qk(C +3L2 o+ qu

JL? +4(C+3Li) -L

Nk < 0 holds for Yk, we obtain

< ,Vk. 36
Tk 2C + 612 36)
The E||VF(©")]|? is bounded by
E|IVF(®")|* <E[F(O") - F(e’“)]

+(2+4E2(K +3) Zk ML ) (37)
By averaging over all global rounds r = 0,1,...,R— 1, we get
R-1
= Z E||VF(O")|* < [F<c~>°> F(eR)]
2 32,0
+(2+4E*(K +3) Zk:1 nkLk)y—S (38)

The proof of Theorem 1 is finished.

A.2 Proof of Corollary 1

Referring to the work in [24], achieving target loss ¢ within R round
can be represented with the equation given in Theorem 1 as
R 1

= Z E|IVF(O)]* <. (39)
We then let the right-hand side of Eq. (18) satisfy
2K s
_ 0 R 2 312
= “SE[F(°) ~ F(0F)] + (2 +4E*(K +3) kz_l N2 —. (40)

Regarding the number of sample S as variable, we can replace
(2+4E%(K +3) 2115:1 UZLI%)%Z with constant @ and %E[F(OO) -

F(OR)] as B. The requirement is rewritten as

o«
= 4=, 41
e=2tg (41)
We then finish the proof by reorganizing ¢, R and S as
SBe1
R= ———. 42
S—ae1 42)
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