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The analysis of functional near-infrared spectroscopy (fNIRS) signals has not kept
pace with the increased use of fNIRS in the behavioral and brain sciences. The
popular grand averaging method collapses the oxygenated hemoglobin data
within a predefined time of interest window and across multiple channels within
a region of interest, potentially leading to a loss of important temporal and spatial
information. On the other hand, the tensor decomposition method can reveal
patterns in the data without making prior assumptions of the hemodynamic
response and without losing temporal and spatial information. The aim of the
current study was to examine whether the tensor decomposition method could
identify significant effects and novel patterns compared to the commonly used
grand averaging method for fNIRS signal analysis. We used two infant fNIRS
datasets and applied tensor decomposition (i.e., canonical polyadic and Tucker
decompositions) to analyze the significant differences in the hemodynamic
response patterns across conditions. The codes are publicly available on GitHub.
Bayesian analyses were performed to understand interaction effects. The results
from the tensor decomposition method replicated the findings from the grand
averaging method and uncovered additional patterns not detected by the
grand averaging method. Our findings demonstrate that tensor decomposition
is a feasible alternative method for analyzing fNIRS signals, offering a more
comprehensive understanding of the data and its underlying patterns.

functional near-infrared spectroscopy, tensor decomposition, canonical polyadic
decomposition, Tucker decomposition, signal analysis

1. Introduction

The use of functional near-infrared spectroscopy (NIRS) has grown exponentially over the
last 20 years due to advances in instrumentation, software, and headgear design. An advantage
of fNIRS, as a neuroimaging technique, is that the datasets produced are rich in information
with thousands of time samples from multiple channels across conditions and subjects. One of
the challenges for researchers is to implement tools for analyzing the fNIRS signal that utilizes
this information. Other neuroimaging techniques, such as electroencephalography (EEG), have
identified tools like the tensor decomposition method (Morup et al., 2007; Weis et al., 2009;
Dauwels et al.,, 2011; Vanderperren et al., 2013; Matic et al., 2014) that can optimize their datasets
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(i.e., find the main patterns emerging in the signal without losing
information about the temporal dynamics and spatial configuration).
With some methods, changes in cortical response are averaged across
time and space, resulting in a loss of information about how the
response changes across time and for which areas of the brain. In
contrast, tensor decomposition can maintain and reveal these changes
across times in the specified area. Additionally, in instances where the
time used for analysis is unknown (e.g., not a well-established
paradigm), the tensor decomposition method is an alternative to
manually testing multiple time periods by hand. However, the
effectiveness of tensor decomposition in fNIRS signal analysis has not
been investigated yet.

The grand averaging method is a commonly used approach to
analyze the fNIRS signal, particularly for identifying group differences
in the brain’s hemodynamic response across test conditions. It starts
by averaging the changes in the hemoglobin across the time window
of interest (TOI) and region of interest (ROI) and then uses a statistical
test to identify significant differences; however, there are two main
limitations. First, it requires assumptions about the TOI and ROI,
which can be limiting if there is no prior knowledge about possible
locations in time or space (e.g., using a novel paradigm). Second,
averaging across temporal and spatial modes for data reduction may
result in a significant loss of information about the temporal and
spatial aspects of the hemodynamic response. This may lead to
missing important TOIs and ROIs when studying significant
differences in the brain’s hemodynamic response across conditions.
Another fNIRS signal analysis approach that has been gaining
popularity is the general linear model (GLM) (Tak and Ye, 2014;
McCullagh and Nelder, 2019; Pinti et al., 2019; von Lithmann et al.,
2020). The GLM aims to model the relationship between the fNIRS
signals and experimental conditions. The GLM does not make
assumptions about the shape of the response; however, it assumes that
the fNIRS signal is linear and Gaussian, which may not always
be the case.

In this study, the objective was to improve the analysis of
multidimensional fNIRS data. The proposed fNIRS signal analysis
method is on tensor decomposition, a powerful signal processing and
analysis method for handling multidimensional data. It examines the
interaction between three or more modes of the signal, such as
temporal, spatial, spectral, and subject. The method decomposes the
signals into components from each mode to represent the underlying
dynamics of the brain across modes (Dauwels et al., 2011; Cong et al.,
2015; Rabanser et al., 2017; Wang et al., 2018). Statistical tests can
be used on these components to select the ones that indicate significant
differences in the hemodynamic response across conditions. These
selected components are combined to determine the TOI and ROI
representing the significant temporal and spatial differences
across conditions.

