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ABSTRACT: X-ray diffraction (XRD) data analysis can be a time-

m Metrics & More ’ Q Supporting Information

Manual solving

consuming and laborious task. Deep neural network (DNN) based Exs':;et;: ° B

models trained with synthetic XRD patterns have been proven to ;™. i@ —
be a highly efficient, accurate, and automated method for analyzing ‘ R SV o NP
common XRD data collected from solid samples in ambient 3 /| & | T 2t o
environments. However, it remains unclear whether synthetic DNN solving

XRD-based models can be effective in solving micro(u)-XRD
mapping data for in situ experiments involving liquid phases, which
always have lower quality and significant artifacts. In this study, we
collected y-XRD mapping data from a LaCl;-calcite hydrothermal
fluid system and trained two categories of models to analyze the
experimental XRD patterns. The models trained solely with
synthetic XRD patterns showed low accuracy (as low as 64%)
when solving experimental y-XRD mapping data. However, the accuracy of the DNN models significantly improved (90% or above)
when we trained them with a data set containing both synthetic and a small number of labeled experimental y-XRD patterns. This
study highlights the importance of labeled experimental patterns in training DNN models to solve y-XRD mapping data from in situ

experiments involving liquid phases.

B INTRODUCTION

X-ray diffraction (XRD) is an important workhorse technique
that is widely used for identifying and characterizing crystalline
materials, including their structures, phase compositions,
crystallinities, unit cell parameters, and atomic displacement
parameters.”” Recently, X-ray microbeam techniques have
expanded the information richness of XRD analyses to include
additional insight into a reaction system based on examining
spatial relationships between reactant and product solid phases.
For example, the micro-XRD (u-XRD) technique, which uses a
focused X-ray beam with a typical size of submicron to
microns, has brought the power of XRD mapping to
laboratory-scale equipment.” The y-XRD technique can be
used to study changes in the structural characteristics of
reacting mineral solids or precipitates in situ over the course of
reaction, in areas as small as tens of micrometers.*™® This
enables XRD to be useful for distinguishing homogeneous
versus heterogeneous mineral nucleation and growth pathways.
Similar microbeam XRD techniques are now also widely
available at synchrotron X-ray user facilities, where one can
take advantage of even higher spatial resolution and brightness
for higher fidelity studies and XRD mapping studies.
Combining XRD mapping techniques with compatible
reaction cells, such as a hydrothermal diamond anvil cell
(HDAC) has broadened the range of possible in situ studies.
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Such techniques have been used in numerous studies to
provide insights into the structure and behavior of minerals
and materials under extreme conditions such as high
temperatures (up to 600 °C) and high pressures (up to
more than 1 GPa).”™"?

Because modern XRD mapping capabilities can quickly
generate enormous quantities of data (e.g, thousands of
individual XRD patterns comprising one map), one of the
emerging challenges is efficient data analysis with the same
level of accuracy as manual comparisons of material diffracto-
grams with those available in standard XRD databases. XRD
mapping data interpretation requires a high level of expertise,
including coordination between data collection and analysis,
skill to collect high-quality data, recognition of systematic
errors, and preconception of potential phases. Although
commercial software, such as _]ade,14 is useful for unknown
phase identification based on automated search and matching,
this approach is intrinsically imprecise and capable of missing
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or mismatching phases. In total, manual analysis of XRD data
is a labor-intensive process that requires a profound under-
standing of the materials for reliable results. However, in
mapping mode, to study spatial relationships, the amount of
XRD data increases exponentially, making manual analysis of
“big XRD data” impractical.">~"”

A promising solution to the challenges posed by massive
XRD data sets is the use of deep neural network (DNN) based
models, which can automatically extract information from
XRD patterns.'* ** These models leverage the advantages of
combining 1D convolution layers and dense layers to extract
and learn features from labeled XRD patterns in the training
data set. Several studies have reported using DNN models to
extract various types of information from experimental XRD
patterns, such as phase identity and ratio, unit cell parameters,
and even the ability to distinguish potential perovskite
materials.”*~>” However, since DNN model training usually
requires a large amount of diverse data, a common practice is
to generate theoretical XRD patterns from crystallographic
structures.”>® Previous studies have shown that models
trained on theoretical XRD patterns can analyze XRD patterns
collected from solid samples in ambient environments.”*™>’
However, it remains unclear whether these models can also
accurately and efliciently analyze data collected from the y-
XRD mapping of in situ experiments involving complex
mixtures of solids and liquid.

