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Prediction of microstructure evolution during material processing is essential to control the material properties.
Simulation tools for microstructure evolution prediction based on physical concepts are computationally
expensive and time-consuming. Therefore, they are not practical when either there is an urgent need for
microstructure morphology during the process or there is a need to generate big microstructure datasets.
Essentially, microstructure evolution prediction is a spatiotemporal sequence prediction problem, where the
prediction of material microstructure is difficult due to different process histories and chemistry. We propose a
Predictive Recurrent Neural Network (PredRNN) model for the microstructure prediction, which extends the
inner-layer transition function of memory states in LSTMs to spatiotemporal memory flow. As a case study, we
used a dataset from spinodal decomposition simulation of FeCrCo alloy created by the phase-field method for
training and predicting future microstructures by previous observations. The results show that the trained
network predicts quantitatively accurate microstructure morphologies while it is several orders of magnitude

faster than the phase field method.

1. Introduction

The process-structure—property relationships of engineered materials
are directly impacted by material microstructures, which are mesoscale
structural elements that operate as an essential link between atomistic
building components and macroscopic qualities. One of the pillars of
contemporary materials research is the ability to manage the evolution
of the materials’ microstructure while it is being processed or used,
including common phenomena like solidification, solid-state phase
transitions, and grain growth. Therefore, a key objective of computa-
tional materials design has been comprehending and forecasting
microstructure evolution. On the other hand, the integration of big data
and ML in materials science has greatly increased our understanding of
materials and has opened up new avenues for research and innovation.
Available and open-source database is a big challenge in using artificial
intelligence in martial science, particularly for microstructure process-
ing. Creating big data in a wide range of processing conditions is a gap in
material design by ML that should be addressed.

Simulations of microstructure evolution frequently rely on coarse-
grained models, such as partial differential equations (PDEs) which
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are used in the phase-field techniques [1], because they can represent
time and length scales that are far larger than those that can be captured
by atomistic models. A wide range of significant evolutionary mesoscale
processes, including grain development and coarsening, solidification,
thin-film deposition, dislocation dynamics, vesicle formation in biolog-
ical membranes, and crack propagation, have all been fully described
using the phase-field method [2-4]. However, there are some significant
problems with this strategy as well. First off, PDE-based microstructure
simulations are still relatively expensive. The stability of numerical
techniques that use explicit time integration for nonlinear PDEs sets
stringent upper bounds on the smallest time-step size in the temporal
dimension. Similarly, implicit time-integration techniques manage
longer time steps by adding more inner iteration loops at each step.
Furthermore, despite the fact that in theory controlling PDEs can be
inferred from the underlying thermodynamic and kinetic consider-
ations, actual PDE identification, parametrization, and validation take a
significant amount of work. The evolution principles may not be fully
understood or be too complex to be characterized by tractable PDEs for
difficult or less well-studied materials.

Currently, the efforts to reduce computational costs have mostly
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concentrated on utilizing high-performance computer architectures [5]
and sophisticated numerical techniques [6], or on merging machine
learning algorithms with simulations based on microstructures [7-9].
Leading studies, for instance, have developed surrogate models using a
variety of techniques, such as Green’s function solution [10], Bayesian
optimization [11], a combination of dimensionality reduction and
autoregressive Gaussian processes [12], convolutional autoencoder and
decoder [13], or integrating a history-dependent machine-learning
method with a statistically representative, low dimensional description
of the microstructure evolution generated directly from phase-field
simulations that can quickly predict the evolution of the microstruc-
ture from phase-field simulations [14]. The main problem, however, has
been to strike a balance between accuracy and computing efficiency,
even for these successful systems. For complex, multi-variable phase-
field models, for example, precise answers cannot be guaranteed by the
computationally effective Green’s function solution. In contrast, com-
plex, coupled phase-field equations can be solved using Bayesian opti-
mization techniques, however, at a higher computational cost (although
the number of simulations required is kept to a minimum because the
Bayesian optimization protocol determines the parameter settings for
each subsequent simulation). The capacity of this class of models to
predict future values outside of the training set is constrained by the fact
that autoregressive models can only forecast microstructural evolution
for the values for which they were trained. In other models based on
dimensionality reduction methods like principle component analysis
(PCA), a large amount of information is ignored, which will sacrifice
accuracy.