One of the main advantages of the tensor decomposition method
is that it can reveal patterns emerging from the data without making
predefined assumptions about the patterns. It has been used in many
applications, such as in EEG (Latchoumane et al., 2012; Cong et al,,
2013, 2014) and functional magnetic resonance imaging studies
(Andersen and Rayens, 2004; Han et al,, 2021). Additionally, this
method can investigate the interactions between three or more modes
of the hemodynamic response (e.g., temporal, spatial, and subjects)
without the need for averaging the hemodynamic response over each
mode or using a predefined TOI window and ROI. This method can
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provide a more comprehensive and accurate analysis of the
NIRS signals.

We hypothesized that the tensor decomposition method could
identify TOIs and ROIs that significantly differ across conditions
without any presumptions about the possible TOIs or ROIs. Two
previously collected fNIRS datasets were formulated into tensors to
test this hypothesis. Specifically, we used two datasets of hemodynamic
responses that were collected from infants as they watched distinct
events in a puppet-stage apparatus (Biondi et al., 2016, 2021) and used
two different tensor decomposition techniques, canonical polyadic
decomposition (CPD) and Tucker decomposition (TD). The CPD and
TD were followed by analysis of variance (ANOVA) to identify the
TOIs and ROIs that indicated significant differences in hemodynamic
responses across conditions. Bayesian analyses were also used on
mean hemodynamic response values from the identified TOIs and
ROIs to understand the interaction effects. Additionally, we evaluated
the usefulness of the tensor decomposition method in the fNIRS field
by investigating whether this advanced signal analysis method can
replicate the main findings obtained from the grand averaging method
and provide additional insights and information that the grand
averaging method might have missed due to its limitations.

2. Materials and methods
2.1. Datasets and data processing

Two fNIRS datasets were used to investigate the performance
of the proposed tensor decomposition method for fNIRS signal
analysis. The datasets were collected by Biondi and colleagues
(Biondi et al., 2016, 2021) to identify cortical structures that support
infants’ processing of different types of events. In each of the two
datasets, the two types of entities, human/social and nonhuman/
mechanical, were crossed with the two types of action sequences to
form four event conditions. For both datasets, the studies were
conducted with the parent’s written consent and in accordance with
the Institutional Review Board at Texas A&M University and
Florida Atlantic University.

The first dataset (Biondi et al., 2016), referred to as the Human
Hand/Mechanical Claw dataset, utilized a 2 (entity type) x 2 (action
sequence) between-subjects design, where 70 infants (29 female) aged
six to ten months observed a test event in which a human hand or a
mechanical claw (entity type) used a tool in a way that was either
functional or nonfunctional (action sequence). Infants in each of the
four conditions observed 12 trials of the test event. The second dataset
(Biondi et al., 2021), referred to as the Social/Mechanical Interactions
dataset, utilized a 2 (entity type) x 2 (action sequence) mixed-model
design with entity type (social or mechanical) as the within-subjects
variable and action sequence (interaction or no interaction) as the
between-subjects variable. This dataset consisted of data from 36
infants (13 females) aged six to nine months. Specifically, one group
of infants (n = 18) observed events in which social entities engaged in
social interactions and mechanical entities engaged in mechanical
interactions. Another group of infants (n = 18) viewed events in which
social entities moved together but did not interact and events in which
mechanical entities moved together but did not interact. Each group
of infants observed 12 test trials, consisting of a block of six social
trials and a block of six mechanical trials. In both datasets, fNIRS data
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were obtained from 20 channels (10 in each hemisphere) located over
bilateral
(Supplementary Figure S1 for probe placement and geometry). Refer

temporal and temporal-occipital cortex
to Section 1 of the Supplementary material for more details on
the instrumentation.

The fNIRS data were preprocessed according to Biondi et al.
(2016) and Biondi et al. (2021). Refer to Section 1 of the
Supplementary material for more details on the preprocessing.
Oxygenated hemoglobin data were averaged over trials within each
condition and subject to reduce the effect of systemic noise and other
outliers, and to create a hemodynamic response function (HRF). The
HRE consisted of three-time epochs: baseline (2 s prior to the onset of
the stimulus presentation); stimulus presentation (0 s to 15 s for the
Human Hand/Mechanical Claw dataset, and 0 s to 12 s for the Social/
Mechanical Interactions dataset); and post-stimulus presentation (10
s after the onset of the stimulus presentation). The fNIRS data were
collected at different sampling frequencies, 50 Hz for the Human
Hand/Mechanical Claw dataset and 25-50 Hz for the Social/
Mechanical Interactions dataset, in which the fNIRS data were
upsampled to match the number of data points for the tensor
decomposition analysis.

