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As a population grows, spreading to new environments may favor specialization. In this paper, we introduce
and explore a model for specialization at the front of a colony expanding synchronously into new territory.
We show through numerical simulations that, by gaining fitness through accumulating mutations, progeny of
the initial seed population can differentiate into distinct specialists. With competition and selection limited
to the growth front, the emerging specialists first segregate into sectors, which then expand to dominate the
entire population. We quantify the scaling of the fixation time with the size of the population and observe
different behaviors corresponding to distinct universality classes: unbounded and bounded gains in fitness lead
to superdiffusive (z = 3/2) and diffusive (z = 2) stochastic wanderings of the sector boundaries, respectively.
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In the course of evolution, a homogenous population may
diversify to exploit emerging ecological niches. Such disrup-
tion of a population’s homogeneity can often be attributed to
changes in the availability of resources across geographical
terrains [1]. As an initially homogeneous population occu-
pies new terrain, it can differentiate into different specialized
populations to maximize fitness. Here, we introduce a fitness
model for specialization by mutations along a “two-feature”
axis. In our model, the mutating population expands spatially
at a front (similar to a tumor), with reproductive selection
encoded by a fitness function. Positing different forms of the
fitness function, we use numerical simulations to follow the
evolution of the population, in particular tracking the fixation
time for the entire population to become dominated by a
single specialized group. Our main result is that, depending
on whether the fitness can grow indefinitely or there exists
a maximum attainable fitness, the fluctuation behavior of do-
main walls between specialized populations falls into different
universality classes.

Our work is largely inspired by studies of range expan-
sions, which describe populations that expand spatially into
new territory over the course of many generations, as in tu-
mors [2,3] or bacterial colonies [4,5]. In these toy models of
expanding populations, reproducing individuals only compete
with those in close proximity at the front of the expanding
colony, and the effects of genetic drift are amplified due to this
spatial limitation [6]. As such, range expansions provide rich
arenas for studying stochasticity in evolution and have moti-
vated numerous works [4,6–15]. In laboratory experiments,
Hallatschek et al. [4] studied the appearance of sectors in
growing bacterial populations: an initially well-mixed pop-
ulation of two fluorescently labeled strains of Escherichia
coli was allowed to grow and expand. After some time, cells
at the colonization front had segregated into sectors defined
by the fluorescent marker. Interestingly, the mean square
transverse displacements of the sector boundaries scaled with
expansion radius � as �2ζ with exponent ζ = 0.65 ± 0.05,
suggesting superdiffusive wandering with ζ = 2/3 in the
Kardar-Parisi-Zhang (KPZ) universality class [16]. Further-

more, such observations are not unique to E. coli, as similar
experiments with growing colonies of haploid Saccharomyces
cerevisiae revealed the same scaling [4]. Hence, superdiffu-
sive behavior is hypothesized to be a universal characteristic
of certain microbial range expansions [17].

Several numerical studies on simple models of growth
have elucidated the universal characteristics of range ex-
pansions. One well-studied class of models are stepping
stone models [18], which represent the growing colony with
occupied points on a lattice, with sites at the front repro-
ducing into neighboring unoccupied sites [6,13–15]. With
layer-by-layer (synchronous) growth (starting from a straight
one-dimensional edge), the boundary between two sectors
performs a random walk corresponding to a transverse rough-
ness exponent of ζ = 1/2; however, asynchronous growth
(random selection of sites on the front) results in a rough
front and leads to the superdiffusive exponent ζ = 2/3 [15],
as is the case in experiments [4]. Moreover, the superdiffu-
sive exponent is also observed in a model with synchronous
reproduction [15] inspired by directed paths in random media
(DPRM) [19]. The latter model can be interpreted as describ-
ing stochastic variations in the size of the cells, giving rise
to a rough front [20]. As a variant of the latter model, our
work helps clarify when synchronous reproduction can result
in superdiffusive or diffusive scaling.

