
RESEARCH ARTICLE

Tissue Forge: Interactive biological and

biophysics simulation environment

T. J. SegoID
1*, James P. SlukaID

2, Herbert M. Sauro3, James A. GlazierID
2

1 Department of Medicine, University of Florida, Gainesville, Florida, United States of America, 2 Department

of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana,

United States of America, 3 Department of Bioengineering, University of Washington, Seattle, Washington,

United States of America

* timothy.sego@medicine.ufl.edu

Abstract

Tissue Forge is an open-source interactive environment for particle-based physics, chemis-

try and biology modeling and simulation. Tissue Forge allows users to create, simulate and

explore models and virtual experiments based on soft condensed matter physics at multiple

scales, from the molecular to the multicellular, using a simple, consistent interface. While

Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and

tissue biophysics, it supports applications ranging from classic molecular dynamics to

agent-based multicellular systems with dynamic populations. Tissue Forge users can build

and interact with models and simulations in real-time and change simulation details during

execution, or execute simulations off-screen and/or remotely in high-performance comput-

ing environments. Tissue Forge provides a growing library of built-in model components

along with support for user-specified models during the development and application of cus-

tom, agent-based models. Tissue Forge includes an extensive Python API for model and

simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as

well as C and C++ APIs for integrated applications with other software tools. Tissue Forge

supports installations on 64-bit Windows, Linux and MacOS systems and is available for

local installation via conda.

Author summary

Tissue Forge is open-source software for particle-based modeling and simulation in phys-

ics, chemistry and biology problems. Tissue Forge users can build simulations using built-

in model components and user-defined models, and execute their simulations interac-

tively with real-time rendering or in high-performance computing environments. Simula-

tions can dynamically create, modify and destroy particles during simulation through

scripted or interactive commands, and can target a wide range of scales, from the molecu-

lar to the multicellular, using built-in features that support modeling atoms, molecules,

cells, and solid and fluid materials. Tissue Forge allows users to inject procedural code

into a simulation as user-specified functions, which supports custom simulation events

and complex agent-based models. Tissue Forge provides user interfaces in the C and C++

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sego TJ, Sluka JP, Sauro HM, Glazier JA

(2023) Tissue Forge: Interactive biological and

biophysics simulation environment. PLoS Comput

Biol 19(10): e1010768. https://doi.org/10.1371/

journal.pcbi.1010768

Editor: Melissa L. Kemp, Georgia Institute of

Technology and Emory University, UNITED

STATES

Received: November 28, 2022

Accepted: September 25, 2023

Published: October 23, 2023

Copyright: © 2023 Sego et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code for this

project is available on GitHub (https://github.com/

tissue-forge/tissue-forge). The code for all reported

benchmarks is available in S3 File. Simulation code

is available in the S2, S4, S5, S6 and S7 Files.

Funding: Funding for Tissue Forge is provided by

NIBIB U24 EB028887 (HMS, JAG, TJS, JPS). TJS

and JAG acknowledge funding from grants NSF

2120200, NSF 2000281, NSF 1720625, NIH R01

GM122424. JPS acknowledges additional funding

from the EPA STAR RD840027 and NSF 2054061.

https://orcid.org/0000-0002-4274-656X
https://orcid.org/0000-0002-5901-1404
https://orcid.org/0000-0003-3634-190X
https://doi.org/10.1371/journal.pcbi.1010768
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
https://doi.org/10.1371/journal.pcbi.1010768
https://doi.org/10.1371/journal.pcbi.1010768
http://creativecommons.org/licenses/by/4.0/
https://github.com/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge


programming languages for building software applications, and in the Python program-

ming language with integrated support for interactive execution in IPython and Jupyter

Notebooks. Tissue Forge is publicly available, provides documentation on project philoso-

phy, core concepts, working examples, and all language interfaces, and is maintained and

distributed through an automated and transparent software development cycle.

Introduction

Computational modeling and simulation are key components of modern biological research.

Simulations codify knowledge into computable representations that can challenge and validate

our understanding of complex biological processes. A well defined model not only explains

currently available data but also predicts the outcomes of future experiments. Biological com-

puter simulations can address a wide range of length scales and employ numerous numerical

and simulation technologies. Scales include that of the atomic bond length to model small mol-

ecules, proteins and other biological macromolecules, the macromolecular scale to model pro-

tein aggregates, the subcellular and cellular scales to model cells and aggregates of cells, the

tissue scale to model long-range interaction between cell aggregates that give rise to organ-

level behaviors, the whole-body scale where organs interact, and the population scale where

individuals interact with each other and their environment. At various biological scales, mod-

els can represent biological objects as either discrete or as numerically aggregated populations,

and so different mathematical and computational approaches are used to simulate behaviors at

each scale. When spatiality is explicitly modeled, molecular dynamics (MD) simulations are

often used at the atomic and macromolecular scales and spatial agent-based models are used at

the higher scales. Often, discrete biological objects (molecules, cells, cell aggregates) are appro-

priately modeled as discrete objects at a particular scale, and then as numerically aggregated

populations at higher scales using continuous dynamics like ordinary differential equations

(ODEs) and partial differential equations (PDEs), which then describe the dynamics of a pop-

ulation of objects. For example, modeling at the multicellular scale can represent molecules of

a given chemical species as densities or amounts, and at the molecular level as discrete mole-

cules. While population models can have significant explanatory value, biology is intrinsically

spatial. Emergent biological properties and behaviors arise in part because of the spatial rela-

tionships of their components. Population models sacrifice this aspect of biological

organization.

In the subcellular, cellular and multicellular modeling domain, most spatiotemporal agent-

based biological simulation tools only support one cellular dynamics simulation methodology,

and focus on a particular problem domain with a particular length scale. For example, Compu-

Cell3D (CC3D) [1] and Morpheus [2] implement cell model objects using the Cellular Potts

model (CPM)/ Glazier-Graner-Hogeweg (GGH) formalism [3], and only support Eulerian,

lattice-based models, while others like PhysiCell [4] and CHASTE [5] support modeling cells

with Lagrangian, lattice-free, particle-based center models as simple, point-like cell particles.

Lattice-free, particle-based methods can be extended to include subcellular detail using the

Subcellular Element Model [6], which could support modeling the spatial complexity of cell

shape, cytoskeleton and extracellular matrix. Extending the CPM/GGH to include cellular

compartments [7] allows representation of subcellular components like the nucleus, critical

molecular species or regions with specific properties but does not support specific representa-

tion of macromolecular machinery. Typically, modelers who are interested in subcellular and

cellular detail must use and adapt general-purpose MD simulation tools like LAMMPS [8],

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 2 / 22

This research was supported in part by Lilly

Endowment, Inc., through its support for the

Indiana University Pervasive Technology Institute.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: No competing interests.

https://doi.org/10.1371/journal.pcbi.1010768


HOOMD-blue [9], NAMD [10] or GROMACS [11]. For example, Shafiee et al., customized

LAMMPS to model cells as clusters of particles to simulate spheroid fusion during spheroid-

dependent bioprinting [12].

Most MD simulation tools are designed to parse and execute models that are theoretically

well defined and MD simulation specifications and engines tend to be well optimized for

computational performance. Most assume a fixed numbers of objects within a model and do

not support runtime object creation, destruction or modification. Many do not support real-

time simulation visualization and user interactivity. In addition, extending these modeling

environments with custom modeling and simulation features requires software development

in C or C++ code. Results can be post-processed after execution, though this requires develop-

ing a pipeline of model development, simulation execution and data generation using a simu-

lation tool, and data visualization and analysis using different visualization tools (e.g., The

Visualization Toolkit [13]) or a general purpose programming language like Python, which

significantly increases user effort to produce useful results. To reduce user effort required to

produce publishable simulation results and analysis, some simulation tools provide real-time

simulation visualization and limited simulation interaction (e.g., CC3D and Morpheus). Cell

simulation tools with real-time visualization are often implemented as stand-alone programs,

rather than as portable libraries that support integration with other modeling environments.

