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A B S T R A C T   

Prediction of microstructure evolution during material processing is essential to control the material properties. 
Simulation tools for microstructure evolution prediction based on physical concepts are computationally 
expensive and time-consuming. Therefore, they are not practical when either there is an urgent need for 
microstructure morphology during the process or there is a need to generate big microstructure datasets. 
Essentially, microstructure evolution prediction is a spatiotemporal sequence prediction problem, where the 
prediction of material microstructure is difficult due to different process histories and chemistry. We propose a 
Predictive Recurrent Neural Network (PredRNN) model for the microstructure prediction, which extends the 
inner-layer transition function of memory states in LSTMs to spatiotemporal memory flow. As a case study, we 
used a dataset from spinodal decomposition simulation of FeCrCo alloy created by the phase-field method for 
training and predicting future microstructures by previous observations. The results show that the trained 
network predicts quantitatively accurate microstructure morphologies while it is several orders of magnitude 
faster than the phase field method.   

1. Introduction 

The process-structure–property relationships of engineered materials 
are directly impacted by material microstructures, which are mesoscale 
structural elements that operate as an essential link between atomistic 
building components and macroscopic qualities. One of the pillars of 
contemporary materials research is the ability to manage the evolution 
of the materials’ microstructure while it is being processed or used, 
including common phenomena like solidification, solid-state phase 
transitions, and grain growth. Therefore, a key objective of computa-
tional materials design has been comprehending and forecasting 
microstructure evolution. On the other hand, the integration of big data 
and ML in materials science has greatly increased our understanding of 
materials and has opened up new avenues for research and innovation. 
Available and open-source database is a big challenge in using artificial 
intelligence in martial science, particularly for microstructure process-
ing. Creating big data in a wide range of processing conditions is a gap in 
material design by ML that should be addressed. 

Simulations of microstructure evolution frequently rely on coarse- 
grained models, such as partial differential equations (PDEs) which 

are used in the phase-field techniques [1], because they can represent 
time and length scales that are far larger than those that can be captured 
by atomistic models. A wide range of significant evolutionary mesoscale 
processes, including grain development and coarsening, solidification, 
thin-film deposition, dislocation dynamics, vesicle formation in biolog-
ical membranes, and crack propagation, have all been fully described 
using the phase-field method [2–4]. However, there are some significant 
problems with this strategy as well. First off, PDE-based microstructure 
simulations are still relatively expensive. The stability of numerical 
techniques that use explicit time integration for nonlinear PDEs sets 
stringent upper bounds on the smallest time-step size in the temporal 
dimension. Similarly, implicit time-integration techniques manage 
longer time steps by adding more inner iteration loops at each step. 
Furthermore, despite the fact that in theory controlling PDEs can be 
inferred from the underlying thermodynamic and kinetic consider-
ations, actual PDE identification, parametrization, and validation take a 
significant amount of work. The evolution principles may not be fully 
understood or be too complex to be characterized by tractable PDEs for 
difficult or less well-studied materials. 

Currently, the efforts to reduce computational costs have mostly 
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concentrated on utilizing high-performance computer architectures [5] 
and sophisticated numerical techniques [6], or on merging machine 
learning algorithms with simulations based on microstructures [7–9]. 
Leading studies, for instance, have developed surrogate models using a 
variety of techniques, such as Green’s function solution [10], Bayesian 
optimization [11], a combination of dimensionality reduction and 
autoregressive Gaussian processes [12], convolutional autoencoder and 
decoder [13], or integrating a history-dependent machine-learning 
method with a statistically representative, low dimensional description 
of the microstructure evolution generated directly from phase-field 
simulations that can quickly predict the evolution of the microstruc-
ture from phase-field simulations [14]. The main problem, however, has 
been to strike a balance between accuracy and computing efficiency, 
even for these successful systems. For complex, multi-variable phase- 
field models, for example, precise answers cannot be guaranteed by the 
computationally effective Green’s function solution. In contrast, com-
plex, coupled phase-field equations can be solved using Bayesian opti-
mization techniques, however, at a higher computational cost (although 
the number of simulations required is kept to a minimum because the 
Bayesian optimization protocol determines the parameter settings for 
each subsequent simulation). The capacity of this class of models to 
predict future values outside of the training set is constrained by the fact 
that autoregressive models can only forecast microstructural evolution 
for the values for which they were trained. In other models based on 
dimensionality reduction methods like principle component analysis 
(PCA), a large amount of information is ignored, which will sacrifice 
accuracy. 