2.2. Grand averaging method

The grand averaging method was applied to the HRF signals from
the two datasets by first predefining a TOI window and ROI (Figures 1,
2A). The HRF was then reduced across the temporal mode by
averaging the HRF over the predefined TOI window to obtain a single
temporal mean value. This process was repeated across the spatial

10.3389/fnins.2023.1180293

mode by averaging the temporal mean values over channels within the
ROI (i.e., averaging channels within an ROI after averaging over the
TOI), resulting in a single spatial mean value per ROL These spatial
mean values were then grouped by condition and tested for statistically
significant differences using ANOVA. This method allowed for the
examination of the temporal dynamics of the hemodynamic response
during a specific TOI within a specific ROI Refer to Section 2 of the
Supplementary material for more details.

2.3. Proposed tensor decomposition
methods

This section explains the process of applying the tensor
decomposition method to the HRE Refer to Section 3 of the
Supplementary material for the mathematical notations. To ensure
reproducibility, we made the codes public. The codes for the proposed
method are publicly available on GitHub (Chan et al., 2023).

2.3.1. Tensor construction

The tensor decomposition method involves creating a four-
dimensional array, called a tensor, which includes temporal, spatial,
spectral, and subject modes (Kolda and Bader, 2009; Sidiropoulos
et al., 2017). The subject mode consists of all subjects in all of the
conditions. For the first dataset, it is a between-subjects design with
70 infants. This means that the size of the subject mode is 70 subjects.
The data were first transformed into time-frequency representations
using Short-time Fourier transform. Only the Fourier Transform
coeflicients for positive frequencies were used to ensure consistent
significant components were revealed after using nonnegative
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FIGURE 1

Illustration of the significant amount of data reduction when implementing the grand averaging method before assessing significant differences across
conditions. (A) To prepare for fNIRS signal analysis, a hemodynamic response function (HRF) is constructed by averaging across multiple trials within a
condition. From there the grand averaging method functions by averaging across the temporal mode by using a predefined time of interest (TOI)
window to average across, resulting in a single temporal mean value for each channel. (B) Then the grand averaging method averages across the
spatial mode. For illustrative purposes, there are two regions of interest (ROIs) shown in the triangles. Temporal mean values obtained from channels in
the same ROI are averaged, resulting in a single spatial mean value for each ROI per subject. (C) The spatial mean values collected from all the subjects
are then grouped together by condition to be analyzed with analysis of variance (ANOVA).
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A flowchart depicting the steps for grand averaging and the proposed tensor decomposition method. (A) Visual representation of the data reduction
with grand averaging. (B) Visual representation of the data preservation with the proposed method.

CPD. The nonnegativity constraint only revealed changes in the
hemodynamic response, not if the changes were above or below zero
activity. This allows for the investigation of significant changes in the
response’s spectral behavior; however, our preliminary investigations
did not find any differences across conditions on the spectral mode
(Hssayeni et al., 2020). Therefore, we created a three-way tensor with
temporal, spatial, and subject modes when applying TD as the tensor
decomposition method. The tensor was then divided into two separate
tensors, one for each hemisphere, to examine differences in the
hemodynamic response patterns for the left and right hemispheres.
This process is illustrated in Figure 2B, where the top half shows the
tensor created for CPD and the bottom half shows the tensor
created for TD.

2.3.2. Tensor decomposition

The tensor decomposition method is a technique used to analyze
the interactions between multiple modes of a tensor (Hitchcock, 1927;
Merup et al., 2007; Cichocki et al., 2015; Cong et al., 2015) and extract
the main components of the underlying complex dynamics (Morup,
2011). This is done by giving more weight to similar patterns of the
signal across the tensor and less weight to the background noise, such
as systemic physiology, machine noise, and motion artifacts. The two
most popular tensor decomposition techniques, CPD and TD (Cong
etal., 2015), were used in this study. CPD decomposed the four-way
tensor X into R number of components (Carroll and Chang, 1970;
Kolda and Bader, 2009; Cichocki et al., 2015; Rabanser et al., 2017;
Eq. 1). Each cor%)onent consisted of the outer product of the four
vectors (urt R ,and u,s e RIXR ) which were the temporal,

c
uy, uy

spectral, spatial, and subject modes, respectively.