This lack of software interoperability also complicates using simulation tools with other spe-

cialized software libraries (e.g., optimization tools) in advanced computational workflows for

solving difficult biological problems such as reverse-engineering model parameters, interro-

gation of mechanisms, or Bayesian modeling of populations.

This paper presents Tissue Forge, an open-source, real-time, modeling and simulation envi-

ronment for interactive biological and biophysics modeling applications over a broad range of

scales. Tissue Forge is designed to address many of the aforementioned issues and challenges.

Tissue Forge enables agent-based, spatiotemporal computational modeling at scales from the

molecular to the multicellular. It is designed for ease of use by modelers, research groups and

collaborative scientific communities with expertise ranging from entry- to advanced-level pro-

gramming proficiency. It supports all stages of model-supported research, from initial model

development and validation to large-scale virtual experiments. Here we describe the philoso-

phy, mathematical formalism and basic features of Tissue Forge. To demonstrate its usefulness

across multiple disciplines in the physical and life sciences, we also present representative

examples of advanced features at a variety of target scales.

Materials and methods

Tissue Forge seeks address some of the limitations of current modeling packages by providing

a spatiotemporal modeling and simulation environment that supports multiple lattice-free,

particle-based methods for agent-based modeling. It simplifies research by supporting repre-

sentation of a wide range of scales encountered in biophysics, chemistry and biological appli-

cations. Tissue Forge supports the development, testing and deployment of models in large-

scale, high-performance simulation, performed by users with a wide range of expertise and

coding proficiency in multiple programming languages.

Problem domain

Simulation of complex systems, particularly in biological problems, is difficult for a number of

reasons. Difficulties exist for both the domain knowledgeable modeler and the modeling tool

developer. Problems in cell biology and biophysics applications often require representations

of objects and processes at multiple scales, which resolve to spatiotemporal, agent-based

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 3 / 22

https://doi.org/10.1371/journal.pcbi.1010768


models with complex rules and decision making using embedded models of internal agent

state dynamics (e.g., chemical networks). Since such models are experimentally or empirically

determined and highly diverse, their implementation requires flexible, robust model and simu-

lation specification. Likewise, the spatial scale itself presents the challenge of choosing an

appropriate mathematical framework for creating model objects and processes (e.g., whether

to model a cell with complex shape or simply as a sphere). Often, the modeler must learn a

new software tool for each spatial scale they wish to model. In addition, the model features and

computational performance of a particular software tool can be limited by the underlying

mathematical framework, unpermissive or demanding object definitions, or the need for effi-

cient use of computing resources.

Tissue Forge addresses these issues by providing an agent-based, spatiotemporal modeling

and simulation framework built on a flexible, particle-based formalism. Particles, which are

the fundamental agents of any Tissue Forge simulation, are suitable basic objects in model

construction because they minimally constrain a model description. A Tissue Forge particle is

an instance of a categorical descriptor called a “particle type,” and is a discrete agent that has a

unique identity, occupies a position at each moment in time and has velocity and mass or

drag. Tissue Forge imposes no further restrictions on what physical or abstract object a particle

represents. This framework has the theoretical and computational flexibility to enable agent-

based, spatiotemporal computational models across a broad range of scales. An instance of a

particle could represent an atom, or a cell, or a multicellular aggregate. Tissue Forge accommo-

dates models with both pre- and user-defined particle behaviors and interactions, the creation

and deletion of particles at runtime, and consistent object modeling at multiple scales.

Interactive and Batch Execution. Tissue Forge supports the efficient development agent-

based models of complex systems. In general, the development of a computational model

involving multiple interacting agents requires iterative cycles of model development, execu-

tion, analysis, and refinement. During model exploration, refinement and validation, modelers

can benefit from a simulation environment that allow them to observe, interact with, and

refine a simulation as it executes (i.e., real-time simulation and visualization). However, com-

putationally intensive investigations of developed models (e.g., characterizing emergent mech-

anisms or the effects of system stochasticity, systems with large numbers of objects) require

efficient high-performance computing utilization and batch execution. Tissue Forge supports

both interactive and batch operation, providing both rapid and intuitive model development

and high-performance simulation execution, so that modelers do not need to find and learn

multiple software tools or settle for a tool that is either, but not both, feature rich or computa-

tionally efficient. Its interactive simulation mode is a stand-alone application with real-time

visualization and user-specified events. Its batch mode leverages available resources in high-

performance computing environments such as computing clusters, supercomputers, and

cloud-based computing, and exports simulation data and high-resolution images. In batch

mode, Tissue Forge can be included in workflows to carry out modeling task such as model fit-

ting or simulation of replicates and populations.

Open Science Support. Development and dissemination of models that leverage interdis-

ciplinary knowledge and previous modeling projects require robust support for scientific com-

munication, collaboration, training and reuse. Tissue Forge provides a declarative model

specification for many basic aspects of particle-based models and simulations (e.g., particle

type definitions, particle interactions and stochastic motion via generalized force and potential

definitions) with robust support for procedural specification of complex, agent-based models

particular to specific applications. Tissue Forge also supports model sharing and collaborative

development by providing built-in support for exporting and importing simulations and

model object states to and from human-readable string data (using JSON format). In support

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 4 / 22

https://doi.org/10.1371/journal.pcbi.1010768


of collaborative, community-driven and application-specific development of models, the Tis-

sue Forge code base provides a designated space in which developers can implement features

in customized Tissue Forge builds. Extending the Tissue Forge API with custom interfaces

requires minimal effort in all supported software languages. Developers are also welcome to

submit their custom features to the public Tissue Forge code repository for future public

release as built-in features, or to design their software applications using Tissue Forge as an

external software library. Along with executing scripted simulations specified in C, C++ and

Python programming languages, Tissue Forge also supports collaboration, training and scien-

tific communication through its Python API support for interactive simulations in Jupyter

Notebooks. Tissue Forge simplifies robust model construction and simulation development

through expressive model specification (e.g., process arithmetic), a flexible event system for

implementing model-specific rules (e.g., agent rules) and simulation-specific runtime routines

(e.g, importing and exporting data), and a simple, intuitive simulation control interface (e.g.,
switching between interactive and off-screen execution).

Concepts

Tissue Forge updates the trajectory of a particle in time by calculating the net force acting on

the particle. Forces determine the trajectory of a particle according to the dynamics of the par-

ticle type. Tissue Forge currently supports Newtonian and Langevin (overdamped) dynamics,

which can be individually specified for each particle type of a simulation.

For Newtonian dynamics, the position ri of the ith particle is updated according to its accel-

eration, which is proportional to its mass mi and the total force fi exerted on it,

f i ¼ mi
d2ri
dt2

; ð1Þ

and for Langevin (overdamped) dynamics, mi is the drag coefficient and the particle velocity is

proportional to the total force,

f i ¼ mi
dri
dt

: ð2Þ

Tissue Forge supports three broad classes of force-generating interaction,

f i ¼
X

j6¼i

�
Fimpl
ij þ Fbond

ij

�
þ Fexpl

i : ð3Þ

Fimpl
ij is the force due to implicit interactions between the ith and jth particles, Fbond

ij is the

force due to bonded interactions between the ith and jth particles, and Fexpl
i is the explicit force

acting on the ith particle. Implicit interactions result automatically from interaction potentials

between pairs of particles of given types. Bonded interactions act between specific pairs of indi-

vidual particles (Fig 1A). Explicit forces act on particles through explicitly-defined force

descriptions and do not necessarily represent inter-particle interactions (e.g., gravity, internal

noise, system thermal equilibrium). Tissue Forge provides built-in force- and potential-based

definitions, supports user-specified definitions for both, and permits applying an unlimited

number of executable Tissue Forge force and potential objects to individual particles and parti-

cle types.

