2023 32nd International Conference on Computer Communications and Networks (ICCCN) | 979-8-3503-3618-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICCCN58024.2023.10230191

P>: A Privacy-Preserving Perception Framework for Building
Vehicle-Edge Perception Networks Protecting Data Privacy

Tianyu Bai, Danyang Shao, Ying He, Song Fu, and Qing Yang
Department of Computer Science and Engineering
University of North Texas, Denton, Texas
{TianyuBai, DanyangShao, YingHe}@my.unt.edu, {Song.Fu, Qing.Yang} @unt.edu

Abstract—With the wider adoption of edge computing services,
intelligent edge devices, and high-speed V2X communication,
compute-intensive tasks for autonomous vehicles, such as percep-
tion using camera, LiDAR, and/or radar data, can be partially
offloaded to road-side edge units. However, data privacy becomes
a major concern for vehicular edge computing, as sensor data
with sensitive information from vehicles can be observed and
used by edge servers. We aim to address the privacy problem by
protecting both vehicles’ sensor data and the detection results.
In this paper, we present a privacy preserving perception (P%)
framework which provides a secure version of every commonly
used layers in various perception CNN networks. They server
as the building blocks to facilitate the construction of a privacy
preserving CNN for any existing or future network. P* leverages
the additive secret sharing theory to develop secure functions
for perception networks. A vehicle’s sensor data is split and
encrypted into multiple secret shares, each of which is processed
on an edge server by going through the secure layers of a
detection network. The detection results can only be obtained by
combining the partial results from the participating edge servers.
We present two use cases where the secure layers in P> are used
to build privacy preserving both single-stage and two-stage object
detection CNNs. Experimental results indicate data privacy for
vehicles is protected without comprising the detection accuracy
and with a reasonable amount of performance degradation. To
the best of our knowledge, this is the first work that provides
a generic framework to ease the development of vehicle-edge
perception networks protecting data privacy.

Index Terms—Edge Computing, Vehicle Computing, Data
Privacy, Deep Learning, Perception, Connected and Autonomous
Vehicles.

I. INTRODUCTION

Autonomous vehicles (AVs) have been attracting more and
more attention and interest in both industry and academia.
AVs rely on various sensors, e.g., camera, LiDAR, radar, GPS,
IMU, etc., to perceive the surrounding environment and plan
movement and routes [1]. To achieve autonomous driving,
objects on the road should be detected accurately and quickly.
The latest perception (object classification, object detection,
and segmentation) methods or systems mostly use deep learn-
ing for detection. Although they are more accurate, deep
learning networks are compute intensive and require powerful
computing capacity on a vehicle. Furthermore, perception
network is only one of the many deep learning networks that
are run on a vehicle for various autonomous driving tasks.

To provide reliable computing power for delay-sensitive
applications, edge computing [2] offers a cost-effective and
scalable way to execute part of those deep learning workloads

U.S. Government work not protected by U.S. copyright

for nearby vehicles. This vehicle-edge computing paradigm is
attractive and practical for both existing ego AVs and future
connected AVs.

Privacy, however, is a big concern in vehicle-edge collabora-
tion, as the sensor data containing sensitive information leave a
vehicle and are processed on an edge server. Both the sensitive
information in the input data and the object results from the
detection network can be accessed and used by the edge server.
Recent studies focus on designing specific operations or deep
learning networks to process encrypted data, such as [3]-[8].
They protect data at the price of a prohibitive computational
overhead and/or a comprised perception accuracy.

To address these issues, we propose a framework that pro-
vides building blocks to facilitate the construction of privacy-
preserving perception networks in vehicle-edge systems. Our
proposed P3 framework explores the additive secret sharing
theory to achieve secure operations in various layers of a
CNN. Secret shares of the vehicle’s sensor data are encrypted
and distributed to two or more edge servers, each executing
a secure CNN on a secret share. Results from those edge
nodes are combined on a destination vehicle to obtain the
perception results. P3 is generic as it includes a secure version
of every commonly used layer in various object detection
CNNE, e.g., secure convolution, secure (leaky) ReLU, secure
RPN, secure (max, average, and ROI) pooling, secure fully
connected layer, secure batch normalization, etc. Developing
a privacy-preserving counterpart for a new perception network
is reduced to piecing together the corresponding secure layers
from P3, which is more cost-effective.

We present two use cases where the secure functions and
layers in our P? framework are used to build a two-stage
privacy-preserving perception network (PP Faster R-CNN) and
a single-stage network (PP YOLO). We have implemented a
prototype of P3 and evaluated its performance on a vehicle-
edge testbed. Experimental results show the secure functions
on secret shares protect data privacy and do not compro-
mise the perception accuracy, but prolong the detection time.
Compared with a slowdown of four orders of magnitude
with homomorphic encryption on CNN, P? achieves a sig-
nificant speed-up, which makes privacy-preserving perception
networks practical for real-world applications.

The main contributions of this paper are as follows.

« we present a novel framework for building perception net-

works aiming at protecting both vehicles’ sensor data and

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

perception results from being exposed to edge servers.
Our P? framework is generic and applicable to any
existing or future perception network.

o Our design of the P3 framework is rooted in the well-
established additive secret sharing theory. Secret shares
of a vehicle’s sensor data are processed on two or more
edge servers. Furthermore, secure functions and protocols
minimize and protect the exchange of parameters between
edge servers.

o P2 provides a holistic solution to privacy-preserving per-
ception in vehicle-edge systems, including object classi-
fication, object detection, and segmentation. To the best
of our knowledge, P? is the first of its kind that provides
a generic framework to ease the development of vehicle-
edge perception networks protecting data privacy. The use
cases and performance results indicate that P? is easy to
use and cost-effective for privacy-preserving perception.

