
P3: A Privacy-Preserving Perception Framework for Building

Vehicle-Edge Perception Networks Protecting Data Privacy

Tianyu Bai, Danyang Shao, Ying He, Song Fu, and Qing Yang

Department of Computer Science and Engineering

University of North Texas, Denton, Texas

{TianyuBai, DanyangShao, YingHe}@my.unt.edu, {Song.Fu, Qing.Yang}@unt.edu

AbstractÐWith the wider adoption of edge computing services,
intelligent edge devices, and high-speed V2X communication,
compute-intensive tasks for autonomous vehicles, such as percep-
tion using camera, LiDAR, and/or radar data, can be partially
offloaded to road-side edge units. However, data privacy becomes
a major concern for vehicular edge computing, as sensor data
with sensitive information from vehicles can be observed and
used by edge servers. We aim to address the privacy problem by
protecting both vehicles’ sensor data and the detection results.
In this paper, we present a privacy preserving perception (P3)
framework which provides a secure version of every commonly
used layers in various perception CNN networks. They server
as the building blocks to facilitate the construction of a privacy
preserving CNN for any existing or future network. P3 leverages
the additive secret sharing theory to develop secure functions
for perception networks. A vehicle’s sensor data is split and
encrypted into multiple secret shares, each of which is processed
on an edge server by going through the secure layers of a
detection network. The detection results can only be obtained by
combining the partial results from the participating edge servers.
We present two use cases where the secure layers in P3 are used
to build privacy preserving both single-stage and two-stage object
detection CNNs. Experimental results indicate data privacy for
vehicles is protected without comprising the detection accuracy
and with a reasonable amount of performance degradation. To
the best of our knowledge, this is the first work that provides
a generic framework to ease the development of vehicle-edge
perception networks protecting data privacy.

Index TermsÐEdge Computing, Vehicle Computing, Data
Privacy, Deep Learning, Perception, Connected and Autonomous
Vehicles.

I. INTRODUCTION

Autonomous vehicles (AVs) have been attracting more and

more attention and interest in both industry and academia.

AVs rely on various sensors, e.g., camera, LiDAR, radar, GPS,

IMU, etc., to perceive the surrounding environment and plan

movement and routes [1]. To achieve autonomous driving,

objects on the road should be detected accurately and quickly.

The latest perception (object classification, object detection,

and segmentation) methods or systems mostly use deep learn-

ing for detection. Although they are more accurate, deep

learning networks are compute intensive and require powerful

computing capacity on a vehicle. Furthermore, perception

network is only one of the many deep learning networks that

are run on a vehicle for various autonomous driving tasks.

To provide reliable computing power for delay-sensitive

applications, edge computing [2] offers a cost-effective and

scalable way to execute part of those deep learning workloads

for nearby vehicles. This vehicle-edge computing paradigm is

attractive and practical for both existing ego AVs and future

connected AVs.

Privacy, however, is a big concern in vehicle-edge collabora-

tion, as the sensor data containing sensitive information leave a

vehicle and are processed on an edge server. Both the sensitive

information in the input data and the object results from the

detection network can be accessed and used by the edge server.

Recent studies focus on designing specific operations or deep

learning networks to process encrypted data, such as [3]±[8].

They protect data at the price of a prohibitive computational

overhead and/or a comprised perception accuracy.

To address these issues, we propose a framework that pro-

vides building blocks to facilitate the construction of privacy-

preserving perception networks in vehicle-edge systems. Our

proposed P3 framework explores the additive secret sharing

theory to achieve secure operations in various layers of a

CNN. Secret shares of the vehicle’s sensor data are encrypted

and distributed to two or more edge servers, each executing

a secure CNN on a secret share. Results from those edge

nodes are combined on a destination vehicle to obtain the

perception results. P3 is generic as it includes a secure version

of every commonly used layer in various object detection

CNNs, e.g., secure convolution, secure (leaky) ReLU, secure

RPN, secure (max, average, and ROI) pooling, secure fully

connected layer, secure batch normalization, etc. Developing

a privacy-preserving counterpart for a new perception network

is reduced to piecing together the corresponding secure layers

from P3, which is more cost-effective.

We present two use cases where the secure functions and

layers in our P3 framework are used to build a two-stage

privacy-preserving perception network (PP Faster R-CNN) and

a single-stage network (PP YOLO). We have implemented a

prototype of P3 and evaluated its performance on a vehicle-

edge testbed. Experimental results show the secure functions

on secret shares protect data privacy and do not compro-

mise the perception accuracy, but prolong the detection time.

Compared with a slowdown of four orders of magnitude

with homomorphic encryption on CNN, P3 achieves a sig-

nificant speed-up, which makes privacy-preserving perception

networks practical for real-world applications.

The main contributions of this paper are as follows.

• we present a novel framework for building perception net-

works aiming at protecting both vehicles’ sensor data and

U.S. Government work not protected by U.S. copyright

20
23

 3
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 a
nd

 N
et

w
or

ks
 (I

CC
CN

) |
 9

79
-8

-3
50

3-
36

18
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CC

N
58

02
4.

20
23

.1
02

30
19

1

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

perception results from being exposed to edge servers.

Our P3 framework is generic and applicable to any

existing or future perception network.

• Our design of the P3 framework is rooted in the well-

established additive secret sharing theory. Secret shares

of a vehicle’s sensor data are processed on two or more

edge servers. Furthermore, secure functions and protocols

minimize and protect the exchange of parameters between

edge servers.