Implicit interactions are defined in Tissue Forge using potential functions and applied

according to the types of two interacting particles. The force between the ith and jth interacting

particles resulting from their implicit interactions is calculated as the sum of each kth potential

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 5 / 22

https://doi.org/10.1371/journal.pcbi.1010768


Uimpl
ijk that defines the implicit interaction,

Fimpl
ij ¼ �

@

@ri

X

k

Uimpl
ijk : ð4Þ

Bonded interactions are defined in Tissue Forge using potential functions and are applied

according to the identities of two interacting particles. The force between the ith and jth inter-

acting particles resulting from their bonded interactions is calculated as the sum of each kth

potential Ubond
ijk that defines the bonded interaction,

Fbond
ij ¼ �

@

@ri

X

k

Ubond
ijk : ð5Þ

Explicit forces can be defined on the basis of particle type or on individual particles. The

force on the ith particles resulting from external forces is calculated as the sum of each kth

explicit force Fexpl
ik ,

Fexpl
i ¼

X

k

Fexpl
ik : ð6Þ

Since Tissue Forge enables the implementation and execution of models at different length

scales, particles in a simulation may represents objects with a wide variety of possible behav-

iors. A particle could be atomic and subject to energy-conserving, implicit interactions (e.g.,
Coulomb, Morse or Lennard-Jones potentials) as in classic MD. Particles can also represent

portions of material that constitute larger objects (e.g., a portion of cytoplasm) and can carry

quantities of materials within them (e.g., convection of a solute chemical in a portion of a fluid,

Fig 1C). Tissue Forge provides built-in features to enable particle-based modeling and simula-

tion of fluid flow based on transport dissipative particle dynamics (tDPD) and smooth particle

hydrodynamics, including a predefined tDPD potential UtDPD
ij that can be applied when

Fig 1. Examples of Tissue Forge modeling features. A: Five superimposed snapshots of a double pendulum

implemented in Tissue Forge. Bonded interactions (represented as green cylinders) explicitly describe the interaction

between a particular pair of particles, while a constant force acts on the blue particles in the downward direction. The

red particle is fixed. B: Four Tissue Forge clusters representing biological cells, each consisting of ten particles whose

color demonstrates cluster membership. Potentials describe particle interactions by whether they are in the same

cluster (i.e., intracellular) or different clusters i.e., intercellular. C: Tissue Forge simulation of chemical flux during fluid

droplet collision. Each particle represents a portion of fluid that carries an amount of a diffusive chemical, the amount

of which varies from zero (blue) to one (red). When two droplets carrying different initial chemical amounts collide,

resulting droplets tend towards homogeneous chemical distributions.

https://doi.org/10.1371/journal.pcbi.1010768.g001

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 6 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g001
https://doi.org/10.1371/journal.pcbi.1010768


describing the interactions of a simulation,

�
@UtDPD

ij

@ri
¼ FC

ij þ FD
ij þ FR

ij ; ð7Þ

where the interaction between the ith and jth fluid-like particles is a sum of a conservative

force FC
ij , a dissipative force FD

ij and a random force FR
ij acting on the ith particle.

To support treating particles as constituents of larger objects, Tissue Forge provides a spe-

cial type of particle, a cluster, whose elements can consist of constituent particles or other clus-

ters. Clusters provide a convenient way to define implicit interactions that only occur between

particles within the same cluster (e.g., intracellular interactions), called bound interactions, and

those that only occur between particles from different clusters (e.g., intercellular interactions),

called unbound interactions (Fig 1B).

To allow particles to carry embedded quantities, Tissue Forge supports attaching to each

particle a vector of states that can evolve during a simulation. The values of the states can

evolve according to laws defined between pairs of particle types for inter-particle transport

(e.g., diffusion), which Tissue Forge automatically applies during simulation, or according to

local, intra-particle reactions. The time evolution of a state vector Ci attached to the ith particle

is,

dCi

dt
¼ Qi ¼

X

j6¼i

QT
ij þ QR

i ; ð8Þ

where the rate of change of the state vector attached to the ith particle is equal to the sum of

the transport fluxes QT
ij between the ith and each nearby jth particle and the local reactions QR

i .

Among other models related to secretion and uptake, Tissue Forge provides a built-in trans-

port flux model for Fickian diffusion. For the ith and jth particles with flux constant kij sepa-

rated by distance rij, the Fickian diffusion flux QT;diff
ij describing the rate of transport for species

Ci is,

QT;diff
ij ¼

kijðCj � CiÞ 1 �
rij

rcutoffij

� �2

rij � rcutoffij

0 rij > rcutoffij

:

8
><

>:
ð9Þ

Here rcutoffij is the cutoff distance of the flux. A flux can be applied by species and pair of par-

ticle types, and each flux definition can prescribe its own cutoff distance and model parameter

(s) (e.g., flux constant). Note that, when particles are arranged in a regular grid, particle-based

diffusion performs the same computations as those from solving the diffusion equation using

the finite difference method with first-order central difference discretization of space. In such

cases, the flux constant kij can be written in terms of a diffusion coefficient D,

kij ¼
D

r2
ij 1 �

rij
rcutoffij

� �2
:

ð10Þ

Tissue Forge also supports integrating species transport in sub-intervals of time for a simu-

lation step to handle numerical instabilities associated with fast diffusion, as available in CC3D

and PhysiCell.

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 7 / 22

https://doi.org/10.1371/journal.pcbi.1010768


Basic features

Tissue Forge supports model and simulation specification using classes, objects and functions

typical to object-oriented concepts in C, C++ and Python programming languages. In Python,

custom Tissue Forge particle types can be defined by creating Python classes and specifying

class attributes (Listing 1).

Listing 1. Importing the Tissue Forge library and declaring a particle type in Python. Com-

ments are shown in green.

1 # Get the Tissue Forge Python library

2 import tissue_forge as tf

3 # Specify a particle type with a particular radius

4 class OscType(tf.ParticleTypeSpec):

5 radius = 0.5

Tissue Forge allows specification of particle types without an initialized Tissue Forge run-

time. However, initializing the Tissue Forge runtime, which in Python only requires a call to a

single module-level function, permits retrieving template executable particle types that can be

used to create particles (Listing 2). When a particle of a particular particle type is created, the

particle inherits all attributes of its type (e.g., mass), which can in turn be modified for the par-

ticular particle at any time during simulation. Initializing the Tissue Forge runtime requires

no user-specified information, in which case a default configuration is provided, but explicit

initialization provides a number of customization options to tailor a simulation to a particular

problem (e.g., domain size, interaction cutoff distance).

Listing 2. Initializing a Tissue Forge simulation, retrieving an executable particle type and

creating particles in Python.

1 # Initialize with a 10 x10x10 domain and cutoff distance of 3

2 tf.init(dim=[10, 10, 10], cutoff =3)

3 # Get the oscillator type and create two particles

4 osc_type = OscType.get() # a particle type

5 osc_part1 = osc_type ([4, 5, 5]) # particle 1: x,y,z coords

6 osc_part2 = osc_type ([6, 5, 5]) # particle 2: x,y,z coords

7 # Change the radius of one of the particles

8 osc_part2.radius = 0.25

Users specify and apply interactions, whether using built-in or custom potential functions

or explicit forces, by creating Tissue Forge objects that represent processes (e.g., a force object),

called process objects, and applying them categorically by predefined ways that processes can

act on objects (e.g., by type pairs for implicit interactions). Tissue Forge calls applying a process

to model objects binding, which Tissue Forge applies automatically during simulation execu-

tion according to the model objects and process. For example, users can specify an implicit

interaction between particles to two types by creating a potential object and binding it to the

two particle types (Listing 3).

Listing 3. Creating a Tissue Forge potential and binding it to particles by type in Python.

1 # Create a harmonic potential object

2 pot = tf.Potential.harmonic(k=1, r0=1.5)

3 # Bind the harmonic potential to pairs of

4 # particles of the oscillator type

5 tf.bind.types(pot , osc_type , osc_type)

Tissue Forge provides fine-grained simulation control, where each integration step can be

explicitly executed, with other user-defined tasks accomplished between executing simulation

steps (e.g., exporting simulation data). For interactive execution, Tissue Forge simulations are

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 8 / 22

https://doi.org/10.1371/journal.pcbi.1010768


usually executed using a basic run function, which executes an event loop that (1) integrates

the universe, (2) processes user input (e.g., keyboard commands), (3) updates simulation visu-

alization, and (4) executes an event system with user-defined events. The Tissue Forge event

system allows users to insert instructions into the event loop via user-defined functions (List-

ing 4). Events can be executed at arbitrary frequencies, can automatically retrieve simulation

data (e.g., a randomly selected particle of a specific type), and can change qualities of individual

particles (e.g., change the radius of a particular particle based on its environment).