The rest of the paper is organized as follows. Section II
discusses the related research. Section III provides an overview
of our P? framework. The secure operations and design of
various secure layers are detailed in Sections IV and V. Two
use cases of P? are presented in Section VI. The performance
of privacy-preserving perception networks is evaluated in
Section VII. Section VIII concludes this paper with remarks
on future research.

II. RELATED WORK

Privacy protection for deep learning is an important research
topic and has attracted more attention. A number of techniques
have been proposed in the literature, such as homomorphic
encryption and secure multi-party computation. In this section,
we discuss the related research.

Leboe-McGowan et al. [9] proposed a heuristic privacy-
preserving CNN for image classification. Instead of pursuing
perfect ciphertext-based non-linear operations, they applied a
rough approximation to evaluate CNN’s non-linear transfor-
mation layers. It achieved a promising performance since the
complex ciphertext-based computation was avoided. However,
the accuracy of object classification was compromised, i.e., a
4% degradation of classification accuracy. P? targets the more
comprehensive and complex perception tasks and expects to
achieve the same perception accuracy as the original deep
learning networks.

Xie et al. [10] and Erkin et al. [11] applied homomorphic
encryption to deep learning on network-connected servers. The
former devised a secure CNN model to process encrypted
data and generate results in cipher text that only the owner
of the data can decrypt. The latter focused on secure im-
age classification CNNs using fully homomorphic encryption.
These approaches aim to protect the input data and inference
results. However, homomorphic encryption causes prohibitive
computation overhead and drastic performance degradation.
For example, an implementation of the fully homomorphic
encryption for deep learning suffered from a slowdown by four
orders of magnitude [12]. The preceding works are for image
classification. The performance degradation of homomorphic

encryption for object detection is even worse, making it
impractical for real-world deployment.

Secure machine learning [13] provides secure protocols for
training ciphertext-based CNN models using linear regression
and logistic regression. A privacy-preserving deep learning
framework [14] includes secure protocols for connected
servers to share model parameters. In the framework, no
encryption or decryption was conducted on data, and there
was no guarantee that adversaries could not use those crucial
parameters to attack the system.

Perception is vital for autonomous driving. Privacy protec-
tion for perception in a vehicle-edge environment has not been
well studied. In this paper, we tackle this new problem and
present our P? framework aiming to facilitate the development
of privacy-preserving perception networks which are run on
edge servers to process secret shares from vehicles to achieve
enhanced data privacy and uncompromised perception accu-
racy.

III. A PRIVACY-PRESERVING PERCEPTION (P?)
FRAMEWORK ON THE EDGE

A. System Architecture and Threat model

A targeted system consists of the following entities, i.e.,
autonomous vehicles (denoted by V'), sensor data collected by
a vehicle (denoted by M), edge servers (denoted by E), and
attackers (denoted by A). We employ an Honest But Curious
model [15] where V is trusted, F is untrusted, and A is an
attacker. A aims to obtain and reveal M, and E performs deep
learning inferences to detect objects and may obtain M in the
process.

In the vehicle-edge environment, we focus on the privacy
of the vehicle’s sensor data M. The sensor data (such as 2D
images captured by on-vehicle cameras) may contain sensitive
information, e.g., human faces, badges with name and/or ID,
license plate numbers, locations, etc. This information may
expose the identity and/or location of vehicles, persons, and
other objects. Furthermore, sensor data captured along the
routes of a vehicle can reveal the travel patterns and frequently
visited places that the passengers want to keep private.

Traditionally, an autonomous vehicle V collects sensor
data M and sends M to a roadside edge unit E for edge-
assisted perception through a public wireless network; on E, it
processes M and returns the detection results to V. There exist
major security vulnerabilities in such cases. First, an attacker
A can eavesdrop on network traffic and obtain M. Second,
an edge server E can easily obtain M while performing per-
ception computations on M. To address these vulnerabilities
and protect vehicle sensor data, in this paper, we present the
privacy-preserving perception (P?) framework, which consists
of secure functions and layers as building blocks for any
existing and future deep learning-based perception networks.

B. Key Components of the P? Framework

Figure 1 depicts the key components and execution flow
of our P? framework. It includes autonomous vehicles (e.g.,
Vi,Vj, Vi), edge servers (e.g., E'y, Ey), and a trusted server

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Secure CNN Model (secure convolutional layer, secure ReLU, secure max
pooling, secure average pooling, secure max out, secure fully connected
layer, secure RPN, secure ROI pooling, secure detection network)

Edge Server £ 1pmmmpgy Sccure Protocols Edge ServerE2
ity ok 1 nﬁRandom Array | n:::::::::.:
¥ ax N R t
o G Ck[.C2 Gl Cer1 Ol
Oj 1' “\ . .. ’l, “‘ Q]+]
1 H L IR | N
o - ,‘\ Lo,)
. . ‘Trusted Setve 2 |
<7 ! -’ y / s 4
Y ———Keys— +—Keys N T
R R P
O O’ Crila, key) €O ®) O ®)
Vehicle v, 1t Vehicle ¥ Vehicle V;
------------- Communication Link Secure Link

Fig. 1: Key Components and Their Interactions in the Privacy-
Preserving Perception (P?) Framework.

(T'S). TS is responsible for encryption key management be-
tween AV and edge server and for secure parameter exchanges
between edge servers in the execution of privacy-preserving
perception networks. The perception network run on an edge
server consists of a series of layers with secure functions. In
P3, secure functions have been developed for almost all types
of layers used in convolutional neural networks, e.g., secure
convolution, secure (leaky) ReLU, secure RPN, secure (max,
average, and ROI) pooling, secure fully connected layer, secure
batch normalization, etc.