To address the above knowledge gaps, in this study we develop a
network based on Predictive Recurrent Neural Network-based
(PredRNN) [15] to predict the 2D microstructure evolution over time.
In recent years, the usage of ML algorithms in materials research has
increased significantly [16,17]. They have been used in a variety of
ways, including the discovery of new materials [18-21], the prediction
of materials’ properties [22-24], the creation of precise and effective
potentials for atomistic simulations [25], the analysis and processing of
microscopic and spectroscopic data [26-31], the successful inference of
a material’s properties from a small body of experimental data [32,33],
and materials chemistry and processing history prediction from sole
micrograph[34,35]. These works include microstructure classification
and quantification [26,36], image segmentation [27,28], predictions of
microstructure-property relations [37,38], mapping processing-
microstructure relations [34,35,39-41], microstructure optimization
[42,43], and equilibrium configuration prediction [44] are just a few of
the many works that focus on material microstructure and have
encouraging results. The datasets used in these investigations are pri-
marily static images of microstructure. This research aims to highlight
the significant temporal link between microstructure morphologies
along their evolutional history.

Recurrent Neural Networks (RNNs) [45] are neural networks with
hidden memory units that are intended to predict temporal data se-
quences. RNNs have achieved extensive success in natural language
processing [46], speech recognition [47], and computer vision [48]
thanks to the development of efficient variations such as the Gated
Recurrent Unit (GRU) [49], and the long short-term memory (LSTM)
[50], which addresses the vanishing gradient problem during back-
propagation. Convolutional neural networks (CNNs) and LSTM have
recently been proposed for the predictive learning of spatiotemporal
sequences [51].

Yang et al. [52] used the Eidetic 3D LSTM (E3D-LSTM) [53] model to
predict evolution phenomena in different processes, such as plane-wave
propagation, grain growth, spinodal decomposition, and dendritic
crystal growth. Although the results show that the model can predict the
evolutionary phenomena precisely, two important issues are not
addressed in this study. First, all the used morphologies are constructed
artificially for both training and validation. On the other hand, for
example, spinodal decomposition occurs in two separate phases: a quick
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composition modulation growth phase, followed by a slower coarsening
phase, during which the Gibbs-Thomson effect causes a progressive rise
in the length scale of the phase-separation pattern. While microstructure
morphologies change drastically in these two phases, they trained the
RNN to detect system evolution in the second coarsening stage. There-
fore, developing a model that can predict morphology evolution in both
phases is desired. In this study, we demonstrate that PredRNN can
precisely capture all the required features from earlier microstructures
to predict long-term microstructures.

2. Methods
2.1. Phase-field modeling

Significant improvements in computational power and advances in
numerical methods have made the PF approach a powerful tool for
quantitative modeling of the temporal and spatial evolution of material
microstructures. Some applications of this method in material process-
ing include martensitic transformation [54], crack propagation [55],
grain growth [56], and materials microstructure prediction for proper-
ties optimization [57].

The PF method eliminates the need for the system to track each
moving boundary by having a finite-width interface that gradually
transitions from one composition or phase to another [58]. This essen-
tially leads to the system being modeled as a diffusivity problem. This
can be solved by using the nonlinear PDEs of the continuum. Two major
PF PDEs show the evolution of various PF variables. One is the Allen-
Cahn equation [59] for solving unconserved order parameters (phase
domain, particles, etc.), and the other is the Cahn-Hilliard equation [60]
for solving conserved order parameters (concentration, etc.).

The constituent elements control the process of phase separation.
Hence, the microstructure evolution can be found by tracking the
conserved variables, i.e., Fe, Cr, and Co concentration in the isothermal
spinodal phase decomposition process. Therefore, our model is governed
by the Cahn-Hilliard equation. Equations (1) and (2) are the Cahn-
Hilliard equations for the spinodal decomposition of the Fe-Cr-Co
ternary system. The PF model for data generation is mainly adopted
from Koyama and Onodera’s study [61].
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where c. and c, are the concentrations of Chromium and Cobalt, t is
time, Fy, is total free energy, and M is the mobility function. The evo-
lution of microstructures is primarily driven by the minimization of the
total free energy, Fyy, of the system. The model is parametrized using a
calculation of phase diagram (CALPHAD) data, for details please refer to
Ref[34,35]. The Multiphysics Object-Oriented Simulation Environment
(MOOSE) is used to solve the nonlinear PDEs. MOOSE is an open-source
finite element package developed by the Idaho National Laboratory and
is efficient for parallel computing on supercomputers[62]. The com-
bined Cahn-Hilliard equations were solved using the weak form of the
residual series of MOOSE’s pre-designed Cahn-Hilliard PDEs.