To address the above knowledge gaps, in this study we develop a 
network based on Predictive Recurrent Neural Network-based 
(PredRNN) [15] to predict the 2D microstructure evolution over time. 
In recent years, the usage of ML algorithms in materials research has 
increased significantly [16,17]. They have been used in a variety of 
ways, including the discovery of new materials [18–21], the prediction 
of materials’ properties [22–24], the creation of precise and effective 
potentials for atomistic simulations [25], the analysis and processing of 
microscopic and spectroscopic data [26–31], the successful inference of 
a material’s properties from a small body of experimental data [32,33], 
and materials chemistry and processing history prediction from sole 
micrograph[34,35]. These works include microstructure classification 
and quantification [26,36], image segmentation [27,28], predictions of 
microstructure-property relations [37,38], mapping processing- 
microstructure relations [34,35,39–41], microstructure optimization 
[42,43], and equilibrium configuration prediction [44] are just a few of 
the many works that focus on material microstructure and have 
encouraging results. The datasets used in these investigations are pri-
marily static images of microstructure. This research aims to highlight 
the significant temporal link between microstructure morphologies 
along their evolutional history. 

Recurrent Neural Networks (RNNs) [45] are neural networks with 
hidden memory units that are intended to predict temporal data se-
quences. RNNs have achieved extensive success in natural language 
processing [46], speech recognition [47], and computer vision [48] 
thanks to the development of efficient variations such as the Gated 
Recurrent Unit (GRU) [49], and the long short-term memory (LSTM) 
[50], which addresses the vanishing gradient problem during back-
propagation. Convolutional neural networks (CNNs) and LSTM have 
recently been proposed for the predictive learning of spatiotemporal 
sequences [51]. 

Yang et al. [52] used the Eidetic 3D LSTM (E3D-LSTM) [53] model to 
predict evolution phenomena in different processes, such as plane-wave 
propagation, grain growth, spinodal decomposition, and dendritic 
crystal growth. Although the results show that the model can predict the 
evolutionary phenomena precisely, two important issues are not 
addressed in this study. First, all the used morphologies are constructed 
artificially for both training and validation. On the other hand, for 
example, spinodal decomposition occurs in two separate phases: a quick 

composition modulation growth phase, followed by a slower coarsening 
phase, during which the Gibbs-Thomson effect causes a progressive rise 
in the length scale of the phase-separation pattern. While microstructure 
morphologies change drastically in these two phases, they trained the 
RNN to detect system evolution in the second coarsening stage. There-
fore, developing a model that can predict morphology evolution in both 
phases is desired. In this study, we demonstrate that PredRNN can 
precisely capture all the required features from earlier microstructures 
to predict long-term microstructures. 

2. Methods 

2.1. Phase-field modeling 

Significant improvements in computational power and advances in 
numerical methods have made the PF approach a powerful tool for 
quantitative modeling of the temporal and spatial evolution of material 
microstructures. Some applications of this method in material process-
ing include martensitic transformation [54], crack propagation [55], 
grain growth [56], and materials microstructure prediction for proper-
ties optimization [57]. 