X = 1x U(t) x5 U(f) x3 U(C) x4 U(S)

~Z (©) ()

(1

our ou
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Different symbols were used in the equations to avoid confusion
between CPD and TD (Tucker, 1966; Kolda and Bader, 2009; Cong
etal., 2015; Rabanser et al., 2017). TD decomposed the three-way tensor
Y into a core tensor, G, and REXRXL humber of components from
each mode (A(t), A(C)
main underlying patterns by showing how each mode’s components

,and A4 (S); Eq. 2). The core tensor represents the

connect (Zubair and Wang, 2013). For the current study, the core tensor
consisted of the product of the components, g € RERXL from the
temporal, spatial, and subject modes, respectively. The number of
extracted components, R, and R., was less than or equal to the total
number of data points in the according mode, /; and /.. Only the
number of subject components, /;, was not decomposed so that
ANOVA could be used to identify significant differences across
conditions and so that each subject would have a temporal and spatial
component that would reveal the TOI and ROJ, respectively. That is the
information from the subjects mode was not compressed. For example,
it is possible that 70 subjects could be represented with 5 components.
In the case of the current experiment, the subject mode was not
compressed, and 70 components were used to represent the 70 subjects.
), and spatial,

Also, it was so that each subject would have a temporal, a,
), component that would reveal the TOI and ROJ, respectlvely

a

Y ~G X1 A(t) X2 A(c) X3 A(S)

(2
NZ,’ lz _22 lgrrR

N9y (S)

The tensor decomposition methods involve identifying the
number of components in the data by minimizing the differences
between the original and decomposed tensors while balancing
accuracy and compression. The optimal number of components was
determined by finding the point at which there is a significant decrease
in the relative error. For CPD, the number of components, R, extracted
should have a reconstruction error rate below 10%. For TD, the same
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method was used to estimate the number of components, REXRXI .

that should have been extracted. Here, we used the nonnegative CPD
for stability (Cong et al., 2014) and orthogonal TD for unique
decomposition (Phan and Cichocki, 2010). The optimization
algorithm for computing the CPD and TD was alternating least
squares and low multilinear rank approximation, respectively.

2.3.3. Excluding irrelevant components

The temporal, spatial, and spectral components extracted from
the tensor decomposition methods were evaluated for relevance to the
typical hemodynamic response. Components that did not meet these
criteria were excluded from further analysis. Although the exclusion
of components started with visual inspections, objective cutoffs were
set and applied to all components.

Visual inspection of the temporal components revealed that some
components had changes in magnitude mostly during the baseline
period. This led us to set objective boundaries for excluding temporal
components with a low absolute magnitude during stimulus
presentation, as that indicated a lack of hemodynamic response.
Specifically, temporal components with a mean absolute value less
than 0.01 from 2 s after stimulus onset to the end of stimulus
presentation were excluded. This mean of 0.01 cutoff was determined
by visually inspecting all components. Figure 3A reveals that the
changes in magnitude were during the baseline period (i.e., no visual
stimuli were presented). This means that the changes in magnitude
from the component reflected the response to the baseline period and
not the stimuli being researched.

Objective exclusions of the spectral components were based on
prior literature and the length of the paradigm. Spectral components

10.3389/fnins.2023.1180293

that had high frequencies (> 0.1 Hz in the Human Hand/Mechanical
Claw dataset and > 0.5 Hz in the Social/Mechanical Interactions
dataset) were excluded, as the hemodynamic response is typically
below 1 Hz (Di Lorenzo et al.,, 2019). Other spectral parameters
should be used for adult participants or if the paradigm is a
different length.

In the case of CPD, an additional exclusion criterion was
determined objectively and applied. Due to the nonunique
decompositions, there were variations in the components emerging
across the multiple runs (Hssayeni et al., 2020). Temporal and spatial
components that had a moderate positive association (r > 0.5, @ =
0.05) across multiple runs and only including those that consistently
emerged. The temporal components that had a moderate positive
association were weighted proportionally in the frequency of
occurrence across runs and combined. The same criteria were used to
identify spatial components that had a moderate positive association
(r > 0.5, a = 0.05) with other spatial components across runs. See
Figure 3 for examples of components that were excluded and included
in the analysis based on these criteria.

2.3.4. Determination of TOIl and ROI

After the exclusion of irrelevant components, ANOVA was
applied to the subject components to identify combinations of
temporal, spatial, and spectral (for CPD) components that reveal a
significant difference across conditions as a function of the entity
type, action sequence, or the Entity Type x Action Sequence
interaction (a = 0.05). Specifically, a 2 (entity type) x 2 (action
sequence) ANOVA was applied to each component of the subject’s
mode in the Human Hand/Mechanical Claw dataset, and a