Combining u-XRD mapping with solid—liquid mixed
samples in high-temperature and high-pressure environments
presents the most challenging scenario for obtaining high-
quality XRD data interpretation. y-XRD is typically used to
analyze micrograins in samples, but when dealing with mixed
solid—liquid samples, common issues such as overexposure,
imperfect diffraction, and preferred orientation can lead to
artifacts in the XRD pattern.”” If the samples are entirely solid,
these issues can still be manageable, and data of reasonable
quality can be retrieved."”® However, the presence of the
liquid phase and extreme environments significantly amplifies
these adverse effects, leading to distorted XRD data. This poses
a major challenge that could potentially prevent DNN models
trained solely on synthetic XRD patterns from recognizing
experimental -XRD mapping data.

Here we show the limitation of DNN models, trained solely
by synthetic XRD patterns, to analyze y-XRD data collected
from a hydrothermal fluid environment. To achieve this, we
trained multiple models to solve ¢-XRD mapping data from a
LaCl;-calcite system reacted at 200 °C. The accuracy of this
approach was evaluated by comparing model-driven results
with findings determined manually. Two training data sets
were generated, one including only theoretical XRD patterns
and the other including a small number of labeled experimental
patterns in addition to the theoretical data. We trained two
types of models, three binary classification models to identify
the existence of specified phases and two multiclass multilabel
models to extract all types and ratios of potential phases in the
LaCl;-calcite system. Our results showed that all DNN models
trained solely by synthetic XRD data performed poorly for
resolving the key information present in the y-XRD mapping
data. Accurate and robust models were achieved only when a
small number of experimental XRD patterns were included in
the training data set. This finding underscores the importance
of labeled experimental data for DNN model training to solve
u-XRD mapping data collected from hydrothermal fluid
systems.

B METHODOLOGY AND EXPERIMENT

Computation Platform. A conventional server cluster
computer (processor: Intel Xeon Gold 6330 CPU, graphical
processor unit, Nvidia A100-PCIE-40GB; memory, 40GB) was
used to train all the models.

Software Libraries. Software libraries used in this study
were PyTorch, NumPy, Pandas, and SciPy. The python
packages NumPy and Pandas were used to write code to load
and preprocess the raw theoretical patterns (described
below).>*" PyTorch and TensorFlow2 were used to construct
the NN and produce the models.>”>* The code was written
using Python 3.9.12.

Data Augmentation and Preprocessing. Two catego-
ries of data were used to build training and evaluation data
sets: theoretical XRD patterns and a small number of labeled
experimental data. The theoretical XRD patterns were
generated by mixing two and three end member patterns
(bastnaesite, calcite, and rhenium (Re) metal). This mixing
was conducted multiple times for every combination of phases
with different ratios.”*™** Small number of labeled exper-
imental XRD patterns were also produced for generating data
sets (see additional information in the Supporting Information
for detailed composition of training data sets).

To unify the scale of theoretical data and experimental data,
we extracted their spectrum intersection (20 = 5° to 38°) and
obtain the value over each 0.01° interval as the features, which
means the number of features should be 3501. For the data
that have a random scale interval, we used 1D linear
interpolation to fill in gaps. The diffraction amplitude is
different between the theoretical XRD pattern and exper-
imental data. To ensure that the gradient moves smoothly
toward the minima while maintaining the same rate for all the
features, we scaled the features’ value to [0,1] by data
normalization as follows:

X - Xmin
X

X =

max ijn

where X is the data sample.

The content above illustrates how we preprocessed the raw
data for NN models. However, as a data-driven domain,
machine learning requires numerous data samples, among
which experimental data are essential but hard to obtain by
artificial labeling. Therefore, to enrich the existing unbalanced
and limited data set, we propose a data synthesis algorithm to
generate artificial data points. In this data synthesis algorithm,
E and T are the normalized experimental and theoretical data
sets, respectively. By randomly selecting one positive sample ¢
from E and one negative sample t; from T, the artificially
created positive data sample can be represented by

X,=¢+ et

where ¢ is a random number and ¢ € (0,1). Additionally, to
unify the scale of the original data and artificially create data,
X, also needs to be normalized using the approach mentioned
above. Through the novel data synthesis approach, we can
freely create a balanced and abundant data set for training and
validating, which greatly benefits the training process.