Before the execution of a perception network on the edge,
an autonomous vehicle (AV) and edge servers connect to the
trusted server 7'S to obtain encryption and decryption keys
used for AV-edge communications and the parameters used by
secure functions on the edge. Once an AV (e.g., V1) decides to
offload its perception tasks to the edge, V) partitions its sensor
data I into multiple secret shares each of which contains
random data following the additive property [= I} + ...+ I,,.
These secret shares are encrypted and sent to multiple edge
servers. An edge server receives one or more (not all) secret
shares. As an illustration, In Figure 1, V; sends C to E; and
C5 to E5. E7 and F, execute a privacy-preserving perception
network C'N Ng.. on C7 and C5 and output O; and Os,
respectively. By combining the outputs from edge servers, that
is O = O1 + O2, the AV can obtain the perception results. To
assure the correctness of perception, the output O should be
the same as that produced from running the original perception
network C NN (without secure functions) on the sensor data.

The key challenge is how to design the secure functions
for each layer of C NN that can process random secret shares
instead of AV’s sensor data while still producing correct de-
tection results following the additive property. In the following
sections, we detail the design of secure functions and layers

in our P framework and present two use cases applying P to
build privacy preserving perception networks for both single-
stage and two-stage object detection.

IV. SECURE OPERATIONS FOR BUILDING P3 PERCEPTION
NETWORKS

Our P? framework leverages the theory of additive se-
cret sharing to design secure operations for each layer in a
perception CNN network. Secret sharing has been used for
cryptography in distributed systems, such as Shamir’s Secret
Sharing [16], Blakley’s Secret Sharing [17], and proactive
secret sharing [18]. In those secret sharing schemes, a secret is
partitioned into multiple pieces by using a dividing function
D(s) = s1,82,..8,. Bach piece s; is called a share of the
secret. Each secret share is kept by a different party. Recov-
ering the secret requires at least k shares of the secret where
k <= n. If a single party can gain trust from at least k¥ owners
of secret shares, a combing function is applied to retrieve the
secret, i.e., s = C'(s1, S2, ..k). Secret sharing provides a cost-
effective approach to protect secrets without relying on keys or
complex communications. Additive secret sharing is a specific
secret sharing schema where the combing function is addition,
and all values are defined in a finite domain, i.e., s = Y .| ;.
Moreover, in additive secret sharing, the threshold £ = n,
implying that a secret can only be revealed when all the secret
shares are obtained by one party.

We extend the additive secret sharing theory to design
secure bit-wise operations. In this section, we explain secure
bit array generation, secure bit addition, and secure bit mul-
tiplication, which are applied to various layers in perception
networks (Section V).

A. Secure Bit Array Generation

An edge server E; receives a secret share M; and processes
it through a perception network. M; is transformed to feature
map(s) F; that is passed from one layer to another in the
perception network. For a given secret share set { F}, F5...F, },
where the secret I’ = Z?:l F;, is the feature value of M. Se-
cure bit array generation (i.e., Algorithm 1) replaces each fea-
ture value secret share F; by two bit arrays {7}, r;}, satisfying
S F = (T D@ BT+ (n®r@® ... ®r.) =
T + r, where @ denotes bit-wise addition and + represents
numeric addition. {r, 7} are two randomly generated bit arrays
by the trusted server for each round of computation, ensuring
identical plain text will be transformed into different cipher
text. The Trusted Server T'S forwards {r;, 7;} to edge server
E;. Then, each edge server E; for i = 1...(n — 1) computes
d; = F; — 7; and a random bit array 7;, and sends {d;,T;}
to the edge last edge server E,, which computes d = >, d;
and Tn = d@Tl @TQ @ @Tnfl.

By doing so, vehicle’s sensor data M is divided into secret
shares {M;, Ma, ..., M, } and each secret share is transformed
to two bit arrays {T;,r; }. Without knowing 7;, which is only
accessible by F;, E,, cannot recover 7 and further reconstruct
the original sensor data M.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Secure Bit Array Generation.

Algorithm 2 Secure Bit Addition.

On Edge server E;, i € {1,...,n}
Input: Vehicle sensor data F;
Output: Bit array {7}, r;}

A

Trusted Server T'S generates random bit array {r,7},

where 7 Pro@...Pr, =71+ 7+ ...+ 7, and sends

{ri,7;} to Edge server F;

6: F; (i = 1...n) computes d; = F; — 7; and a random bit
array T;

7.since T=T1PTr..PL, =F—71

8: T; are random bit array that computes from FE; where
i€ {l,...,n— 1}, except for T),.

9: B, i €{l,...,n—1} forward d;, T; to E,, E,, computes
d=" diandand T,, =dPT1 PTo... B Tn—1;

10: B, computes d = >t ,di and T, =

d@Tl @TQ @Tnfl;

11: E; return {7T;,r;}.

Algorithm 1 transforms secret shares and produces random
bit arrays. Bit arrays T}, r; are input to other secure bit-wise
operations. For example, the generated bit arrays are used
in secure bit addition. Both the addition and multiplication
protocols require limited information shared by two parties to
protect the secret share.

B. Secure Bit Addition

Given n (i.e., the number of secret shares) sets of bit array
{T;,r;} from the Secure Bit Array Generation, the Secure
Bit Addition algorithm computes a boolean value 7 indicat-
ing whether M is more significant than zero, where M =
Z;L:l h7 = (Tl @TQ @ @Tn) + (T1 @T‘Q @ o+ @Tn).