The PF method eliminates the need for the system to track each 
moving boundary by having a finite-width interface that gradually 
transitions from one composition or phase to another [58]. This essen-
tially leads to the system being modeled as a diffusivity problem. This 
can be solved by using the nonlinear PDEs of the continuum. Two major 
PF PDEs show the evolution of various PF variables. One is the Allen- 
Cahn equation [59] for solving unconserved order parameters (phase 
domain, particles, etc.), and the other is the Cahn-Hilliard equation [60] 
for solving conserved order parameters (concentration, etc.). 

The constituent elements control the process of phase separation. 
Hence, the microstructure evolution can be found by tracking the 
conserved variables, i.e., Fe, Cr, and Co concentration in the isothermal 
spinodal phase decomposition process. Therefore, our model is governed 
by the Cahn-Hilliard equation. Equations (1) and (2) are the Cahn- 
Hilliard equations for the spinodal decomposition of the Fe-Cr-Co 
ternary system. The PF model for data generation is mainly adopted 
from Koyama and Onodera’s study [61]. 

∂cCr

∂t = ∇⋅MCr,Cr∇
δFtot

δcCr
+∇⋅MCr,Co∇

δFtot

δcCo
(1)  

∂cCo

∂t = ∇⋅MCo,Cr∇
δFtot

δcCr
+∇⋅MCo,Co∇

δFtot

δcCo
(2) 

where ccr and cco are the concentrations of Chromium and Cobalt, t is 
time, Ftot is total free energy, and M is the mobility function. The evo-
lution of microstructures is primarily driven by the minimization of the 
total free energy, Ftot, of the system. The model is parametrized using a 
calculation of phase diagram (CALPHAD) data, for details please refer to 
Ref[34,35]. The Multiphysics Object-Oriented Simulation Environment 
(MOOSE) is used to solve the nonlinear PDEs. MOOSE is an open-source 
finite element package developed by the Idaho National Laboratory and 
is efficient for parallel computing on supercomputers[62]. The com-
bined Cahn-Hilliard equations were solved using the weak form of the 
residual series of MOOSE’s pre-designed Cahn-Hilliard PDEs. 

2.2. Training and testing dataset 

This study uses the morphology of microstructures of the Fe-Cr-Co 
ternary alloy in different temperatures and compositions as training 
and testing datasets. To cover all the ranges of parameters, as mentioned 
in Table 1, the simulation conditions are designed by the design of ex-
periments. Since the parameters contain chemical compositions and are 
subject to the constraint that they must sum to one, the mixture design as 
a design of the experiment method is adopted [63]. Unlike temperature 
and chemistry, we did not grid the time domain linearly because the 
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microstructure is susceptible to aging time in the early stages of 
annealing, but as time passes, this sensitivity drops considerably. We 
generated the microstructures by solving the Cahn-Hilliard PDEs using 
the MOOSE framework. The simulations were run on different clusters 
including Boise State University R2 cluster computers [64], Boise State 
University BORAH [65], and the Extreme Science and Engineering 
Discovery Environment (XSEDE) (Jetstream2 cluster), which is sup-
ported by National Science Foundation (NSF) [66]. 

After running the simulations, the microstructures were collected 
from the results. The Fe-based composition microstructure morphol-
ogies sequences are utilized to construct the dataset. The length of each 
sequence is 20 microstructures; the first 10 microstructures are used to 
predict the future 10 microstructures. 