Listing 4. Creating a Tissue Forge event and running an interactive simulation in Python.

1 # Define an event that prints the time and particle x-coordinate

2 def my_event(e: tf.event.TimeEvent):

3 print('Time:', tf.Universe.time)

4 print('p1 x position:', osc_part1.position.x())

5 print('p2 x position:', osc_part2.position.x())

6 # Register the event for execution at every simulation step

7 tf.event.on_time(period=tf.Universe.dt, invoke_method=my_event)

8 # Run the simulation

9 tf.run()

During simulation execution, including during execution of user-defined events, Tissue

Forge objects are available for accessing and manipulating simulation, universe and system

information. The Python code described in this section generates the Tissue Forge simulation

depicted in Fig 2 (see S2 File), and also prints the current simulation time and x-coordinate of

Fig 2. Tissue Forge simulation of a simple oscillator with two particles interacting via a harmonic potential.

Tissue Forge helps to orient the user by drawing a yellow box around the simulation domain, a white grid along the xy
plane at the center of the domain, and an orientation glyph at the bottom right to demonstrate the axes of the

simulation domain with reference to the camera view, where red points in the x direction, green in the y direction and

blue in the z direction.

https://doi.org/10.1371/journal.pcbi.1010768.g002

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 9 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g002
https://doi.org/10.1371/journal.pcbi.1010768


both particles at every simulation step. This simulation can be executed as a Python script or

in an IPython console.

In a Jupyter Notebook, this code executes the same simulation but generates an additional

user interface, which provides widgets for interactive simulation controls, e.g., for pausing and

resuming the simulation, and choosing predefined camera views (Fig 3). When running Tissue

Forge from a Python script or IPython console, the interface supports mouse control (e.g.,
click and drag to rotate) and predefined and user-defined keyboard commands (e.g., space bar

to pause or resume the simulation). In interactive contexts like IPython and Jupyter Note-

books, the Tissue Forge event loop recognizes user commands issued ad hoc during simula-

tion, allowing on-the-fly modification of the simulation state, which is especially useful during

model development and interrogation (e.g., when testing the effects of the timing of an event).

Implementation details

Tissue Forge treats space as a regular grid of connected subdomains, called cells. Data for each

particle (e.g., particle position and velocity) is stored in contiguous memory by the cell that

contains the particle, which localizes inter-particle interactions in memory and establishes

strong task parallelism by cell. As such, when the position of a particle changes from one cell to

another, the data of the particle is also moved to the storage of the other cell (Fig 4). For each

simulation step, Tissue Forge performs three stages of procedures to update the simulation

state. In the first stage, called Prep, cached data from previous steps (e.g., total force on a parti-

cle, total system energy) are reset. In the second stage, called Force, forces on particles and

fluxes between them are calculated. In the third stage, called Update, particle states are

updated, total system energy is calculated, and all registered events are executed.

Task-based parallelism is applied during the Force stage, where three types of tasks are per-

formed for each cell. The first task, called Sort, builds ordered lists of particle indices according

to proximity to neighboring cells. The Sort task is accomplished once for each cell. The second

task, called Force Pair, calculates the interactions of particles in one cell with the particles of

another cell. The Force Pair task is accomplished once for each pair of cells with interacting

particles. The Force Pair task is not performed for a pair of cells until the Sort task has been

performed for both cells. The third task, called Force Self, calculates the interactions of particles

in the same cell. The Force Self task is accomplished once for each cell. Tasks are assembled

into a queue and dedicated threads, called Runners, pull available tasks from the queue and

perform them as they become available. Various routines in other stages, such as rendering,

Fig 3. Tissue Forge Python deployment examples. Sample use of the Python API to specify an interactive simulation

of convection of a species near a species sink in a Python script (left) and in an interactive Jupyter Notebook (right).

https://doi.org/10.1371/journal.pcbi.1010768.g003

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 10 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g003
https://doi.org/10.1371/journal.pcbi.1010768


data resetting and particle state updating, are trivially parallelized by maintaining an array of

pointers to particle data memory. Particle trajectories and state vectors are updated using

explicit first-order forward time integration. Architectural features provide support for imple-

menting additional time integration schemes and real-time numerical stability analysis in

future development.

While computational cost significantly varies based on simulation details like cutoff dis-

tance and number of particles (increasing values of which increases cost), the computational

cost of a Tissue Forge simulation scales well with increasing particle number (Fig 5A). The

Force stage contributes the most computational cost of a simulation step for simulations that

include implicit inter-particle interactions (Fig 5C). As such, Tissue Forge supports offloading

implicit interactions to available GPUs, both when running windowless and rendering in real

time. Performance improvements from GPU acceleration also significantly vary due to both

simulation details and computing hardware. For example, we tested simulating an implicit

interaction for varying particle number but constant particle density (i.e., with proportional

increase in size of the simulation domain), varying cutoff distance and varying computing

architecture (Intel i9-12900H CPU with and without acceleration on a NVIDIA A2000 GPU).

We found that the computational cost per particle of simulation executed only on a CPU

began to increase for particle numbers above 1M, while the cost remained approximately the

same when using GPU acceleration. We also found that, in this upper range of particle number

and all tested cutoff distances, GPU acceleration produced a speedup of around two. Source

code for all benchmarks is available in S3 File.

Tissue Forge supports runtime-configurable GPU acceleration of a simulation. GPU accel-

eration can be configured, enabled, disabled and reconfigured at any time during a simulation.

This modular, configurable approach allows fine-grain control of computations to achieve

Fig 4. Conceptual diagram of space discretization and task-based parallelism. Space is discretized into subdomains

called “cells” (shown here for N subdomains), and particles (listed as “PX”) are stored in memory by which cell

contains them. For each simulation step, a set of threads, called “runners” (shown here for M runners) perform a pre-

defined set of tasks. The “Sort” task builds ordered lists of particle indices according to proximity to neighboring cells

for efficient pruning of inter-cell interactions between particle pairs outside of the cutoff distance. The “Force Self” task

calculates interactions between particles of the same cell. The “Force Pair” task calculates interactions between particles

of different cells using results from the Sort task. Task scheduling enforces task dependency. After all forces are

calculated, particle positions are updated and particles that move into a neighboring cell are appropriately moved in

memory, as demonstrated for particles P247 (from cell N to cell 1) and P233 (from cell 1 to cell 2).

https://doi.org/10.1371/journal.pcbi.1010768.g004

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 11 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g004
https://doi.org/10.1371/journal.pcbi.1010768


maximum performance for a given set of hardware, a particular simulation, and even a partic-

ular simulation state. For example, an event can periodically check whether implicit interac-

tions should be performed on the CPU or offloaded to an available GPU based on the number

of particles (Listing 5).

Listing 5. Selectively offloading computations to an available GPU when the number of

particles exceeds a threshold.

1 # Define an event that governs where computations

2 # for implicit interactions are performed

3 def maybe_to_gpu(e: tf.event.TimeEvent):

4 eng_cuda = tf.Simulator.cuda_config.engine

5 # If there are more than 1M particles ,

6 # then probably GPU acceleration

7 # would improve performance

8 if len(tf.Universe.particles) > 1E6:

9 # Only send to GPU if not already on GPU

10 if not eng_cuda.on_device ():

11 eng_cuda.set_threads (128)

12 eng_cuda.set_blocks (1024)

13 eng_cuda.to_device ()

14 else:

15 # Only bring back from GPU if already on GPU

16 if eng_cuda.on_device ():

17 eng_cuda.from_device ()

The Tissue Forge API provides expressive syntax for combining potentials and forces as

Fig 5. Tissue Forge performance metrics for windowless and real-time rendering modes. A: Computational cost

per time step per particle for varying number of particles, varying cutoff distance and varying architecture when

running windowless with fixed particle density and one implicit interaction. Computational cost generally increases

with increasing cutoff distance. On a CPU, computational cost is lowest near 10k particles and then begins to increase.