2.2. Training and testing dataset

This study uses the morphology of microstructures of the Fe-Cr-Co
ternary alloy in different temperatures and compositions as training
and testing datasets. To cover all the ranges of parameters, as mentioned
in Table 1, the simulation conditions are designed by the design of ex-
periments. Since the parameters contain chemical compositions and are
subject to the constraint that they must sum to one, the mixture design as
a design of the experiment method is adopted [63]. Unlike temperature
and chemistry, we did not grid the time domain linearly because the
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Table 1
Simulation variables and their range of values for database generation.
Simulation variable Range of Grid
values
Time (Sec.) 10-1080000 10-3600 50
3600-36000 500
36000-360000 5000
360000-1080000 100,000
Temperature (K) 850-970 10
Chromium composition (at. 0.05-0.9 0.05
%)
Cobalt composition (at.%) 0.05-0.9 0.05

microstructure is susceptible to aging time in the early stages of
annealing, but as time passes, this sensitivity drops considerably. We
generated the microstructures by solving the Cahn-Hilliard PDEs using
the MOOSE framework. The simulations were run on different clusters
including Boise State University R2 cluster computers [64], Boise State
University BORAH [65], and the Extreme Science and Engineering
Discovery Environment (XSEDE) (Jetstream2 cluster), which is sup-
ported by National Science Foundation (NSF) [66].

After running the simulations, the microstructures were collected
from the results. The Fe-based composition microstructure morphol-
ogies sequences are utilized to construct the dataset. The length of each
sequence is 20 microstructures; the first 10 microstructures are used to
predict the future 10 microstructures.

2.3. Spatiotemporal predictive

Prediction of microstructure evolution is a spatiotemporal problem.
Different network architectures, which can generally be grouped into
three categories: feed-forward models based on CNNs, recurrent models,
or a combination of convolution and recurrent networks, the
Transformer-based, and flow-based methods, are used to encode
different inductive biases into neural networks for spatiotemporal pre-
dictive learning [67]. The inductive bias of group invariance over space
has been brought into spatiotemporal predictive learning through the
use of convolutional layers. For next-frame prediction in Atari games,
Oh et al. [68] defined an action-conditioned autoencoder with convo-
lutions. The Cross Convolutional Network, developed by Xue et al. [69],
is a probabilistic model that stores motion data as convolutional kernels
and learns to predict a likely set of future frames by understanding their
conditional distribution. In order to complete the crowd flow prediction
challenge, Zhang et al. [70] suggested using CNNs with residual con-
nections. It specifically takes into account the proximity, duration,
trend, and external elements that affect how population flows move.
Additionally, the convolutional architectures are employed in tandem
with the generative adversarial networks (GANs) [71], which success-
fully lowered the learning process’ uncertainty and enhanced the
sharpness of the generated frames. Most feed-forward models demon-
strate greater parallel computing efficiency on large-scale GPUs
compared to recurrent models [72-74]. However, these models gener-
ally fail to represent long-term reliance across distant frames since they
learn complex state transition functions as combinations of simpler ones
by stacking convolutional layers.