• P3 provides a holistic solution to privacy-preserving per-

ception in vehicle-edge systems, including object classi-

fication, object detection, and segmentation. To the best

of our knowledge, P3 is the first of its kind that provides

a generic framework to ease the development of vehicle-

edge perception networks protecting data privacy. The use

cases and performance results indicate that P3 is easy to

use and cost-effective for privacy-preserving perception.

The rest of the paper is organized as follows. Section II

discusses the related research. Section III provides an overview

of our P3 framework. The secure operations and design of

various secure layers are detailed in Sections IV and V. Two

use cases of P3 are presented in Section VI. The performance

of privacy-preserving perception networks is evaluated in

Section VII. Section VIII concludes this paper with remarks

on future research.

II. RELATED WORK

Privacy protection for deep learning is an important research

topic and has attracted more attention. A number of techniques

have been proposed in the literature, such as homomorphic

encryption and secure multi-party computation. In this section,

we discuss the related research.

Leboe-McGowan et al. [9] proposed a heuristic privacy-

preserving CNN for image classification. Instead of pursuing

perfect ciphertext-based non-linear operations, they applied a

rough approximation to evaluate CNN’s non-linear transfor-

mation layers. It achieved a promising performance since the

complex ciphertext-based computation was avoided. However,

the accuracy of object classification was compromised, i.e., a

4% degradation of classification accuracy. P3 targets the more

comprehensive and complex perception tasks and expects to

achieve the same perception accuracy as the original deep

learning networks.

Xie et al. [10] and Erkin et al. [11] applied homomorphic

encryption to deep learning on network-connected servers. The

former devised a secure CNN model to process encrypted

data and generate results in cipher text that only the owner

of the data can decrypt. The latter focused on secure im-

age classification CNNs using fully homomorphic encryption.

These approaches aim to protect the input data and inference

results. However, homomorphic encryption causes prohibitive

computation overhead and drastic performance degradation.

For example, an implementation of the fully homomorphic

encryption for deep learning suffered from a slowdown by four

orders of magnitude [12]. The preceding works are for image

classification. The performance degradation of homomorphic

encryption for object detection is even worse, making it

impractical for real-world deployment.

Secure machine learning [13] provides secure protocols for

training ciphertext-based CNN models using linear regression

and logistic regression. A privacy-preserving deep learning

framework [14] includes secure protocols for connected

servers to share model parameters. In the framework, no

encryption or decryption was conducted on data, and there

was no guarantee that adversaries could not use those crucial

parameters to attack the system.

Perception is vital for autonomous driving. Privacy protec-

tion for perception in a vehicle-edge environment has not been

well studied. In this paper, we tackle this new problem and

present our P3 framework aiming to facilitate the development

of privacy-preserving perception networks which are run on

edge servers to process secret shares from vehicles to achieve

enhanced data privacy and uncompromised perception accu-

racy.

III. A PRIVACY-PRESERVING PERCEPTION (P3)

FRAMEWORK ON THE EDGE

A. System Architecture and Threat model

A targeted system consists of the following entities, i.e.,

autonomous vehicles (denoted by V), sensor data collected by

a vehicle (denoted by M), edge servers (denoted by E), and

attackers (denoted by A). We employ an Honest But Curious

model [15] where V is trusted, E is untrusted, and A is an

attacker. A aims to obtain and reveal M , and E performs deep

learning inferences to detect objects and may obtain M in the

process.

In the vehicle-edge environment, we focus on the privacy

of the vehicle’s sensor data M . The sensor data (such as 2D

images captured by on-vehicle cameras) may contain sensitive

information, e.g., human faces, badges with name and/or ID,

license plate numbers, locations, etc. This information may

expose the identity and/or location of vehicles, persons, and

other objects. Furthermore, sensor data captured along the

routes of a vehicle can reveal the travel patterns and frequently

visited places that the passengers want to keep private.

Traditionally, an autonomous vehicle V collects sensor

data M and sends M to a roadside edge unit E for edge-

assisted perception through a public wireless network; on E, it

processes M and returns the detection results to V . There exist

major security vulnerabilities in such cases. First, an attacker

A can eavesdrop on network traffic and obtain M . Second,

an edge server E can easily obtain M while performing per-

ception computations on M . To address these vulnerabilities

and protect vehicle sensor data, in this paper, we present the

privacy-preserving perception (P3) framework, which consists

of secure functions and layers as building blocks for any

existing and future deep learning-based perception networks.

B. Key Components of the P3 Framework

Figure 1 depicts the key components and execution flow

of our P3 framework. It includes autonomous vehicles (e.g.,

V1, Vj , Vk), edge servers (e.g., E1, E2), and a trusted server

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Key Components and Their Interactions in the Privacy-

Preserving Perception (P3) Framework.

(TS). TS is responsible for encryption key management be-

tween AV and edge server and for secure parameter exchanges

between edge servers in the execution of privacy-preserving

perception networks. The perception network run on an edge

server consists of a series of layers with secure functions. In

P3, secure functions have been developed for almost all types

of layers used in convolutional neural networks, e.g., secure

convolution, secure (leaky) ReLU, secure RPN, secure (max,

average, and ROI) pooling, secure fully connected layer, secure

batch normalization, etc.

