PLOS

Check for
updates

G OPEN ACCESS

Citation: Sego TJ, Sluka JP, Sauro HM, Glazier JA
(2023) Tissue Forge: Interactive biological and
biophysics simulation environment. PLoS Comput
Biol 19(10): €1010768. https://doi.org/10.1371/
journal.pchi.1010768

Editor: Melissa L. Kemp, Georgia Institute of
Technology and Emory University, UNITED
STATES

Received: November 28, 2022
Accepted: September 25, 2023
Published: October 23, 2023

Copyright: © 2023 Sego et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The code for this
project is available on GitHub (https:/github.com/
tissue-forge/tissue-forge). The code for all reported
benchmarks is available in S3 File. Simulation code
is available in the S2, S4, S5, S6 and S7 Files.

Funding: Funding for Tissue Forge is provided by
NIBIB U24 EB028887 (HMS, JAG, TJS, JPS). TJS
and JAG acknowledge funding from grants NSF
2120200, NSF 2000281, NSF 1720625, NIH R01
GM122424. JPS acknowledges additional funding
from the EPA STAR RD840027 and NSF 2054061.

RESEARCH ARTICLE
Tissue Forge: Interactive biological and
biophysics simulation environment

T.J. Sego®'*, James P. Sluka®?, Herbert M. Sauro®, James A. Glazier®?

1 Department of Medicine, University of Florida, Gainesville, Florida, United States of America, 2 Department
of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana,
United States of America, 3 Department of Bioengineering, University of Washington, Seattle, Washington,
United States of America

* timothy.sego @ medicine.ufl.edu

Abstract

Tissue Forge is an open-source interactive environment for particle-based physics, chemis-
try and biology modeling and simulation. Tissue Forge allows users to create, simulate and
explore models and virtual experiments based on soft condensed matter physics at multiple
scales, from the molecular to the multicellular, using a simple, consistent interface. While
Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and
tissue biophysics, it supports applications ranging from classic molecular dynamics to
agent-based multicellular systems with dynamic populations. Tissue Forge users can build
and interact with models and simulations in real-time and change simulation details during
execution, or execute simulations off-screen and/or remotely in high-performance comput-
ing environments. Tissue Forge provides a growing library of built-in model components
along with support for user-specified models during the development and application of cus-
tom, agent-based models. Tissue Forge includes an extensive Python API for model and
simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as
well as C and C++ APIs for integrated applications with other software tools. Tissue Forge
supports installations on 64-bit Windows, Linux and MacOS systems and is available for
local installation via conda.

Author summary

Tissue Forge is open-source software for particle-based modeling and simulation in phys-
ics, chemistry and biology problems. Tissue Forge users can build simulations using built-
in model components and user-defined models, and execute their simulations interac-
tively with real-time rendering or in high-performance computing environments. Simula-
tions can dynamically create, modify and destroy particles during simulation through
scripted or interactive commands, and can target a wide range of scales, from the molecu-
lar to the multicellular, using built-in features that support modeling atoms, molecules,
cells, and solid and fluid materials. Tissue Forge allows users to inject procedural code
into a simulation as user-specified functions, which supports custom simulation events
and complex agent-based models. Tissue Forge provides user interfaces in the C and C++

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023

1/22

https://orcid.org/0000-0002-4274-656X
https://orcid.org/0000-0002-5901-1404
https://orcid.org/0000-0003-3634-190X
https://doi.org/10.1371/journal.pcbi.1010768
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010768&domain=pdf&date_stamp=2023-11-02
https://doi.org/10.1371/journal.pcbi.1010768
https://doi.org/10.1371/journal.pcbi.1010768
http://creativecommons.org/licenses/by/4.0/
https://github.com/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

This research was supported in part by Lilly
Endowment, Inc., through its support for the
Indiana University Pervasive Technology Institute.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: No competing interests.

programming languages for building software applications, and in the Python program-
ming language with integrated support for interactive execution in IPython and Jupyter
Notebooks. Tissue Forge is publicly available, provides documentation on project philoso-
phy, core concepts, working examples, and all language interfaces, and is maintained and
distributed through an automated and transparent software development cycle.

Introduction

Computational modeling and simulation are key components of modern biological research.
Simulations codify knowledge into computable representations that can challenge and validate
our understanding of complex biological processes. A well defined model not only explains
currently available data but also predicts the outcomes of future experiments. Biological com-
puter simulations can address a wide range of length scales and employ numerous numerical
and simulation technologies. Scales include that of the atomic bond length to model small mol-
ecules, proteins and other biological macromolecules, the macromolecular scale to model pro-
tein aggregates, the subcellular and cellular scales to model cells and aggregates of cells, the
tissue scale to model long-range interaction between cell aggregates that give rise to organ-
level behaviors, the whole-body scale where organs interact, and the population scale where
individuals interact with each other and their environment. At various biological scales, mod-
els can represent biological objects as either discrete or as numerically aggregated populations,
and so different mathematical and computational approaches are used to simulate behaviors at
each scale. When spatiality is explicitly modeled, molecular dynamics (MD) simulations are
often used at the atomic and macromolecular scales and spatial agent-based models are used at
the higher scales. Often, discrete biological objects (molecules, cells, cell aggregates) are appro-
priately modeled as discrete objects at a particular scale, and then as numerically aggregated
populations at higher scales using continuous dynamics like ordinary differential equations
(ODEs) and partial differential equations (PDEs), which then describe the dynamics of a pop-
ulation of objects. For example, modeling at the multicellular scale can represent molecules of
a given chemical species as densities or amounts, and at the molecular level as discrete mole-
cules. While population models can have significant explanatory value, biology is intrinsically
spatial. Emergent biological properties and behaviors arise in part because of the spatial rela-
tionships of their components. Population models sacrifice this aspect of biological
organization.

In the subcellular, cellular and multicellular modeling domain, most spatiotemporal agent-
based biological simulation tools only support one cellular dynamics simulation methodology,
and focus on a particular problem domain with a particular length scale. For example, Compu-
Cell3D (CC3D) [1] and Morpheus [2] implement cell model objects using the Cellular Potts
model (CPM)/ Glazier-Graner-Hogeweg (GGH) formalism [3], and only support Eulerian,
lattice-based models, while others like PhysiCell [4] and CHASTE [5] support modeling cells
with Lagrangian, lattice-free, particle-based center models as simple, point-like cell particles.
Lattice-free, particle-based methods can be extended to include subcellular detail using the
Subcellular Element Model [6], which could support modeling the spatial complexity of cell
shape, cytoskeleton and extracellular matrix. Extending the CPM/GGH to include cellular
compartments [7] allows representation of subcellular components like the nucleus, critical
molecular species or regions with specific properties but does not support specific representa-
tion of macromolecular machinery. Typically, modelers who are interested in subcellular and
cellular detail must use and adapt general-purpose MD simulation tools like LAMMPS [8],

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 2/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

HOOMD-blue [9], NAMD [10] or GROMACS [11]. For example, Shafiee et al., customized
LAMMPS to model cells as clusters of particles to simulate spheroid fusion during spheroid-
dependent bioprinting [12].

Most MD simulation tools are designed to parse and execute models that are theoretically
well defined and MD simulation specifications and engines tend to be well optimized for
computational performance. Most assume a fixed numbers of objects within a model and do
not support runtime object creation, destruction or modification. Many do not support real-
time simulation visualization and user interactivity. In addition, extending these modeling
environments with custom modeling and simulation features requires software development
in C or C++ code. Results can be post-processed after execution, though this requires develop-
ing a pipeline of model development, simulation execution and data generation using a simu-
lation tool, and data visualization and analysis using different visualization tools (e.g., The
Visualization Toolkit [13]) or a general purpose programming language like Python, which
significantly increases user effort to produce useful results. To reduce user effort required to
produce publishable simulation results and analysis, some simulation tools provide real-time
simulation visualization and limited simulation interaction (e.g., CC3D and Morpheus). Cell
simulation tools with real-time visualization are often implemented as stand-alone programs,
rather than as portable libraries that support integration with other modeling environments.
This lack of software interoperability also complicates using simulation tools with other spe-
cialized software libraries (e.g., optimization tools) in advanced computational workflows for
solving difficult biological problems such as reverse-engineering model parameters, interro-
gation of mechanisms, or Bayesian modeling of populations.

