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Abstract

Inspired by recent applications of point processes to biological nanonetworks, this pa-
per presents a novel variant of a Matérn cluster process (MCP) in which the points
located within a certain distance from the cluster centers are removed. We term this
new process the MCP with holes at the cluster center (MCP-H, in short). Focusing on
the three-dimensional (3D) space, we first characterize the conditional distribution of
the distance between an arbitrary point of a given cluster to the origin, conditioned on
the location of that cluster, for both MCP and MCP-H. These distributions are shown
to admit remarkably simple closed forms in the 3D space, which is not even possible
in the simpler two-dimensional (2D) case. Using these distributions, the contact dis-
tance distribution and the probability generating functional (PGFL) are characterized
for both MCP and MCP-H.

Keywords: Stochastic geometry, Matérn cluster process, Poisson hole process,
biological nanonetworks, wireless networks.

1. Introduction

Clustered point patterns appear in many diverse areas of science and engineering,
such as geodesy, ecology, biology, and wireless networks. Owing to their generality
and tractability, Poisson cluster processes (PCPs) are often the first choice for model-
ing such point patterns. As a representative application, PCPs [1, Sec. 3.4] have been
used extensively over the last decade to model a variety of wireless network configu-
rations over a 2D space [2, 3, 4, 5, 6, 7, 8]. They are particularly useful in capturing
user hotspots that exhibit point clustering, which cannot be captured using a simpler
homogeneous Poisson point process (PPP). Two of the specific PCPs that have been
of particular interest in the applications are the Thomas cluster process (TCP) [1, Def-
inition 3.5] and the Matérn cluster process (MCP) [1, Definition 3.6]. The formalism
for establishing distance distributions of PCPs is well-known [9] and has been applied
extensively to derive key distance distributions for PCPs [2, 10, 11, 12, 13, 14].
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Figure 1: An illustration of a 2D MCP-H, where the red points are the cluster centers and the
blue points are the offspring points.

Very recently, 3D PCPs have been used to model and analyze biological nanonet-
works by the authors [15]. The main idea is to model the locations of molecular fusion
centers as a PPP that serves as the parent process for the nanomachines modeled as a
PCP around the fusion centers. Since fusion centers have a non-zero size, it is more rea-
sonable to model them as spheres instead of points, which essentially places exclusion
zones (equivalently, holes) around the parent points of the PCPs where the nanoma-
chines cannot exist. This results in a new variant of PCPs, which is the main topic of
this paper. Our work in [15] also identified a specific structure of 3D TCPs that allowed
us to express the distance distributions in 3D TCPs in remarkably simple closed form
expressions (which was not possible in the simpler 2D case). This further inspired us to
investigate the distributional properties of the aforementioned variant of PCPs in more
detail in this paper. Before we describe our contributions, please note that the existence
of exclusion zones in clustered processes can also be motivated from the perspective of
wireless networks if one needs to ensure a certain minimum distance between the nodes
of two different networks transmitting at the same frequency channel. When the holes
are not placed on the cluster centers, [16] considered such a cluster process model with
holes over a 2D space. This essentially generalized the idea of a Poisson hole process
(PHP) [17] from a homogeneous PPP to the PCP with the common theme being that
the underlying point process (PPP or PCP) is thinned by placing holes independently
of the underlying point process.

In this work, we first derive new distance distribution results for MCPs over 3D
spaces, as the counterpart of similar results obtained for 3D TCPs in [15]. Then in-
spired by the recent applications of 3D PCPs to biological nanonetworks, we propose
a new point process that we term the Matérn cluster process with holes at the cluster
centers (MCP-H), which is a variant of the MCP obtained by removing MCP points
lying within a certain distance from any of the cluster centers (effectively placing ex-
clusion zones or holes at each cluster center). While we present results for 3D, the



definition and analytical approach can be easily extended to the n-dimensional space?.
We identify specific structures for both a 3D MCP and a MCP-H that provide remark-
ably simple expressions for the distribution of the distance between an arbitrary point
of a given cluster to the origin, conditioned on the location of that cluster. Using these
distance distributions, we characterize the contact distance distributions and probabil-
ity generating functionals (PGFL) of both MCP and MCP-H that are not only useful on
their own but will also find use in the applications of these processes to diverse fields.