To protect data privacy, edge servers should not exchange
the bit arrays directly. Instead of performing numeric addi-
tions, the Secure Bit Addition algorithm conducts bit-wise
additions by only exchanging intermediate bit-wise products.
It achieves the same outputs as numeric additions when the
values of two parameters at the same location are not equal to
1 simultaneously. That is no carry to more significant bits. For
example, when n =2, (T1 @r1) DT Pr:) =T Pr =L,
then L = T + r only if there does not exist two 1s at the
same location in the bit array for 7" and r. Meanwhile, we
need to send the carry to a more significant bit to obtain the
correct result. To achieve this, we calculate the carry for bit
arrays {T,r} using Secure Bit Multiplication (Algorithm 3).
It returns partial carries as bit arrays {p1, p2} on edge servers
and combines the carries p; @) p2 to produce p which is in a
binary representation to indicate the locations where both T
and r have Is.

Left-shifting p; (Line 12 in In Algorithm 2) is to ensure the
generated carry is populated to the next more significant bit’s
location. In bit wise representation, the bit array’s first digit
indicates the symbol of integer value where positive numbers
have symbol value 0 while negative numbers have symbol
value 1. As a result, instead of exchanging the z; we chose to

1: On Edge Server E;, i € {1,...,n}

2: Input: Bit arrays {7;,7;}

3: Output: Boolean 7 indicating the sign (i.e., positive or
negative) of (7 +)

4:

5: p; = Secure_Bit_Multiplication(7;, 7;);

6: z; =15 @ Tis

7: p; updates value by left-shifting one digit;

8: Edge servers exchange p;;

9: while (p; Pp2P ... Ppn #0) do

10: Edge server E; computes z; = z; P p;;

11: p; = Secure_Bit_Multiplication(z;, p;);

12: FE; updates p; by left-shifting one bit and forwards it
to other edge servers;

13: end while

14: if (z; < 0) then

15: =1

16: else

17: m = 0;

18: end if

19: Edge servers exchange 5 and compute

T=m Pra@@.. P

20: return 7.

use 7; to identify the secret’s partial symbol value, 7 indicates
the bit wise symbol value of z, which is identical to secret F'.
At last, the protocols ensure that each side can determine the
original secret F”’s symbol without combining its secret shares.

Algorithm 3 Secure Bit Multiplication.
: On Edge Server E;, i € {1,...,n}

. Input: bit arrays {T;,7;}

: Output: partial carry p; from T @ r

: The Trusted Server 7'S randomly generates 3 sets
of secure bit arrays: n = ni@Pna@P...Pn,, B8 =
L1PBB..Bbn,h = h@Ph@®..Bh,, b =
BRn, x = rand{1,n} where x € N*;

6: Edge Server E; computes T; @ f;, r; € n; and exchanges
the results with other edge servers, then combines to get
A=TPHn,B=rPs;

7: Qz = 51®A, W, = nl®B, 0= A®B,

8: if (x == 1) then

9: pi=hi@Q:PW; P

10: else

1 pi =hi @ QP Wi

12: end if

13: return p;.

C. Secure Bit Multiplication

secure bit multiplication receives two bit arrays {7}, r; } and
produces single bit array p; where ¢ € {1, n}. Combining p; by
XOR should retrieve bit wise multiplication of 7" and r which

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

is the carrying value required in secure bit addition. secure bit
multiplication requires additional sets of random parameters
n, 3, h, x to facilitate computing the multiplication of {T',r}.
The correctness of the algorithm can be proved by applying the
distribution law over conjunction and disjunction for logical
operations.

In Algorithm 3,) is a random integer between 1 and n
and it is used to determine if 6 is used to calculate p;. We
note that § = A Q) B combined with n € B is eliminated in
calculating p; @ pa... @ pr. Thus, using 6 on either side does
not affect the output. Here, (X) denotes bit-wise multiplication.

V. BUILDING BLOCKS IN P?: SECURE FUNCTIONS AND
LAYERS

P? incorporates a comprehensive set of secure func-
tions/layers that process secret shares (input) to produce
feature maps (output), yielding the same detection results
as the original perception networks. The inference pro-
cess of a perception network can be expressed as v =
L;(L;—1(...(L1(x)))), where each L; conduct a set of linear
or nonlinear operations in the perception network.

Our design of P? assures that the output of every layer
in a perception network follows the additive secret sharing
requirement. More specifically, as the sensor data M is divided
into n secret shares, the outputs of any layer on participating
edge servers satisfy (vy +v2 + ...+ v,,) equals to the output of
that layer in the original perception network run on M, where
v; denotes the output of the secure layer executed on an edge
server F;.

For a linear transformation (denoted by Gj;yeqr) On an input
feature map F, Giinear(F) = Grinear(F1 + Fo + ...+ F,) =
Glinear(Fl) + Glinear(F2) + .+ Glinear(Fn)~ That is the
transformation does not alter the additive property of secret
shares. We use the original operations in a layer to process
a secret share. However, this does not hold for a non-linear
transformation and special design and operations are needed
to build a secure counterpart. We have developed the secure
versions for all the known types of layers used in various
perception networks. In this section, we explain our design
for a number of major layers.

A. Secure Convolution, Secure Fully Connected Layer, and
Layers Containing Only Linear Transformations

The convolutional layer, fully connected layer and detection
network consist of linear transformations only. Thus, we can
take the same computations in their secure counterparts. The
only difference is that the input is replaced by the secret shares
of the original input.