Before the execution of a perception network on the edge,

an autonomous vehicle (AV) and edge servers connect to the

trusted server TS to obtain encryption and decryption keys

used for AV-edge communications and the parameters used by

secure functions on the edge. Once an AV (e.g., V1) decides to

offload its perception tasks to the edge, V1 partitions its sensor

data I into multiple secret shares each of which contains

random data following the additive property I = I1+ ...+ In.

These secret shares are encrypted and sent to multiple edge

servers. An edge server receives one or more (not all) secret

shares. As an illustration, In Figure 1, V1 sends C1 to E1 and

C2 to E2. E1 and E2 execute a privacy-preserving perception

network CNNsec on C1 and C2 and output O1 and O2,

respectively. By combining the outputs from edge servers, that

is O = O1 +O2, the AV can obtain the perception results. To

assure the correctness of perception, the output O should be

the same as that produced from running the original perception

network CNN (without secure functions) on the sensor data.

The key challenge is how to design the secure functions

for each layer of CNN that can process random secret shares

instead of AV’s sensor data while still producing correct de-

tection results following the additive property. In the following

sections, we detail the design of secure functions and layers

in our P3 framework and present two use cases applying P3 to

build privacy preserving perception networks for both single-

stage and two-stage object detection.

IV. SECURE OPERATIONS FOR BUILDING P3 PERCEPTION

NETWORKS

Our P3 framework leverages the theory of additive se-

cret sharing to design secure operations for each layer in a

perception CNN network. Secret sharing has been used for

cryptography in distributed systems, such as Shamir’s Secret

Sharing [16], Blakley’s Secret Sharing [17], and proactive

secret sharing [18]. In those secret sharing schemes, a secret is

partitioned into multiple pieces by using a dividing function

D(s) = s1, s2, ..sn. Each piece si is called a share of the

secret. Each secret share is kept by a different party. Recov-

ering the secret requires at least k shares of the secret where

k <= n. If a single party can gain trust from at least k owners

of secret shares, a combing function is applied to retrieve the

secret, i.e., s = C(s1, s2, ..sk). Secret sharing provides a cost-

effective approach to protect secrets without relying on keys or

complex communications. Additive secret sharing is a specific

secret sharing schema where the combing function is addition,

and all values are defined in a finite domain, i.e., s =
∑i=n

i=1
si.

Moreover, in additive secret sharing, the threshold k = n,

implying that a secret can only be revealed when all the secret

shares are obtained by one party.

We extend the additive secret sharing theory to design

secure bit-wise operations. In this section, we explain secure

bit array generation, secure bit addition, and secure bit mul-

tiplication, which are applied to various layers in perception

networks (Section V).

A. Secure Bit Array Generation

An edge server Ei receives a secret share Mi and processes

it through a perception network. Mi is transformed to feature

map(s) Fi that is passed from one layer to another in the

perception network. For a given secret share set {F1, F2...Fn},

where the secret F =
∑n

i=1
Fi, is the feature value of M . Se-

cure bit array generation (i.e., Algorithm 1) replaces each fea-

ture value secret share Fi by two bit arrays {Ti, ri}, satisfying∑n

i=1
Fi = (T1

⊕
T2

⊕
...

⊕
Tn) + (r1

⊕
r2

⊕
...
⊕

rn) =
T + r, where

⊕
denotes bit-wise addition and + represents

numeric addition. {r, τ} are two randomly generated bit arrays

by the trusted server for each round of computation, ensuring

identical plain text will be transformed into different cipher

text. The Trusted Server TS forwards {ri, τi} to edge server

Ei. Then, each edge server Ei for i = 1...(n − 1) computes

di = Fi − τi and a random bit array Ti, and sends {di, Ti}
to the edge last edge server En which computes d =

∑n

i=1
di

and Tn = d
⊕

T1

⊕
T2

⊕
....

⊕
Tn−1.

By doing so, vehicle’s sensor data M is divided into secret

shares {M1,M2, ...,Mn} and each secret share is transformed

to two bit arrays {Ti, ri}. Without knowing τi, which is only

accessible by Ei, En cannot recover τ and further reconstruct

the original sensor data M .

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Secure Bit Array Generation.

1: On Edge server Ei, i ∈ {1, ..., n}
2: Input: Vehicle sensor data Fi

3: Output: Bit array {Ti, ri}
4:

5: Trusted Server TS generates random bit array {r, τ},

where r1
⊕

r2
⊕

...
⊕

rn = τ1 + τ2 + ...+ τn, and sends

{ri, τi} to Edge server Ei;

6: Ei (i = 1...n) computes di = Fi − τi and a random bit

array Ti;

7: since T = T1

⊕
T2...

⊕
Tn = F − τ

8: Ti are random bit array that computes from Ei where

i ∈ {1, ..., n− 1}, except for Tn.

9: Ei, i ∈ {1, ..., n− 1} forward di, Ti to En, En computes

d =
∑n

i=1
di and and Tn = d

⊕
T1

⊕
T2....

⊕
Tn−1;

10: En computes d =
∑n

i=1
di and Tn =

d
⊕

T1

⊕
T2....

⊕
Tn−1;

11: Ei return {Ti, ri}.

Algorithm 1 transforms secret shares and produces random

bit arrays. Bit arrays Ti, ri are input to other secure bit-wise

operations. For example, the generated bit arrays are used

in secure bit addition. Both the addition and multiplication

protocols require limited information shared by two parties to

protect the secret share.