Notations: The uniform distribution is denoted by Unif {.}. The indicator function
is denoted by 1(.). The ||x|| stands for the norm of vector x. Also, a A b = min(a, b)
and a V b = max(a, b).

2. Spatial Model

Consider an MCP ®y; in R3, which is formally defined as a union of offspring
points that are located around parent points (i.e., cluster centers). The parent point
process is a PPP @, with intensity Ap, and the offspring point processes (one per par-
ent) are conditionally independent. The set of offspring points of x € ®, is a finite
point process that is denoted by N, such that ®y; = Uyea, Ni*. The points in N7
are uniformly distributed in the ball with the center x and radius R represented by
b(x, R), i.e., Ni* ~ Unif {b(x, R)}. Hence, the probability density function (PDF) of
an element of this set being at a location y + x € R? is
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The number of points in N3%, Vx is Poisson distributed with mean M.
Along the same lines, the MCP-H is defined as ®y;_g = Ux€q>pN2x, where the set
¥ is a thinned version of N*. A point of A can be thinned either by the exclusion
zone at x or by the exclusion zones of any of the other points of ®,. The resulting
finite point process can be mathematically described by N3 ~ N7\ U,ca, b(z, 1),
or equivalently N3¢ ~ Unif {b(x, R)} \ Uzca, b(z,70), where rq is the radius of the
exclusion holes and is assumed to be the same for all the holes 3. The PDF of an
element of N3 being at a location y + x € R3 is denoted by fy,(y). A realization
of the MCP-H is illustrated in Fig. 1. The number of points in NF, Vx is Poisson
distributed with mean M.

2Note that the 3D case is considered in this work because of its relevance to the underlying application
of biological nanonetworks.

3Since all the clusters of a PCP are statistically similar, we had two main choices for ro: either to
consider it the same for all the clusters or consider it a random variable and assume it to be independently
and identically distributed across the clusters. Since the former is a logical first step, we decided to assume
the same rq for all the clusters. This is also a practically relevant case. For instance, [15] considers the
same size of fusion centers for all the clusters, which is equivalent to assuming the same value of rg for all
clusters.



3. Distance Distributions

For both MCP and MCP-H, we first present the following results on the PDF of
the distance of any (arbitrary) element in the set N5* and NV of the cluster centered at
x € P, to the origin o, respectively. Such PDF derivation is the key intermediate step
required in PCPs for further analyses [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15]. In order to
illustrate this concretely, we will use these PDF results later in derivations of the contact
distance distribution and PGFL in Section 4. It is worth reiterating that even though
the formalism for establishing distance distributions of point processes is well-known,
our focus here is on demonstrating that these distributions admit a simple closed form
solution in the case of 3D MCP, which is not even the case in the simpler 2D MCP.

Theorem 1. For the MCP and conditioned on ||x||, i.e., the distance of the parent point
x from the origin, the PDF of the distances d = ||y + x||,Vy € N, for |x|| < R is

%; 0<r<R-—|x|,
Falrlllx|) = %T(R—HXH;;‘?‘ST‘JFHXH—T) R— x| <r <R+ |x], @
r> R+ |[x|,
and for ||x|| > R
3 r(R—|lx|+r) (R+]x[|—7) _p<
fatr|l]) = 4 4 Rl Il —R<r <R+Ixl, 5
0 0<r<|x| =R, r>R+|x]
Proof. See Appendix A. 0

The exact derivation for the distance distributions of MCP-H is complicated. This
is because of the complicated characterization of the region b(x, R)\ Uzca, b(z,70)
that defines the support for the offspring points in the cluster x. Therefore, our first
objective is to bound this distance. This bound is constructed by bounding the afore-
mentioned region as b(x, R)\ Uzes, b(z,70) C b(x, R)\b(x,70). In other words,
we retain the most important hole (the one centered at x or the self hole) and ignore
effect of the other holes on the point process N¥. Since less points are thinned than
necessary, this underestimates the distance and hence results in an upper bound on the
cumulative distribution function (CDF) whose corresponding PDF is given in the next
Theorem. This bounding approach is inspired by a similar thought process that was
used by the authors to bound distances in the PHP in [17].