Some helpful insights into how to forecast upcoming visual se-
quences based on historical observations are provided by recent de-
velopments in RNNs. In order to forecast future frames in a discrete
space of patch clusters, Ranzato et al. [75] built an RNN architecture
that was influenced by language modeling. As a remedy for video pre-
diction, Srivastava et al. [76] used a sequence-to-sequence LSTM model
from neural machine translation [77]. Later, other approaches to
describe temporal uncertainty or the multimodal distribution of future
frames conditioned on historical observations have been presented,
integrating variational inference with 2D recurrence [78-80]. By ar-
ranging 2D recurrent states in hierarchical designs, certain additional
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techniques successfully increased the forecast time horizon. The
factorization of video information and motion is another area of
research, typically using sequence-level characteristics and temporally
updated RNN states [81]. The use of optical flows, new adversarial
training schemes, relational reasoning between object-centric content
and pose vectors, differentiable clustering techniques, amortized infer-
ence enlightened by unsupervised image decomposition, and new types
of recurrent units constrained by partial differential equations are
typical approaches [82-84]. The aforementioned techniques work well
for breaking down dynamic visual scenes or understanding the condi-
tional distribution of upcoming frames. To describe the spatiotemporal
dynamics in low-dimensional space, they primarily use 2D recurrent
networks, which inadvertently results in the loss of visual information in
actual circumstances.

Shi et al. [85] created the Convolutional LSTM (ConvLSTM), which
substitutes convolutions for matrix multiplication in the recurrent
transitions of the original LSTM to combine the benefits of convolutional
and recurrent architectures. A schematic of ConvLSTM with a basic
LSTM cell is given in Fig. 1. An action-conditioned ConvLSTM network
was created by Finn et al. [86] for visual planning and control. Shi et al.
[87] coupled convolutions with GRUs and used non-local neural con-
nections to expand the receptive fields of state-to-state transitions. Wang
et al. [88] introduced a higher-order convolutional RNN that uses 3D
convolutions and temporal self-attention to describe the dynamics and
includes a time dimension in each hidden state. Su et al. [89] increased
the low-rank tensor factorization-based higher-order ConvLSTMs’
computational effectiveness. Convolutional recurrence provides a plat-
form for further research by simultaneously modeling visual appear-
ances and temporal dynamics [90,91]. The spatiotemporal memory
flow, a novel convolutional recurrent unit with a pair of decoupled
memory cells, and a new training method for sequence-to-sequence
predictive learning are all used to enhance the existing architectures
for action-free and action-conditioned video prediction in Predictive
Recurrent Neural Network (PredRNN) [15].

A network component known as a memory cell is crucial in helping
stacked LSTMs solve the vanishing gradient issue seen by RNNs. It can
latch the gradients of hidden states inside each LSTM unit during
training, preserving important information about the underlying tem-
poral dynamics, according to strong theoretical and empirical evidence.
However, the spatiotemporal predictive learning task necessitates a
distinct focus on the learned representations in many areas from other
tasks of sequential data; therefore, the state transition pathway of LSTM
memory cells may not be optimum. First, rather than capturing spatial
deformations of visual appearance, most predictive networks for lan-
guage or speech modeling concentrate on capturing the long-term, non-
Markovian features of sequential data [92]. However, both space-time
data structures are essential and must be carefully considered in order to
forecast future frames. Second, low-level features are less significant to
outputs in other supervised tasks using video data, such as action
recognition, where high-level semantical features may be informative
enough. The stacked LSTMs don’t have to maintain fine-grained repre-
sentations from the bottom up because there are no complex structures
of supervision signals. Although the current inner-layer memory
transition-based recurrent architecture can be sufficient to capture
temporal variations at each level of the network, it might not be the best
option for predictive learning, where low-level specifics and high-level
semantics of spatiotemporal data are both significant to generating
future frames. Wang et al. [15] proposed a new memory prediction
framework called PredRNN, which extends the inner-layer transition
function of memory states in LSTMs to spatiotemporal memory flow.
This framework aims to jointly model the spatial correlations and tem-
poral dynamics at different levels of RNNs. All PredRNN nodes are tra-
versed by the spatiotemporal memory flow in a zigzag pattern of bi-
directional hierarchies: A newly created memory cell is used to deliver
low-level information from the input to the output at each timestep, and
at the top layer, the spatiotemporal memory flow transports the high-
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Fig. 1. Structure of ConvLSTM with basic LSTM cell.