B. Secure Bit Addition

Given n (i.e., the number of secret shares) sets of bit array

{Ti, ri} from the Secure Bit Array Generation, the Secure

Bit Addition algorithm computes a boolean value π indicat-

ing whether M is more significant than zero, where M =∑n

i=1
hi = (T1

⊕
T2

⊕
...
⊕

Tn) + (r1
⊕

r2
⊕

...+
⊕

rn).

To protect data privacy, edge servers should not exchange

the bit arrays directly. Instead of performing numeric addi-

tions, the Secure Bit Addition algorithm conducts bit-wise

additions by only exchanging intermediate bit-wise products.

It achieves the same outputs as numeric additions when the

values of two parameters at the same location are not equal to

1 simultaneously. That is no carry to more significant bits. For

example, when n = 2, (T1

⊕
r1)

⊕
(T2

⊕
r2) = T

⊕
r = L,

then L = T + r only if there does not exist two 1s at the

same location in the bit array for T and r. Meanwhile, we

need to send the carry to a more significant bit to obtain the

correct result. To achieve this, we calculate the carry for bit

arrays {T, r} using Secure Bit Multiplication (Algorithm 3).

It returns partial carries as bit arrays {p1, p2} on edge servers

and combines the carries p1
⊕

p2 to produce p which is in a

binary representation to indicate the locations where both T
and r have 1s.

Left-shifting pi (Line 12 in In Algorithm 2) is to ensure the

generated carry is populated to the next more significant bit’s

location. In bit wise representation, the bit array’s first digit

indicates the symbol of integer value where positive numbers

have symbol value 0 while negative numbers have symbol

value 1. As a result, instead of exchanging the zi we chose to

Algorithm 2 Secure Bit Addition.

1: On Edge Server Ei, i ∈ {1, ..., n}
2: Input: Bit arrays {Ti, ri}
3: Output: Boolean π indicating the sign (i.e., positive or

negative) of (T + r)
4:

5: pi = Secure Bit Multiplication(Ti, ri);
6: zi = Ti

⊕
ri;

7: pi updates value by left-shifting one digit;

8: Edge servers exchange pi;
9: while (p1

⊕
p2

⊕
...
⊕

pn ̸= 0) do

10: Edge server Ei computes zi = zi
⊕

pi;
11: pi = Secure Bit Multiplication(zi, pi);
12: Ei updates pi by left-shifting one bit and forwards it

to other edge servers;

13: end while

14: if (zi < 0) then

15: πi = 1;

16: else

17: πi = 0;

18: end if

19: Edge servers exchange πi and compute

π = π1

⊕
π2

⊕
...
⊕

πn;

20: return π.

use πi to identify the secret’s partial symbol value, π indicates

the bit wise symbol value of z, which is identical to secret F .

At last, the protocols ensure that each side can determine the

original secret F ’s symbol without combining its secret shares.

Algorithm 3 Secure Bit Multiplication.

1: On Edge Server Ei, i ∈ {1, ..., n}
2: Input: bit arrays {Ti, ri}
3: Output: partial carry pi from T

⊗
r

4:

5: The Trusted Server TS randomly generates 3 sets

of secure bit arrays: n = n1

⊕
n2

⊕
...
⊕

nn, β =
β1

⊕
β2

⊕
...
⊕

βn, h = h1

⊕
h2

⊕
...
⊕

hn, h =
β
⊗

n, χ = rand{1, n} where χ ∈ N∗;

6: Edge Server Ei computes Ti

⊕
βi, ri

⊕
ni and exchanges

the results with other edge servers, then combines to get

A = T
⊕

n,B = r
⊕

β;

7: Qi = βi

⊗
A, Wi = ni

⊗
B, θ = A

⊗
B;

8: if (χ == i) then

9: pi = hi

⊕
Qi

⊕
Wi

⊕
θ;

10: else

11: pi = hi

⊕
Qi

⊕
Wi;

12: end if

13: return pi.

C. Secure Bit Multiplication

secure bit multiplication receives two bit arrays {Ti, ri} and

produces single bit array pi where i ∈ {1, n}. Combining pi by

XOR should retrieve bit wise multiplication of T and r which

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

is the carrying value required in secure bit addition. secure bit

multiplication requires additional sets of random parameters

n, β, h, χ to facilitate computing the multiplication of {T, r}.

The correctness of the algorithm can be proved by applying the

distribution law over conjunction and disjunction for logical

operations.

In Algorithm 3, χ is a random integer between 1 and n
and it is used to determine if θ is used to calculate pi. We

note that θ = A
⊗

B combined with n
⊕

B is eliminated in

calculating p1
⊕

p2...
⊕

pn. Thus, using θ on either side does

not affect the output. Here,
⊗

denotes bit-wise multiplication.

V. BUILDING BLOCKS IN P3: SECURE FUNCTIONS AND

LAYERS

P3 incorporates a comprehensive set of secure func-

tions/layers that process secret shares (input) to produce

feature maps (output), yielding the same detection results

as the original perception networks. The inference pro-

cess of a perception network can be expressed as v =
Li(Li−1(. . . (L1(x)))), where each Li conduct a set of linear

or nonlinear operations in the perception network.

Our design of P3 assures that the output of every layer

in a perception network follows the additive secret sharing

requirement. More specifically, as the sensor data M is divided

into n secret shares, the outputs of any layer on participating

edge servers satisfy (v1+v2+ ...+vn) equals to the output of

that layer in the original perception network run on M , where

vi denotes the output of the secure layer executed on an edge

server Ei.