Theorem 2. For the MCP-H and conditioned on ||x||, the PDF of the distances d =
lly + x|,Yy € NF (as in Fig. 2), corresponding to the upper bound on the CDF
mentioned above is given in the following cases.

Case 1: If 0 < ||x|| < ro A B5™2, then
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Figure 2: Single cluster illustration.

Case 2: Ifro A B51 < ||x|| < ro, then
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Case 3: If 1o < ||x|| < ro V £57, then
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Case 6: If |x|| > R, then

0 0<r<|x| =R r>R+|x|,

£ l1x||) = 3T(R_JITJ\IQ;Z+3‘)|X”_r) |x|| = R <r < ||x] — 7o, o
x| + 70 <7 < R+ x|,
i Ixll = o < 7 < Il + ro.

Proof. See Appendix B. .

In Theorem 2, the thinning effect of the other clusters on the locations of the off-
spring points in a cluster is ignored. However, the overlapping holes of other clusters
can reduce the support of the offspring point process (i.e., the region in which the off-
spring points are distributed). One can think of many ways of approximating the effect
of these other holes. For instance, we can replace b(x, R)\ Uzea, b(z,70) with an
effective region that approximately incorporates the effect of the other holes. The dis-
tance distribution result can then be obtained by repeating the proof of Appendix B
with a slight modification in the intersection volume. As a simple example, from the in-
tersection volume b(o, 7)Nb(x, R)\b(x, r¢), we can reduce an effective volume that is
equal to the average number of holes from all clusters inside b(o, r)Nb(x, R)\b(x, 1)
multiplied by the volume of each hole. This leads to a scaling factor of 1 — %ﬂz\prg on
fy(r]|lx]]). This can be tightened further by accounting for the overlaps in the holes,
along the lines of how we handled such overlaps in the PHP in [17]. Due to strict space
limitations, we will not be able to explore such approximations in this article.

4. Point Process Properties

In this section, we will use the distance distributions derived in the previous section
to characterize two key properties of the 3D MCP and MCP-H. The first property is the
contact distance distribution. In a stationary setting, this is simply the distribution of
the distance between the origin and the closest point of the point process to the origin.
This appears frequently in many applications, such as the distance between a user and
its closest wireless tower in a wireless network. The second property is the PGFL,
which allows us to deal with products over point processes. It plays a central role in
the analysis of interference distribution in wireless networks.

4.1. Contact Distance Distribution

Definition 1. (Contact distance distribution). The contact distance of a stationary
point process ® is defined as the distance from the origin to its nearest point. The
distribution of this distance is termed the contact distance distribution of the point
process ® and is defined as

Fep(r) = P{[|2] <r} =P{®(b(o,r)) > 0}, (10)

where ®(b(o, 1)) denotes the number of points within a ball of radius r centered at o.



To derive the contact distance distribution as in (10), let us start with the derivation
of the probability generating function (PGF) of the number of points within b(o, ') as

Gn(0) =E {QN} —-F {92,(@,, Zyenx 1(|\x+y\|<r)} ) H H gLIx+yll<r)
x€d, yeNF

_ ]E{ H exp(_Mi/ (1 _9n<ux+yn<r>) in(y)dy) } i€ {1,2}, (11)
b(x,R)

xeép

where the last step follows from the PGF of a Poisson random variable with the fact
that the points in A* are i.i.d. with PDF fy,(y). The index i = 1 is for the MCP
and the index 7 = 2 is for the MCP-H. Then, (11) for the MCP is equal to and for the
MCP-H is approximately equal to

exp<—47r)\p /OOO (1 = exp(—MZ- /Or(l . H)fd(u|v)du>>v2dv>, 1e{1,2},
(12)

which follows from the PGFL of PPPs [1] and converting Cartesian to polar coordinates
with the distance distribution fy(u|v) in Theorems 1-2. Equation (12) is not exact for
MCP-H because of the bound in Theorem 2.