This paper presents Tissue Forge, an open-source, real-time, modeling and simulation envi-
ronment for interactive biological and biophysics modeling applications over a broad range of
scales. Tissue Forge is designed to address many of the aforementioned issues and challenges.
Tissue Forge enables agent-based, spatiotemporal computational modeling at scales from the
molecular to the multicellular. It is designed for ease of use by modelers, research groups and
collaborative scientific communities with expertise ranging from entry- to advanced-level pro-
gramming proficiency. It supports all stages of model-supported research, from initial model
development and validation to large-scale virtual experiments. Here we describe the philoso-
phy, mathematical formalism and basic features of Tissue Forge. To demonstrate its usefulness
across multiple disciplines in the physical and life sciences, we also present representative
examples of advanced features at a variety of target scales.

Materials and methods

Tissue Forge seeks address some of the limitations of current modeling packages by providing
a spatiotemporal modeling and simulation environment that supports multiple lattice-free,
particle-based methods for agent-based modeling. It simplifies research by supporting repre-
sentation of a wide range of scales encountered in biophysics, chemistry and biological appli-
cations. Tissue Forge supports the development, testing and deployment of models in large-
scale, high-performance simulation, performed by users with a wide range of expertise and
coding proficiency in multiple programming languages.

Problem domain

Simulation of complex systems, particularly in biological problems, is difficult for a number of
reasons. Difficulties exist for both the domain knowledgeable modeler and the modeling tool
developer. Problems in cell biology and biophysics applications often require representations
of objects and processes at multiple scales, which resolve to spatiotemporal, agent-based

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 3/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

models with complex rules and decision making using embedded models of internal agent
state dynamics (e.g., chemical networks). Since such models are experimentally or empirically
determined and highly diverse, their implementation requires flexible, robust model and simu-
lation specification. Likewise, the spatial scale itself presents the challenge of choosing an
appropriate mathematical framework for creating model objects and processes (e.g., whether
to model a cell with complex shape or simply as a sphere). Often, the modeler must learn a
new software tool for each spatial scale they wish to model. In addition, the model features and
computational performance of a particular software tool can be limited by the underlying
mathematical framework, unpermissive or demanding object definitions, or the need for effi-
cient use of computing resources.

Tissue Forge addresses these issues by providing an agent-based, spatiotemporal modeling
and simulation framework built on a flexible, particle-based formalism. Particles, which are
the fundamental agents of any Tissue Forge simulation, are suitable basic objects in model
construction because they minimally constrain a model description. A Tissue Forge particle is
an instance of a categorical descriptor called a “particle type,” and is a discrete agent that has a
unique identity, occupies a position at each moment in time and has velocity and mass or
drag. Tissue Forge imposes no further restrictions on what physical or abstract object a particle
represents. This framework has the theoretical and computational flexibility to enable agent-
based, spatiotemporal computational models across a broad range of scales. An instance of a
particle could represent an atom, or a cell, or a multicellular aggregate. Tissue Forge accommo-
dates models with both pre- and user-defined particle behaviors and interactions, the creation
and deletion of particles at runtime, and consistent object modeling at multiple scales.

Interactive and Batch Execution. Tissue Forge supports the efficient development agent-
based models of complex systems. In general, the development of a computational model
involving multiple interacting agents requires iterative cycles of model development, execu-
tion, analysis, and refinement. During model exploration, refinement and validation, modelers
can benefit from a simulation environment that allow them to observe, interact with, and
refine a simulation as it executes (i.e., real-time simulation and visualization). However, com-
putationally intensive investigations of developed models (e.g., characterizing emergent mech-
anisms or the effects of system stochasticity, systems with large numbers of objects) require
efficient high-performance computing utilization and batch execution. Tissue Forge supports
both interactive and batch operation, providing both rapid and intuitive model development
and high-performance simulation execution, so that modelers do not need to find and learn
multiple software tools or settle for a tool that is either, but not both, feature rich or computa-
tionally efficient. Its interactive simulation mode is a stand-alone application with real-time
visualization and user-specified events. Its batch mode leverages available resources in high-
performance computing environments such as computing clusters, supercomputers, and
cloud-based computing, and exports simulation data and high-resolution images. In batch
mode, Tissue Forge can be included in workflows to carry out modeling task such as model fit-
ting or simulation of replicates and populations.

Open Science Support. Development and dissemination of models that leverage interdis-
ciplinary knowledge and previous modeling projects require robust support for scientific com-
munication, collaboration, training and reuse. Tissue Forge provides a declarative model
specification for many basic aspects of particle-based models and simulations (e.g., particle
type definitions, particle interactions and stochastic motion via generalized force and potential
definitions) with robust support for procedural specification of complex, agent-based models
particular to specific applications. Tissue Forge also supports model sharing and collaborative
development by providing built-in support for exporting and importing simulations and
model object states to and from human-readable string data (using JSON format). In support

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 4/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

of collaborative, community-driven and application-specific development of models, the Tis-
sue Forge code base provides a designated space in which developers can implement features
in customized Tissue Forge builds. Extending the Tissue Forge API with custom interfaces
requires minimal effort in all supported software languages. Developers are also welcome to
submit their custom features to the public Tissue Forge code repository for future public
release as built-in features, or to design their software applications using Tissue Forge as an
external software library. Along with executing scripted simulations specified in C, C++ and
Python programming languages, Tissue Forge also supports collaboration, training and scien-
tific communication through its Python API support for interactive simulations in Jupyter
Notebooks. Tissue Forge simplifies robust model construction and simulation development
through expressive model specification (e.g., process arithmetic), a flexible event system for
implementing model-specific rules (e.g., agent rules) and simulation-specific runtime routines
(e.g, importing and exporting data), and a simple, intuitive simulation control interface (e.g.,
switching between interactive and off-screen execution).

Concepts

Tissue Forge updates the trajectory of a particle in time by calculating the net force acting on
the particle. Forces determine the trajectory of a particle according to the dynamics of the par-
ticle type. Tissue Forge currently supports Newtonian and Langevin (overdamped) dynamics,
which can be individually specified for each particle type of a simulation.

For Newtonian dynamics, the position r; of the ith particle is updated according to its accel-
eration, which is proportional to its mass m; and the total force f; exerted on it,

d’r,
fi=m ?21) (1)

and for Langevin (overdamped) dynamics, m; is the drag coefficient and the particle velocity is
proportional to the total force,

dr,
. =m —. 2
fl ml dt ()

Tissue Forge supports three broad classes of force-generating interaction,

£= Y (B 4+ By) + F7 3)
j#i
Fj;”f” is the force due to implicit interactions between the ith and jth particles, Fib].”"d is the
force due to bonded interactions between the ith and jth particles, and F*' is the explicit force
acting on the ith particle. Implicit interactions result automatically from interaction potentials
between pairs of particles of given types. Bonded interactions act between specific pairs of indi-
vidual particles (Fig 1A). Explicit forces act on particles through explicitly-defined force
descriptions and do not necessarily represent inter-particle interactions (e.g., gravity, internal
noise, system thermal equilibrium). Tissue Forge provides built-in force- and potential-based
definitions, supports user-specified definitions for both, and permits applying an unlimited
number of executable Tissue Forge force and potential objects to individual particles and parti-
cle types.
Implicit interactions are defined in Tissue Forge using potential functions and applied

according to the types of two interacting particles. The force between the ith and jth interacting
particles resulting from their implicit interactions is calculated as the sum of each kth potential

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 5/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

c il]
[] . i '““f‘.“) ‘ °
i 7*‘ .