For a linear transformation (denoted by Glinear) on an input

feature map F , Glinear(F) = Glinear(F1 + F2 + ...+ Fn) =
Glinear(F1) + Glinear(F2) + ... + Glinear(Fn). That is the

transformation does not alter the additive property of secret

shares. We use the original operations in a layer to process

a secret share. However, this does not hold for a non-linear

transformation and special design and operations are needed

to build a secure counterpart. We have developed the secure

versions for all the known types of layers used in various

perception networks. In this section, we explain our design

for a number of major layers.

A. Secure Convolution, Secure Fully Connected Layer, and

Layers Containing Only Linear Transformations

The convolutional layer, fully connected layer and detection

network consist of linear transformations only. Thus, we can

take the same computations in their secure counterparts. The

only difference is that the input is replaced by the secret shares

of the original input.

B. Secure Max Pooling and Secure Average Pooling

Max pooling selects the most significant features from a

feature map for a given stride. The maximum operation on a

set of features is nonlinear. Finding the maximum value from

multiple secret shares is challenging as the additive relation

among secret shares does not mean that a feature in one share

is greater than its counterparts in other shares and the values

of features in different secret shares cannot be exchanged

between edge servers for privacy protection. To address this

challenge, we design an iterative difference evaluation method

sketched in Algorithm 4. In Lines 10 and 11, each edge server

computes the difference between secret shares corresponding

to index (α, β), then exchanges the differences to calculate the

feature difference I . With I , each edge server can locate the

feature having the greatest value.

Average pooling produces the average value of features in

a region of the input feature map. To achieve secure average

pooling, we combine the means from secret shares (without

revealing a secret share itself) and divide the sum by the

number of shares, i.e., M = (m1 +m2 + · · ·+mn)/n.

Algorithm 4 Secure Max Pooling (S-MAXPOOL).

1: On Edge Server Ei, i ∈ {1, 2, ...n}
2: Input: feature map secret share Fi

3: Output: partial maximum feature values

4:

5: for each channel j in feature map Fi do

6: Fij = the feature map Fi in the jth channel;

7: w, h are max pooling strides;

8: for each feature max pool stride region R in Fij , w
in [0, 1], h in [0, 1] do

9: Pooling index α = 0, β = 0;

10: Ii = R[α][β]−R[w][h];
11: Ei, Eq exchange Ii, Iq and compute I = Ii + Iq;

12: if I < 0 then

13: α = w, β = h;

14: end if

15: end for

16: return R[α][β].
17: end for

C. Secure Region Proposal Network

A region proposal network (RPN) takes feature maps as

input and predicts object bounds and objectness scores at each

position. In the secure RPN (Algorithm 5), the input is a secret

share of feature map. The anchor box generation part remains

unchanged as the locations of anchor points are fixed. Each

edge server generates a large number of anchor boxes, with

each individual box having identical coordinates across all

secret shares. Note secure RPN only produces partial anchor

box offsets and credit scores. Thus, edge servers exchange and

combine those partial results to obtain the actual scores and

offsets of the generated boxes.

In addition, the non-maximum suppression (NMS) requires

the credit score of each bounding box to remove overlapping

boxes. Thus, the combined credit score from edge servers is

used by NMS to filter out overlapping bounding boxes and

keep those with reliable credit scores.

D. Secure Region of Interest Pooling

Region of interest (ROI) pooling converts all the proposals

to fixed shape as required by a detection network. Secure

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5 Secure Region Proposal Network (S-RPN).

1: On Edge Server Ei, i ∈ {1, 2, ...n}
2: Input: feature map secret share Fi

3: Output: partial region proposals

4:

5: Ei generates the anchor boxes set Bi for Fi;

6: for each anchor box bi in Bi do

7: Ei computes partial credit score and offset ci, oi =
Lin(bi);

8: Edge servers exchange {ci, oi}, and compute c =∑n

i=1
ci, o =

∑n

i=1
oi;

9: Proposals are produced by applying offset o to anchor

boxes Bi;

10: NMS identifies and removes overlapped anchor boxes

Bi = NMS(Bi, c);
11: end for

12: return Bi, c.

ROI pooling takes a secret share of feature map from a

backbone network and region proposals from RPN as input.

Region proposal-based feature extraction is performed using

the secret share to obtain proposal patches Pi. As shown in

Algorithm 6, each patch p is flattened to a one-dimensional

array with size (w(p) ∗ h(p)). A difference table Ti with

size (w(p) ∗ h(p))2 is created. The table Ti[m][n] stores the

difference η for p[m] and p[n] on an edge server Ei. Edge

servers exchange their difference tables through TS and then

calculate T = T1 + T2 + · · · + Tn which represents the

difference of feature values from F on the patch p (i.e.,

T [m][n] = p[m] − p[n]). If all the values in row v of T are

positive, then the corresponding value in p[v] is greater than

others.

E. Secure ReLU and Secure Leaky ReLU

ReLU introduces non-linearity to feature maps by applying

a rectifier function. Specifically, ReLU preserves positive

features while replacing negative ones by zero. However, for

secure ReLU, the input is a secret share of a feature map.