level memory state to the bottom layer at the following timestep. The
Spatiotemporal LSTM (ST-LSTM), in which the proposed spatiotemporal
memory flow interacts with the original, unidirectional memory state of
LSTMs, was therefore established as the fundamental building element
of PredRNN. It seems that they would require a unified memory mech-
anism to handle both short-term deformations of spatial details and
long-term dynamics if they anticipated a vivid imagination of numerous
future images: On the one hand, the network may learn complex tran-
sition functions within brief neighborhoods of subsequent frames thanks
to the new spatiotemporal memory cell architecture, which also in-
creases the depth of nonlinear neurons across time-adjacent RNN states.
Thus, it considerably raises ST-modeling LSTM’s capacity for short-term
dynamics. To achieve both long-term coherence of concealed states and
their fast reaction to short-term dynamics, ST-LSTM, on the other hand,
still uses the temporal memory cell of LSTMs and closely combines it
with the suggested spatiotemporal memory cell. On five datasets—the
Moving MNIST dataset[76], the KTH action dataset[93], a radar echo
dataset[94] for precipitation forecasting, the Traffic4Cast dataset[95] of
high-resolution traffic flows, and the action-conditioned BAIR dataset
[86] with robot-object interactions—the proposed methodology
demonstrated state-of-the-art performance. The original paper [15]
contains information about the investigation in detail. This study adopts
the PredRNN to predict the microstructure evolution quickly and
accurately.

3. Results and discussion
3.1. Phase-field modeling for microstructure sequences generation

Following the Simplex-Lattice design, the microstructure sequences
are produced by the PF modeling of Fe-Cr-Co spinodal decomposition.
For this study, 4,212 phase field simulations (18 different Cr composi-
tions, 18 Co different compositions, and 13 different temperatures) were
run based on Table 1. Then, the sequences were constructed based on the

generated time series microstructures in each PF run (125,233 micro-
structures morphology in total). Some sample microstructure sequences
from the PF simulation results are shown in Fig. 2. On a 24 Core CPU, a
MOOSE simulation of a 200 nm 2D domains uses about 120 service units
(SU) every run. Therefore, it took around 505 k SU to screen the sug-
gested range of temperatures and chemical compositions for micro-
structure evolution. Fig. 2 shows some samples of microstructure
evolution and indicates that the microstructure morphology patterning
differs in various chemical compositions and temperatures.

The training dataset can be generated from simulated microstruc-
tures. The length of each sequence is 20 microstructures. The first 10
microstructures, which are from the first 30 hr of heat treatment, are
used to predict the future 10 microstructures, which have heat treatment
time between 50 hr to 300 hr. There are 20,000 sequences for training
and 4,000 sequences for testing data. Three different Fe-composition-
based microstructure morphology sequences are presented in Fig. 3.

Fig. 3 shows the dataset contains very different evolution sequences
in terms of structure. In addition, since the microstructures are selected
from both distinct stages of spinodal decomposition, i.e., a fast compo-
sition modulation growth stage and a slower coarsening stage, the dif-
ference between the input and output sequence is significant, which can
be easily recognized in Fig. 3. In this case, the model has a more difficult
task in predicting the output sequences.

3.2. Microstructure evolution prediction by PredRNN

20,000 sequences trained the PredRNN to predict the output mi-
crostructures. With a mini-batch of 8 sequences, we trained the models
using the ADAM optimizer. After 80,000 iterations, the training process
is terminated with a learning rate of 10~* PredRNN typically employs
four ST-LSTM layers to balance training effectiveness with prediction
quality. We set the size of the convolutional kernels inside the ST-LSTM
unit to 5 x 5 and the number of channels of each hidden state to 128.

As illustrated in Fig. 4, the training loss decreases smoothly with
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Fig. 2. The Fe-composition base 2D microstructure sequences for different temperatures and chemical compositions produced by the PF method (Compositions are in

atomic percent).
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Fig. 3. Three different Fe-composition-based microstructure morphology sequences.

iteration, which indicates that the model’s parameters have reached
their optimal value globally. In addition, we employ evaluation mea-
sures that are frequently used to determine the similarity between two
images. The predicted and ground truth microstructures are compared
using the Mean Squared Error (MSE), the Peak Signal-to-Noise Ratio
(PSNR), the Structural Similarity Index Measure (SSIM), and the Learned
Perceptual Image Patch Similarity (LPIPS). In these metrics, MSE esti-
mates the absolute pixel-wise errors, PSNR compares image compression
quality, SSIM measures the similarity of structural information within
the spatial neighborhoods, and LPIPS is based on deep features and is
more in line with human perceptions. Smaller MSE and LPIPS, and
higher PSNR and SSIM indicate more similarity between images.