Fig 1. Examples of Tissue Forge modeling features. A: Five superimposed snapshots of a double pendulum
implemented in Tissue Forge. Bonded interactions (represented as green cylinders) explicitly describe the interaction
between a particular pair of particles, while a constant force acts on the blue particles in the downward direction. The
red particle is fixed. B: Four Tissue Forge clusters representing biological cells, each consisting of ten particles whose
color demonstrates cluster membership. Potentials describe particle interactions by whether they are in the same
cluster (i.e., intracellular) or different clusters i.e., intercellular. C: Tissue Forge simulation of chemical flux during fluid
droplet collision. Each particle represents a portion of fluid that carries an amount of a diffusive chemical, the amount
of which varies from zero (blue) to one (red). When two droplets carrying different initial chemical amounts collide,
resulting droplets tend towards homogeneous chemical distributions.

https://doi.org/10.1371/journal.pcbi.1010768.g001

U that defines the implicit interaction,
. 9 .
impl impl
B = — =S U (4)
Tk

Bonded interactions are defined in Tissue Forge using potential functions and are applied
according to the identities of two interacting particles. The force between the ith and jth inter-
acting particles resulting from their bonded interactions is calculated as the sum of each kth
potential Ug,f”d that defines the bonded interaction,

0
bond bond
" =—5, Ek Ui (5)

Explicit forces can be defined on the basis of particle type or on individual particles. The
force on the ith particles resulting from external forces is calculated as the sum of each kth

.. expl
explicit force F;",

expl expl
F7 = Zk:Fik : (6)

Since Tissue Forge enables the implementation and execution of models at different length
scales, particles in a simulation may represents objects with a wide variety of possible behav-
iors. A particle could be atomic and subject to energy-conserving, implicit interactions (e.g.,
Coulomb, Morse or Lennard-Jones potentials) as in classic MD. Particles can also represent
portions of material that constitute larger objects (e.g., a portion of cytoplasm) and can carry
quantities of materials within them (e.g., convection of a solute chemical in a portion of a fluid,
Fig 1C). Tissue Forge provides built-in features to enable particle-based modeling and simula-
tion of fluid flow based on transport dissipative particle dynamics (tDPD) and smooth particle
hydrodynamics, including a predefined tDPD potential U;”" that can be applied when

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 6/22

https://doi.org/10.1371/journal.pcbi.1010768.g001
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

describing the interactions of a simulation,

8 FDPD

ij _ xrC D R
5 =F; + F, + F, (7)

i

where the interaction between the ith and jth fluid-like particles is a sum of a conservative
force Fg, a dissipative force F? and a random force FS acting on the ith particle.

To support treating particles as constituents of larger objects, Tissue Forge provides a spe-
cial type of particle, a cluster, whose elements can consist of constituent particles or other clus-
ters. Clusters provide a convenient way to define implicit interactions that only occur between
particles within the same cluster (e.g., intracellular interactions), called bound interactions, and
those that only occur between particles from different clusters (e.g., intercellular interactions),
called unbound interactions (Fig 1B).

To allow particles to carry embedded quantities, Tissue Forge supports attaching to each
particle a vector of states that can evolve during a simulation. The values of the states can
evolve according to laws defined between pairs of particle types for inter-particle transport
(e.g., diffusion), which Tissue Forge automatically applies during simulation, or according to
local, intra-particle reactions. The time evolution of a state vector C; attached to the ith particle
is,

dc,
' =Q=>q;+Q), (8)

J#i

where the rate of change of the state vector attached to the ith particle is equal to the sum of
the transport fluxes Q; between the ith and each nearby jth particle and the local reactions Q.
Among other models related to secretion and uptake, Tissue Forge provides a built-in trans-
port flux model for Fickian diffusion. For the ith and jth particles with flux constant k;; sepa-
rated by distance r;;, the Fickian diffusion flux Q; Aiff

Ci iS,

describing the rate of transport for species

2
T toff
kij(Cj - Ci) (1 o r‘_”“]”ﬁ’> T < r}_fj“"

u

Tdiff _
Q" =

©)

0 r.>r

Here rfj“mff is the cutoff distance of the flux. A flux can be applied by species and pair of par-
ticle types, and each flux definition can prescribe its own cutoff distance and model parameter
(s) (e.g., flux constant). Note that, when particles are arranged in a regular grid, particle-based
diffusion performs the same computations as those from solving the diffusion equation using
the finite difference method with first-order central difference discretization of space. In such
cases, the flux constant k;; can be written in terms of a diffusion coefficient D,

D
ky=———s.
72 (1 — L) (10)
ij rz.umj:f

y

Tissue Forge also supports integrating species transport in sub-intervals of time for a simu-
lation step to handle numerical instabilities associated with fast diffusion, as available in CC3D
and PhysiCell.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 7122

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Basic features

Tissue Forge supports model and simulation specification using classes, objects and functions
typical to object-oriented concepts in C, C++ and Python programming languages. In Python,
custom Tissue Forge particle types can be defined by creating Python classes and specifying
class attributes (Listing 1).

Listing 1. Importing the Tissue Forge library and declaring a particle type in Python. Com-
ments are shown in green.

1|# Get the Tissue Forge Python library
2| import tissue_forge as tf
3| # Specify a particle type with a particular radius
class OscType(tf.ParticleTypeSpec):
radius = 0.5

Tissue Forge allows specification of particle types without an initialized Tissue Forge run-
time. However, initializing the Tissue Forge runtime, which in Python only requires a call to a
single module-level function, permits retrieving template executable particle types that can be
used to create particles (Listing 2). When a particle of a particular particle type is created, the
particle inherits all attributes of its type (e.g., mass), which can in turn be modified for the par-
ticular particle at any time during simulation. Initializing the Tissue Forge runtime requires
no user-specified information, in which case a default configuration is provided, but explicit
initialization provides a number of customization options to tailor a simulation to a particular
problem (e.g., domain size, interaction cutoff distance).

Listing 2. Initializing a Tissue Forge simulation, retrieving an executable particle type and
creating particles in Python.

1|# Initialize with a 10x10x10 domain and cutoff distance of 3
2| tf.init (dim=[10, 10, 10], cutoff=3)

3| # Get the oscillator type and create two particles

1| osc_type = OscType.get() # a particle type

5| osc_partl = osc_type([4, 5, 5]) # particle 1: x,y,z coords

6| osc_part2 = osc_type([6, 5, 5]1) # particle 2: x,y,z coords

7| # Change the radius of one of the particles

sl osc_part2.radius = 0.25

Users specify and apply interactions, whether using built-in or custom potential functions
or explicit forces, by creating Tissue Forge objects that represent processes (e.g., a force object),
called process objects, and applying them categorically by predefined ways that processes can
act on objects (e.g., by type pairs for implicit interactions). Tissue Forge calls applying a process
to model objects binding, which Tissue Forge applies automatically during simulation execu-
tion according to the model objects and process. For example, users can specify an implicit
interaction between particles to two types by creating a potential object and binding it to the
two particle types (Listing 3).

Listing 3. Creating a Tissue Forge potential and binding it to particles by type in Python.

1|# Create a harmonic potential object

2| pot = tf.Potential.harmonic(k=1, r0=1.5)
3|# Bind the harmonic potential to pairs of
1| # particles of the oscillator type
5/tf.bind.types (pot, osc_type, osc_type)

Tissue Forge provides fine-grained simulation control, where each integration step can be
explicitly executed, with other user-defined tasks accomplished between executing simulation
steps (e.g., exporting simulation data). For interactive execution, Tissue Forge simulations are

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 8/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

(AT SV R C R

© o N o

usually executed using a basic run function, which executes an event loop that (1) integrates
the universe, (2) processes user input (e.g., keyboard commands), (3) updates simulation visu-
alization, and (4) executes an event system with user-defined events. The Tissue Forge event
system allows users to insert instructions into the event loop via user-defined functions (List-
ing 4). Events can be executed at arbitrary frequencies, can automatically retrieve simulation
data (e.g., a randomly selected particle of a specific type), and can change qualities of individual
particles (e.g., change the radius of a particular particle based on its environment).

Listing 4. Creating a Tissue Forge event and running an interactive simulation in Python.

Define an event that prints the time and particle x-coordinate
def my_event(e: tf.event.TimeEvent):

print (’Time:’, tf.Universe.time)
print (’pl x position:’, osc_partl.position.x())
print (’p2 x position:’, osc_part2.position.x())

Register the event for execution at every simulation step
tf.event.on_time (period=tf.Universe.dt, invoke_method=my_event)
Run the simulation

tf.run()

During simulation execution, including during execution of user-defined events, Tissue
Forge objects are available for accessing and manipulating simulation, universe and system
information. The Python code described in this section generates the Tissue Forge simulation
depicted in Fig 2 (see S2 File), and also prints the current simulation time and x-coordinate of

Fig 2. Tissue Forge simulation of a simple oscillator with two particles interacting via a harmonic potential.
Tissue Forge helps to orient the user by drawing a yellow box around the simulation domain, a white grid along the xy
plane at the center of the domain, and an orientation glyph at the bottom right to demonstrate the axes of the
simulation domain with reference to the camera view, where red points in the x direction, green in the y direction and
blue in the z direction.

https://doi.org/10.1371/journal.pcbi.1010768.g002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 9/22

https://doi.org/10.1371/journal.pcbi.1010768.g002
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Basic Python scripting | Inter;ﬁgi::}fﬁer

Fig 3. Tissue Forge Python deployment examples. Sample use of the Python API to specify an interactive simulation
of convection of a species near a species sink in a Python script (left) and in an interactive Jupyter Notebook (right).

https://doi.org/10.1371/journal.pchi.1010768.9003

both particles at every simulation step. This simulation can be executed as a Python script or
in an IPython console.