We design the secure ReLU by leveraging the secure bit-

wise operations presented in Section IV to extract secret’s

sign (positive or negative). First, we use secure bit generation

(Algorithm 1) to produce bit arrays from a secret share. The

bit arrays are then used as parameters to the secure bit addition

(Algorithm 2) which performs bit-wise addition on the bit

arrays with the combined carry produced by the secure bit

multiplication (Algorithm 3).

The secure bit addition produces a partial sign πi satisfying

π = π1

⊕
π2

⊕
...

⊕
πn has the same sign as that in F , where

1 means negative and 0 is positive. Thus, the secure ReLU can

perform the rectifier function correctly even without knowing

the actual values of features.

Leaky ReLU is similar to ReLU with the difference in

the return value when a feature is negative. Specifically, for

a negative feature, leaky ReLU multiplies the feature by a

coefficient (e.g., 0.1), rather than simply returning zero. The

Algorithm 6 Secure ROI Pooling (S-ROIPOOL).

1: On Edge Server Ei, i ∈ {1, 2, ...n}
2: Input: feature map secret share Fi, region proposal RP
3: Output: fixed-size partial maximum features in region

proposals

4:

5: Extract region-based features Ki from Fi with the scaled

proposal’s coordinates µ, υ generated from the input pro-

posals RP ;

6: Calculate a width stride = width(Ki)/w and a height stride

= height(Ki)/h;

7: Divide Ki into patches Pi based on the width stride and

height stride;

8: for each patch p in Pi do

9: Flatten p into one dimension;

10: Create difference table Ti with a size (w(p) ∗ h(p))2;

11: Ti[m][n] = p[m]− p[n];
12: Ei exchanges the difference table Ti with other edge

servers and collaboratively computes the difference table

T =
∑n

i=1
Ti;

13: for each row in T do

14: if all the values in that row are greater than 0 then

15: return the index of the row, v.

16: end if

17: end for

18: return p[v].
19: end for

Algorithm 7 Secure ReLU (S-ReLU).

1: On Edge Server Ei, i ∈ {1, 2, ...n}
2: Input: feature map secret share Fi

3: Output: partial positive features or zero

4:

5: for each feature f in the secret share Fi do

6: {Ti, ri} = Secure Bit Array Generation(Fi);
7: if (Secure Bit Addition(Ti, ri) == 1) then

8: f = 0;

9: end if

10: return Fi.

11: end for

secure leaky ReLU is designed in a similar way. Due to the

space limit, we do not include its pseudocode in this paper.

VI. USE CASES OF P3

A. Use Case 1: Building Privacy-Preserving Two-Stage Per-

ception Network

The P3 framework provides the building blocks to facilitate

the construction of privacy-preserving CNNs for various per-

ception tasks, such as object classification, object detection,

and segmentation. In this case study, we select a two-stage

object detection network to illustrate the application of P3 to

real-world systems.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Use case 1: Building a privacy-preserving two-stage

perception network using P3.

Two-stage object detectors divide the detection task into

two phases, i.e., 1) locating potential objects with bounding

boxes, called region proposals, and 2) forwarding the region

proposals to a prediction network to compute classification

scores. Region-based CNNs, such as R-CNN [19], Fast R-

CNN [20], and Faster R-CNN [21], are widely used two-

stage object detection networks. R-CNN detects objects by

extracting regions of interest with bounding boxes on images.

To determine region proposals, a selective search algorithm

[22] is used.

The original Faster R-CNN network does not protect input

data, which allows edge servers to easily access vehicles’

images. To create a privacy-preserving Faster R-CNN (PP

Faster R-CNN in short) network, we use the secure functions

and layers in P3 to replace the components in Faster R-CNN,

i.e., backbone CNN, Region proposal network (RPN), ROI

pooling, and detection network. Figure 2 depicts the workflow

of a PP Faster R-CNN compared with the original network.

The VGG 16 backbone includes 13 Convolutional layers, 13

ReLU layers, and 5 Max Pooling layers, which extract features

of size 50*50*512 (width, height, channel). RPN produces

2,000 anchor boxes for a feature map. ROI pooling reshapes

the feature map combined with region proposals to the same

size, and the detection network generates the detection result.

The PP Faster R-CNN takes a similar architecture, i.e.,

secure VGG backbone, secure RPN, secure ROI pooling,

and secure detection network. The secure VGG backbone is

composed of 13 secure convolutional layers, 13 secure ReLU

layers, and five secure max pooling layers. The P3 framework

provides all of those layers. We simply replace the original

layers by the secure versions.

To use the PP Faster R-CNN in a real-world environment,

a vehicle creates two or more secret shares (M1,M2, ...) for

an image from its sensor. These secret shares are transferred

to edge servers, protected by encryption with keys obtained

from TS. Each edge server processes a secret share through

the PP Faster R-CNN. The outputs from the edge servers are

combined (O1 +O2 + ...) to obtain the detected objects.

Fig. 3: Use case 2: Building a privacy-preserving single-stage

perception network using P3.

B. Use Case 2: Building Privacy-Preserving Single-Stage

Perception Network

A single-stage object detector scans an image only once to

produce both classifications and bounding boxes of objects.

Usually, single-stage detectors are faster than two-stage ones.

YOLO [23] is a widely used single-stage detection network.

The architecture of YOLO with Darknet is depicted in Figure

3. It consists of 24 convolutional layers, four max pooling

layers, and two fully connected layers. Leaky ReLU is used

in all layers except for the last activation layer. Darknet

computes features from an image and divides into fixed grids

and an underlying CNN predicts the confidence score and

classification score for each grid cell.