NN Model Architecture. All DNN models trained in this
study used multiple layers of convolution and maxpooling to
extract the features from the 1D XRD pattern. Based on the
previously studies, the combination of these two layers
improves the accuracy of models.”>™*® As shown in Figure
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S1, the binary classification DNN models determine the
existence of phases from input XRD pattern mainly consists of
3 different kinds of layers including a 1d convolution layer, a
maxpooling layer, and a fully connected layer. At the start of
the model, normalized data points are fed into a 1d
convolution layer (input channel of 1, output channel of 4,
kernel size of S, stride size of 1, and padding size of 1) which
effectively extracts the features from the input. Next, a
maxpooling layer (kernel size of 16, stride size of 1, and
padding size of 1) will process the output from the previous
convolution layer in which the large kernel size can enlarge the
field of vision for peak detection. Then a combination of the
convolution layer and the maxpooling layer with the same
configuration will be added to the model. To make a
prediction based on the features obtained from previous
layers, we applied 6 fully connected layers to the model, among
which the output nodes were set to be 1024, 512, 256, 128, 64,
and 2. After forward propagation, the NN model will output 2
values denoting the class probabilities of the element, between
which the class with a higher value will be considered as the
classification result.

The architectures of the two multiclass and multilabel
models capable of retrieving all potential phases and phase
ratios from the input XRD pattern in the LaCls-calcite
hydrothermal fluid system were obtained from a previous
study (see Figure $2).*° The data sets for training and
evaluating the two models are similar to ones described above,
except the range of data is from 5.00° to 35.00° in terms of 20
(2501 points). The only difference of the two models is that
one was trained with data set containing a small amount of
labeled experimental data, and another by the data set without
any labeled experimental data.

Training Notes. During the training phase for the binary
classification models, we used CrossEntropyLoss (see eq 1) as
the loss function, which computes the cross-entropy loss
between input logits and target.

Loss = —y-log(p(y)) + (1 — y)-log(1 — p(3)) (1)

To minimize the training loss, we used Adam, an algorithm
for first-order gradient-based optimization of stochastic
objective functions, to optimize the parameters in the models.
With continuous iteration, Adam can adjust the parameters in
our models to help them better fit observed data and
determine the relation between input features and ground
truth.

In addition to the choice of loss function and optimizer, we
also need to set up other hyperparameters to initialize the
training of models. To balance the trade-off between the rate of
convergence and overshooting, we set the learning rate to be 1
X 107>, Furthermore, to prevent overfitting the model, the
weight decay of the optimizer is set to be 1 X 107%. Besides, for
the training and validation sets, the batch size was set to 60.
Both training and evaluation data sets were shuffled at each
training epoch. To ensure fairness during training, we set the
training epoch to 200 for each element.

For the multiclass and multilabel models, we modified the
cross entropy loss function and accuracy metric function based
on the previous study.”® The Adam optimizer was used as the
gradient decent function with the initial learning rate as 1 X
1072 and a gradually decrease to 1 X 107%. Similar to the binary
classification models above, the training and evaluation data set
were shuffled during each epoch. These models were trained
by 256 epochs.

Training and Evaluation of Different NN Models. Even
though we artificially created data for training and validation,
the samples in the test set were all from experimental data
collected from the LaCl;-calcite hydrothermal fluid system,
which means that the test set is still unbalanced. While
evaluating a data set owning many more negative samples than
positive samples, accuracy is not enough to fairly demonstrated
model performance.

Number of correct predictions
Acc =

Total number of predictions

Hence, in addition to the accuracy, we also applied the area
under the receiver operating characteristic (AUROC) and the
area under the precision-recall curve (AURPC) to prove the
superiority of our model (see Figure S3 and additional
information in the Supporting Information for a detailed
algorithm).

The evaluation of the two comprehensive models was
performed by a direct comparison method. The model driven
spatial distribution of different phases was compared to the
manual solving results.

Theoretical XRD Pattern Generation. The three main
features of XRD patterns we considered in this work are i)
peak position, ii) peak intensity and iii) peak profile shape. A
Python script was used to manipulate General Structure
Analysis System-II (GSAS-II) to generate theoretical XRD
patterns without the use of the graphic user interface. GSAS-II
is a software package developed by Toby and Von Dreele for
X-ray and neutron diffraction analysis.”> For the same
compound, the three features of XRD can be impacted by
the measuring condition, the experiment where it is performed,
the source of X-ray, and sample nature.