For the MCP, we can obtain (11) from f4(u|v) given in Theorem 1 as

R N3
GN,MCP(G) = exp (—47T)\p/ (1 — exp(—M1(1 - 9) ((T/\(R%'F
0
P(R+v,R— U7R3,R)))>1)2dv — A4, /ij (1 — eXp(—Ml(l —0)x
R
P(R+v,v— R, R3,R)>>v2dv>, (13)

where we have the following definition
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3 4
This result for the 3D MCP is in closed-form and has completely different structure
from the 2D MCP result in [11], which includes multiple integrals in its simplest form.
We can also obtain (11) for the MCP-H, replacing f;(u|v) in Theorem 2, as
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Finally, the contact distance distribution can be obtained as

Fepj(r) =1—P(N =0)=1- Gy ;(0), j = {MCP,MCP-H}. (22
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Figure 3: The contact distance distribution for the MCP-H.

It is notable that all the results in (13)-(22) are in closed-forms.

In Fig. 3, we plot the contact distance distributions for the MCP-H, for different A,
when R = 50 m, rg = 15 m, and M5 = 20. We note that the bound derived for MCP-H
is tight even for a relatively large value of )\, with respect to the system setup. In order
to put this comparison in context, note that for A, = 0.00002, the average number of
holes of the other clusters that overlap with the reference cluster is 3mR3), = 10.5.
Despite that, the bound is remarkably tight in this regime. If we keep increasing A, to
very high values, the bound will of course start becoming loose. Even though it is not
pronounced, this trend is visible in Fig. 3 as we move from A\, = 0.00001 to 0.00002.

4.2. Probability Generating Functional
Definition 2. (PGFL). The PGFL of a point process ® is defined as

Go) =ES [[v) ¢ (23)

yed

where the function v(y) : R® — [0, 1] is measurable.

According to the PGFL of PCPs [1, Corollary 4.13] and replacing fq(||y|/|||z]])
from Theorems 1-2, the PGFL for the MCP and MCP-H can be evaluated exactly and
approximately, respectively, as

Gt =exp( - [ (1-ew(=2(1- [ owisaliylllahay) ) Jaz).

(i,7) = {(1,MCP), (2, MCP-H) } . 24)

The result for the MCP-H is not exact because of the bound in Theorem 2. Due to the
very simple forms of f;(u|v) in Theorems 1 and 2, (24) can be efficiently evaluated for



different functions v(y). Note again that the result is exact for MCP since the distance
distribution in Theorem 1 was exact.

As mentioned already, PGFLs of point processes appear frequently in applications.
For instance, it has been used extensively for deriving the Laplace transform of inter-
ference distribution in a variety of wireless network settings. Interested readers are
advised to refer to [19] for specific examples related to the wireless cellular networks.

5. Conclusions

This paper studied a novel variant of an MCP in which the points located within a
certain distance from the cluster center are removed (or thinned). We termed this vari-
ant the MCP-H. Specifically focusing on the 3D setup, we characterized basic distance
distributions for both MCP and MCP-H, which admitted remarkably simple closed
forms (which were not possible even in the simpler 2D setting). Using these distance
distributions, we characterized the PGFL and contact distance distributions of both
the processes. The proposed point process has numerous applications ranging from
nanonetworks to large-scale wireless networks.

Appendix A. Proof of Theorem 1

The distance from the origin o to a randomly chosen offspring point y with parent
x, i.e., ||[x + y|| = d, is less than r if and only if the point is located within the
intersection b(o,r) N b(x, R). Thus, as each point is distributed independently and
uniformly within b(x, R), according to different forms of the intersection volume, we
have the following cases for the CDF of d.