B. Secure Max Pooling and Secure Average Pooling

Max pooling selects the most significant features from a
feature map for a given stride. The maximum operation on a
set of features is nonlinear. Finding the maximum value from
multiple secret shares is challenging as the additive relation
among secret shares does not mean that a feature in one share
is greater than its counterparts in other shares and the values

of features in different secret shares cannot be exchanged
between edge servers for privacy protection. To address this
challenge, we design an iterative difference evaluation method
sketched in Algorithm 4. In Lines 10 and 11, each edge server
computes the difference between secret shares corresponding
to index (a,), then exchanges the differences to calculate the
feature difference 1. With I, each edge server can locate the
feature having the greatest value.

Average pooling produces the average value of features in
a region of the input feature map. To achieve secure average
pooling, we combine the means from secret shares (without
revealing a secret share itself) and divide the sum by the
number of shares, i.e., M = (m3 +ma+ -+ my,)/n.

Algorithm 4 Secure Max Pooling (S-MAXPOOL).

: On Edge Server E;, i € {1,2,..n}
: Input: feature map secret share F;
: Output: partial maximum feature values

F;; = the feature map F; in the jy;, channel;

w, h are max pooling strides;

for each feature max pool stride region R in Fj;, w
in [0,1], h in [0,1] do

1
2
3
4:
5: for each channel j in feature map F; do
6
7
8

9: Pooling index oo = 0, 3 = 0;

10 I; = R[a][B] — R[w][h];

11: E;, E, exchange I;, I, and compute I = I; + I;
12: if 7 < 0 then

13: a=w,5=h;

14: end if

15: end for

16: return R[a][8].

17: end for

C. Secure Region Proposal Network

A region proposal network (RPN) takes feature maps as
input and predicts object bounds and objectness scores at each
position. In the secure RPN (Algorithm 5), the input is a secret
share of feature map. The anchor box generation part remains
unchanged as the locations of anchor points are fixed. Each
edge server generates a large number of anchor boxes, with
each individual box having identical coordinates across all
secret shares. Note secure RPN only produces partial anchor
box offsets and credit scores. Thus, edge servers exchange and
combine those partial results to obtain the actual scores and
offsets of the generated boxes.

In addition, the non-maximum suppression (NMS) requires
the credit score of each bounding box to remove overlapping
boxes. Thus, the combined credit score from edge servers is
used by NMS to filter out overlapping bounding boxes and
keep those with reliable credit scores.

D. Secure Region of Interest Pooling

Region of interest (ROI) pooling converts all the proposals
to fixed shape as required by a detection network. Secure

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5 Secure Region Proposal Network (S-RPN).

Algorithm 6 Secure ROI Pooling (S-ROIPOOL).

On Edge Server E;, i € {1,2,..n}
Input: feature map secret share F;
Output: partial region proposals

FE); generates the anchor boxes set B; for Fj;

for each anchor box b; in B; do
E; computes partial credit score and offset c;,0; =

Lm(bz),

8: Edge servers exchange {c;,0;}, and compute ¢ =
Z?:l Ci, 0 = Z?:l 0i;

9: Proposals are produced by applying offset o to anchor
boxes B;;

10: NMS identifies and removes overlapped anchor boxes
B; = NMS(B;,c);

11: end for

12: return B;, c.

A O S

ROI pooling takes a secret share of feature map from a
backbone network and region proposals from RPN as input.
Region proposal-based feature extraction is performed using
the secret share to obtain proposal patches P;. As shown in
Algorithm 6, each patch p is flattened to a one-dimensional
array with size (w(p) * h(p)). A difference table T; with
size (w(p) * h(p))? is created. The table T;[m][n] stores the
difference n for p[m] and p[n| on an edge server E;. Edge
servers exchange their difference tables through 7'S and then
calculate ' = Ty + T» + --- + T,, which represents the
difference of feature values from F' on the patch p (i.e.,
T[m|[n] = p[m] — p[n]). If all the values in row v of T are
positive, then the corresponding value in p[v] is greater than
others.

E. Secure ReLU and Secure Leaky ReLU

ReLU introduces non-linearity to feature maps by applying
a rectifier function. Specifically, ReLU preserves positive
features while replacing negative ones by zero. However, for
secure ReLU, the input is a secret share of a feature map.
We design the secure ReLU by leveraging the secure bit-
wise operations presented in Section IV to extract secret’s
sign (positive or negative). First, we use secure bit generation
(Algorithm 1) to produce bit arrays from a secret share. The
bit arrays are then used as parameters to the secure bit addition
(Algorithm 2) which performs bit-wise addition on the bit
arrays with the combined carry produced by the secure bit
multiplication (Algorithm 3).

The secure bit addition produces a partial sign m; satisfying
m=m PP ... P m, has the same sign as that in F’, where
1 means negative and 0 is positive. Thus, the secure ReL.U can
perform the rectifier function correctly even without knowing
the actual values of features.

Leaky ReLU is similar to ReLU with the difference in
the return value when a feature is negative. Specifically, for
a negative feature, leaky ReLLU multiplies the feature by a
coefficient (e.g., 0.1), rather than simply returning zero. The

1: On Edge Server E;, i € {1,2,...n}

2: Input: feature map secret share F;, region proposal RP

3: Output: fixed-size partial maximum features in region
proposals

5: Extract region-based features K; from F; with the scaled
proposal’s coordinates p,v generated from the input pro-
posals RP;

6: Calculate a width stride = width(X;)/w and a height stride
= height(K;)/h;

7: Divide K; into patches P; based on the width stride and
height stride;

8: for each patch p in P; do

: Flatten p into one dimension;
10: Create difference table T; with a size (w(p) * h(p))?;
i Tyfm)[n] = plm] - pln):
12: E; exchanges the difference table 7; with other edge
servers and collaboratively computes the difference table

T=3%T:
13: for each row in T do
14: if all the values in that row are greater than O then
15: return the index of the row, v.
16: end if
17: end for
18: return plv].
19: end for

Algorithm 7 Secure ReLLU (S-ReLU).