The principle of the XRD method is based on the diffraction
of X-rays by crystalline structure, with the diffraction rule
described by Bragg’s law,

nA = 2d,, sin(0)
The d spacing is defined by the unit cell parameters (g, b, ¢,
a, B, y) and Miller indices (h, k, I).
dikz = %[szzcZ sin® a + K*a*c® sin®  + L*a’b* sin® y
+ 2HKabc*(cos a cos f — cos y)
+ 2KLa*bc(cos ff cos y — cos a)
+ 2HLab’c(cos y cos a — cos )]
where

v =abc(1 + 2 cos & cos ff cos y — cos®> @ — cos® f§ — cos® }/)1/2

In order to change the d spacing, the unit cell parameters g,
b, and ¢ of different crystalline phases were modified randomly
from 1% to 10%, so the peak position of the theoretical XRD
patterns were modulated accordingly.

The diffracted intensities I, are proportional to the square
of the structural factor F,

N

Fjy = D, f, % exp(=i2a(hx, + ky + Iz))
j=1
where f; is the atomic form factor for element j, hkl is the

Miller indices, and (x, y, z) are the coordinates of atoms of
element j in the unit cell.
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The total intensity () is formulated as low:
—B sin*(0)

e X A X L(0)

X P(0) X m

—B sin*(6)

where K is a constant, f exp = stands for the thermal

displacement off the equilibrium position due to temperature
effect, and A is the absorption factor,

The peak shape function G, is a key component to simulate
an XRD pattern. The XRD pattern profile is generally
controlled by instrument factors and sample factors. The
instrument effect can be approximated by Gaussian function
due to the similarity in the peak shape, and the sample effect
can be reproduced by Lorentzian function. By modulating
these factors through the pseudo-Voigt and Pearson VII
function, an XRD pattern can be easily synthesized. In this
work, the pseudo-Voigt regime was used to simulate the profile
function of the XRD peaks by tuning the Gaussian (G) and
Lorentzian (L) components. The Gaussian shape is elucidated
by the Cagliotti function

p
GkﬁszmU><tan29+V><tan9+W+—2
cos” 0

where U, V, W, and P parameters were used to control he peak
profile.

Then other important factors, including the effect from
crystallite size broadening, strain broadening, are controlled by
the Lorentzian terms X and Y. Overall, the pseudo-Voigt
function is a linear combination of the Gaussian function and
the Lorentzian function by the ratio of

pV(x) = nG(x) + (1 — n)L(x)

Above all, the peak center (position of maximum), height
(height of the peak at the maximum), and fwhm (full width at
half-maximum of the peak) of theoretical XRD patterns were
achieved by modifying the unit cell parameters (a, b, ¢),
Gaussian profile parameters (U, V, W), and Lorentzian
parameters (X, Y).

Experimental XRD Acquisition and Preprocessing.
Synchrotron XRD was performed at the Advanced Photon
Source (APS) at the Argonne National Laboratory. A
microdiffraction y-XRD technique was employed to investigate
the spatial correlation in the chamber at the beamline 34-ID-E.
The X-ray beam size was 300 nm, and synchrotron X-ray
energy was at 22 keV. To conduct the mapping, X-ray
sampling was employed on a mesh pattern measuring 11 X 10
within the designated region. The small size of the X-ray beam
(300 nm) facilitated the scanning process by ensuring that
each mesh point received suflicient coverage. Additionally, the
high energy of the X-ray beam (22 keV) and high flux of highly
coherent synchrotron X-ray contributed to achieving a high
resolution for each phase and minimizing the risk of
overlooking any phases during the scanning process. Hence,
a comprehensive sampling map with a spatial resolution can be
generated (see Figure S4). By this approach, the correlation
between the primary calcite and 110 p-XRD patterns was
collected at a temperature of 200 °C. Fewer data were
collected under higher temperatures due to the shorter data
acquisition time used to prevent liquid leakage during heating.
Collected 2D diffraction images were calibrated, masked, and
integrated by Dioptas software.*>*® The background of pristine

1D patterns was automatically subtracted through Dioptas
software, the polynomial order was up to 50th order with a
smoothing width at 0.1 A, and the iteration was 150 times. The
concentration of LaCl; for collecting y-XRD from the LaCl;-
calcite hydrothermal fluid system was 0.1 M with calcite. The
temperature was set to 200 °C. To produce a high pressure,
the diamond culet was 1 mm, and the gasket used in the
experiment had a diameter of 500 ym. During the experimental
setup, the calcite and LaCl, solution were manually introduced
to the system under a microscope. However, due to the limited
space, it was impossible to control the exact concentration of
calcite within this confined area. Therefore, while the presence
of both calcite and the LaCl; liquid solution was ensured, the
specific concentration of calcite could not be manipulated or
precisely determined.