2.3. Spatiotemporal predictive 

Prediction of microstructure evolution is a spatiotemporal problem. 
Different network architectures, which can generally be grouped into 
three categories: feed-forward models based on CNNs, recurrent models, 
or a combination of convolution and recurrent networks, the 
Transformer-based, and flow-based methods, are used to encode 
different inductive biases into neural networks for spatiotemporal pre-
dictive learning [67]. The inductive bias of group invariance over space 
has been brought into spatiotemporal predictive learning through the 
use of convolutional layers. For next-frame prediction in Atari games, 
Oh et al. [68] defined an action-conditioned autoencoder with convo-
lutions. The Cross Convolutional Network, developed by Xue et al. [69], 
is a probabilistic model that stores motion data as convolutional kernels 
and learns to predict a likely set of future frames by understanding their 
conditional distribution. In order to complete the crowd flow prediction 
challenge, Zhang et al. [70] suggested using CNNs with residual con-
nections. It specifically takes into account the proximity, duration, 
trend, and external elements that affect how population flows move. 
Additionally, the convolutional architectures are employed in tandem 
with the generative adversarial networks (GANs) [71], which success-
fully lowered the learning process’ uncertainty and enhanced the 
sharpness of the generated frames. Most feed-forward models demon-
strate greater parallel computing efficiency on large-scale GPUs 
compared to recurrent models [72–74]. However, these models gener-
ally fail to represent long-term reliance across distant frames since they 
learn complex state transition functions as combinations of simpler ones 
by stacking convolutional layers. 

Some helpful insights into how to forecast upcoming visual se-
quences based on historical observations are provided by recent de-
velopments in RNNs. In order to forecast future frames in a discrete 
space of patch clusters, Ranzato et al. [75] built an RNN architecture 
that was influenced by language modeling. As a remedy for video pre-
diction, Srivastava et al. [76] used a sequence-to-sequence LSTM model 
from neural machine translation [77]. Later, other approaches to 
describe temporal uncertainty or the multimodal distribution of future 
frames conditioned on historical observations have been presented, 
integrating variational inference with 2D recurrence [78–80]. By ar-
ranging 2D recurrent states in hierarchical designs, certain additional 

techniques successfully increased the forecast time horizon. The 
factorization of video information and motion is another area of 
research, typically using sequence-level characteristics and temporally 
updated RNN states [81]. The use of optical flows, new adversarial 
training schemes, relational reasoning between object-centric content 
and pose vectors, differentiable clustering techniques, amortized infer-
ence enlightened by unsupervised image decomposition, and new types 
of recurrent units constrained by partial differential equations are 
typical approaches [82–84]. The aforementioned techniques work well 
for breaking down dynamic visual scenes or understanding the condi-
tional distribution of upcoming frames. To describe the spatiotemporal 
dynamics in low-dimensional space, they primarily use 2D recurrent 
networks, which inadvertently results in the loss of visual information in 
actual circumstances. 

Shi et al. [85] created the Convolutional LSTM (ConvLSTM), which 
substitutes convolutions for matrix multiplication in the recurrent 
transitions of the original LSTM to combine the benefits of convolutional 
and recurrent architectures. A schematic of ConvLSTM with a basic 
LSTM cell is given in Fig. 1. An action-conditioned ConvLSTM network 
was created by Finn et al. [86] for visual planning and control. Shi et al. 
[87] coupled convolutions with GRUs and used non-local neural con-
nections to expand the receptive fields of state-to-state transitions. Wang 
et al. [88] introduced a higher-order convolutional RNN that uses 3D 
convolutions and temporal self-attention to describe the dynamics and 
includes a time dimension in each hidden state. Su et al. [89] increased 
the low-rank tensor factorization-based higher-order ConvLSTMs’ 
computational effectiveness. Convolutional recurrence provides a plat-
form for further research by simultaneously modeling visual appear-
ances and temporal dynamics [90,91]. The spatiotemporal memory 
flow, a novel convolutional recurrent unit with a pair of decoupled 
memory cells, and a new training method for sequence-to-sequence 
predictive learning are all used to enhance the existing architectures 
for action-free and action-conditioned video prediction in Predictive 
Recurrent Neural Network (PredRNN) [15]. 