When offloading implicit interactions to a GPU, computational cost is generally less and tends towards a constant

value. B. Computational cost for varying number of potentials defining implicit interactions with 10M particles and a

cutoff of 5. Multiple potentials were implemented using potential arithmetic. Computational cost generally increases

linearly with increasing number of potentials. C. Representative cost of solver stages when executing simulations from

panel A with a cutoff of 5 in windowless (left) and real-time rendering (right) modes with implicit interactions

calculated on a CPU (top) and GPU (bottom). Windowless mode simulated 10M particles. Real-time rendering mode

simulated 10k particles. Size of bars for each mode represents relative cost of a simulation step. Bars are divided by

solver stages that are ordered by execution order, and the area of each represents the portion of the total cost that the

stage contributes. In both modes and architectures, force calculations make up the majority of the computational cost.

As demonstrated in A, computing performance on a GPU is more efficient with increasing number of particles

(Windowless), whereas computing performance on a CPU is more efficient for few particles (Real-time rendered).

https://doi.org/10.1371/journal.pcbi.1010768.g005

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 12 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g005
https://doi.org/10.1371/journal.pcbi.1010768


process objects that can be bound to model objects. When a potential or force is defined as the

sum of two potentials or forces, respectively, Tissue Forge creates a special summation process
object. A summation process object forwards requests for energy or force calculations to their

underlying constituent process objects and returns the sum of their results. For a potential

summation process object Uab defined as the sum of potentials Ua and Ub, Uab is expressed as

the form,

UabðrÞ ¼ UaðrÞ þ UbðrÞ: ð11Þ

Summation process objects handle constituent process objects that are also summation pro-

cess objects, as well as user-defined custom process objects (i.e., custom forces and potentials).

Energy and force calculations using summation process objects produce recursive requests for

calculations through calls to constituent process objects. Summation process objects do not

require special handling or storage by Tissue Forge. Hence, the computational cost of summa-

tion process objects is proportional to the cost of each constituent process object (Fig 5B).

Summation process objects also eliminate the need to provide built-in potentials and forces for

all possible combinations of individual process objects by allowing users to specify combina-

tions through simple addition operations (Listing 6).

Listing 6. Creating and binding a complex potential using Tissue Forge potential arithme-

tic.

1 # Define two potentials

2 pot_a = tf.Potential.harmonic(k=1, r0=1)

3 pot_b = tf.Potential.coulomb(q=1)

4 # Combine the two potentials to create a sum potential

5 pot_ab = pot_a + pot_b

6 # Bind the potential to a pair of types

7 tf.bind(pot_ab ptype1 , ptype2)

8 # Create another summation and bind to another pair of types

9 pot_c = tf.Potential.well(k=1, n=2, r0=1)

10 pot_abc = pot_ab + pot_c

11 tf.bind(pot_abc , ptype1 , ptype3)

Results

Beyond the provided catalogue of built-in potentials, potential arithmetic (e.g., a potential

object as the sum of two potential objects) and support for user-specified custom potentials,

Tissue Forge provides process objects for binding potential-based processes between specific

particles (i.e., a bonded interaction). Bonded interactions are a key component of MD model-

ing. Tissue Forge provides a number of bond-like processes to apply potentials for various

types of bonded interactions. Each bonded interaction has a representative object that contains

information about the bonded interaction (e.g., which particles, what potential) that Tissue

Forge uses to implement it during simulation. Currently, Tissue Forge provides the Bond for

two-particle bonded interactions (where the potential is a function of the Euclidean distance

between the particles, Fig 6, top left), the Angle for three-particle bonded interactions (where

the potential is a function of the angle between the vector from the second to first particles and

the vector from the second and third particles, Fig 6, top middle), and Dihedral (torsion

angle) for four-particle bonded interactions (where the potential depends on the angle between

the plane formed by the first, second and third particles and the plane formed by the second,

third and fourth particles, Fig 6, top right). Like particles, all bonded interactions can be cre-

ated and destroyed at any time during simulation, and bonded interactions can also be

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 13 / 22

https://doi.org/10.1371/journal.pcbi.1010768


assigned a dissociation energy so that the bond is automatically destroyed when the potential

energy of the bond exceeds its dissociation energy.

Tissue Forge supports combining aspects of object-oriented programming with primitive

Tissue Forge objects to define complex model objects for use in simulations. When modeling

the dynamics of biomolecules, each particle can represent an atom, the atomic properties of

which are defined through the Tissue Forge particle type. Definitions of particular biomole-

cules, such as nucleobases like thymine and adenine (Fig 6B) can then be designed using

generic Python (or other supported language) classes that construct an instance of a biomole-

cule by assembling Tissue Forge particles and bonded interactions according to experimental

data. Tissue Forge facilitates the construction and deployment of software infrastructure to

develop interactive simulations of biomolecular systems and processes (Fig 6C, see S4 File).

Particle-based methods are also useful for coarse-grained modeling of subcellular compo-

nents, where the atoms of individual biomolecules, biomolecular complexes, or even organ-

elles are omitted and instead represented by a single particle that incorporates the aggregate

behavior of its constituents (e.g., subcellular-element models). Tissue Forge supports coarse-

grained subcellular modeling at various resolutions from the molecular to cellular scales,

where a particle can represent a whole molecule, complex, or portion of an organelle or cyto-

plasm, to which coarse-grained properties (e.g., net charge or phosphorylation state) and pro-

cesses (e.g., pumping of a solute, metabolism of a small molecule) can be applied.

Fig 6. Molecular modeling and simulation with Tissue Forge. A: Classes of bonded interactions, where a measured property of the bond (length l for

Bonds, angle θ for Angles, and planar angle ϕ for Dihedrals) is used as input to a potential function. B: Detailed view of thymine (left) and adenine

(right) molecules constructed from Tissue Forge objects. Bonds shown as green cylinders, angles as blue arcs, and dihedrals as gold planes. C: Real-time

simulation of a cloud of thymine and adenine molecules interacting via long-range potentials in a neutral medium.

https://doi.org/10.1371/journal.pcbi.1010768.g006

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 14 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g006
https://doi.org/10.1371/journal.pcbi.1010768


For example, a particle can represent a portion of a lipid bilayer, in which case a sheet of

such particle with appropriate binding and periodic boundary conditions can represent a sec-

tion of a cell membrane. The Tissue Forge simulation domain can describe representative local

spatial dynamics of the cell interface with its surrounding environment. Tissue Forge supports

particle-based convection, providing a straightforward way to simulate a coarse-grained

model of active transport at the cell membrane. Tissue Forge provides additional transport

laws to model active pumping of species into or out of particles. To model transport at the cell

membrane, these transport laws support implementing coarse-grain models of membrane-

bound complexes like ion channels, which create discontinuities in concentrations of target

species across the cell membrane (Fig 7, see S5 File).

At the coarsest scale of target applications, Tissue Forge provides support for particle-based

modeling of multicellular dynamics. Tissue Forge provides a number of modeling features to

support multicellular modeling at resolutions at or near the multicellular scale, where a particle

can represent an individual cell, or a part of a cell. Overdamped dynamics describe the highly

viscous, fluid-like collective motion of particle-based model cells, where short-range, implicit

interactions can represent volume exclusion and contact-mediated intercellular interactions

(e.g., adhesion), long-range, implicit interactions can represent intercellular signaling via solu-

ble signaling, and particle state vectors can describe the intracellular state.