Excluded Selected
3 '
A ! B s i
1
g = :
o 2 ] 1.2 !
= ' H
I
£ ! 0.8 |
2 : ] ' !
! 04 i
' i
! |
00 2 4 6 8 1012 14 16 18 20 22 24 00 2 4 6 8 1012 14 16 18 20 22 24
Time (seconds) Time (seconds)
C 006 D oo04
1
1 1
H 0.02 :
1
0.02 - .
= ! 0 :
1
= - i i
S 0.02 ' 00 i
20.02" i
= ’ 1 i
n ! -0.04 !
! i
-0.06L — -0.06 -
0 2 4 6 8 1012 14 16 18 20 22 24 0 2 4 6 8 1012 14 16 18 20 22 24
Time (seconds) Time (seconds)
| End of Stimulus Presentation
FIGURE 3
Examination of components in the analysis. (A) Representation of a temporal component excluded from analysis due to a lack of change in magnitude
during the presentation of the stimulus. (B) Representation of a temporal component included in the analysis due to its noticeable changes during the
stimulus presentation. (C) Depiction of an excluded temporal component with frequencies >0.1 Hz. (D) lllustration of an included temporal
component with low frequencies <0.1 Hz.
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mixed-model 2 (entity type) x 2 (action sequence) ANOVA was
applied to each component of the subject’s mode in the Social/
Mechanical Interactions dataset. The significant temporal, spatial,
and spectral (for CPD) components were then summed together in
the corresponding significant effects and hemisphere to represent the
temporal profile, ROI, and spectral profile (for CPD) to identify
response differences across conditions. See Figure 4 for an example
of the temporal profile, ROI, spectral profile, and subject profile from
CPD that identified a significant main effect of entity type. It is
important to note that the temporal profile should not be interpreted
as an HREF. The temporal profile and HRF differed in a few ways. The
temporal profile represents coeflicients from the temporal component
of the tensor decomposition. These coefficients reflect the main
patterns emerging in the HRE. When tensor decomposition is used,
the HRF is represented by combining multiple components. In
contrast, the temporal profile is constructed from component(s) that
reveal a significant effect. Additionally, given the type of constraint
used on the tensor decomposition, the direction of these changes in
the HRF (e.g., activation or deactivation) is not reflected. It is because
of all these differences; the temporal profile is not on a one-to-one
ratio with the HRF. The temporal profile and HRF are similar in that
both represent temporal dynamics (i.e., changes in the hemodynamic
response across time); however, the direction of this change is not
reflected in the temporal profile and the magnitude is not a
one-to-one ratio with the HRE The temporal profile in the current
study represents the significant pattern that CPD or TD identified
across conditions and was used to determine the TOI. Higher values
in the temporal profile identify the point in time (i.e., the TOI) in
which there are significant differences in the hemodynamic responses
across conditions. If a peak in the temporal profile occurred post-
stimulus presentation, it was not considered a TOI The ROI was

10.3389/fnins.2023.1180293

identified by the channel(s) that revealed the most prominent
difference across conditions. The spectral profile from CPD was used
to identify the frequency at which the responses differ based on the
manipulation. The subject profile indicates if it is main effect of entity
type, action sequence, or the interaction between them.

3. Results and discussion

MATLAB (Mathworks, Natick, MA) with the Tensorlab 3.0 (2016)
was used to perform the CPD and TD. CPD was run ten times on the
left and right hemisphere tensors to account for its nonuniqueness and
to reveal all variations (Hssayeni et al., 2020), while TD was run once
on the two tensors. Presented below are the results of the grand
averaging method compared to the tensor decomposition method.

3.1. Human hand/mechanical claw dataset

The CPD extracted 50 components, while the TD extracted 8
temporal components, 10 spatial components, and 70 subject
components for the left and right hemisphere tensors. The number of
components selected and combined from CPD and TD to represent
the changes in hemodynamic response are shown in Table 1,
respectively. A total of 500 components were extracted across the ten
runs for CPD. The values in Table 1 represent the total number of
components that revealed a significant effect out of those 500. For TD,
eight temporal and ten spatial components were extracted, resulting
in 80 possible combinations from crossing those components. The
values in the top row of Table 1B indicate the number of combinations
that revealed a significant effect out of those 80. These significant

A Temporal Profile

274 6 810 12 14 16 18 20 22 24
Time (seconds)
! End of Stimulus Presentation @ Time of Interest

C Spectral Profile

1.5

0.5

Frequency (Hz)

FIGURE 4

This figure highlights a significant difference observed between the human hand and the mechanical claw from the CPD analysis, including
(A) a temporal profile of the TOI, (B) a ROl map, (C) a spectral profile, and (D) a subject profile. Further details on this result are in section 3.1.1.

D1 Subject Profile
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TABLE 1 Component selection and combination for the human hand/mechanical claw dataset.