A network component known as a memory cell is crucial in helping 
stacked LSTMs solve the vanishing gradient issue seen by RNNs. It can 
latch the gradients of hidden states inside each LSTM unit during 
training, preserving important information about the underlying tem-
poral dynamics, according to strong theoretical and empirical evidence. 
However, the spatiotemporal predictive learning task necessitates a 
distinct focus on the learned representations in many areas from other 
tasks of sequential data; therefore, the state transition pathway of LSTM 
memory cells may not be optimum. First, rather than capturing spatial 
deformations of visual appearance, most predictive networks for lan-
guage or speech modeling concentrate on capturing the long-term, non- 
Markovian features of sequential data [92]. However, both space–time 
data structures are essential and must be carefully considered in order to 
forecast future frames. Second, low-level features are less significant to 
outputs in other supervised tasks using video data, such as action 
recognition, where high-level semantical features may be informative 
enough. The stacked LSTMs don’t have to maintain fine-grained repre-
sentations from the bottom up because there are no complex structures 
of supervision signals. Although the current inner-layer memory 
transition-based recurrent architecture can be sufficient to capture 
temporal variations at each level of the network, it might not be the best 
option for predictive learning, where low-level specifics and high-level 
semantics of spatiotemporal data are both significant to generating 
future frames. Wang et al. [15] proposed a new memory prediction 
framework called PredRNN, which extends the inner-layer transition 
function of memory states in LSTMs to spatiotemporal memory flow. 
This framework aims to jointly model the spatial correlations and tem-
poral dynamics at different levels of RNNs. All PredRNN nodes are tra-
versed by the spatiotemporal memory flow in a zigzag pattern of bi- 
directional hierarchies: A newly created memory cell is used to deliver 
low-level information from the input to the output at each timestep, and 
at the top layer, the spatiotemporal memory flow transports the high- 

Table 1 
Simulation variables and their range of values for database generation.  

Simulation variable Range of 
values 

Grid 

Time (Sec.) 10–1080000 10–3600 50 
3600–36000 500 
36000–360000 5000 
360000–1080000 100,000 

Temperature (K) 850–970 10 
Chromium composition (at. 

%) 
0.05–0.9 0.05 

Cobalt composition (at.%) 0.05–0.9 0.05  
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level memory state to the bottom layer at the following timestep. The 
Spatiotemporal LSTM (ST-LSTM), in which the proposed spatiotemporal 
memory flow interacts with the original, unidirectional memory state of 
LSTMs, was therefore established as the fundamental building element 
of PredRNN. It seems that they would require a unified memory mech-
anism to handle both short-term deformations of spatial details and 
long-term dynamics if they anticipated a vivid imagination of numerous 
future images: On the one hand, the network may learn complex tran-
sition functions within brief neighborhoods of subsequent frames thanks 
to the new spatiotemporal memory cell architecture, which also in-
creases the depth of nonlinear neurons across time-adjacent RNN states. 
Thus, it considerably raises ST-modeling LSTM’s capacity for short-term 
dynamics. To achieve both long-term coherence of concealed states and 
their fast reaction to short-term dynamics, ST-LSTM, on the other hand, 
still uses the temporal memory cell of LSTMs and closely combines it 
with the suggested spatiotemporal memory cell. On five datasets—the 
Moving MNIST dataset[76], the KTH action dataset[93], a radar echo 
dataset[94] for precipitation forecasting, the Traffic4Cast dataset[95] of 
high-resolution traffic flows, and the action-conditioned BAIR dataset 
[86] with robot-object interactions—the proposed methodology 
demonstrated state-of-the-art performance. The original paper [15] 
contains information about the investigation in detail. This study adopts 
the PredRNN to predict the microstructure evolution quickly and 
accurately. 

3. Results and discussion 

3.1. Phase-field modeling for microstructure sequences generation 

Following the Simplex-Lattice design, the microstructure sequences 
are produced by the PF modeling of Fe-Cr-Co spinodal decomposition. 
For this study, 4,212 phase field simulations (18 different Cr composi-
tions, 18 Co different compositions, and 13 different temperatures) were 
run based on Table 1. Then, the sequences were constructed based on the 

generated time series microstructures in each PF run (125,233 micro-
structures morphology in total). Some sample microstructure sequences 
from the PF simulation results are shown in Fig. 2. On a 24 Core CPU, a 
MOOSE simulation of a 200 nm 2D domains uses about 120 service units 
(SU) every run. Therefore, it took around 505 k SU to screen the sug-
gested range of temperatures and chemical compositions for micro-
structure evolution. Fig. 2 shows some samples of microstructure 
evolution and indicates that the microstructure morphology patterning 
differs in various chemical compositions and temperatures. 