For example, particle-based model descriptions have been previously used to describe cells

as a set of particles (e.g., a Tissue Forge cluster, Fig 1B) when modeling the process of spheroid

fusion in tissue bioprinting, where cohesive cell shape is maintained by Lennard-Jones and

harmonic potentials between particles of the same cell, and intercellular adhesion occurs by a

Lennard-Jones potential between particles of different cells [12]. In a simpler model, represent-

ing each cell as a single particle and intercellular interactions with a single Morse potential can

Fig 7. Active pumping of a diffusive species across a deformable membrane separating two fluid-filled

compartments. A: Cut-plane views during simulation of two fluid-filled compartments separated by a deformable

membrane, where each fluid is uniformly initialized with an initial concentration of a species. Particle color indicates

species concentration with red as high, yellow and green as intermediate, and blue as low concentration. The

membrane contains a particle that actively pumps the species from the lower to the upper compartment. B: Three-

dimensional view of initial simulation state. C: Measurements of total species amounts in the lower (blue, circles),

upper (red, triangles) and both (green, diamonds) compartments (left-hand vertical axis), and in the channel

(magenta, squares, right-hand axis), during simulation.

https://doi.org/10.1371/journal.pcbi.1010768.g007

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 15 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g007
https://doi.org/10.1371/journal.pcbi.1010768


also produce emergent fusion of spheroids like those used in bioprinting of mineralized bone

(i.e., about 12.5k cells per spheroid, Fig 8) [14]. When coupled with modeling diffusive trans-

port and uptake like the scenario demonstrated in Fig 7, a Tissue Forge-based framework for

the simulation of nutrient availability during spheroid-dependent biofabrication could support

detailed modeling of spheroid viability in large tissue constructs [15].

Tissue Forge built-in features, APIs and the event system allow ad hoc construction of cus-

tom agent-based models (ABMs) of multicellular systems. The Tissue Forge event system

allows the user to inject any custom model rule or algorithm into a simulation as defined by a

user-specified function (or by several functions). When the function is called by the Tissue

Forge event system, the function has access to the entire Tissue Forge API and hence can per-

form operations on individual cells (e.g., differentiation, splitting, death) using global (e.g.,
time), local (e.g., nearby cells) and/or agent (e.g., subcellular model) information.

For example, particle-based methods (and others) have been shown to support modeling

cell proliferation, differentiation and migration in the intestinal crypt of intestinal epithelia

[16]. The intestinal crypt consists of well-organized cellular dynamics, where cells within the

crypt proliferate more rapidly compared to cells at the base of the crypt. A cellular dynamics

ABM can describe such organization by assigning state dynamics that represent the cell cycle

to each cell, where the cell cycle occurs only for cells located far enough within the crypt. In

such a model, the geometry of the colonic crypt can be simplified to a two-dimensional config-

uration (as if unfolding the crypt) and each cell can be in one of four phases (i.e., G1, S, G2, M)

of the cell cycle, advances through each phase after a phase-specific period expires, divides

after transitioning from the M phase to the G1 phase, and is removed upon reaching the base

of the crypt. The ABM can introduce additional biophysical complexity like drawing the

period of the G1 phase from a normal distribution for each cell or inhibiting advancement of

the cell cycle by contact inhibition. This ABM has been shown to produce a cellular population

that are all descendants of a single cell of the initial population over time by assigning a clone

identification to each cell of the initial population and copying that identification to all prog-

eny during cell division. Tissue Forge supports implementing this ABM with each cell repre-

sented as a particle and visualizing the clone identification of each cell by rendering each

cellular particle according to is clone identification (e.g., two cells with the same clone identifi-

cation are rendered with the same color, Fig 9, see S6 File).

The Tissue Forge architecture also allows users to combine the simulation capability of Tis-

sue Forge with other software packages that focus on different types of dynamical systems,

Fig 8. Simulating fusion of multicellular, homotypic spheroids. A: Spheroids of 12.5k cells each were individually

pre-assembled, as in typical bioprinting practice. B: Two spheroids (green and blue) placed in close proximity fuse over

time, as measured by the neck diameter along the y (blue circles) and z (red triangles) directions, which grows over

time. The neck diameter along a direction is measured as the largest distance along the direction between any two

particles at the mid-plane. Insets show the simulation at times 1, 50, 100, 150 and 200.

https://doi.org/10.1371/journal.pcbi.1010768.g008

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 16 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g008
https://doi.org/10.1371/journal.pcbi.1010768


such as libSBML [17] and libRoadRunner [18]. In the case of subcellular modeling coupled

with multicellular ABMs, the Tissue Forge and libRoadRunner Python APIs make instantiat-

ing and managing executable SBML models and coupling their dynamics with those of indi-

vidual cells straightforward (Listing 7).

Listing 7. Instantiating executable SBML models in libRoadRunner and associating them

with Tissue Forge cellular particles. Comments are shown in green.

1 # Get the Tissue Forge and libRoadRunner Python libraries

2 import tissue_forge as tf

3 from roadrunner import RoadRunner

4 # Create global storage of SBML models by cell id

5 cell_models = dict()

6 # Define a function that creates an executable SBML model

7 # from a given file path for a given cell , and

8 # update the cell's species value accordingly

9 def attach_sbml_model(sbml_file: str , cell: tf.ParticleHandle):

10 global cell_models

11 this_cell_model = RoadRunner(sbml_file)

12 cell_models[cell.id] = this_cell_model

13 cell.species.D.value = this_cell_model['D']

14 # Define an event that integrates all SBML models and

15 # updates associated cells

16 def integrate_sbml(t1: float , t2: float):

17 for pid , rr in cell_models.items():

18 rr.simulate(t1, t2)

19 cell = tf.ParticleHandle(pid)

20 cell.species.D.value = rr['D']

21 cell.radius = 10 / (1 + rr['D'])

Tissue Forge support for multicellular ABMs couples well with built-in features for flux trans-

port and application-specific models. For example, the provided species transport over particles

arranged in a regular grid can produce the same solution for diffusive transport as when solved

Fig 9. Two-dimensional agent-based model of cell proliferation and differential in the colonic crypt. A: Cells represented as particles are arranged

in a sheet as if fixed on an unfolded cylindrical surface, where the upper boundary is treated as the base of the crypt and periodic boundary conditions

are applied along the horizontal direction, as in [16]. Each cell is assigned a state dynamics model of the cell cycle and unique clonal identification

(visualized as a unique particle color). The cell cycle model of each cell progresses through G1, S, G2 and M phases with deterministic periods except for

G1, the period of which is randomly selected from a normal distribution for each cell. When the cell cycle model of a cell transitions from the M phase

to the G1 phase, the cell divides and copies its clonal identification to its progeny. Cells are removed when they reach the base of the crypt. B: Number of

clones during simulation time, measured as the mean of ten simulation replicates. Over time, the crypt tends toward monoclonality.

https://doi.org/10.1371/journal.pcbi.1010768.g009

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 17 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g009
https://doi.org/10.1371/journal.pcbi.1010768


using a discretized partial differential equation on a regular grid. In this case, the particles repre-

sent field measurements of local concentration, and those measurements can affect the processes

of nearby cells in an ABM. Note that in such cases, particles representing field measurements are

distinct from particles representing cells or cellular components (likely as different particle types),

and the interactions between particles representing field measurements and particles representing

cells or cellular components would almost certainly be chemical. Furthermore, as previously men-

tioned, Tissue Forge provides a dedicated space for developing user-custom and scale-specific fea-

tures. This space, which in the Tissue Forge source code is referred to as models, is populated at

the time of this writing with an implementation of a multicellular-level model of cell polarity that

produces common epithelial tissue morphologies [19]. These combined features make agent-

based, multiscale, multiphysics modeling of spatially heterogeneous tissues possible in Tissue

Forge. For example, Delta-Notch signaling is well known to produce spatial patterns of alternating

Delta or Notch expression, where cells expressing the Delta ligand perform contact-mediated lat-

eral inhibition of Delta expression in neighboring cells through activation of the Notch receptor

[20]. Delta-Notch signaling has been previously described by a simple system of ODEs [21],

which has been integrated as an embedded subcellular model in multicellular simulation using

CC3D [22] and CHASTE [16]. The same ODE model and contact-mediated intercellular interac-

tions can be implemented in Tissue Forge (Fig 10A) and coupled with diffusion of soluble signals

(Fig 10B) to simulate environmental activation of Delta-Notch signaling (Fig 10C, see S7 File).