The privacy-preserving YOLO (PP YOLO in short) contains

secure convolutional layers, secure max pooling layers, secure

leaky ReLU, and secure fully connected layers, as illustrated

in Figure 3. The workflow using PP YOLO is similar with that

using PP Faster R-CNN, involving partitioning vehicle images,

executing PP YOLO on multiple edge servers, and combining

outputs.

The YOLO family includes a series of enhanced networks

which improve the accuracy of bounding boxs’ placement and

object classification. For example, YOLO9000 [24] applies

batch normalization and anchor boxes in Darknet19, and

YOLO3 [25] applies Darknet53 with 53 convolutional layers

and uses logistic regression to calculate the objectiveness score

of each bounding box. Our P3 framework provides secure

functions/layers to build the privacy-preserving version of

those enhanced YOLO networks. Furthermore, the building

blocks in P3 are generic and applicable to future perception

networks.

VII. PERFORMANCE EVALUATION

We have implemented a prototype P3 system and several

proof-of-concept privacy-preserving perception networks us-

ing P3. We evaluate their performance on a vehicle-edge

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Privacy-preserving perception network built on P3

achieves the same accuracy as the original network.

Fig. 5: MAPE in perception by privacy-preserving (PP) Faster

R-CNN and YOLO.

testbed. A Polaris GEM e4 electric vehicle is equipped with

a set of Sekonix cameras, one Velodyne LiDAR, one Delphi

radar, GPS and IMU sensors. The on-vehicle processing unit

is AStuff Spectra. Each edge server has an AMD Ryzen 7

processor with 6 cores at 3.2 GHz and 16 GB DRAM, and

runs Ubuntu Linux v20.04 and Python v3.8. We conducted our

experiments on the COCO dataset [26], a widely used object-

detection dataset. Among the 80+ categories of objects in

the COCO dataset, the experiment focuses on transportation-

related objects, such as vehicles, traffic signs, and pedestrians.

In our experiments, we build privacy-preserving CNNs (PP

CNNs in short) using pre-trained models. The PP CNNs are

implemented on PyTorch v0.4.0 and Torch v0.20. The models

are trained by using 5,000 images from COCO with 135

epochs, 40 batches, and a 0.01 learning rate. 350 images from

COCO containing the 15 most frequent street view object

classes are selected for inference.

A. Perception Accuracy

The perception results by PP Faster R-CNN and PP YOLO

are depicted in Figure 5. In total, 35 object categories are

evaluated and PP Faster R-CNN and PP YOLO correctly detect

all of them.

We further calculate the mean absolute percentage error

(MAPE) between the PP Faster R-CNN and PP YOLO and

the original Faster R-CNN and YOLO respectively. Figure 5

lists the MAPE results which indicate PP CNNs achieve the

same accuracy as the original CNNs.

Fig. 6: Performance of secure bit addition.

Fig. 7: Performance of secure bit multiplication.

B. Results of Perception Time

In order to understand the speed of a PP CNN built from

P3, we measure the execution time of the major operations and

secure layers. These include the secure bit addition (Figure

6), secure bit multiplication (Figure 7), secure convolution

layer (Figure 8), secure ReLU (Figure 9), secure Max pooling

(Figure 10), secure Average pooling (Figure 11), secure RPN

(Figure 12), and secure ROI pooling(Figure 13).

Here are some important findings. The execution time of the

secure bit multiplication increases linearly with the number of

invocations and the input size, whereas that of the secure bit

addition depends mostly on the input size. The execution time

of the secure ReLU increases exponentially with the input

size caused by the random bit array generation and secure

bit addition. The execution times of secure Convolution, Max

pooling, and Average pooling are also affected by the input

size. The execution time of the secure RPN increases as the

number of anchor boxes increases. The secure ROI pooling

has a longer execution time caused by the construction of the

difference table and comparison, especially for large bounding

boxes.

Figure 15 compares the inference time of PP Faster R-CNN

and PP YOLO, which is 28.398 seconds and 3.081 seconds,

respectively. The results show that most of the degradation

comes from the secure functions for non-linear operations.

This is due to the expensive bit-wise operations, including

secure bit array generation, secure bit addition, and secure bit

multiplication.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Performance of secure Convolution.

Fig. 9: Performance of secure ReLU.

Fig. 10: Performance of secure Max Pooling.

Fig. 11: Performance of secure Average Pooling.

Fig. 12: Performance of secure RPN.

Fig. 13: Performance of secure ROI Pooling.

We also measure the additional storage and network band-

width used by PP CNNs. The data transfer time by PP Faster

R-CNN and PP YOLO is 15.16 seconds and 12.3 seconds,

respectively, with a 300 Mbps bandwidth. PP Faster R-CNN

displays a longer data transfer time due to the two-stage

structure of its perception network which transfers additional

data for secure RPN and secure ROI pooling. The amount of

data included in secret shares, feature maps, and intermediate

data from secure operations is compared in Figure 14. PP

YOLO produces a smaller amount of data due to the fewer

number of layers and smaller input size.

Figure 16 compares the inference performance of PP YOLO

and PP Faster R-CNN built by using our P3 framework

and that of CryptoNets which uses a leveled homomorphic

encryption scheme. It is clear that both PP YOLO and PP

Faster R-CNN are significantly faster than CryptoNets, i.e., a

Fig. 14: Comparison of data storage between a perception

network and the privacy-preserving version.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 15: Execution time of different layers in a perception

network vs. those in the privacy-preserving version.