The training dataset can be generated from simulated microstruc-
tures. The length of each sequence is 20 microstructures. The first 10 
microstructures, which are from the first 30 hr of heat treatment, are 
used to predict the future 10 microstructures, which have heat treatment 
time between 50 hr to 300 hr. There are 20,000 sequences for training 
and 4,000 sequences for testing data. Three different Fe-composition- 
based microstructure morphology sequences are presented in Fig. 3. 

Fig. 3 shows the dataset contains very different evolution sequences 
in terms of structure. In addition, since the microstructures are selected 
from both distinct stages of spinodal decomposition, i.e., a fast compo-
sition modulation growth stage and a slower coarsening stage, the dif-
ference between the input and output sequence is significant, which can 
be easily recognized in Fig. 3. In this case, the model has a more difficult 
task in predicting the output sequences. 

3.2. Microstructure evolution prediction by PredRNN 

20,000 sequences trained the PredRNN to predict the output mi-
crostructures. With a mini-batch of 8 sequences, we trained the models 
using the ADAM optimizer. After 80,000 iterations, the training process 
is terminated with a learning rate of 10−4. PredRNN typically employs 
four ST-LSTM layers to balance training effectiveness with prediction 
quality. We set the size of the convolutional kernels inside the ST-LSTM 
unit to 5 × 5 and the number of channels of each hidden state to 128. 

As illustrated in Fig. 4, the training loss decreases smoothly with 

Fig. 1. Structure of ConvLSTM with basic LSTM cell.  
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iteration, which indicates that the model’s parameters have reached 
their optimal value globally. In addition, we employ evaluation mea-
sures that are frequently used to determine the similarity between two 
images. The predicted and ground truth microstructures are compared 
using the Mean Squared Error (MSE), the Peak Signal-to-Noise Ratio 
(PSNR), the Structural Similarity Index Measure (SSIM), and the Learned 
Perceptual Image Patch Similarity (LPIPS). In these metrics, MSE esti-
mates the absolute pixel-wise errors, PSNR compares image compression 
quality, SSIM measures the similarity of structural information within 
the spatial neighborhoods, and LPIPS is based on deep features and is 
more in line with human perceptions. Smaller MSE and LPIPS, and 
higher PSNR and SSIM indicate more similarity between images. 

After training, test sequences are used to compute MSE, LPIPS, PSNR, 
and SSIM; the average values for each iteration are given in Fig. 5. The 
results demonstrate that all the metrics improve with iteration to reach 
almost stability. It proves that the model learns from the data and can 
train the hyperparameters. 

Fig. 6 displays three randomly selected samples from the test set for a 
qualitative comparison. The left microstructures of the dashed line are 
the input frames, the right ones in the top row are the ground truth of 
output microstructures, and the bottom row shows the PredRNN pre-
diction. The microstructures produced by PredRNN predict clear im-
ages, meaning it can be confident of future variations. In addition, we 
can see that the predicted sequence is close to the ground truth 

Fig. 2. The Fe-composition base 2D microstructure sequences for different temperatures and chemical compositions produced by the PF method (Compositions are in 
atomic percent). 

Fig. 3. Three different Fe-composition-based microstructure morphology sequences.  
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sequence. 

3.3. Trained model performance on the microstructure evolution 
prediction during time 

Model performance on frames prediction during time is one of the 
key parameters in spatiotemporal models’ evaluation [96,97]. Basically, 
the perdition of earlier frames is easier than long-term prediction 
because of the similarity with the input sequence. Fig. 7 provides the 
corresponding frame-wise comparisons between the predicted by the 
final PredRNN model and ground truth microstructures for test se-
quences. The average values of metrics show that the model can predict 
all the microstructures with reasonable accuracy. On the other hand, the 
model has higher accuracy in the prediction of the first frames than the 
last ones, as MSE and LPIPS increase and PSNR and SSIM decrease from 
frame 1 to 10. 