In the above range expansion experiments, the different
sectors can be regarded as distinct specialized populations
competing at the sector boundaries. However, all these spe-
cialists are already present at the initial seed (with assumed
identical fitness) and their progeny then segregate into dif-
ferent regions of space. In contrast, specialization in nature
typically arises from the differentiation of individuals over
time. In this letter, we introduce a model in which distinct
specialists evolve spontaneously due to mutations; subsequent
competition with neighboring specialists populations ensues
and leads to spatial separation. Our model is consistent with
observations in nature and in experiments.

Fitness model. We consider a simple model with individ-
uals characterized by two traits, which we label as breadth b
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FIG. 1. Illustration of the update rules for our model. The ini-
tial seed population (t = 0) is unspecialized (grey), and subsequent
progeny inherit features b and h, according to our update rules.
Variations provided by the accumulating random mutations in the
update rules may result in individuals becoming specialized in b
(blue) or h (yellow).

or height h; the reproductive success of individuals in compe-
tition is given by some function f [b, h] of the two traits. Our
focus is on whether mutations lead to individuals specializing
in one trait over the other, and hence we are interested in the
difference in magnitude of the two traits m = b− h. Studies
of phase transitions indicate that key universal features can
be captured by simple polynomial expressions for the free
energy density [21]. Motivated by such, we consider a sim-
ple polynomial form for the fitness function that allows for
differentiation:

f [b, h] ≡ f (m) = f0 + αm2 + βm4 + γm. (1)

The even powered terms (α and β) preserve a symmetry about
f0 between b and h (or m → −m), while the odd term (γ )
breaks this symmetry [22]. The degree of specialization is
quantified by m, which is akin to the magnetization in Lan-
dau’s theory of magnetic phase transitions [21].

Lattice implementation. Given the fitness function in
Eq. (1), we model spatial growth using a variation of the step-
ping stone model [18], where individuals in generation t are
arranged along a line, indicated by x; we refer to individuals
by their site coordinates (x, t ) on a triangular lattice (Fig. 1).
The progeny at generation t are determined by the compe-
tition between the two neighboring individuals at generation
(t − 1). The winner of the competition between potential par-
ents (x + 1, t − 1) and (x − 1, t − 1) is the one with the larger
fitness value

f (x, t ) = f [b(x, t ), h(x, t )]. (2)

Let xmax denote the x coordinate of the individual with the
higher f (x, t ). The individual at xmax then procreates and its
progeny inherits its traits, up to small variations as described
by

b(x, t ) = b(xmax, t − 1) + ηb(x, t ),

h(x, t ) = h(xmax, t − 1) + ηh(x, t ). (3)

We take ηb(x, t ), ηh(x, t ) to be independent and identi-
cally distributed Gaussian random variables, with zero mean
and correlations 〈ηa(x, t )ηa′ (x′, t ′)〉 = σ 2δa,a′δx,x′δt,t ′ , as in the
DPRM-inspired model in Ref. [15]. The noise η accounts for

random mutations in the offspring. Since the mean change
is zero, the magnitudes of b and h are equally likely to
increase or decrease over generations; however, the accumu-
lating mutations selected by preferential reproduction enable
specialization to occur in certain regimes of the fitness func-
tion. Note that as all individuals in a given generation t are
updated synchronously, the uppermost layer in Fig. 1 remains
flat.

Initially, all members of the population are unspecialized;
that is, m(x, 0) = 0 for all x. For some fitness functions, in-
dividuals may become specialized in either feature, such that
after t generations, m(x, t ) �= 0 for typical x (Fig. 1). Over
time, segments of neighboring individuals with the same spe-
cialization form sectors. Depending on the shape of the fitness
function (parametrized by α, β, and γ ) and the magnitude of
mutations (parametrized by σ ), we observe different patterns
in the emergence of new specialist populations (Fig. 2).