: On Edge Server E;, i € {1,2,...n}
. Input: feature map secret share F;
: Output: partial positive features or zero

{T;,r;} = Secure_Bit_Array_Generation(F;);

1

2

3

4:

5: for each feature f in the secret share F; do

6

7 if (Secure_Bit_Addition(7;,r;) == 1) then
8

9

=0
end if
10: return F;.
11: end for

secure leaky ReL.U is designed in a similar way. Due to the
space limit, we do not include its pseudocode in this paper.

VI. USE CASES OF P3

A. Use Case 1: Building Privacy-Preserving Two-Stage Per-
ception Network

The P? framework provides the building blocks to facilitate
the construction of privacy-preserving CNNs for various per-
ception tasks, such as object classification, object detection,
and segmentation. In this case study, we select a two-stage
object detection network to illustrate the application of P? to
real-world systems.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

CAV(c1) captured Image

Image

CAV(c1) split captured Image
random secret share random secret share

T
Secure VGG Secure VGG
Secure RPN Secure RPN

1 '

[Secure ROI pooling] [Secure ROI pooling }

i '
[Secure detection network} { Secure detection nelwurkJ

VGG back bone

ROI pooling

detection network

partial result 01‘ ' partial result 02

Detection result O l

[CAV (c2) receives detection result O J [CAV (c2) reconstruct detection result O = 01 + on

Fig. 2: Use case 1: Building a privacy-preserving two-stage
perception network using P3.

Two-stage object detectors divide the detection task into
two phases, i.e., 1) locating potential objects with bounding
boxes, called region proposals, and 2) forwarding the region
proposals to a prediction network to compute classification
scores. Region-based CNNs, such as R-CNN [19], Fast R-
CNN [20], and Faster R-CNN [21], are widely used two-
stage object detection networks. R-CNN detects objects by
extracting regions of interest with bounding boxes on images.
To determine region proposals, a selective search algorithm
[22] is used.

The original Faster R-CNN network does not protect input
data, which allows edge servers to easily access vehicles’
images. To create a privacy-preserving Faster R-CNN (PP
Faster R-CNN in short) network, we use the secure functions
and layers in P? to replace the components in Faster R-CNN,
i.e., backbone CNN, Region proposal network (RPN), ROI
pooling, and detection network. Figure 2 depicts the workflow
of a PP Faster R-CNN compared with the original network.

The VGG 16 backbone includes 13 Convolutional layers, 13
ReLU layers, and 5 Max Pooling layers, which extract features
of size 50*50*512 (width, height, channel). RPN produces
2,000 anchor boxes for a feature map. ROI pooling reshapes
the feature map combined with region proposals to the same
size, and the detection network generates the detection result.

The PP Faster R-CNN takes a similar architecture, i.e.,
secure VGG backbone, secure RPN, secure ROI pooling,
and secure detection network. The secure VGG backbone is
composed of 13 secure convolutional layers, 13 secure ReLU
layers, and five secure max pooling layers. The P? framework
provides all of those layers. We simply replace the original
layers by the secure versions.

To use the PP Faster R-CNN in a real-world environment,
a vehicle creates two or more secret shares (My, M, ...) for
an image from its sensor. These secret shares are transferred
to edge servers, protected by encryption with keys obtained
from 7'S. Each edge server processes a secret share through
the PP Faster R-CNN. The outputs from the edge servers are
combined (O1 4+ O3 + ...) to obtain the detected objects.

4096

secret sharel Aﬁﬁ“@
= g <
partial result 01
Sl
m 3 192 1024 X 7@ \
/ L 30/
| —

secure YOLO: 24 secure Cov +4 secure [l I} It~ R
max pooling + 2 secure FC ’w P |

3 192 1024 409 30 &
| | partial result 02

secure YOLO: 24 secure Cov + 4 secure
max pooling + 2 secure FC

detection result' » : ';
@ O e NI

192 1024 4096

YOLO darknet: 24 Secure Cov +4
Additive Secured Maxpool + 2 Secure
FC

Fig. 3: Use case 2: Building a privacy-preserving single-stage
perception network using P3.

B. Use Case 2: Building Privacy-Preserving Single-Stage
Perception Network

A single-stage object detector scans an image only once to
produce both classifications and bounding boxes of objects.
Usually, single-stage detectors are faster than two-stage ones.
YOLO [23] is a widely used single-stage detection network.
The architecture of YOLO with Darknet is depicted in Figure
3. It consists of 24 convolutional layers, four max pooling
layers, and two fully connected layers. Leaky ReLU is used
in all layers except for the last activation layer. Darknet
computes features from an image and divides into fixed grids
and an underlying CNN predicts the confidence score and
classification score for each grid cell.

The privacy-preserving YOLO (PP YOLO in short) contains
secure convolutional layers, secure max pooling layers, secure
leaky ReLU, and secure fully connected layers, as illustrated
in Figure 3. The workflow using PP YOLO is similar with that
using PP Faster R-CNN, involving partitioning vehicle images,
executing PP YOLO on multiple edge servers, and combining
outputs.

The YOLO family includes a series of enhanced networks
which improve the accuracy of bounding boxs’ placement and
object classification. For example, YOLO9000 [24] applies
batch normalization and anchor boxes in Darknetl9, and
YOLO3 [25] applies Darknet53 with 53 convolutional layers
and uses logistic regression to calculate the objectiveness score
of each bounding box. Our P? framework provides secure
functions/layers to build the privacy-preserving version of
those enhanced YOLO networks. Furthermore, the building
blocks in P3 are generic and applicable to future perception
networks.