B RESULTS AND DISCUSSION

The XRD mapping generates a substantial amount of data, as
shown in Figure S4. Therefore, a high-throughput automatic
analysis method is necessary to process the y-XRD data and
obtain phase type and ratio information. To observe the
relationships among different mineral phases, we collected y-
XRD mapping data from the LaCl;-calcite hydrothermal fluid
system with a specified spatial configuration, resulting in a
matrix with 11 columns and 10 rows for a total of 110 XRD
patterns (Figure 1). We then used two methods to analyze the
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Figure 1. Illustration of solving x-XRD mapping data by manual
resolving and the deep neural network based automatic method.

type and ratio of phases in each XRD pattern: manual mapping
and an automatic analysis based on DNN models. When we
trained the model using a data set containing both theoretical
XRD patterns and a small number of labeled XRD patterns, the
phase information derived from the DNN model matched well
with the manual analysis method.

The manually analyzed y-XRD mapping result collected
from the LaCl;-calcite hydrothermal fluid system at 200 °C
shows an overall spatial overlap between calcite and La-
bastnaesite (see Figure 2), which indicates a heterogeneous
nucleation mechanism. To produce an accurate phase
distribution, the pristine XRD data could not be used due to
the nonstatistical issue of micro-XRD. During the micro-XRD
measurements, the X-ray is only irradiating a small volume,
which may only contain a limited number of crystalline
powders and result in a nonstatistical problem in the XRD
pattern. To tackle this systematic error, first, an attentive
masking was done on each 2D XRD figure to eliminate the
overexposure (like strong texture). Second, the phase quantity
was determined by the sum of at least three characteristic peak
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(a) Calcite

Bastnaesite

(b)

15 um 01

Figure 2. Heatmaps of crystalline phase occupancy in the LaCl-calcite hydrothermal fluid system at 200 °C. (a) Calcite occupancy. The bright
yellow color represents a high enrichment of calcite in the area. (b) La-bastnaesite occupancy. The bright red color represents a high enrichment of

bastnaesite in the area.

intensities, instead of one most characteristic peak, so that an
unsolicited increase in one peak can be partly minimized
during the multiple peak summation. For the calcite, the peak
intensities of (102), (104), and (202) from ranges 8.30°—
8.38°, 10.56°—10.64°, and 15.40°—15.44° were summed up,
and for bastnaesite, the peaks of (002), (300), (213), (630),
and (304) at around 6.42°—6.46°, 8.80°—8.84°, 10.91°—
10.95° 15.28°—15.32°, and 15.64°—15.68° were accumulated.
All peak intensities were obtained by a Matlab code and
manually cross-checked to ensure the accuracy. The processing
of the pristine data is expensive in time, which highly motivates
an automotive methodology without or with little manual
perturbation.

The heatmap shows that the calcite phase is centered in the
right bottom corner of the scanned zone, which is consistent
with the X-ray absorption imaging shown in Figure S4. This is
because the calcite solid was initially introduced to that
position and La** existed as an ion form in the solution. With
the dissolution of calcite at 200 °C, the released carbonate ion
facilitates the precipitation of La’" in the form of the
bastnaesite (LaCO;0H) solid form. Notably, the center of
the bastnaesite precipitation zone overlapped with the calcite-
enriched area, indicating a spatial dependence of La-bastnaesite
mineralization in conjunction with the presence of calcite.
Additionally, Re metal from the HDAC gasket was found at
the bottom site. It should be noted that this current pilot test
only covers data from 200 °C, but a series of in situ
experiments with varying temperature steps would produce a
substantially larger dataset than the one presented in this study
more than current data amount. Therefore, it is crucial to
develop an automatic method to analyze future pu-XRD
mapping data from hydrothermal fluid systems containing
other rare earth elements (REEs) besides lanthanum.