Fig. 16: Performance comparison between privacy-preserving

CNNs (using P3) with CryptoNets.

83.3X and 8.8X speedup, respectively. This shows the privacy-

preserving perception networks built from P3 are more pratical

for real-world applications.

VIII. CONCLUSION

Perception is crucial for autonomous driving. We study the

privacy protection of vehicles’ sensor data and perception re-

sults in vehicle-edge environments. We present a novel frame-

work (P3) that incorporates secure functions for all the known

types of layers used in various perception networks. These

building blocks ease the construction of privacy-preserving

perception networks for edge servers to process sensor data

from vehicles while protecting data privacy. Experimental

results show that perception on multiple edge servers achieves

the same accuracy with reasonable performance degradation.

In our future research, we will optimize and accelerate the

secure functions/layers in P3 to speed up perception for real-

time applications.

ACKNOWLEDGEMENT

This work has been supported in part by the U.S.

National Science Foundation grants CNS-2231519, CNS-

2113805, CNS-1852134, OAC-2017564, ECCS-2010332,

CNS-2037982, DUE-2225229, and CNS-1828105.

REFERENCES

[1] S. Campbell, N. O’Mahony et al., ªSensor technology in autonomous
vehicles: A review,º in IEEE ISSC, 2018.

[2] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, ªEdge computing
for autonomous driving: Opportunities and challenges,º Proceedings of

the IEEE, vol. 107, no. 8, pp. 1697±1716, 2019.
[3] J. Fan and F. Vercauteren, ªSomewhat practical fully homomorphic

encryption,º Cryptology ePrint Archive, 2012.
[4] C. Gentry, A fully homomorphic encryption scheme. Stanford Univer-

sity, 2009.
[5] D. StehlÂe and R. Steinfeld, ªFaster fully homomorphic encryption,º in

International Conference on the Theory and Application of Cryptology

and Information Security. Springer, 2010, pp. 377±394.
[6] N. P. Smart and F. Vercauteren, ªFully homomorphic encryption with

relatively small key and ciphertext sizes,º in Workshop on Public Key

Cryptography, 2010.
[7] Y. Sun, R. Lu, X. Lin, X. Shen, and J. Su, ªAn efficient pseudonymous

authentication scheme with strong privacy preservation for vehicular
communications,º IEEE Transactions on Vehicular Technology, vol. 59,
no. 7, pp. 3589±3603, 2010.

[8] C. Juvekar, V. Vaikuntanathan et al., ªGazelle: A low latency framework
for secure neural network inference,º in USENIX Security, 2018.

[9] D. Leboe-McGowan, M. M. Al Aziz, and N. Mohammed, ªSimple
approximations for fast and secure deep learning on genomic data,º in
IEEE IEMCON, 2020.

[10] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, ªCrypto-nets: Neural networks over encrypted data,º arXiv

preprint arXiv:1412.6181, 2014.
[11] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, ªGenerating private

recommendations efficiently using homomorphic encryption and data
packing,º IEEE Trans. on Information Forensics and Security, vol. 7,
no. 3, pp. 1053±1066, 2012.

[12] N. J. H. Marcano, M. Moller et al., ªOn fully homomorphic encryption
for privacy-preserving deep learning,º in IEEE Globecom, 2019.

[13] P. Mohassel and Y. Zhang, ªSecureml: A system for scalable privacy-
preserving machine learning,º in IEEE SP, 2017.

[14] R. Shokri and V. Shmatikov, ªPrivacy-preserving deep learning,º in ACM

CCS, 2015.
[15] O. Goldreich, Foundations of cryptography: volume 2, basic applica-

tions. Cambridge University Press, 2009.
[16] M. Naor and A. Shamir, ªVisual cryptography,º in Workshop on the

Theory and Application of of Cryptographic Techniques, 1994.
[17] E. F. Brickell, ªSome ideal secret sharing schemes,º in Workshop on

the Theory and Application of of Cryptographic Techniques. Springer,
1989, pp. 468±475.

[18] A. Herzberg, S. Jarecki et al., ªProactive secret sharing or: How to cope
with perpetual leakage,º in Crypto, 1995.

[19] R. Girshick, J. Donahue et al., ªRich feature hierarchies for accurate
object detection and semantic segmentation,º in IEEE CVPR, 2014.

[20] R. Girshick, ªFast r-cnn,º in IEEE ICCV, 2015.
[21] S. Ren, K. He, R. Girshick, and J. Sun, ªFaster r-cnn: Towards real-time

object detection with region proposal networks,º Advances in neural

information processing systems, vol. 28, pp. 91±99, 2015.
[22] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,

ªSelective search for object recognition,º International journal of com-

puter vision, vol. 104, no. 2, pp. 154±171, 2013.
[23] J. Redmon, S. Divvala et al., ªYou only look once: Unified, real-time

object detection,º in IEEE CVPR, 2016.
[24] J. Redmon and A. Farhadi, ªYolo9000: better, faster, stronger,º in IEEE

CVPR, 2017.
[25] ÐÐ, ªYolo v3: An incremental improvement,º arXiv:1804.02767, 2018.
[26] T.-Y. Lin, M. Maire et al., ªMicrosoft coco: Common objects in context,º

in ECCV, 2014.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