Left hemisphere

Right hemisphere

Main effect Main effect of Entity type X Main effect Main effect of Entity type X
of entity action action sequence of entity action action sequence
type sequence interaction type sequence interaction
A.CPD 27 0 9 77 11 16 ‘
B.TD 2 combinations 0 combinations 2 combinations 7 combinations 0 combinations 2 combinations

2T&2S 0T&0S 2T&2S

4T &5S 0T&0S 2T&2S

(A) The total number of components selected to represent the important patterns after performing CPD. A total number of zero indicates that there was not a significant effect. (B) The top
values indicate the total number of temporal and spatial component combinations selected to represent the important patterns after performing TD. “T” represents the number of selected
temporal components, and “S” represents the number of selected spatial components used to create the combinations. For TD, eight temporal and ten spatial components were extracted,

resulting in 80 possible combinations from crossing those components. The values in the top row of Table 1B indicate the number of combinations that revealed a significant effect out of

those 80 combinations.

TABLE 2 Comparison of the results obtained using the grand averaging method, CPD, and TD on the Human Hand/Mechanical Claw dataset for both

hemispheres.

Grand averaging

Canonical Polyadic Tucker

Decomposition (CPD)

Decomposition (TD)

(Figure 5)

Main Effect of Entity Type in Left Hemisphere (Figure 7) « NS o channels 4,5, &8  channels 4, 8, &9
Main Effect of Entity Type in Right Hemisphere (Figure 6) o channels 11,14,15,& 19 |« channels 11 & 15 « channels 11, 15, & 19
Main Effect of Action Sequence in Left Hemisphere « NS « NS « NS

Main Effect of Action Sequence in Right Hemisphere « NS o channel 15 « NS

(Supplementary Figure S4)

Entity Type x Action Sequence Interaction in Left Hemisphere e channels 1, 5,6, &9 o channel 9 e channels 1, 4,5, 8, &9

Entity Type x Action Sequence Interaction in Right Hemisphere « NS
(Figure 8)

o channels 11 & 12 o channels 12 & 16

This table includes patterns for entity type, action sequence, and the interaction between entity type and action sequence. “NS” indicates a nonsignificant effect.

components from CPD and TD were then summed across the
corresponding temporal and spatial modes.

3.1.1. Comparison to grand averaging

The results obtained from the tensor decomposition methods
were compared to those obtained from the grand averaging method,
as reported by Biondi et al. (2016) (Table 2). Figures 5-8 highlight
some of the more interesting patterns identified. An additional pattern
found with CPD can be seen in Supplementary Figure S4 and
Supplementary Tables S3, S4 of the Supplementary material. It is
important to note that the figures show the results from the grand
averaging method that reveal the channels in a ROI and the mean
HREF obtained when averaged across the channels in that ROI. On the
other hand, results from the tensor decomposition methods reveal the
significant ROIs and TOIs that emerged from data analysis (i.e.,
patterns that emerged without imposing preconceived assumptions
about the patterns). The values in the ROI represent channels that
indicate a difference in the hemodynamic response as a function of
the entity type, action sequence, and the Entity Type x Action
Sequence interaction. The values in the temporal profile represent the
TOI that indicates a difference in the hemodynamic response as a
function of the manipulation. Additionally, spectral information from
CPD was not included as there were no differences across conditions.

3.1.1.1. Tensor reveals similar results as grand averaging
The results of the grand averaging method, CPD, and TD all
revealed a statistically significant Entity Type x Action Sequence
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interaction in the left hemisphere, specifically in the ROI formed by
channels 1, 5, 6, and 9 for the grand averaging method, channel 9 for
CPD, and channels 1, 4, 5, 8, and 9 for TD (Figure 5;
Supplementary Table S1 for F-values and p-values). Bayesian analyses
(Jeffreys, 1961; Kruschke, 2015) were conducted on the mean
hemodynamic responses from 1 s before to 1 s after the TOI and ROIs
identified with the tensor decomposition methods to identify the
source of the interaction (Figure 5 and Supplementary Table S2 for
means and standard deviations of the hemodynamic response
calculated from the TOI and ROl indicated by grand averaging, CPD,
and TD). A greater hemodynamic response was obtained for the
human hand, function events than the mechanical claw, function
events (all BFs > 13.2). There was no support for the alternative
hypothesis when comparing the mean hemodynamic response
obtained to the human hand, nonfunction event to that obtained to
the mechanical claw, nonfunction event (all BFs < 1). The results of all
three methods were consistent, showing a greater hemodynamic
response to the human hand than the mechanical claw, but only
during functional events.