Fig 10. Delta-Notch signaling in a cellular monolayer subject to environmental control via a soluble signal. A:

Lateral inhibition of Delta expression (cells with high Delta shown as red, cells with low Delta as blue) through contact-

mediated Delta-Notch signaling without environmental regulation produces patterns in monolayers. Initially (left)

Delta expression is approximately uniform but over time a pattern spontaneously emerges through contact-mediated

signaling (right). B: Diffusion of a regulatory signal that induces Delta-Notch signaling along a uniform grid of

particles representing point measurements of concentration. Initially (left) the cells are not exposed to the signal, but

over time (right) the signal diffuses from the top boundary. C: When Delta-Notch signaling depends on induction via

local concentration of the regulatory signal in B (not shown), pattern formation in the monolayer follows the

propagation of the diffusive signal across the monolayer.

https://doi.org/10.1371/journal.pcbi.1010768.g010

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 18 / 22

https://doi.org/10.1371/journal.pcbi.1010768.g010
https://doi.org/10.1371/journal.pcbi.1010768


Discussion

The Tissue Forge modeling and simulation framework allows users to interactively create, sim-

ulate and explore models at biologically relevant length scales. Accessible interactive simula-

tion is key to increasing scientific productivity in biomodeling, just as simulation

environments are fundamental to other fields of modern engineering. Tissue Forge supports

both interactive runs with real-time visualization for model development, and headless execu-

tion for data generation and integrated applications. In addition, Tissue Forge supports user-

specified model features (e.g., custom particle types, forces and potentials) and scheduled and

keyboard-driven simulation events, with intuitive user interfaces, in multiple programming

languages and frameworks, supporting beginner- to expert-level programmers and beginner-

to expert-level biomodelers. As demonstrated by our example of embedded ODE modeling,

Tissue Forge also supports integration with other software packages that specialize in other

types of models, methods, and applications.

Tissue Forge is open-source and freely available under the LGPL v3.0 license (https://

github.com/tissue-forge/tissue-forge). Pre-built binaries are available in C, C++ and Python

on 64-bit Windows, MacOS and Linux systems via conda (https://anaconda.org/tissue-forge/

tissue-forge). Online documentation provides information on project philosophy, installa-

tion, walk-throughs, examples (in Jupyter Notebooks, https://github.com/tissue-forge/tissue-

forge/tree/main/examples/py/notebooks) and API documentation for all supported lan-

guages. It has automated build updates to maintain synchronization between software ver-

sions and documented features (https://tissue-forge-documentation.readthedocs.io),

including details on features not described in this paper (e.g., species transport, boundary

conditions). Tissue Forge’s transparent development cycle, with automated continuous inte-

gration and continuous delivery, rapidly and reliably delivers the latest features to users

(https://dev.azure.com/Tissue-Forge/tissue-forge). Instructions for installing Tissue Forge are

available in S1 File.

Tissue Forge applies the abstraction of a particle to support modeling applications over a

wide range of scales, ranging from sub-nanometer to hundreds of micrometers and beyond. It

supports future development and integration of advanced numerical and computational meth-

ods for incorporating and/or generating biological information with increasingly greater

detail. Tissue Forge provides a designated space for development of application-specific mod-

els and methods by both the development team and user community, and so is free to grow

and evolve into other computational domains with significant relevance and impact to a num-

ber of scientific communities. To this end, we are preparing a followup manuscript that dem-

onstrates advanced modeling and simulation features, detailed model construction in specific

applications, and relevant features that are currently under development. Tissue Forge features

under development include improvements to core Tissue Forge simulation capability (e.g.,
multi-GPU support and libRoadRunner integration for network dynamics modeling), addi-

tional modeling features (e.g., new built-in potentials, forces and multicellular ABMs, support

for improper angles in MD modeling), enhanced user experience (e.g., a graphical event inter-

face), and additional modeling methodologies and solvers (e.g., vertex and subcellular element

models). Current work includes implementing general vertex model capability [23], which will

provide support for mixed particle- and mesh-based modeling methodologies necessary to

describe multicellular dynamics with explicit cell shapes [24]. Future work will also develop

supporting features that facilitate integration with other software packages, such as coupling

with advanced PDE solvers in Python (e.g., FiPy [25]) and C++ (e.g., FeNiCS [26], MFEM

[27]), visualizing with different rendering schemes (e.g., The Visualization Toolkit [13]), and

supporting compositional modeling (e.g., Vivarium [28]).

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 19 / 22

https://github.com/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge
https://anaconda.org/tissue-forge/tissue-forge
https://anaconda.org/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://tissue-forge-documentation.readthedocs.io
https://dev.azure.com/Tissue-Forge/tissue-forge
https://doi.org/10.1371/journal.pcbi.1010768


Supporting information

S1 File. Installation instructions. Instructions for installing pre-built Tissue Forge binaries.

(PDF)

S2 File. Oscillator example. Jupyter Notebook that simulates a simple oscillator with two par-

ticles.

(IPYNB)

S3 File. Benchmarks. Source code for benchmarks for variable cutoff distance, variable num-

ber of potentials, or algorithmic cost per simulation step.

(ZIP)

S4 File. DNA example. Python script that constructs adenine and thymine nucleobases on the

basis of individual atoms using Tissue Forge particles.

(PY)

S5 File. Membrane transport example. Jupyter Notebook that simulates a neighborhood at a

deformable membrane separating two fluids and active transport between them.

(IPYNB)

S6 File. Colonic crypt example. Jupyter Notebook that simulates a two-dimensional represen-

tation of cellular dynamics in the colonic crypt.

(IPYNB)

S7 File. Delta-Notch example. Jupyter Notebook that simulates Delta-Notch signaling in a

monolayer with interactive control of environmental regulation.

(IPYNB)

S8 File. Source code. Tissue Forge version 0.1.1 source code.

(ZIP)

Author Contributions

Conceptualization: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Data curation: T. J. Sego.

Formal analysis: T. J. Sego.

Funding acquisition: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Investigation: T. J. Sego.

Methodology: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Project administration: T. J. Sego, Herbert M. Sauro, James A. Glazier.

Resources: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Software: T. J. Sego.

Supervision: T. J. Sego, Herbert M. Sauro, James A. Glazier.

Validation: T. J. Sego.

Visualization: T. J. Sego.

Writing – original draft: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Writing – review & editing: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 20 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s008
https://doi.org/10.1371/journal.pcbi.1010768


References
1. Swat M., Thomas G., Belmonte J., Shirinifard A., Hmeljak D. & Glazier J. Multi-Scale Modeling of Tis-

sues Using CompuCell3D. Methods In Cell Biology. 110 pp. 325–366 (2012), https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3612985/ https://doi.org/10.1016/B978-0-12-388403-9.00013-8 PMID:

22482955

2. Starruß J., Back W., Brusch L. & Deutsch A. Morpheus: a user-friendly modeling environment for multi-

scale and multicellular systems biology. Bioinformatics. 30, 1331–1332 (2014,5)

3. Graner F. & Glazier J. Simulation of biological cell sorting using a two-dimensional extended Potts

model. Physical Review Letters. 69, 2013–2016 (1992,9), https://link.aps.org/doi/10.1103/

PhysRevLett.69.2013, Publisher: American Physical Society

4. Ghaffarizadeh A., Heiland R., Friedman S., Mumenthaler S. & Macklin P. PhysiCell: An open source

physics-based cell simulator for 3-D multicellular systems. PLOS Computational Biology. 14,

e1005991 (2018,2), https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991,

Publisher: Public Library of Science

5. Mirams G., Arthurs C., Bernabeu M., Bordas R., Cooper J., Corrias A., Davit Y., Dunn S., Fletcher A.,

Harvey D., Marsh M., Osborne J., Pathmanathan P., Pitt-Francis J., Southern J., Zemzemi N. & Gava-

ghan D. Chaste: An Open Source C++ Library for Computational Physiology and Biology. PLOS

Computational Biology. 9, e1002970 (2013,3), https://journals.plos.org/ploscompbiol/article?id=10.