In a Jupyter Notebook, this code executes the same simulation but generates an additional
user interface, which provides widgets for interactive simulation controls, e.g., for pausing and
resuming the simulation, and choosing predefined camera views (Fig 3). When running Tissue
Forge from a Python script or IPython console, the interface supports mouse control (e.g.,
click and drag to rotate) and predefined and user-defined keyboard commands (e.g., space bar
to pause or resume the simulation). In interactive contexts like IPython and Jupyter Note-
books, the Tissue Forge event loop recognizes user commands issued ad hoc during simula-
tion, allowing on-the-fly modification of the simulation state, which is especially useful during
model development and interrogation (e.g., when testing the effects of the timing of an event).

Implementation details

Tissue Forge treats space as a regular grid of connected subdomains, called cells. Data for each
particle (e.g., particle position and velocity) is stored in contiguous memory by the cell that
contains the particle, which localizes inter-particle interactions in memory and establishes
strong task parallelism by cell. As such, when the position of a particle changes from one cell to
another, the data of the particle is also moved to the storage of the other cell (Fig 4). For each
simulation step, Tissue Forge performs three stages of procedures to update the simulation
state. In the first stage, called Prep, cached data from previous steps (e.g., total force on a parti-
cle, total system energy) are reset. In the second stage, called Force, forces on particles and
fluxes between them are calculated. In the third stage, called Update, particle states are
updated, total system energy is calculated, and all registered events are executed.

Task-based parallelism is applied during the Force stage, where three types of tasks are per-
formed for each cell. The first task, called Sort, builds ordered lists of particle indices according
to proximity to neighboring cells. The Sort task is accomplished once for each cell. The second
task, called Force Pair, calculates the interactions of particles in one cell with the particles of
another cell. The Force Pair task is accomplished once for each pair of cells with interacting
particles. The Force Pair task is not performed for a pair of cells until the Sort task has been
performed for both cells. The third task, called Force Self, calculates the interactions of particles
in the same cell. The Force Self task is accomplished once for each cell. Tasks are assembled
into a queue and dedicated threads, called Runners, pull available tasks from the queue and
perform them as they become available. Various routines in other stages, such as rendering,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 10/22

https://doi.org/10.1371/journal.pcbi.1010768.g003
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Force Update
Cell 1 Tasks Cell 1
P110 | —~Sort: Cell 1 P110
P233 Sort: Cell 2 Runner1 | 5,7
Sort:

Sort: Cell N CellN
Cell 2 |l Force Self: Cell 1 Runner2 | Cell2
P621 Force Self: Cell 2 Force Pair: P621
Po67 Cell 1— Cell 2 | P967
Force Self: Cell N P233
= Force Pair: Cell 1 —Cell 2 Runner M
CellN Force Self:
P247 = Force Pair: Cell 1 - Cell N Cell N CellN
P191 P191

Force Pair: Cell N-1 — Cell N

Fig 4. Conceptual diagram of space discretization and task-based parallelism. Space is discretized into subdomains
called “cells” (shown here for N subdomains), and particles (listed as “PX”) are stored in memory by which cell
contains them. For each simulation step, a set of threads, called “runners” (shown here for M runners) perform a pre-
defined set of tasks. The “Sort” task builds ordered lists of particle indices according to proximity to neighboring cells
for efficient pruning of inter-cell interactions between particle pairs outside of the cutoff distance. The “Force Self” task
calculates interactions between particles of the same cell. The “Force Pair” task calculates interactions between particles
of different cells using results from the Sort task. Task scheduling enforces task dependency. After all forces are
calculated, particle positions are updated and particles that move into a neighboring cell are appropriately moved in
memory, as demonstrated for particles P247 (from cell N to cell 1) and P233 (from cell 1 to cell 2).

https://doi.org/10.1371/journal.pchi.1010768.9004

data resetting and particle state updating, are trivially parallelized by maintaining an array of
pointers to particle data memory. Particle trajectories and state vectors are updated using
explicit first-order forward time integration. Architectural features provide support for imple-
menting additional time integration schemes and real-time numerical stability analysis in
future development.

While computational cost significantly varies based on simulation details like cutoff dis-
tance and number of particles (increasing values of which increases cost), the computational
cost of a Tissue Forge simulation scales well with increasing particle number (Fig 5A). The
Force stage contributes the most computational cost of a simulation step for simulations that
include implicit inter-particle interactions (Fig 5C). As such, Tissue Forge supports offloading
implicit interactions to available GPUs, both when running windowless and rendering in real
time. Performance improvements from GPU acceleration also significantly vary due to both
simulation details and computing hardware. For example, we tested simulating an implicit
interaction for varying particle number but constant particle density (i.e., with proportional
increase in size of the simulation domain), varying cutoff distance and varying computing
architecture (Intel i9-12900H CPU with and without acceleration on a NVIDIA A2000 GPU).
We found that the computational cost per particle of simulation executed only on a CPU
began to increase for particle numbers above 1M, while the cost remained approximately the
same when using GPU acceleration. We also found that, in this upper range of particle number
and all tested cutoff distances, GPU acceleration produced a speedup of around two. Source
code for all benchmarks is available in S3 File.

Tissue Forge supports runtime-configurable GPU acceleration of a simulation. GPU accel-
eration can be configured, enabled, disabled and reconfigured at any time during a simulation.
This modular, configurable approach allows fine-grain control of computations to achieve

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 11/22

https://doi.org/10.1371/journal.pcbi.1010768.g004
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

=Y SO U CE

© 0 =

11
12
13
14
15

16

Cutoff = 4.0
= = = Cutoff=5.0
2.5 15
A T [TTTM enenenen Cutoff = 6.0 B T —e—CPU —8—A2000 - 2048x128
52208 —e— CPU 52
o5 —— A2000-2048x64 o5
2215 ag
L a L a
&2 oo00 Ho10
=0 1.0 g\ T
83 - 83
o 0 [
EB EB
FE£o00 FE£o5
& 1.E+04 1.E+05 1E+06 1.E+07 £ 1 2 3 4
Number of Particles Number of Potentials
C Windowless Real-time rendered

Render: 1.6%
Prep: 0.84% Update: 1.5%

CPU

A2000

Prep: 0.76%
Update: 1.5%

Prep: 1.9% Update: 2.8%

Render: 1.9%

Fig 5. Tissue Forge performance metrics for windowless and real-time rendering modes. A: Computational cost
per time step per particle for varying number of particles, varying cutoff distance and varying architecture when
running windowless with fixed particle density and one implicit interaction. Computational cost generally increases
with increasing cutoff distance. On a CPU, computational cost is lowest near 10k particles and then begins to increase.
When offloading implicit interactions to a GPU, computational cost is generally less and tends towards a constant
value. B. Computational cost for varying number of potentials defining implicit interactions with 10M particles and a
cutoff of 5. Multiple potentials were implemented using potential arithmetic. Computational cost generally increases
linearly with increasing number of potentials. C. Representative cost of solver stages when executing simulations from
panel A with a cutoff of 5 in windowless (left) and real-time rendering (right) modes with implicit interactions
calculated on a CPU (top) and GPU (bottom). Windowless mode simulated 10M particles. Real-time rendering mode
simulated 10k particles. Size of bars for each mode represents relative cost of a simulation step. Bars are divided by
solver stages that are ordered by execution order, and the area of each represents the portion of the total cost that the
stage contributes. In both modes and architectures, force calculations make up the majority of the computational cost.
As demonstrated in A, computing performance on a GPU is more efficient with increasing number of particles
(Windowless), whereas computing performance on a CPU is more efficient for few particles (Real-time rendered).

https://doi.org/10.1371/journal.pcbi.1010768.9005

maximum performance for a given set of hardware, a particular simulation, and even a partic-
ular simulation state. For example, an event can periodically check whether implicit interac-
tions should be performed on the CPU or offloaded to an available GPU based on the number
of particles (Listing 5).

Listing 5. Selectively offloading computations to an available GPU when the number of
particles exceeds a threshold.