Growth patterns. We conduct numerical simulations with
our fitness model under different regimes. In Fig. 2(a),
the fitness is maximized at the origin, and we observe no
specialization. Even when the fitness is shifted to favor a
particular feature by setting γ �= 0, there is no differentiation
into distinct specialized populations; rather, the population
is dominated by specialists in that feature, but these spe-
cialists are evenly distributed in space. These behaviors are
reminiscent of antibiotic resistance, which can appear or dis-
appear in cells depending on the presence of antibiotics in the
medium [23].

In contrast, in Fig. 2(b), there is a local maximum around
the origin with local minima on both sides; hence, it is pos-
sible to attain a higher fitness by moving through a less
favorable region in the fitness landscape. Due to this partial
advantage for generalists, especially at early times, the re-
sulting growth pattern consists of unspecialized individuals
until the sudden onset of those highly specialized in b or
h. Eventually, these specialists form V-shaped sectors which,
upon meeting, compete for dominance [24].

In Figs. 2(c) and 2(d), we observe specialization in cases
where the fitness gain is unbounded or bounded, respectively.
By random chance, b and h fluctuate over generations, result-
ing in individuals specializing in one feature over the other,
giving rise to specialists. For the bounded fitness function
illustrated in Fig. 2(d) with two local maxima, we observe an
emergence time τe for the magnitude of specialization |m| to
become maximal (detailed in Ref. [25]).

Fixation time. Once specialized groups are well-defined,
the domain walls between distinct groups fluctuate as the
population expands. Eventually, one specialized population
dominates, and there is a fixation time τ f in which the entire
population becomes specialized in the same feature [26]. We
perform numerical simulations to characterize the scaling of
the fixation time with population size L as

τ f ∝ Lz, (4)

with a dynamical exponent z = 1/ζ . We find different values
for z corresponding to different universality classes depending
on the shape of the fitness function.

In the case of unbounded specialization [Fig. 2(c)] and
γ = 0, the average fixation time 〈τ f 〉 scales in L with
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FIG. 2. Possible forms of the fitness function f (m) without (γ = 0, solid) or with (γ > 0, dashed) symmetry breaking. The fitness function
favors (a) generalists; (b) specialists, although an initial advantage exists for generalists; (c) specialists, with unbounded fitness gain; and
(d) specialists, with bounded fitness gain. For each of the four cases, we observe the corresponding evolutionary dynamics generated by our
update rules (with periodic boundary conditions along the horizontal direction) illustrating different specialization patterns. Color plots show
m(x, t ) for populations of size L = 256 over 200 generations, with time running in the upward direction. We set the standard deviation of the
mutational variability η to σ = 0.1 in all plots.

exponent z = 1.497 ± 0.003 [Fig. 3(a)], giving strong indi-
cation of KPZ superdiffusive wandering of domain walls
between different specialists, which is characterized by z =
3/2. This scaling persists for small γ [for γ = 0.1, Fig. 3(a)
yields z = 1.501 ± 0.003] before the crossover to possibly
exponential takeover [Fig. 3(c) and next paragraph]. Higher-
order cumulants of τ f are also approximately multiples of 3/2,
further supporting superdiffusive behavior [25]. These obser-
vations recapitulate the superdiffusive wandering of bacterial
sectors observed experimentally in Ref. [4].

For bounded specialization [Fig. 2(d)] and γ = 0, we ob-
serve z = 2.004 ± 0.003 for the scaling of 〈τ f 〉 in L, strongly
suggesting diffusive wandering of the boundaries between

specialized populations (also supported by the scaling of
higher-order cumulants of τ f in Ref. [25]). However, upon
symmetry breaking with γ �= 0, diffusive behavior is no
longer observed; rather, 〈τ f 〉 appears to grow logarithmically
with L [Fig. 3(c)]. In particular, the inverse proportionality
between γ and the slope in the log plot suggests that the
size of the domains grows proportional to eγ t . However, with
unbounded fitness gain and γ �= 0, the results are too broadly
distributed to draw definitive conclusions.

