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Abstract: CompuCell3D (CC3D) is an open-source software framework for building and executing multi-cell 
biological virtual-tissue models. It represents cells using the Glazier–Graner–Hogeweg model, also known as 
Cellular Potts model. The primary CC3D application consists of two separate tools, a smart model editor 
(Twedit++) and a tool for model execution, visualization and steering (Player). The CompuCell3D version 
4.x release introduces support for Jupyter Notebooks, an interactive computational environment, which brings 
the benefits of reproducibility, portability, and self-documentation. Since model specifications in CC3D are 
written in Python and CC3DML and Jupyter supports Python and other languages, Jupyter can naturally act 
as an integrated development environment (IDE) for CC3D users as well as a live document with embedded 
text and simulations. This update follows the trend in software to move away from monolithic freestanding 
applications to the distribution of methodologies in the form of libraries that can be used in conjunction with 
other libraries and packages. With these benefits, CC3D deployed in Jupyter Notebook is a more natural and 
efficient platform for scientific publishing and education using CC3D.
Keywords: CompuCell3D, Jupyter Notebook, cell modeling, virtual tissue, biology education
© 2023 under the terms of the J ATE Open Access Publishing Agreement 

Introduction
Computational biological modeling enables scientists to quantitatively describe complex biological systems, 
test existing biological knowledge and generate new biological hypotheses. Cell-based computational 
biological modeling describes biological systems on the basis of individual cells [1], and can include dynamic 
deterministic or stochastic descriptions of cell location and state. Research using computational modeling has 
produced novel quantitative descriptions of the underlying mechanisms of many developmental processes like 
somitogenesis [2], vasculogenesis [3, 4] and gastrulation [5], and has provided new biomedical insights in 
various problems of health and disease such as acetaminophen metabolism [6], autosomal dominant polycystic 
kidney disease [7], antiviral therapies [8, 9], and influenza infection and host-pathogen interactions [10]. 
There exist multiple software for cell-based computational biological modeling, each of which employs 
various numerical methods and provides different features and specializations, including Artistoo [11], 
Biocellion [12], CHASTE [13], Morpheus [14], PhysiCell [15], Simmune [16], and TissueSimulationToolkit 
[17] among others. CompuCell3D (CC3D) [18], which implements the Glazier–Graner–Hogeweg model 
[19], also known as Cellular Potts model, to simulate multicellular systems, has a long legacy as an open-
source, cross-platform modeling and simulation environment meant to be accessible to all levels of biologists, 
from students to veteran researchers. To provide accessibility to a broad user base across multiple disciplines, 
CC3D is distributed with supporting graphical user interfaces (GUIs) that streamline model and simulation 
specification (e.g., automated project generators, code snippets and browsable documentation) and project 
sharing (e.g., well-defined project file structures, built-in project archive import/export) and provide interactive 
simulation execution and real-time, customizable data visualization. 
CC3D version 4.x development added support for Jupyter Notebooks, an interactive computational environment  
that provides the benefits of reproducibility, portability, and self-documentation in the form of executable, 
interactive scripts in a web browser. Jupyter Notebook acts as one integrated environment, in which text and 
graphics can be presented alongside executable code [20]. Jupyter was created in 2013 and is the most widely 
used computational notebook [21], with more than 2.5 million notebooks in GitHub since September of 2018 
[22]. While CC3D was originally developed to support model specifications written in Python and CC3DML 
(an XML-based language), recent CC3D developments expanded deployment support to include specifications 
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defined purely in Python. Since Jupyter supports Python and other languages, Jupyter can naturally act as an 
integrated development environment (IDE) for CC3D users as well. This update follows the current trend in 
software development and distribution to move away from monolithic, freestanding applications and towards 
the distribution of libraries that can be used in conjunction with other software. With these benefits, CC3D 
deployed in Jupyter Notebook is a powerful resource to expose students to computational biology as well as 
for scientists publishing work using CC3D. In this paper, we describe the basic features of CC3D simulation 
visualization in Jupyter Notebook as relevant to students, educators and scientists interested in integrating 
Jupyter-based computational biological modeling and simulation into their classrooms and projects. 