Define an event that governs where computations
for implicit interactions are performed
def maybe_to_gpu(e: tf.event.TimeEvent):
eng_cuda = tf.Simulator.cuda_config.engine
If there are more than 1M particles,
then probably GPU acceleration
would improve performance
if len(tf.Universe.particles) > 1E6:
Only send to GPU if not already on GPU
if not eng_cuda.on_device():
eng_cuda.set_threads (128)
eng_cuda.set_blocks (1024)
eng_cuda.to_device ()
else:
Only bring back from GPU if already on GPU
if eng_cuda.on_device():
eng_cuda.from_device ()

The Tissue Forge API provides expressive syntax for combining potentials and forces as

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 12/22

https://doi.org/10.1371/journal.pcbi.1010768.g005
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

process objects that can be bound to model objects. When a potential or force is defined as the
sum of two potentials or forces, respectively, Tissue Forge creates a special summation process
object. A summation process object forwards requests for energy or force calculations to their
underlying constituent process objects and returns the sum of their results. For a potential
summation process object U* defined as the sum of potentials U* and U?, U*" is expressed as
the form,

U%(r) = U*(r) + U(r). (11)

Summation process objects handle constituent process objects that are also summation pro-
cess objects, as well as user-defined custom process objects (i.e., custom forces and potentials).
Energy and force calculations using summation process objects produce recursive requests for
calculations through calls to constituent process objects. Summation process objects do not
require special handling or storage by Tissue Forge. Hence, the computational cost of summa-
tion process objects is proportional to the cost of each constituent process object (Fig 5B).
Summation process objects also eliminate the need to provide built-in potentials and forces for
all possible combinations of individual process objects by allowing users to specify combina-
tions through simple addition operations (Listing 6).

Listing 6. Creating and binding a complex potential using Tissue Forge potential arithme-
tic.

Define two potentials

pot_a = tf.Potential.harmonic(k=1, r0=1)

pot_b = tf.Potential.coulomb(q=1)

Combine the two potentials to create a sum potential
pot_ab = pot_a + pot_b

Bind the potential to a pair of types

tf.bind (pot_ab ptypel, ptype2)

Create another summation and bind to another pair of types
pot_c = tf.Potential.well(k=1, n=2, r0=1)

pot_abc = pot_ab + pot_c

tf.bind(pot_abc, ptypel, ptype3)

Results

Beyond the provided catalogue of built-in potentials, potential arithmetic (e.g., a potential
object as the sum of two potential objects) and support for user-specified custom potentials,
Tissue Forge provides process objects for binding potential-based processes between specific
particles (i.e., a bonded interaction). Bonded interactions are a key component of MD model-
ing. Tissue Forge provides a number of bond-like processes to apply potentials for various
types of bonded interactions. Each bonded interaction has a representative object that contains
information about the bonded interaction (e.g., which particles, what potential) that Tissue
Forge uses to implement it during simulation. Currently, Tissue Forge provides the Bond for
two-particle bonded interactions (where the potential is a function of the Euclidean distance
between the particles, Fig 6, top left), the Angle for three-particle bonded interactions (where
the potential is a function of the angle between the vector from the second to first particles and
the vector from the second and third particles, Fig 6, top middle), and Dihedral (torsion
angle) for four-particle bonded interactions (where the potential depends on the angle between
the plane formed by the first, second and third particles and the plane formed by the second,
third and fourth particles, Fig 6, top right). Like particles, all bonded interactions can be cre-
ated and destroyed at any time during simulation, and bonded interactions can also be

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 13/22

https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

A

Dihedral

- =, # g
o R s 1 \ h
o1 7 L =~ f
¥y - ¥ b o~
& ¥ oy
- SNl ‘g' \
\)
" P~ %4‘?"%’
PN ¢ .y)
'4{; ¥ x . X
['Q/‘ X% ¢ \ w‘
. ¥y o oy :
, v =
Ayl o 2 TR
. - -« \
PR AT t& ot
Se N IRl i
e~ ' i e, 4
" Q; 1 ~ o N A"b -
/7 " UM S N
‘e .
L ¥ b L4 »
R > 4 st
1 T P o Y
N A O =~)
s B W Gy @
~ B‘ﬁ‘ » I -
)
» y P \ L S
; Yttt S E i
— / PRy e % L o ’y LT
. x A\ - ¢
e 1]
/ > L L A W
; '~ : > T | T ! Y &
J | h H i P Aom ™ 4 .
SEE Thymine A L= R LR SR
d ’ o 2l - \ o

Fig 6. Molecular modeling and simulation with Tissue Forge. A: Classes of bonded interactions, where a measured property of the bond (length [for
Bonds, angle 0 for Angles, and planar angle ¢ for Dihedrals) is used as input to a potential function. B: Detailed view of thymine (left) and adenine
(right) molecules constructed from Tissue Forge objects. Bonds shown as green cylinders, angles as blue arcs, and dihedrals as gold planes. C: Real-time
simulation of a cloud of thymine and adenine molecules interacting via long-range potentials in a neutral medium.

https://doi.org/10.1371/journal.pchi.1010768.9006

assigned a dissociation energy so that the bond is automatically destroyed when the potential
energy of the bond exceeds its dissociation energy.

Tissue Forge supports combining aspects of object-oriented programming with primitive
Tissue Forge objects to define complex model objects for use in simulations. When modeling
the dynamics of biomolecules, each particle can represent an atom, the atomic properties of
which are defined through the Tissue Forge particle type. Definitions of particular biomole-
cules, such as nucleobases like thymine and adenine (Fig 6B) can then be designed using
generic Python (or other supported language) classes that construct an instance of a biomole-
cule by assembling Tissue Forge particles and bonded interactions according to experimental
data. Tissue Forge facilitates the construction and deployment of software infrastructure to
develop interactive simulations of biomolecular systems and processes (Fig 6C, see $4 File).

Particle-based methods are also useful for coarse-grained modeling of subcellular compo-
nents, where the atoms of individual biomolecules, biomolecular complexes, or even organ-
elles are omitted and instead represented by a single particle that incorporates the aggregate
behavior of its constituents (e.g., subcellular-element models). Tissue Forge supports coarse-
grained subcellular modeling at various resolutions from the molecular to cellular scales,
where a particle can represent a whole molecule, complex, or portion of an organelle or cyto-
plasm, to which coarse-grained properties (e.g., net charge or phosphorylation state) and pro-
cesses (e.g., pumping of a solute, metabolism of a small molecule) can be applied.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 14/22

https://doi.org/10.1371/journal.pcbi.1010768.g006
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

For example, a particle can represent a portion of a lipid bilayer, in which case a sheet of
such particle with appropriate binding and periodic boundary conditions can represent a sec-
tion of a cell membrane. The Tissue Forge simulation domain can describe representative local
spatial dynamics of the cell interface with its surrounding environment. Tissue Forge supports
particle-based convection, providing a straightforward way to simulate a coarse-grained
model of active transport at the cell membrane. Tissue Forge provides additional transport
laws to model active pumping of species into or out of particles. To model transport at the cell
membrane, these transport laws support implementing coarse-grain models of membrane-
bound complexes like ion channels, which create discontinuities in concentrations of target
species across the cell membrane (Fig 7, see S5 File).

At the coarsest scale of target applications, Tissue Forge provides support for particle-based
modeling of multicellular dynamics. Tissue Forge provides a number of modeling features to
support multicellular modeling at resolutions at or near the multicellular scale, where a particle
can represent an individual cell, or a part of a cell. Overdamped dynamics describe the highly
viscous, fluid-like collective motion of particle-based model cells, where short-range, implicit
interactions can represent volume exclusion and contact-mediated intercellular interactions
(e.g., adhesion), long-range, implicit interactions can represent intercellular signaling via solu-
ble signaling, and particle state vectors can describe the intracellular state.