The transition between the universality classes of bounded
and unbounded fitness is best illustrated in the change from
Fig. 2(d) to Fig. 2(c) for α > 0 as β changes sign. As depicted
in the left panel of Fig. 3(b), the corresponding switch from
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FIG. 3. Distinct scaling behaviors (universality classes) of the
fixation time. Linear fits indicate the dynamical exponent z. (a) Un-
bounded fitness gain without (γ = 0, dashed) or with (γ = 0.1,
dot-dashed) symmetry breaking for α = 1, β = 0 show superdiffu-
sive scaling with z ≈ 3/2; bounded symmetric fitness gain (γ = 0,
dotted) for α = 1, β = −0.1 exhibits diffusive behavior with z ≈ 2.
(b) In the symmetric case (γ = 0), the transition between diffusive
and superdiffusive regimes is abrupt on changing β from negative to
positive for α = 1; a gradual crossover is observed for increasingly
positive β for α = −1. (c) Symmetry breaking (γ �= 0) in the case
of bounded fitness gain leads to rapid fixation time logarithmic in
size, with slope inversely proportional to γ ; here, we set α = 1,

β = −0.1. Error bars show the standard deviation
√

〈τ 2
f 〉c. Statistics

are calculated over 104 realizations, with σ = 0.1 in all plots.

z = 2 to z = 3/2 is quite abrupt. On the other hand, the
fitness function for α < 0 and β > 0 in Fig. 2(b) leads to

more complex evolutionary dynamics: an initial linear growth
of emerging specialists in the unspecialized background fol-
lowed by their competition towards final fixation. At later
times, the competition between specialists with unbounded
growth of fitness resembles the dynamics of Fig. 2(c). The
effective exponent, depicted in the right panel of Fig. 3(b)
reflects this two-step approach to fixation, with z gradually
nearing 3/2 as the second stage becomes more prominent
upon the increase of β.

Discussion. In summary, we investigate a model for spe-
cialization at the front of a colony expanding synchronously
into new territory. By accumulating mutations, progenitors of
the initial seed population differentiate into distinct special-
ists; the driving force for specialization is the gain or loss
in fitness upon acquiring these mutations. With competition
and selection occurring only locally on the growth front, the
emerging specialists initially segregate into sectors, which
subsequently expand to dominate the entire population. By
quantifying the scaling of fixation time with population size,
we find that unbounded and bounded gains in fitness lead
to superdiffusive (z = 3/2) and diffusive (z = 2) stochastic
wanderings of the sector boundaries, respectively; that is, an
unbounded fitness gain in this setting leads to more rapid
fixation, but with a distinct mathematical characteristic. It
remains to show if this distinction is robust to variations of
the model, such as with asynchronous growth.

While removed from reality, simplified models as pur-
sued here point to relevant features and their importance;
the emergence of “complexity” in such models is typically
classified in terms of universality classes that share gross
underlying features. In the context of specialization, future
work to explore more complex fitness landscapes involv-
ing multiple traits may elucidate more complex evolutionary
dynamics. The dimensionality of the space over which the
colony expands, as well as environmental heterogeneities [27]
are also factors to consider. Additional effects to explore
include changes in habitat ranges [28], mutualistic or an-
tagonistic interactions between specialized populations [29],
environments with curved surfaces [30], and successive range
expansions [31].

Ultimately, our model presents one possible mechanism
for individuals to diversify and specialize in expanding pop-
ulations. Our findings corroborate natural and experimental
observations and has the potential to predict evolutionary
phenomena occurring in systems where it is disadvantageous
to specialize in multiple features. Future investigations can
explore a two-parental model to see if similar growth patterns
emerge. We hope our work will inspire further investigations
into evolutionary dynamics on these frontiers.
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