VII. PERFORMANCE EVALUATION

We have implemented a prototype P3 system and several
proof-of-concept privacy-preserving perception networks us-
ing P3. We evaluate their performance on a vehicle-edge

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Privacy-preserving perception network built on P3
achieves the same accuracy as the original network.

PP Faster R- PP YOLO (P?)
CNN(P?)
Car 3.24¢7 4.26 &7
Traffic Light 211¢7 8.71e*
Stop Signs L19e” 35e7
Pedestrian 6.4e" 424 e”
Bicycle 6.9e7 1.24 &7

Fig. 5: MAPE in perception by privacy-preserving (PP) Faster
R-CNN and YOLO.

testbed. A Polaris GEM e4 electric vehicle is equipped with
a set of Sekonix cameras, one Velodyne LiDAR, one Delphi
radar, GPS and IMU sensors. The on-vehicle processing unit
is AStuff Spectra. Each edge server has an AMD Ryzen 7
processor with 6 cores at 3.2 GHz and 16 GB DRAM, and
runs Ubuntu Linux v20.04 and Python v3.8. We conducted our
experiments on the COCO dataset [26], a widely used object-
detection dataset. Among the 80+ categories of objects in
the COCO dataset, the experiment focuses on transportation-
related objects, such as vehicles, traffic signs, and pedestrians.
In our experiments, we build privacy-preserving CNNs (PP
CNNs in short) using pre-trained models. The PP CNNs are
implemented on PyTorch v0.4.0 and Torch v0.20. The models
are trained by using 5,000 images from COCO with 135
epochs, 40 batches, and a 0.01 learning rate. 350 images from
COCO containing the 15 most frequent street view object
classes are selected for inference.

A. Perception Accuracy

The perception results by PP Faster R-CNN and PP YOLO
are depicted in Figure 5. In total, 35 object categories are
evaluated and PP Faster R-CNN and PP YOLO correctly detect
all of them.

We further calculate the mean absolute percentage error
(MAPE) between the PP Faster R-CNN and PP YOLO and
the original Faster R-CNN and YOLO respectively. Figure 5
lists the MAPE results which indicate PP CNNs achieve the
same accuracy as the original CNNs.

14
2
10
8
6
4
0

1x10%52 x 10"53 x 10754 x 10”55 x 10756 x 10°57 x 105 8x 105 9 x 10"5

execution time in miliseconds

input feature map size

Fig. 6: Performance of secure bit addition.

4
3
2
0

1x10"%5 2x10"5 3x10"%5 4x10"5 5x 105

execution time in miliseconds

number of invokations

Fig. 7: Performance of secure bit multiplication.

B. Results of Perception Time

In order to understand the speed of a PP CNN built from
P2, we measure the execution time of the major operations and
secure layers. These include the secure bit addition (Figure
6), secure bit multiplication (Figure 7), secure convolution
layer (Figure 8), secure ReLU (Figure 9), secure Max pooling
(Figure 10), secure Average pooling (Figure 11), secure RPN
(Figure 12), and secure ROI pooling(Figure 13).

Here are some important findings. The execution time of the
secure bit multiplication increases linearly with the number of
invocations and the input size, whereas that of the secure bit
addition depends mostly on the input size. The execution time
of the secure ReLU increases exponentially with the input
size caused by the random bit array generation and secure
bit addition. The execution times of secure Convolution, Max
pooling, and Average pooling are also affected by the input
size. The execution time of the secure RPN increases as the
number of anchor boxes increases. The secure ROI pooling
has a longer execution time caused by the construction of the
difference table and comparison, especially for large bounding
boxes.

Figure 15 compares the inference time of PP Faster R-CNN
and PP YOLO, which is 28.398 seconds and 3.081 seconds,
respectively. The results show that most of the degradation
comes from the secure functions for non-linear operations.
This is due to the expensive bit-wise operations, including
secure bit array generation, secure bit addition, and secure bit
multiplication.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

execution time in milliseconds

execution time in miliseconds

execution time in miliseconds

execution time in seconds

0.003

0.002

B -
0

7*7*256 14*14*256 28*28*256 28*28*512

input feature map size

Fig. 8: Performance of secure Convolution.

25

15
1

i I I I I
0 —

2

15

- .
o e[

5*10"3 10 1.5%10" 2*10M

execution time in seconds
-

number of anchor boxes

Fig. 12: Performance of secure RPN.

execution time in seconds
° - ~ w
o & r & 9~ & e 0 =

number of region proposals

Fig. 13: Performance of secure ROI Pooling.

We also measure the additional storage and network band-

103 5703 10% 1570M 2710% 2510 3110% 3510M width used by PP CNNs. The data transfer time by PP Faster

input feature map size

Fig. 9: Performance of secure ReL.U.

2
15

1 1]
‘wm 1

. m

10M 2*10M 3*10M 4*10%M 5*10M 6*10% 7*10%4 8*10M4

input feature map size

Fig. 10: Performance of secure Max Pooling.

15

1
, 1l

10M 210" 3*10M 4*10M 5%10M 6*10M 7*10M

°

input feature map size

Fig. 11: Performance of secure Average Pooling.

8*10M

R-CNN and PP YOLO is 15.16 seconds and 12.3 seconds,
respectively, with a 300 Mbps bandwidth. PP Faster R-CNN
displays a longer data transfer time due to the two-stage
structure of its perception network which transfers additional
data for secure RPN and secure ROI pooling. The amount of
data included in secret shares, feature maps, and intermediate
data from secure operations is compared in Figure 14. PP
YOLO produces a smaller amount of data due to the fewer
number of layers and smaller input size.