Software Design
CC3D is written in C++ and provides Python language bindings, including an interface for runtime simulation 
execution and control in Python. The current distribution of the CC3D software includes two GUIs: Twedit++, 
a text editor for writing model specification code controlling the simulation (Fig. 1.1), and CC3D Player, a 
freestanding application to run and interact with a simulation (Fig. 1.2). Twedit++ and CC3D Player are both built 
on the PyQt framework, and CC3D Player uses the CC3D Python interface for runtime simulation execution. 
Likewise, the CC3D visualization pipeline employs infrastructure from the Visualization Toolkit (VTK) [23], 
which also provides Python language bindings and supporting widgets for interactive visualization in a Jupyter 
Notebook. These important software features permit both control of CC3D simulation execution and real-time 
rendering and visualization of CC3D simulation data within Jupyter. Furthermore, CC3D Player integrates 
VTK support for PyQt to provide interactive visualization, while VTK also provides implementations of 
those same widgets deployed in CC3D Player but for Jupyter Notebook. CC3D support for Jupyter Notebook 
integrates such features from VTK to provide a comparable user experience between simulation execution and 
visualization in CC3D Player and a Jupyter Notebook.  
Player offers flexible visualization specifically tailored to the needs of CC3D users. While general standard 
visualization tools exist, they can be cumbersome for non-expert users. Player provides a simple way of 
representing complex visual data in real time by allowing the user to run/pause/stop execution of the simulation 
while rendering the graphics in real time. Users can create multiple graphics windows to view different 
properties, locations and objects of the simulation simultaneously. Rendering settings such as outlines, colors, 
bounds, and more can be configured to communicate the information the user needs. The view on the frames 
can be manipulated directly during the simulation with natural controls for pan, tilt, and zoom, switch between 
two- and three-dimensional views and setting view coordinates for two-dimensional visualization. Player also 
supports on-demand rendering of visualized simulation data and saving to file, as well as scheduling rendering 
at regular intervals of simulation time. 
The Jupyter Notebook implementation of CC3D includes the rich features provided by Player, but in an 
interactive environment supporting user-specified visualization along with the implementation of their models, 
simulation specifications and documentation. Users can specify an arbitrary number of graphics frames, each 
of which can be individually customized to visualize simulation data in ways that complement, clarify or 
demonstrate the ideas communicated in their Jupyter Notebook. Each graphics frame can be interactively 
configured, and each graphics frame configuration can be stored to file during development in a human-
readable JSON format and reloaded during subsequent executions of a Jupyter Notebook (e.g., when shared 
with others). CC3D visualization in Jupyter Notebook supports displaying individual graphics frames or grids 
of frames that effectively communicate complex simulation data over multiple fields (e.g., reaction-diffusion 
fields), which are common to models developed in CC3D that target intercellular signaling and/or dynamic 
environmental conditions. To this end, CC3D promotes deployment of multiple interactive visualization 
frames through multiprocessing and an application-specific message-passing interface. Visualization of 
each frame is executed in a separate process and message passing shares serialized simulation data from 
the computational core to each visualization process, and likewise instructions from user interactions are 
shared from each visualization process back to the computational core for real-time manipulation of data 
visualization (Fig. 1.3). 
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Previous CompuCell3D releases are primarily designed to run natively on Windows, Mac or Linux operating 
systems with a GUI. This meets the needs of a majority of users but makes remote client-server computing 
setups difficult since the remote server needs to render and stream its GUI. For instance, CompuCell3D 
version 4 is available through nanoHUB [24] and is rendered using the X11 default window manager (Fig. 
2). The nanoHUB deployment of CC3D is fully functional and can demonstrate all the capabilities of CC3D, 
however, there are challenges to using it as a development environment.  For one, the simulation execution 
speed on this platform is slower. In addition, since the remote desktop is an isolated environment, some basic 
computer functionality including keyboard shortcuts such as copy/paste are not transferable between the client 
and remote machine.

Fig. 1.1. Editing a simulation file using Twedit++ on MacOS

Fig. 1.2. Visualizing a simulation in CompuCell3D 
Player on MacOS

Fig. 1.3. Visualizing a CompuCell3D 
simulation in a Jupyter Notebook
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Fig. 2. CompuCell3D Player and Twedit++ running on 
nanoHUB X11 window manager

On the other hand, a client-server interface is inherent to Jupyter, making Jupyter Notebooks that specify and 
describe a CC3D simulation easily deployable and efficient on cloud computing systems (Fig. 3). Jupyter can 
be hosted on a cloud server and accessed using a link by the client user. In such deployments, computations are 
performed on the server and the graphics are rendered locally, which can significantly improve user experience 
by increasing the performance of visualization interactivity.