After training, test sequences are used to compute MSE, LPIPS, PSNR,
and SSIM; the average values for each iteration are given in Fig. 5. The
results demonstrate that all the metrics improve with iteration to reach
almost stability. It proves that the model learns from the data and can
train the hyperparameters.

Fig. 6 displays three randomly selected samples from the test set for a
qualitative comparison. The left microstructures of the dashed line are
the input frames, the right ones in the top row are the ground truth of
output microstructures, and the bottom row shows the PredRNN pre-
diction. The microstructures produced by PredRNN predict clear im-
ages, meaning it can be confident of future variations. In addition, we
can see that the predicted sequence is close to the ground truth
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Fig. 5. Average MSE, PSNR, SSIM, and LPIPS for testing sequences during training per each iteration.

sequence.

3.3. Trained model performance on the microstructure evolution
prediction during time

Model performance on frames prediction during time is one of the
key parameters in spatiotemporal models’ evaluation [96,97]. Basically,
the perdition of earlier frames is easier than long-term prediction
because of the similarity with the input sequence. Fig. 7 provides the
corresponding frame-wise comparisons between the predicted by the
final PredRNN model and ground truth microstructures for test se-
quences. The average values of metrics show that the model can predict
all the microstructures with reasonable accuracy. On the other hand, the
model has higher accuracy in the prediction of the first frames than the
last ones, as MSE and LPIPS increase and PSNR and SSIM decrease from
frame 1 to 10.

For quantitative comparison of long-term and short-term pre-
dictions, similarity/error metrics for the test set produced by the final
PredRNN model are given in Fig. 8. The results show that PredRNN

prediction for short-term cases is more accurate than long-term pre-
dictions. These results seem reasonable because there is a stronger
correlation between the first microstructures from the output sequence
and the input sequence. However, in general, the predictions for long-
term cases also have good agreement with the ground truth. It proves
that the PredRNN can predict the microstructure evolution reasonably
well.

3.4. Trained model inference performance in future microstructures
prediction

The time it takes to calculate the model’s outputs as a function of the
inputs is known as the inference speed. The model’s response time is
crucial in many applications, especially those requiring real-time data
[98]. Since this study aims to develop a deep network to predict the
microstructure evolution quickly and accurately, the model inference
performance is a critical factor. Therefore, the trained model perfor-
mance is compared with the simulation on a reference computer. Since
MOOSE can only run with the CPU, we used the same resource for the
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trained model. The result for randomly selected test data is given in
Fig. 9. While the simulation of the rest microstructures takes more than
75 hrs by the PF modeling, the trained model can predict the future
sequence in a fraction of a second by just having earlier microstructures.
The error metrics indicate that this prediction is robust and reliable

compared to the simulated microstructures. We note that the developed
model in this work predicts the morphology and not the chemistry of the
phases, unlike the PF method. However, in our previous works[34,35]
we have developed machine learning codes that can predict the chem-
istry from the morphology image. Therefore, a combination of these two
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models can predict both morphology and chemistry.
4. Conclusion

We introduced a framework based on a deep neural network to
predict the material microstructure evolution. As a case study, we
generated the training and testing dataset from phase-field modeling of
the spinodal decomposition process in Fe-Cr-Co alloy. We considered the
microstructure morphologies evolution based on Fe composition. The
future microstructure sequences were predicted by knowing the earlier
sequence by PredRNN. Some immediate advantages of the developed
framework in on microstructure high throughput simulations and
microstructure morphology database generation. The model can predict
up to 10X ahead of what it is fed into. This becomes much more critical
when we are dealing with multicomponent alloys where the PF simu-
lations get dramatically slow. A detailed analysis of the model’s per-
formance indicated that the model parameters were optimized based on
training loss reduction and error metrics improvement. The quantitative
and qualitative comparisons show that the trained PredRNN model can
predict the output sequence accurately. Although the model accuracy
for short-term predictions is better than long-term predictions, the
model still shows reliable performance in long-term forecasting. The
model inference test demonstrates that it can predict the microstructure
evolution quickly and accurately. In general, the proposed models could
reasonably predict the materials’ microstructure evolution.
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