For example, particle-based model descriptions have been previously used to describe cells
as a set of particles (e.g., a Tissue Forge cluster, Fig 1B) when modeling the process of spheroid
fusion in tissue bioprinting, where cohesive cell shape is maintained by Lennard-Jones and
harmonic potentials between particles of the same cell, and intercellular adhesion occurs by a
Lennard-Jones potential between particles of different cells [12]. In a simpler model, represent-
ing each cell as a single particle and intercellular interactions with a single Morse potential can

Time 500 Time 1000 Time 1500 Time 2000
v | vt e

Upper

gt
&

i
SR
S

S XL
£ A)
p E’ 5 %%'
A g &9
> SRSt
o S 2
&

Pumping
E—

Lower

500 0.25

—m— Channel

[%2]

2

g 3
& 1000 05 8
«g —e— Lower °
-— ©
g —&— Upper °
£ —e— Total T
= c
g @
g <
5 O
6]

0
0 500 1000 1500 2000
Simulation time

Fig 7. Active pumping of a diffusive species across a deformable membrane separating two fluid-filled
compartments. A: Cut-plane views during simulation of two fluid-filled compartments separated by a deformable
membrane, where each fluid is uniformly initialized with an initial concentration of a species. Particle color indicates
species concentration with red as high, yellow and green as intermediate, and blue as low concentration. The
membrane contains a particle that actively pumps the species from the lower to the upper compartment. B: Three-
dimensional view of initial simulation state. C: Measurements of total species amounts in the lower (blue, circles),
upper (red, triangles) and both (green, diamonds) compartments (left-hand vertical axis), and in the channel
(magenta, squares, right-hand axis), during simulation.

https://doi.org/10.1371/journal.pcbi.1010768.9007

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 15/22

https://doi.org/10.1371/journal.pcbi.1010768.g007
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Neck diameter

100 150 200
Simulation time

Fig 8. Simulating fusion of multicellular, homotypic spheroids. A: Spheroids of 12.5k cells each were individually
pre-assembled, as in typical bioprinting practice. B: Two spheroids (green and blue) placed in close proximity fuse over
time, as measured by the neck diameter along the y (blue circles) and z (red triangles) directions, which grows over
time. The neck diameter along a direction is measured as the largest distance along the direction between any two
particles at the mid-plane. Insets show the simulation at times 1, 50, 100, 150 and 200.

https://doi.org/10.1371/journal.pcbi.1010768.9g008

also produce emergent fusion of spheroids like those used in bioprinting of mineralized bone
(i.e., about 12.5k cells per spheroid, Fig 8) [14]. When coupled with modeling diffusive trans-
port and uptake like the scenario demonstrated in Fig 7, a Tissue Forge-based framework for
the simulation of nutrient availability during spheroid-dependent biofabrication could support
detailed modeling of spheroid viability in large tissue constructs [15].

Tissue Forge built-in features, APIs and the event system allow ad hoc construction of cus-
tom agent-based models (ABMs) of multicellular systems. The Tissue Forge event system
allows the user to inject any custom model rule or algorithm into a simulation as defined by a
user-specified function (or by several functions). When the function is called by the Tissue
Forge event system, the function has access to the entire Tissue Forge API and hence can per-
form operations on individual cells (e.g., differentiation, splitting, death) using global (e.g.,
time), local (e.g., nearby cells) and/or agent (e.g., subcellular model) information.

For example, particle-based methods (and others) have been shown to support modeling
cell proliferation, differentiation and migration in the intestinal crypt of intestinal epithelia
[16]. The intestinal crypt consists of well-organized cellular dynamics, where cells within the
crypt proliferate more rapidly compared to cells at the base of the crypt. A cellular dynamics
ABM can describe such organization by assigning state dynamics that represent the cell cycle
to each cell, where the cell cycle occurs only for cells located far enough within the crypt. In
such a model, the geometry of the colonic crypt can be simplified to a two-dimensional config-
uration (as if unfolding the crypt) and each cell can be in one of four phases (i.e., G1, S, G2, M)
of the cell cycle, advances through each phase after a phase-specific period expires, divides
after transitioning from the M phase to the G1 phase, and is removed upon reaching the base
of the crypt. The ABM can introduce additional biophysical complexity like drawing the
period of the G1 phase from a normal distribution for each cell or inhibiting advancement of
the cell cycle by contact inhibition. This ABM has been shown to produce a cellular population
that are all descendants of a single cell of the initial population over time by assigning a clone
identification to each cell of the initial population and copying that identification to all prog-
eny during cell division. Tissue Forge supports implementing this ABM with each cell repre-
sented as a particle and visualizing the clone identification of each cell by rendering each
cellular particle according to is clone identification (e.g., two cells with the same clone identifi-
cation are rendered with the same color, Fig 9, see S6 File).

The Tissue Forge architecture also allows users to combine the simulation capability of Tis-
sue Forge with other software packages that focus on different types of dynamical systems,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 16/22

https://doi.org/10.1371/journal.pcbi.1010768.g008
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY

Tissue Forge: Interactive biological and biophysics simulation environment

500
Time (hours)

1000

Fig 9. Two-dimensional agent-based model of cell proliferation and differential in the colonic crypt. A: Cells represented as particles are arranged
in a sheet as if fixed on an unfolded cylindrical surface, where the upper boundary is treated as the base of the crypt and periodic boundary conditions
are applied along the horizontal direction, as in [16]. Each cell is assigned a state dynamics model of the cell cycle and unique clonal identification
(visualized as a unique particle color). The cell cycle model of each cell progresses through G1, S, G2 and M phases with deterministic periods except for
G, the period of which is randomly selected from a normal distribution for each cell. When the cell cycle model of a cell transitions from the M phase
to the G1 phase, the cell divides and copies its clonal identification to its progeny. Cells are removed when they reach the base of the crypt. B: Number of
clones during simulation time, measured as the mean of ten simulation replicates. Over time, the crypt tends toward monoclonality.

https://doi.org/10.1371/journal.pcbi.1010768.g009

19

such as libSBML [17] and libRoadRunner [18]. In the case of subcellular modeling coupled
with multicellular ABMs, the Tissue Forge and libRoadRunner Python APIs make instantiat-
ing and managing executable SBML models and coupling their dynamics with those of indi-
vidual cells straightforward (Listing 7).

Listing 7. Instantiating executable SBML models in libRoadRunner and associating them
with Tissue Forge cellular particles. Comments are shown in green.

Get the Tissue Forge and libRoadRunner Python libraries
import tissue_forge as tf

from roadrunner import RoadRunner

Create global storage of SBML models by cell id
cell_models = dict ()

Define a function that creates an executable SBML model

from a given file path for a given cell, and
update the cell’s species value accordingly
def attach_sbml_model (sbml_file: str, cell: tf.ParticleHandle):

global cell_models
this_cell_model = RoadRunner (sbml_file)
cell_models[cell.id] = this_cell_model
cell.species.D.value = this_cell_model[’D’]

Define an event that integrates all SBML models and

updates associated cells
def integrate_sbml(tl: float, t2: float):
for pid, rr in cell_models.items():

rr.simulate(tl1, t2)

cell = tf.ParticleHandle (pid)
cell.species.D.value = rr[’D’]
cell.radius = 10 / (1 + rr[’D’])

Tissue Forge support for multicellular ABMs couples well with built-in features for flux trans-
port and application-specific models. For example, the provided species transport over particles
arranged in a regular grid can produce the same solution for diffusive transport as when solved

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023

17/22

https://doi.org/10.1371/journal.pcbi.1010768.g009
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

using a discretized partial differential equation on a regular grid. In this case, the particles repre-
sent field measurements of local concentration, and those measurements can affect the processes
of nearby cells in an ABM. Note that in such cases, particles representing field measurements are
distinct from particles representing cells or cellular components (likely as different particle types),
and the interactions between particles representing field measurements and particles representing
cells or cellular components would almost certainly be chemical. Furthermore, as previously men-
tioned, Tissue Forge provides a dedicated space for developing user-custom and scale-specific fea-
tures. This space, which in the Tissue Forge source code is referred to as models, is populated at
the time of this writing with an implementation of a multicellular-level model of cell polarity that
produces common epithelial tissue morphologies [19]. These combined features make agent-
based, multiscale, multiphysics modeling of spatially heterogeneous tissues possible in Tissue
Forge. For example, Delta-Notch signaling is well known to produce spatial patterns of alternating
Delta or Notch expression, where cells expressing the Delta ligand perform contact-mediated lat-
eral inhibition of Delta expression in neighboring cells through activation of the Notch receptor
[20]. Delta-Notch signaling has been previously described by a simple system of ODEs [21],
which has been integrated as an embedded subcellular model in multicellular simulation using
CC3D [22] and CHASTE [16]. The same ODE model and contact-mediated intercellular interac-
tions can be implemented in Tissue Forge (Fig 10A) and coupled with diffusion of soluble signals
(Fig 10B) to simulate environmental activation of Delta-Notch signaling (Fig 10C, see S7 File).