Fig. 3. Jupyter instance of nanoHUB with CompuCell3D files

Discussion
The flexible, portable, and reproducible format of Jupyter Notebook makes it an appealing environment 
to use as an educational resource and to supplement scientific publications. A single Jupyter Notebook can 
display instructions, figures, live code and simulations in a single browser window, forming a coherent 
“computational narrative” [20]. In comparison, working with the native CC3D application would require three 
different components, where code is written in Twedit++, simulations run in CC3D Player, and instructions 
are outlined in a separate document. In addition, the Twedit++ and CC3D Player applications have menus and 
features which may be irrelevant for a particular presentation, while a Jupyter Notebook can selectively load 
and display relevant components. This customizable and interactive format makes it simpler for audiences to 
follow and understand the concepts, technical details and overall scope of a CC3D-based project in Jupyter 
Notebook than with native CC3D (Fig. 4).
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The portability of Jupyter Notebook also makes it easier for teachers to distribute and collect Notebooks 
as assignments. Jupyter Notebook files may be uploaded onto file-sharing sites such as GitHub or other 
institutional platforms. In addition, existing online tools for Jupyter Notebooks such as nbviewer [25] allow 
for more ways to access/view a Notebook. With the flexibility and portability benefits that Jupyter offers, 
CC3D can be more effectively used in the classroom to demonstrate and reinforce biological concepts to 
students. Fig. 5. demonstrates an example of CC3D in Jupyter Notebook for educational use, including steps 
to run CC3D and additional exercises The full example notebook can be found in .pdf and Jupyter Notebook 
formats in the supplementary materials. In this fashion, a curriculum can be created with interactive Notebooks 
in place of worksheets. Previously, CC3D would have been difficult to deploy in classrooms because of its 
device-dependent and multicomponent nature. The development of CC3D for Jupyter Notebook enables a 
simpler replication and distribution process for instructors. The time to set up the CC3D environment for 
learning and to create new lesson materials would be reduced because of the streamlined format. The format 
benefits students as well: a Notebook allows a more focused way of learning rather than having to use and 
reference multiple applications to operate CC3D, as discussed above. The interactive format also encourages 
exploration, providing opportunity for a different kind of learning format. Previous research has shown that 
working with simulated models improves foundational and conceptual skills in biology students [26]. In 
addition, given the increasing need for online learning, simulations could be an alternative to exercises in a 
physical laboratory [27].

Fig. 4. With the CompuCell3D native applications, the development environment (Twedit++), 
simulation controller (Player), and supporting documentation (User Manuals) are separate.  

With Jupyter Notebook, these three aspects are seamlessly integrated as one.
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Fig. 5. Excerpts from the SortingDemo_ExtendedContent.ipynb file included in 
supplementary materials. Instructions for running the simulation and additional exercises 
are seamlessly integrated into one interactive environment through Jupyter Notebook.

 Another beneficial use for CC3D in Jupyter Notebook is to embed CC3D simulations into research publications 
as supplementary media to help other researchers understand, interrogate and reproduce published work. 
As reports indicate, a current crisis of reproducibility across published science, especially for the field of 
computational biology [28], has filled much of the recent literature with works that cannot be reproduced 
because of factors like insufficient descriptions of methodology. CC3D support for Jupyter Notebook can thus 
help mitigate the waning reproducibility in computational biological modeling by providing a straightforward 
way for scientists to publish research in a format that makes it easier for others to trace, understand and 
reproduce their work. Since Jupyter Notebooks can be shared via accessible file hosting or cloud computing 
platforms like GitHub and nanoHUB, sharing or accessing a published Notebook is trivial, and many 
researchers are already familiar with these tools.
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One limitation to using CC3D in Jupyter Notebook is that performance can vary depending on how much 
algorithmic work is done in Python. While the cost of pure backend calculations are unaffected, certain 
algorithms such as loops implemented in Python are less efficient than the C++ counterpart, which the Jupyter 
environment does not currently support. As a result, simulations have longer execution time than executed in 
the native desktop application, which may make Jupyter Notebook unsuitable for larger-scale simulations. For 
example, a simple benchmark running a 2D cell sorting demo demonstrated an execution time of 35 seconds 
in a Jupyter Notebook, compared to 2 seconds in Player and 0.5 seconds in a pure Python implementation (see 
Supporting Materials 1). While simulation performance varies depending on the machine and setup, and there 
are techniques to improve simulation performance, which is out of the scope of this paper, an implementation 
of a CC3D simulation may not be appropriate in Jupyter Notebook when developing, testing and applying 
computationally expensive algorithms specified in Python. However, a CC3D simulation implementation in 
a Jupyter Notebook still provides value for the purposes of sharing, demonstration and communication, and 
so CC3D-based research projects that do not primarily use Jupyter Notebook to generate published results 
should still provide a published implementation in a Jupyter Notebook to support reproducibility, as well as to 
showcase published work in an accessible and engaging medium.

Conclusion
CC3D is a software tool for computational biologists to develop, test and apply cell-based computational 
models of biological systems, while Jupyter Notebook is a generic interactive computing environment. 
Providing support for Jupyter in CC3D pushes computational biological modeling towards modern software 
practices and better accessibility for more users of different backgrounds. The Jupyter implementation of 
CC3D preserves the intuitiveness of CC3D Player while also serving as an IDE.
The authors encourage biology educators and student researchers to try using this new feature of CC3D and 
share any work done using this tool with the community of CC3D developers and users. Engagement and 
feedback allow the developers to continue improving and adding features which are most useful to users. In 
addition, learning resources will be continually added to support a growing user base.
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