Case 1: If ||x|| < R, then

3

% OST<R—HXHa
P(d<r)=q L0 R—|x| <r <R+ |x], (A1)
1 r> R+ |||,

where V| (r, R) is the intersection volume of b(o, ) Nb(x, R) for |[R — ||x[|| < r <
R + ||| given as [18]

m(R+r — |x[])?

Vx| (r R) = I (1)1 + 2||x[|r — 3r% + 2|[x[|R + 6rR — 3R?).
(A2)
Case 2: If ||x|| > R, then
0 0<7r< x| - R,
P(d<r) = 50 x| - R<r< R+, (A3)
1 r>R+|x].

Thus, the PDF is obtained by taking derivative of P (d < r) for both cases in (A.1)
and (A.3), where we have

dexH (T7 R) r

— o = e (B = xR =+ x]]). (A4)

dr I
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Appendix B. Proof of Theorem 2

The distance ||x + y|| = d is less than r if and only if the point is located within
the intersection b(o,r) N b(x, R) and outside b(x, o). In Fig. 2, an example of the
intersection is shown. Thus, according to different forms of the volume of b(o,r) N
b(x, R)\b(x,79), we have the following cases for the CDF of d.

Case 1: If 0 < ||x|| < ro A £5™, then

0

%7\'7’37\)“,(“ (’l",’l"())
gm(R3—13)
ro—rg
R3—rd
Vx| (1, R)— %Tl”l‘g
BLGE

Case 2: If ro A 570 < ||x|| < 7o, then

0
%ﬂ"l“s*V”x” (T,To)
%TI’(RS—TS)
Vx| (1,R) = Vx| (1,70)
sm(R3—rd)
Vx| (1, R) = 577
L

1

Case 3: If o < ||x|| < o vV 5™, then

,’,3
R3—13
4 3 .
3mr° =V (r,70)
3=l
gm(R3—rd)
T377‘g
RS—T'S
Vx| (. B) — g 75
Im(R3—r}

0
1

0<r<ro—|x,
ro = [Ix| < v <ro+[Ixll;
[ +70 < < R —[x]],

R— x| <r < R+]lx|,
r>R+|x].

0<r<ro—|x|,
ro — |[x[| < < R —|[x]],
R— x| <7 <ro+|x],
ro+ [Ix[| <7 < R+ [Ix]],
r> R+ x|

0 <r<|x| —ro,
[ =70 <7 < |Ix|| + 7o,
[ +70 <7 < R—|[x],

R—|x|| <r <R+ x|,
r> R+ |x|.

Cased: If o v 1570 < ||x|| < £ then

3
R3—r}
577 =V (,70)
)
Vil (1) = Vx| (1,70)
RS ;3
Vx| (r,R)— %71’7‘8
oy

11

0 <r<|x| —ro,

%[l =ro <7 < R — x|,
R— x| < <[] + ro,

[l + 7o <7 < R+ [x]],

r>R+|x|.

(B.1)

(B.2)

(B.3)

B.4)



Case 5: If fi4™ < ||x|| < R, then

3

i 0<r<R—|x[
V X ( ’R)
P R xl < <x] = o,
]P)(d S T) — VHXH (T‘,R)—Vux”(T‘,T‘U) ||X|| -7 S r< ||X|| + 7107 (BS)

T (R5—r3)
Vx| (rR) = 5775
%W(R:‘—rg)

[x[[ +70 <7 < R+ |x],

1 r > R+ ||x||.
Case 6: If ||x|| > R, then
0 0<r<|x||—-R,
Vijx|) (. R)

[l = B <7 <[x]| = ro,

Ir(R*—13)
Vx| (T, R) =V (7,7
P(d<r)=q EDAAEN) x| —po << x| 470, (B6)
Vi (r,R)— 5 7rg

%W(RS—TS)

[x[| + 70 <7 < R+ |Ix,
r >R+ |x|.

After taking derivative of P (d < r), the proof is complete.
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