A Cells B Regulatory Field
¢ 0 0 000 0 0 0 ¢ ¢ 6 0 0 0 0 0o
Time: 1,000 p [2 2| Time: 0|2 2 | Time: 1,000 |2

Cells + Regulatory Field

I Time: 0 I] Time: 400 l i Time: 600 !

Fig 10. Delta-Notch signaling in a cellular monolayer subject to environmental control via a soluble signal. A:
Lateral inhibition of Delta expression (cells with high Delta shown as red, cells with low Delta as blue) through contact-
mediated Delta-Notch signaling without environmental regulation produces patterns in monolayers. Initially (left)
Delta expression is approximately uniform but over time a pattern spontaneously emerges through contact-mediated
signaling (right). B: Diffusion of a regulatory signal that induces Delta-Notch signaling along a uniform grid of
particles representing point measurements of concentration. Initially (left) the cells are not exposed to the signal, but
over time (right) the signal diffuses from the top boundary. C: When Delta-Notch signaling depends on induction via
local concentration of the regulatory signal in B (not shown), pattern formation in the monolayer follows the
propagation of the diffusive signal across the monolayer.

https://doi.org/10.1371/journal.pcbi.1010768.9010

Time: 1,000

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 18/22

https://doi.org/10.1371/journal.pcbi.1010768.g010
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Discussion

The Tissue Forge modeling and simulation framework allows users to interactively create, sim-
ulate and explore models at biologically relevant length scales. Accessible interactive simula-
tion is key to increasing scientific productivity in biomodeling, just as simulation
environments are fundamental to other fields of modern engineering. Tissue Forge supports
both interactive runs with real-time visualization for model development, and headless execu-
tion for data generation and integrated applications. In addition, Tissue Forge supports user-
specified model features (e.g., custom particle types, forces and potentials) and scheduled and
keyboard-driven simulation events, with intuitive user interfaces, in multiple programming
languages and frameworks, supporting beginner- to expert-level programmers and beginner-
to expert-level biomodelers. As demonstrated by our example of embedded ODE modeling,
Tissue Forge also supports integration with other software packages that specialize in other
types of models, methods, and applications.

Tissue Forge is open-source and freely available under the LGPL v3.0 license (https://
github.com/tissue-forge/tissue-forge). Pre-built binaries are available in C, C++ and Python
on 64-bit Windows, MacOS and Linux systems via conda (https://anaconda.org/tissue-forge/
tissue-forge). Online documentation provides information on project philosophy, installa-
tion, walk-throughs, examples (in Jupyter Notebooks, https://github.com/tissue-forge/tissue-
forge/tree/main/examples/py/notebooks) and API documentation for all supported lan-
guages. It has automated build updates to maintain synchronization between software ver-
sions and documented features (https://tissue-forge-documentation.readthedocs.io),
including details on features not described in this paper (e.g., species transport, boundary
conditions). Tissue Forge’s transparent development cycle, with automated continuous inte-
gration and continuous delivery, rapidly and reliably delivers the latest features to users
(https://dev.azure.com/Tissue-Forge/tissue-forge). Instructions for installing Tissue Forge are
available in S1 File.

Tissue Forge applies the abstraction of a particle to support modeling applications over a
wide range of scales, ranging from sub-nanometer to hundreds of micrometers and beyond. It
supports future development and integration of advanced numerical and computational meth-
ods for incorporating and/or generating biological information with increasingly greater
detail. Tissue Forge provides a designated space for development of application-specific mod-
els and methods by both the development team and user community, and so is free to grow
and evolve into other computational domains with significant relevance and impact to a num-
ber of scientific communities. To this end, we are preparing a followup manuscript that dem-
onstrates advanced modeling and simulation features, detailed model construction in specific
applications, and relevant features that are currently under development. Tissue Forge features
under development include improvements to core Tissue Forge simulation capability (e.g.,
multi-GPU support and libRoadRunner integration for network dynamics modeling), addi-
tional modeling features (e.g., new built-in potentials, forces and multicellular ABMs, support
for improper angles in MD modeling), enhanced user experience (e.g., a graphical event inter-
face), and additional modeling methodologies and solvers (e.g., vertex and subcellular element
models). Current work includes implementing general vertex model capability [23], which will
provide support for mixed particle- and mesh-based modeling methodologies necessary to
describe multicellular dynamics with explicit cell shapes [24]. Future work will also develop
supporting features that facilitate integration with other software packages, such as coupling
with advanced PDE solvers in Python (e.g., FiPy [25]) and C++ (e.g., FeNiCS [26], MFEM
[27]), visualizing with different rendering schemes (e.g., The Visualization Toolkit [13]), and
supporting compositional modeling (e.g., Vivarium [28]).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 19/22

https://github.com/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge
https://anaconda.org/tissue-forge/tissue-forge
https://anaconda.org/tissue-forge/tissue-forge
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://github.com/tissue-forge/tissue-forge/tree/main/examples/py/notebooks
https://tissue-forge-documentation.readthedocs.io
https://dev.azure.com/Tissue-Forge/tissue-forge
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

Supporting information

S1 File. Installation instructions. Instructions for installing pre-built Tissue Forge binaries.
(PDF)

S2 File. Oscillator example. Jupyter Notebook that simulates a simple oscillator with two par-
ticles.
(IPYNB)

S3 File. Benchmarks. Source code for benchmarks for variable cutoff distance, variable num-
ber of potentials, or algorithmic cost per simulation step.
(ZIP)

S4 File. DNA example. Python script that constructs adenine and thymine nucleobases on the
basis of individual atoms using Tissue Forge particles.
(PY)

S5 File. Membrane transport example. Jupyter Notebook that simulates a neighborhood at a
deformable membrane separating two fluids and active transport between them.
(IPYNB)

S6 File. Colonic crypt example. Jupyter Notebook that simulates a two-dimensional represen-
tation of cellular dynamics in the colonic crypt.
(IPYNB)

S7 File. Delta-Notch example. Jupyter Notebook that simulates Delta-Notch signaling in a
monolayer with interactive control of environmental regulation.
(IPYNB)

S8 File. Source code. Tissue Forge version 0.1.1 source code.
(Z1P)

Author Contributions

Conceptualization: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.
Data curation: T. J. Sego.

Formal analysis: T. J. Sego.

Funding acquisition: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.
Investigation: T. J. Sego.

Methodology: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.
Project administration: T. J. Sego, Herbert M. Sauro, James A. Glazier.

Resources: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Software: T. J. Sego.

Supervision: T.]. Sego, Herbert M. Sauro, James A. Glazier.

Validation: T. J. Sego.

Visualization: T. J. Sego.

Writing - original draft: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

Writing - review & editing: T. J. Sego, James P. Sluka, Herbert M. Sauro, James A. Glazier.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 20/22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010768.s008
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

References

1. SwatM.,, Thomas G., Belmonte J., Shirinifard A., Hmeljak D. & Glazier J. Multi-Scale Modeling of Tis-
sues Using CompuCell3D. Methods In Cell Biology. 110 pp. 325-366 (2012), https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3612985/ https://doi.org/10.1016/B978-0-12-388403-9.00013-8 PMID:
22482955

2. StarruBJ., Back W., Brusch L. & Deutsch A. Morpheus: a user-friendly modeling environment for multi-
scale and multicellular systems biology. Bioinformatics. 30, 1331-1332 (2014,5)

3. GranerF. & Glazier J. Simulation of biological cell sorting using a two-dimensional extended Potts
model. Physical Review Letters. 69, 2013-2016 (1992,9), https://link.aps.org/doi/10.1103/
PhysRevLett.69.2013, Publisher: American Physical Society

4. Ghaffarizadeh A., Heiland R., Friedman S., Mumenthaler S. & Macklin P. PhysiCell: An open source
physics-based cell simulator for 3-D multicellular systems. PLOS Computational Biology. 14,
€1005991 (2018,2), https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1005991,
Publisher: Public Library of Science

5. Mirams G., Arthurs C., Bernabeu M., Bordas R., Cooper J., Corrias A., Davit Y., Dunn S., Fletcher A.,
Harvey D., Marsh M., Osborne J., Pathmanathan P., Pitt-Francis J., Southern J., Zemzemi N. & Gava-
ghan D. Chaste: An Open Source C++ Library for Computational Physiology and Biology. PLOS
Computational Biology. 9, €1002970 (2013,3), https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1002970, Publisher: Public Library of Science