The grand averaging method, CPD, and TD all revealed a
significant main effect of entity type in the right hemisphere
(Supplementary Table S1). The results from the grand averaging
method identified channels 11, 14, 15, and 19 (Figure 6A). CPD
identified a statistically significant main effect in channels 11 and 15
during the first half of the stimulus presentation, and TD identified a
statistically significant main effect in channel 14 during the second
half of the stimulus presentation (Figure 6B). In all three methods,
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Significant Entity Type X Action Sequence interaction in left hemisphere. (A) Grand Averaging Method: There was a significant difference in
hemodynamic response across conditions during the function event within the statistically defined channels of the ROl and predefined TOI window in
the HRF. (B) Tensor Decomposition Method: CPD and TD identified a significant ROl and TOI. The graph displays the mean hemodynamic response
and standard deviation for each condition, calculated by averaging 1 s before and after the identified TOI within the ROI. The high values in the ROI
and temporal profile indicate the channels and time where there was a difference across conditions.

there was a greater response to the human hand than the mechanical
claw, regardless of the sequence (Supplementary Table S2).

3.1.1.2. Tensor reveals additional results to grand averaging

The grand averaging method results showed no main effect of
entity type in the left hemisphere (Figure 7A; Supplementary Table S1).
In contrast, tensor decomposition methods revealed a significantly
greater hemodynamic response to the human hand than the
mechanical claw during the first half of stimulus presentation in
channels 4, 5, and 8 for CPD and channels 4, 8, and 9 for TD
(Figure 7B; Supplementary Table S2).

The grand averaging method did not identify a significant Entity
Type x Action Sequence interaction in the right hemisphere
(Figure 8A; Supplementary Table S1). However, CPD identified a
statistically significant interaction effect in channels 11 and 12 during
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the first half of the
Supplementary Table S1). Bayesian analyses conducted on the mean

stimulus presentation (Figure 8B;
hemodynamic responses obtained at the TOI and ROI showed
substantial evidence for a greater response to the human hand than
the mechanical claw during function events (BF = 5.18) but no
support for the alternative hypothesis during nonfunction events (BF
<1, Supplementary Table S2). TD identified a significant interaction
effect during the second half of the stimulus presentation in channels
12 and 16 (Figure 8B; Supplementary Table S1). However, Bayesian
analyses found weak evidence for a greater hemodynamic response
to the human hand than mechanical claw during function events (BF
= 2.64) and no evidence at nonfunction events (BF < 1,
Supplementary Table S2). The mean hemodynamic response obtained
at the TOI in both tensor decomposition methods confirmed an
Entity Type x Action Sequence interaction.
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Overall, findings support using the tensor decomposition method
for fNIRS data analysis as it replicated results from the grand averaging
method and identified patterns missed by the grand averaging
method. The three methods were further compared using a separate
dataset to test the efficacy of the tensor decomposition method.

3.2. Social/mechanical interactions dataset

The number of components extracted for CPD was 60 per run
(i.e., 600 components extracted across ten runs). Table 3 indicates the
number of components that showed a significant effect. The core
tensor of TD was set to extract 17 temporal components, 10 spatial
components, 72 subject components for the left hemisphere tensor
and 23 temporal components, 10 spatial components, 72 subject
components for the right hemisphere tensor. The top row of Table 3B
shows the number of combinations of temporal and spatial
components that revealed a significant effect.

Frontiers in Neuroscience

3.2.1. Comparison to grand averaging

The outcomes of the CPD and TD analyses were compared to the
results from the grand averaging method reported by Biondi et al.
(2021) in Table 4. Figures 9-11 highlight some more interesting
patterns identified in the data, with additional patterns shown in
Supplementary Figures S5-S7 and Supplementary Tables S3, S4. The
frequency mode information from CPD was not included since no
differences were detected across conditions.

3.2.1.1. Tensor reveals similar results as grand averaging

A statistically significant main effect of action sequence was found
in the right hemisphere for the grand averaging method, where there
was a greater hemodynamic response to interaction events compared
to no interaction events (Figure 9A; Supplementary Table S3 for
F-values and p-values). However, since the ROIs identified for the
social and mechanical entity types were not identical, separate
one-way ANOVAs were conducted for the social and mechanical
stimulus events. For the social entity ROI (channels 14, 15, and 18),
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there was a significantly greater hemodynamic response to social,
interaction event than the social, no interaction event. For the
mechanical entity ROI (channels 15 and 18), there was a significantly
greater response to the mechanical, interaction event than the
mechanical, no interaction event. The CPD and TD analyses revealed
similar results as the grand averaging method. CPD revealed
differences in the hemodynamic response to interaction events
compared to no interaction events in channel 14 during the second
half of the stimulus presentation (Figure 9B; Supplementary Table S4
for means and standard deviations of the hemodynamic response
calculated from the TOI and ROI indicated by grand averaging, CPD,
and TD). The average hemodynamic response within channel 14
showed greater response to interaction than no interaction events. TD
identified a main effect of action sequence in channels 14, 15, 16, 18,
19, and 20 during the second half of the stimulus presentation
(Figure 9B; Supplementary Table S4). The mean hemodynamic
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response values obtained at the TOI in the ROI showed a greater
response to interaction than no interaction events.