As a proof-of-concept, we trained three DNN models for
binary classification to exclusively identify bastnaesite, calcite,
and Re metal in the input XRD pattern, outputting true or false
for each phase’s presence or absence. Two kinds of data sets
were used to train these models. The first data set was
generated using a previously reported method without labeled
experimental data.”® The second data set was created by
adding a small number of labeled experimental diffraction
patterns to the first data set. To evaluate the impact of different
training data sets on model performance, we used these models
to analyze experimental data that was manually solved (see
Figure 2) but not used in training or evaluation of the models.
We used three metrics to evaluate performance: area under the

receiver operating characteristic (AUROC), area under the
precision-recall curve (AUPRC), and accuracy (see the
method section for more detailed information).

Comparing the performance of DNN models trained with
and without experimental data inputs (Table 1) reveals that

Table 1. Performance of DNN Models in Terms of Phase
Identification Trained by Datasets with and without
Experimental Data (w/exp. and w/o exp.)”

AUROC AUPRC Accuracy (%)

Phase w/o exp. w/exp. w/oexp. w/exp. w/oexp. w/exp.

Bastnaesite 0.96 0.96 0.88 0.92 89 92
Calcite 0.66 0.95 0.62 0.88 64 90
Re 0.50 0.96 0.26 0.99 74 95

“See additional information in the Supporting Information for
detailed composition of training datasets.

using solely synthetic diffraction patterns is insufficient to train
models capable of identifying phases from our experimental
data, despite being reported in multiple studies.”>~>**"** As
shown in Table 1, most models trained without labeled
experimental data exhibit a lower phase identification perform-
ance, including lower AUROC, AUPRC, and accuracy values.
The only exception is bastnaesite-focused models, with two
models having the same AUROC of 0.96. As the AUROCs are
close to 1.00, the models confidently judge whether the
experimental data contains bastnaesite. For AUPRC and
accuracy, the model trained without experimental data slightly
underperforms compared to the model trained with exper-
imental data. Overall, the two models behave similarly in terms
of deciding the existence of the bastnaesite phase from
experimental data, plausibly due to the significant difference of
the XRD patterns among the bastnaesite, calcite, and Re metal
phases (see Figure SS).

The performance gap between the models trained with and
without labeled experimental data is substantial for the
remaining two models. The calcite focused model trained
without labeled experimental data exhibits an AUROC of 0.66
and an AUPRC of 0.62, which are significantly lower than the
corresponding values of 0.95 and 0.88 obtained by the model
trained with labeled experimental data. Additionally, the
accuracy of the model trained without labeled data is only
64%, which is close to random guessing (50%). In contrast, the
model trained with labeled data achieves an accuracy of 90%.
Similar outcomes are observed in the Re metal focused model.
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Figure 3. Utilization of DNN based models to retrieve phase types and ratios from u-XRD mapping data obtained from the LaCl;-calcite
hydrothermal fluid system at 200 °C. (a) Distribution of calcite obtained by manual mapping, (b) DNN model trained without labeled
experimental data, and (c) DNN model trained with labeled data. (d) Distribution of bastnaesite obtained by manual mapping, (¢) DNN model
trained without labeled data, and (f) DNN model trained with labeled data. The red lines in the heatmaps retrieved by DNN based models mark

the region shown in the manual analyses.

Although the model trained without experimental data has a
higher accuracy (74% for Re vs 64% for calcite), the extremely
low AUROC and AUPRC values indicate that this model lacks
robustness. Consequently, the models trained without
experimental data could not identify phases from the
experimental data.

The poor performance of the models trained without labeled
data can be attributed to the significant differences between the
synthetic XRD patterns used in training and the y-XRD data
obtained from experiments. In previous studies, experimental
data used for evaluating DNN models were typically collected
from solid samples in ambient environments.”*"*® In such
cases, high-quality X-ray diffraction peaks from different planes
were easily obtainable, which could be fitted to the synthetic
data generated from the crystallographic structure. However,
#-XRD data obtained from hydrothermal fluid systems only
exhibits a few primary diffraction peaks with low-index (ki)
lattice planes, even under the best circumstances, due to
several adverse factors, including the small diffraction volume
with microbeam, low exposure time, poorly crystalline samples,
preferred orientation or large crystal compared with beam size,
and overexposure in 2D images (extra bright spot, see Figure
S6). The differences between the theoretical and experimental
XRD patterns, including intensity distortions of primary peaks
and the absence of many weak peaks with higher indices,
exceed what the model trained solely with theoretical data can
handle, even if they correspond to the same crystal structure.
Therefore, incorporating labeled experimental data into the
training data set is essential to enhance the DNN-based XRD
analysis model’s robustness to data obtained from hydro-
thermal fluid systems.