Figure 16 compares the inference performance of PP YOLO
and PP Faster R-CNN built by using our P? framework
and that of CryptoNets which uses a leveled homomorphic
encryption scheme. It is clear that both PP YOLO and PP
Faster R-CNN are significantly faster than CryptoNets, i.e., a

byte

0
Faster R-CNN PP Faster R-CNN (pA3) YOLO PP YOLO (PA3)

Fig. 14: Comparison of data storage between a perception
network and the privacy-preserving version.

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

Faster R-CNN PP Faster R-
CNN (pP%)
convolutional 0.42s secure 0.44s
convolutional
ReLU 0.154s secure ReLLU 19.13s
max pooling 0.021s secure max 1.156s
pooling
RPN 1.26s secure RPN 2.66s
ROI pooling 1.04s secure ROI 4.174s
pooling
detection 0.792s secure detection 0.838s
network network
total 3.687s total 28.398s
YOLO PP YOLO (p?)
convolutional 0.039s secure 0.042s
convolutional
leaky ReLU 0.012s secure leaky 2.814s
ReL.U
max pooling 0.02s secure max 0.125s
pooling
fully 0.014s secure fully 0.1s
connected connected
total 0.085s total 3.081s

Fig. 15: Execution time of different layers in a perception
network vs. those in the privacy-preserving version.

30

execution time in seconds

0 — -

PP YOLO (PA3) PP Faster RCNN (PA3) CryptoNets

Fig. 16: Performance comparison between privacy-preserving
CNNs (using P3) with CryptoNets.

83.3X and 8.8X speedup, respectively. This shows the privacy-
preserving perception networks built from P? are more pratical
for real-world applications.

VIII. CONCLUSION

Perception is crucial for autonomous driving. We study the
privacy protection of vehicles’ sensor data and perception re-
sults in vehicle-edge environments. We present a novel frame-
work (P?) that incorporates secure functions for all the known
types of layers used in various perception networks. These
building blocks ease the construction of privacy-preserving
perception networks for edge servers to process sensor data
from vehicles while protecting data privacy. Experimental
results show that perception on multiple edge servers achieves
the same accuracy with reasonable performance degradation.
In our future research, we will optimize and accelerate the

secure functions/layers in P? to speed up perception for real-
time applications.

ACKNOWLEDGEMENT

This work has been supported in part by the U.S.
National Science Foundation grants CNS-2231519, CNS-
2113805, CNS-1852134, OAC-2017564, ECCS-2010332,
CNS-2037982, DUE-2225229, and CNS-1828105.

REFERENCES

[1] S. Campbell, N. O’Mahony et al., “Sensor technology in autonomous
vehicles: A review,” in IEEE ISSC, 2018.

[2] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697-1716, 2019.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[4]1 C. Gentry, A fully homomorphic encryption scheme.
sity, 2009.

[5] D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryption,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2010, pp. 377-394.

[6] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with

relatively small key and ciphertext sizes,” in Workshop on Public Key

Cryptography, 2010.

Y. Sun, R. Lu, X. Lin, X. Shen, and J. Su, “An efficient pseudonymous

authentication scheme with strong privacy preservation for vehicular

communications,” IEEE Transactions on Vehicular Technology, vol. 59,

no. 7, pp. 3589-3603, 2010.

[8] C.Juvekar, V. Vaikuntanathan et al., “Gazelle: A low latency framework

for secure neural network inference,” in USENIX Security, 2018.

D. Leboe-McGowan, M. M. Al Aziz, and N. Mohammed, “Simple

approximations for fast and secure deep learning on genomic data,” in

IEEE IEMCON, 2020.

[10] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,” arXiv
preprint arXiv:1412.6181, 2014.

[11] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private
recommendations efficiently using homomorphic encryption and data
packing,” IEEE Trans. on Information Forensics and Security, vol. 7,
no. 3, pp. 1053-1066, 2012.

[12] N.J. H. Marcano, M. Moller et al., “On fully homomorphic encryption
for privacy-preserving deep learning,” in IEEE Globecom, 2019.

[13] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in /EEE SP, 2017.

[14] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM
CCS, 2015.

[15] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge University Press, 2009.

[16] M. Naor and A. Shamir, “Visual cryptography,” in Workshop on the
Theory and Application of of Cryptographic Techniques, 1994.

[17] E. E. Brickell, “Some ideal secret sharing schemes,” in Workshop on
the Theory and Application of of Cryptographic Techniques. Springer,
1989, pp. 468-475.

[18] A. Herzberg, S. Jarecki et al., “Proactive secret sharing or: How to cope
with perpetual leakage,” in Crypto, 1995.

[19] R. Girshick, J. Donahue et al., “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in /EEE CVPR, 2014.

[20] R. Girshick, “Fast r-cnn,” in IEEE ICCV, 2015.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, pp. 91-99, 2015.

[22] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154-171, 2013.

[23] J. Redmon, S. Divvala et al., “You only look once: Unified, real-time
object detection,” in /JEEE CVPR, 2016.

[24] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in IEEE
CVPR, 2017.

[25] ——, “Yolo v3: An incremental improvement,” arXiv:1804.02767, 2018.

[26] T.-Y.Lin, M. Maire et al., “Microsoft coco: Common objects in context,”
in ECCV, 2014.

Stanford Univer-

[7

—

[9

—

Authorized licensed use limited to: University of North Texas. Downloaded on December 06,2023 at 17:46:31 UTC from IEEE Xplore. Restrictions apply.