6. Sandersius S. & Newman T. Modeling cell rheology with the Subcellular Element Model. Physical Biol-
ogy. 5,015002 (2008,4), https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002

7. Fortunal., Perrone G., Krug M., Susin E., Belmonte J., Thomas G., Glazier J. & Almeida R. Compu-
Cell3D Simulations Reproduce Mesenchymal Cell Migration on Flat Substrates. Biophysical Jour-
nal. 118,2801-2815 (2020,6), https://www.sciencedirect.com/science/article/pii/
S0006349520303490

8. Thompson A., Aktulga H., Berger R., Bolintineanu D., Brown W., Crozier P., Veld P., Kohimeyer A.,
Moore S., Nguyen T., Shan R., Stevens M., Tranchida J., Trott C. & Plimpton S. LAMMPS—a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Com-
puter Physics Communications. 271 pp. 108171 (2022,2), https://www.sciencedirect.com/science/
article/pii’/S0010465521002836

9. AndersonJ., Glaser J. & Glotzer S. HOOMD-blue: A Python package for high-performance molecular
dynamics and hard particle Monte Carlo simulations. Computational Materials Science. 173 pp.
109363 (2020,2), https://www.sciencedirect.com/science/article/pii/S0927025619306627

10. Phillips J., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R., Kalé L.. &
Schulten K. Scalable molecular dynamics with NAMD. Journal Of Computational Chemistry. 26, 1781—
1802 (2005), https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289 https://doi.org/10.1002/jcc.
20289 PMID: 16222654

11. Hess B., Kutzner C., Spoel D. & Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Bal-
anced, and Scalable Molecular Simulation. Journal Of Chemical Theory And Computation. 4,435-447
(2008,3), Publisher: American Chemical Society

12. Shafiee A., McCune M., Forgacs G. & Kosztin |. Post-deposition bioink self-assembly: a quantitative
study. Biofabrication. 7, 045005 (2015,11), Publisher: IOP Publishing

13. Schroeder W., Avila L. & Hoffman W. Visualizing with VTK: a tutorial. [EEE Computer Graphics
And Applications. 20, 20-27 (2000,9), Conference Name: IEEE Computer Graphics and
Applications

14. SegoT., Prideaux M., Sterner J., McCarthy B., Li P., Bonewald L., Ekser B., Tovar A. & Jeshua Smith
L. Computational fluid dynamic analysis of bioprinted self-supporting perfused tissue models. Biotech-
nology And Bioengineering. 117,798-815 (2020), https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.
27238 https://doi.org/10.1002/bit.27238 PMID: 31788785

15. Sego T., Kasacheuski U., Hauersperger D., Tovar A. & Moldovan N. A heuristic computational model of
basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication. 9,
024104 (2017,6), Publisher: IOP Publishing

16. Osborne J., Fletcher A., Pitt-Francis J., Maini P. & Gavaghan D. Comparing individual-based
approaches to modelling the self-organization of multicellular tissues. PLOS Computational Biology.
13, e1005387 (2017,2), https://dx.plos.org/10.1371/journal.pcbi. 1005387

17. Bornstein B., Keating S., Jouraku A. & Hucka M. LibSBML: an API Library for SBML. Bioinformatics.
24, 880-881 (2008,3), https://academic.oup.com/bioinformatics/article/24/6/880/194657

18. Somogyi E., Bouteiller J., Glazier J., Kénig M., Medley J., Swat M. & Sauro H. libRoadRunner: a high
performance SBML simulation and analysis library. Bioinformatics. 31, 3315-3321 (2015,10)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 21/22

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612985
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
http://www.ncbi.nlm.nih.gov/pubmed/22482955
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://link.aps.org/doi/10.1103/PhysRevLett.69.2013
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005991
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002970
https://iopscience.iop.org/article/10.1088/1478-3975/5/1/015002
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0006349520303490
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0927025619306627
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
http://www.ncbi.nlm.nih.gov/pubmed/16222654
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27238
https://doi.org/10.1002/bit.27238
http://www.ncbi.nlm.nih.gov/pubmed/31788785
https://dx.plos.org/10.1371/journal.pcbi.1005387
https://academic.oup.com/bioinformatics/article/24/6/880/194657
https://doi.org/10.1371/journal.pcbi.1010768

PLOS COMPUTATIONAL BIOLOGY Tissue Forge: Interactive biological and biophysics simulation environment

19. Nielsen B., Nissen S., Sneppen K., Mathiesen J. & Trusina A. Model to Link Cell Shape and Polarity
with Organogenesis. IScience. 23, 100830 (2020,2), https://www.sciencedirect.com/science/article/pii/
$2589004220300134

20. BocciF., Onuchic J. & Jolly M. Understanding the Principles of Pattern Formation Driven by Notch Sig-
naling by Integrating Experiments and Theoretical Models. Frontiers In Physiology. 11 (2020), https:/
www.frontiersin.org/articles/10.3389/fphys.2020.00929 https://doi.org/10.3389/fphys.2020.00929
PMID: 32848867

21. Collier J., Monk N., Maini P. & Lewis J. Pattern Formation by Lateral Inhibition with Feedback: a Mathe-
matical Model of Delta-Notch Intercellular Signalling. Journal Of Theoretical Biology. 183, 429-446
(1996,12), https://www.sciencedirect.com/science/article/pii/S0022519396902337

22. ChenK,, Srinivasan T., Tung K., Belmonte J., Wang L., Murthy P., Choi J., Rakhilin N., King S., Varanko
A., Witherspoon M., Nishimura N., Glazier J., Lipkin S., Bu P. & Shen X. A Notch positive feedback in
the intestinal stem cell niche is essential for stem cell self-renewal. Molecular Systems Biology. 13, 927
(2017,4), https://onlinelibrary.wiley.com/doi/10.15252/msb.20167324

23. SegoT., Comlekoglu T., Peirce S., Desimone D. & Glazier J. General, Open-Source Vertex Modeling in
Biological Applications Using Tissue Forge. Research Square. pp. rs.3.rs-2886960 (2023,5)

24. Van Liedekerke P., Neitsch J., Johann T., Warmt E., Gonzalez-Valverde I., Hoehme S., Grosser S.,
Kaes J. & Drasdo D. A quantitative high-resolution computational mechanics cell model for growing and
regenerating tissues. Biomechanics And Modeling In Mechanobiology. 19, 189-220 (2020,2), http://
link.springer.com/10.1007/s10237-019-01204-7

25. GuyerJ., Wheeler D. & Warren J. FiPy: Partial Differential Equations with Python. Computing In Sci-
ence & Engineering. 11, 6-15 (2009,5), http://ieeexplore.ieee.org/document/4814978/

26. Scroggs M., Dokken J., Richardson C. & Wells G. Construction of Arbitrary Order Finite Element
Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes. ACM Transactions On Mathemat-
ical Software. 48, 1-23 (2022,6), https://dl.acm.org/doi/10.1145/3524456

27. Kolev, T & Dobrev, V Modular Finite Element Methods (MFEM). (Lawrence Livermore National Labora-
tory (LLNL), Livermore, CA (United States),2010), https://www.osti.gov/doecode/biblio/35738

28. Agmon E., Spangler R., Skalnik C., Poole W., Peirce S., Morrison J. & Covert M. Vivarium: an interface
and engine for integrative multiscale modeling in computational biology. Bioinformatics. 38, 1972—1979
(2022,3), https://academic.oup.com/bioinformatics/article/38/7/1972/6522109

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010768 October 23, 2023 22/22

https://www.sciencedirect.com/science/article/pii/S2589004220300134
https://www.sciencedirect.com/science/article/pii/S2589004220300134
https://www.frontiersin.org/articles/10.3389/fphys.2020.00929
https://www.frontiersin.org/articles/10.3389/fphys.2020.00929
https://doi.org/10.3389/fphys.2020.00929
http://www.ncbi.nlm.nih.gov/pubmed/32848867
https://www.sciencedirect.com/science/article/pii/S0022519396902337
https://onlinelibrary.wiley.com/doi/10.15252/msb.20167324
http://link.springer.com/10.1007/s10237-019-01204-7
http://link.springer.com/10.1007/s10237-019-01204-7
http://ieeexplore.ieee.org/document/4814978/
https://dl.acm.org/doi/10.1145/3524456
https://www.osti.gov/doecode/biblio/35738
https://academic.oup.com/bioinformatics/article/38/7/1972/6522109
https://doi.org/10.1371/journal.pcbi.1010768