For quantitative comparison of long-term and short-term pre-
dictions, similarity/error metrics for the test set produced by the final 
PredRNN model are given in Fig. 8. The results show that PredRNN 

prediction for short-term cases is more accurate than long-term pre-
dictions. These results seem reasonable because there is a stronger 
correlation between the first microstructures from the output sequence 
and the input sequence. However, in general, the predictions for long- 
term cases also have good agreement with the ground truth. It proves 
that the PredRNN can predict the microstructure evolution reasonably 
well. 

3.4. Trained model inference performance in future microstructures 
prediction 

The time it takes to calculate the model’s outputs as a function of the 
inputs is known as the inference speed. The model’s response time is 
crucial in many applications, especially those requiring real-time data 
[98]. Since this study aims to develop a deep network to predict the 
microstructure evolution quickly and accurately, the model inference 
performance is a critical factor. Therefore, the trained model perfor-
mance is compared with the simulation on a reference computer. Since 
MOOSE can only run with the CPU, we used the same resource for the 

Fig. 4. Training loss per iteration indicates model convergence after 10,000 iterations.  

Fig. 5. Average MSE, PSNR, SSIM, and LPIPS for testing sequences during training per each iteration.  
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trained model. The result for randomly selected test data is given in 
Fig. 9. While the simulation of the rest microstructures takes more than 
75 hrs by the PF modeling, the trained model can predict the future 
sequence in a fraction of a second by just having earlier microstructures. 
The error metrics indicate that this prediction is robust and reliable 

compared to the simulated microstructures. We note that the developed 
model in this work predicts the morphology and not the chemistry of the 
phases, unlike the PF method. However, in our previous works[34,35] 
we have developed machine learning codes that can predict the chem-
istry from the morphology image. Therefore, a combination of these two 

Fig. 6. Frame-wise results on the three randomly selected samples from the test set produced by the final PredRNN model (predictions (P) vs. ground truth (G)).  

Fig. 7. Frame-wise similarity between the ground truth and PredRNN predicted microstructures on the test set quantified with MSE, PSNR, SSIM, and LPIPS criteria.  
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Fig. 8. Trained PredRNN model performance on (a) short and (b) long-term prediction for three randomly selected samples from the test set.  

Fig. 9. Comparison of the trained PredRNN model speed with the PF simulation on a randomly selected sample from the test set.  
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models can predict both morphology and chemistry. 

4. Conclusion 

We introduced a framework based on a deep neural network to 
predict the material microstructure evolution. As a case study, we 
generated the training and testing dataset from phase-field modeling of 
the spinodal decomposition process in Fe-Cr-Co alloy. We considered the 
microstructure morphologies evolution based on Fe composition. The 
future microstructure sequences were predicted by knowing the earlier 
sequence by PredRNN. Some immediate advantages of the developed 
framework in on microstructure high throughput simulations and 
microstructure morphology database generation. The model can predict 
up to 10X ahead of what it is fed into. This becomes much more critical 
when we are dealing with multicomponent alloys where the PF simu-
lations get dramatically slow. A detailed analysis of the model’s per-
formance indicated that the model parameters were optimized based on 
training loss reduction and error metrics improvement. The quantitative 
and qualitative comparisons show that the trained PredRNN model can 
predict the output sequence accurately. Although the model accuracy 
for short-term predictions is better than long-term predictions, the 
model still shows reliable performance in long-term forecasting. The 
model inference test demonstrates that it can predict the microstructure 
evolution quickly and accurately. In general, the proposed models could 
reasonably predict the materials’ microstructure evolution. 
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