1371/journal.pcbi.1002970, Publisher: Public Library of Science

6. Sandersius S. & Newman T. Modeling cell rheology with the Subcellular Element Model. Physical Biol-

ogy. 5, 015002 (2008,4), https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002

7. Fortuna I., Perrone G., Krug M., Susin E., Belmonte J., Thomas G., Glazier J. & Almeida R. Compu-

Cell3D Simulations Reproduce Mesenchymal Cell Migration on Flat Substrates. Biophysical Jour-

nal. 118, 2801–2815 (2020,6), https://www.sciencedirect.com/science/article/pii/

S0006349520303490

8. Thompson A., Aktulga H., Berger R., Bolintineanu D., Brown W., Crozier P., Veld P., Kohlmeyer A.,

Moore S., Nguyen T., Shan R., Stevens M., Tranchida J., Trott C. & Plimpton S. LAMMPS—a flexible

simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Com-

puter Physics Communications. 271 pp. 108171 (2022,2), https://www.sciencedirect.com/science/

article/pii/S0010465521002836

9. Anderson J., Glaser J. & Glotzer S. HOOMD-blue: A Python package for high-performance molecular

dynamics and hard particle Monte Carlo simulations. Computational Materials Science. 173 pp.

109363 (2020,2), https://www.sciencedirect.com/science/article/pii/S0927025619306627

10. Phillips J., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R., Kalé L.. &

Schulten K. Scalable molecular dynamics with NAMD. Journal Of Computational Chemistry. 26, 1781–

1802 (2005), https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289 https://doi.org/10.1002/jcc.

20289 PMID: 16222654

11. Hess B., Kutzner C., Spoel D. & Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Bal-

anced, and Scalable Molecular Simulation. Journal Of Chemical Theory And Computation. 4, 435–447

(2008,3), Publisher: American Chemical Society

12. Shafiee A., McCune M., Forgacs G. & Kosztin I. Post-deposition bioink self-assembly: a quantitative

study. Biofabrication. 7, 045005 (2015,11), Publisher: IOP Publishing

13. Schroeder W., Avila L. & Hoffman W. Visualizing with VTK: a tutorial. IEEE Computer Graphics

And Applications. 20, 20–27 (2000,9), Conference Name: IEEE Computer Graphics and

Applications

14. Sego T., Prideaux M., Sterner J., McCarthy B., Li P., Bonewald L., Ekser B., Tovar A. & Jeshua Smith

L. Computational fluid dynamic analysis of bioprinted self-supporting perfused tissue models. Biotech-

nology And Bioengineering. 117, 798–815 (2020), https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.

27238 https://doi.org/10.1002/bit.27238 PMID: 31788785

15. Sego T., Kasacheuski U., Hauersperger D., Tovar A. & Moldovan N. A heuristic computational model of

basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication. 9,

024104 (2017,6), Publisher: IOP Publishing

16. Osborne J., Fletcher A., Pitt-Francis J., Maini P. & Gavaghan D. Comparing individual-based

approaches to modelling the self-organization of multicellular tissues. PLOS Computational Biology.

13, e1005387 (2017,2), https://dx.plos.org/10.1371/journal.pcbi.1005387

17. Bornstein B., Keating S., Jouraku A. & Hucka M. LibSBML: an API Library for SBML. Bioinformatics.

24, 880–881 (2008,3), https://academic.oup.com/bioinformatics/article/24/6/880/194657

18. Somogyi E., Bouteiller J., Glazier J., König M., Medley J., Swat M. & Sauro H. libRoadRunner: a high

performance SBML simulation and analysis library. Bioinformatics. 31, 3315–3321 (2015,10)

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 21 / 22

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
http://www.ncbi.nlm.nih.gov/pubmed/22482955
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0927025619306627
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
http://www.ncbi.nlm.nih.gov/pubmed/16222654
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://doi.org/10.1002/bit.27238
http://www.ncbi.nlm.nih.gov/pubmed/31788785
https://dx.plos.org/10.1371/journal.pcbi.1005387
https://academic.oup.com/bioinformatics/article/24/6/880/194657
https://doi.org/10.1371/journal.pcbi.1010768


19. Nielsen B., Nissen S., Sneppen K., Mathiesen J. & Trusina A. Model to Link Cell Shape and Polarity

with Organogenesis. IScience. 23, 100830 (2020,2), https://www.sciencedirect.com/science/article/pii/

S2589004220300134

20. Bocci F., Onuchic J. & Jolly M. Understanding the Principles of Pattern Formation Driven by Notch Sig-

naling by Integrating Experiments and Theoretical Models. Frontiers In Physiology. 11 (2020), https://

www.frontiersin.org/articles/10.3389/fphys.2020.00929 https://doi.org/10.3389/fphys.2020.00929

PMID: 32848867

21. Collier J., Monk N., Maini P. & Lewis J. Pattern Formation by Lateral Inhibition with Feedback: a Mathe-

matical Model of Delta-Notch Intercellular Signalling. Journal Of Theoretical Biology. 183, 429–446

(1996,12), https://www.sciencedirect.com/science/article/pii/S0022519396902337

22. Chen K., Srinivasan T., Tung K., Belmonte J., Wang L., Murthy P., Choi J., Rakhilin N., King S., Varanko

A., Witherspoon M., Nishimura N., Glazier J., Lipkin S., Bu P. & Shen X. A Notch positive feedback in

the intestinal stem cell niche is essential for stem cell self-renewal. Molecular Systems Biology. 13, 927

(2017,4), https://onlinelibrary.wiley.com/doi/10.15252/msb.20167324

23. Sego T., Comlekoglu T., Peirce S., Desimone D. & Glazier J. General, Open-Source Vertex Modeling in

Biological Applications Using Tissue Forge. Research Square. pp. rs.3.rs-2886960 (2023,5)

24. Van Liedekerke P., Neitsch J., Johann T., Warmt E., Gonzàlez-Valverde I., Hoehme S., Grosser S.,

Kaes J. & Drasdo D. A quantitative high-resolution computational mechanics cell model for growing and

regenerating tissues. Biomechanics And Modeling In Mechanobiology. 19, 189–220 (2020,2), http://

link.springer.com/10.1007/s10237-019-01204-7

25. Guyer J., Wheeler D. & Warren J. FiPy: Partial Differential Equations with Python. Computing In Sci-

ence & Engineering. 11, 6–15 (2009,5), http://ieeexplore.ieee.org/document/4814978/

26. Scroggs M., Dokken J., Richardson C. & Wells G. Construction of Arbitrary Order Finite Element

Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes. ACM Transactions On Mathemat-

ical Software. 48, 1–23 (2022,6), https://dl.acm.org/doi/10.1145/3524456

27. Kolev, T & Dobrev, V Modular Finite Element Methods (MFEM). (Lawrence Livermore National Labora-

tory (LLNL), Livermore, CA (United States),2010), https://www.osti.gov/doecode/biblio/35738

28. Agmon E., Spangler R., Skalnik C., Poole W., Peirce S., Morrison J. & Covert M. Vivarium: an interface

and engine for integrative multiscale modeling in computational biology. Bioinformatics. 38, 1972–1979

(2022,3), https://academic.oup.com/bioinformatics/article/38/7/1972/6522109

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 22 / 22

https://www.sciencedirect.com/science/article/pii/S2589004220300134
https://www.sciencedirect.com/science/article/pii/S2589004220300134
https://www.frontiersin.org/articles/10.3389/fphys.2020.00929
https://www.frontiersin.org/articles/10.3389/fphys.2020.00929
https://doi.org/10.3389/fphys.2020.00929
http://www.ncbi.nlm.nih.gov/pubmed/32848867
https://www.sciencedirect.com/science/article/pii/S0022519396902337
https://onlinelibrary.wiley.com/doi/10.15252/msb.20167324
http://link.springer.com/10.1007/s10237-019-01204-7
http://link.springer.com/10.1007/s10237-019-01204-7
http://ieeexplore.ieee.org/document/4814978/
https://dl.acm.org/doi/10.1145/3524456
https://www.osti.gov/doecode/biblio/35738
https://academic.oup.com/bioinformatics/article/38/7/1972/6522109
https://doi.org/10.1371/journal.pcbi.1010768