Two multiclass and multilabel deep neural network (DNN)
models were employed (Figure S2 and the methodology
section for model architecture) to ascertain the proportions of
the phases in experimental X-ray diffraction (XRD) patterns.
Our approach builds upon a previously reported method,

which has been improved in this study.””*’ In the original
method, the training data set is generated by linearly
combining randomly selected theoretical XRD patterns,
ranging from one to four, from a comprehensive list of all
possible phases present in the sample. The selection criterion
for potential phases is that they must solely comprise elements
found in the sample (specifically, La, C, O, and H in our case).
Prior to mixing, the chosen theoretical XRD patterns were
subjected to a Voigt filter (a convolution of Gaussian and
Lorentzian filters) to replicate instrument-induced effects.*
This methodology enables the production of numerous XRD
patterns, amounting to hundreds of thousands, for training
DNN models. Nonetheless, despite the substantial size of the
XRD training data set, training a model to accurately
determine the exact phase composition, i.e, a regression
model, proves challenging due to the diverse effects stemming
from instrumentation and artifacts. We transformed this
regression problem to a classification problem. The model is
trained to predict the range of phase ratios (labels) represented
in the XRD patterns, such as 0% to 20%, 20% to 40%, and so
on until 80% to 100%, using input 1D XRD patterns as
features.

The accuracy of the aforementioned method was improved
by adding a small number of phase ratio labeled experimental
XRD patterns into the training and validation data set. The
model trained with a data set containing a small number of
labeled XRD patterns showed significantly better accuracy than
that trained without labeled experimental data. As shown in
Figure 3a,b, there is a significant difference in the spatial
distribution of calcite between manual solving and DNN
models trained without labeled data. The manual solving
results indicate that calcite is located on the right side of the
area, while the DNN models trained without experimental data
suggest that calcite presents everywhere. However, after
incorporating a small amount of labeled experimental data,
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the model successfully retrieved the rough distribution of
calcite in the area (see Figure 3c).

A similar trend is observed in the retrieval of bastnaesite
from experimental data (see Figure 3d—f). Although the model
trained without labeled data roughly retrieved the distribution
of bastnaesite in the area, it falsely predicted bastnaesite at the
bottom of the region of interest (right above the red line).
Adding labeled data significantly improved the model’s
performance, resulting in the retrieval of bastnaesite phase
distribution similar to the manual solution. Moreover, the
model trained with labeled data is less likely to falsely predict
phases not seen in the manual solution results in the LaCl;-
calcite hydrothermal fluid system, such as La,0,CO; with
Ama2 or Cl2cl space group and LaOHCO; (see Figures S7
and S8). Overall, these two models further underscore the
importance of using labeled experimental data in the training
data set when using DNN to automatically solve y-XRD data,
particularly from hydrothermal fluid systems.

B CONCLUSION

In this study, we have demonstrated the importance of
including labeled experimental data in the training data set
when training DNN models to obtain phase information from
u-XRD mapping, in this case illustrated using a LaCl;-calcite
hydrothermal reaction system. Our simple binary phase
experiment showed that models trained with a small amount
of experimental data outperformed models trained without
experimental data when judging the existence of phases from
experimental p-XRD data. All three statistical parameters
(AUROC, AUPRC, and accuracy) of models trained with
labeled experimental data were higher/better than those
trained without labeled data. This trend was maintained
when using the same data sets to train two more
comprehensive models to retrieve not only the type but also
the ratio of all possible phases. The model trained with labeled
data correctly retrieved the spatial distribution of calcite and
bastnaesite from p-XRD maps. This study emphasizes that
training DNN models with synthetic XRD patterns is not a
universal solution to analysis of XRD mapping data. It also
highlights the necessity to build a robust experimental mineral
diffractogram data set in the environment of interest, which
would be of great importance for future DNN studies
attempting to identify, for example, REE minerals and their
formation pathways in hydrothermal fluid environments.
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