3.2.1.2. Tensor reveals additional results to grand
averaging

The grand averaging method did not identify a significant main
effect of entity type in the right hemisphere (Figure 10A;
Supplementary Table S3). However, the tensor decomposition method
revealed a greater response to mechanical entities than social entities
during the second half of the stimulus presentation in channel 11 for
CPD and channel 14 for TD (Figure 10B; Supplementary Table S4).

The grand averaging method failed to identify a significant Entity
Type x Action Sequence interaction in the right hemisphere
(Figure 11A; Supplementary Table S3). However, the tensor
decomposition method showed that there was an interaction effect
(Figure 11B; Supplementary Table S3). CPD found an interaction

frontiersin.org


https://doi.org/10.3389/fnins.2023.1180293
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chan etal. 10.3389/fnins.2023.1180293

A Grand Averaging Method
ROI -

(\ -0.4

B Tensor Decomposition Methods

02 4 6 81012141618202224

ROI o Temporal Profile
6.9 ) i
6.1 _ ey osl 04020 (0.5786) uM
hp T"’“ A 1 0.1125 (0.4149)uM
. 1 p 71 (0 RREAN T\
Ea.s ().13(‘0. 0.5 0.1¢ 33541l
O 30 Te :
23 03
8.8 {f\ 0167274 6 8 10 12 14 16 18 2022 24
e 03 f
1.0 i
-y 02 £).5437 (0.6194} M
= 12 0.3869 (0.4856j uM
1.9 0.1
2.7
34 O 2889 (0 7981) uM
4.2 O 24 6 81012 14 16 1820 22 24
—/ # Human Hand, =/ # Human Hand Time (seconds)
Legend: Funetion Nenfunetan /® Time of Interest 1 End of Stimulus Presentation
~/ # Mechanical — | # Mechanical Claw,
Claw, Function Nonfunction

FIGURE 8

Tensor decomposition method revealed a novel Entity Type X Action Sequence interaction in right hemisphere. (A) Grand Averaging Method: No
significant (NS) difference across conditions was found for the statistically defined ROI and predefined TOI window within the HRF. (B) Tensor
Decomposition Method: CPD and TD agreed on a novel significant difference and identified a ROI (inferior temporal cortex for CPD; middle temporal
cortex for TD) and TOI (first half and second half of stimulus presentation for CPD and TD, respectively).

TABLE 3 Component selection and combination for the Social/Mechanical Interactions dataset.

Left hemisphere Right hemisphere
Main effect Main effect of Entity type X Main effect Main effect of Entity type X
of entity action action sequence of entity action action sequence
type sequence interaction type sequence interaction
A.CPD 23 125 10 16 99 27
B.TD 89 combinations 86 combinations 88 combinations 118 combinations 118 combinations 110 combinations
14T&10S 15T&9S 14T&10S 19T&9S 20T&10S 19T&10S

(A) The total number of components selected to represent the important patterns after performing CPD. (B) The top values indicate the total number of temporal and spatial component
combinations selected to represent the important patterns after performing TD. “T” represents the number of selected temporal components, and “S” represents the number of selected spatial
components used to create the combinations.

between entity type and action sequence in channel 17 during the first ~ understand the source of this interaction effect. The analysis showed
half of the stimulus presentation. Bayesian analyses were conducted  no difference in response between mechanical entities interacting
on the mean hemodynamic responses obtained at channel 17 to  versus not interacting or between social entities interacting versus not

Frontiers in Neuroscience 11 frontiersin.org


https://doi.org/10.3389/fnins.2023.1180293
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chanetal.

10.3389/fnins.2023.1180293

TABLE 4 Comparison of the results obtained using the grand averaging method, CPD, and TD on the Social/Mechanical Interactions dataset for both

hemispheres.

Grand averaging

Canonical Polyadic Tucker Decomposition

Decomposition (CPD)  (TD)
Main effect of entity type in left hemisphere « NS o Channel 7 « Channel 6
(Supplementary Figure S5)
Main effect of entity type in Right hemisphere (Figure 10) « NS o Channel 11 « Channel 14
Main effect of action sequence in left hemisphere « NS o Channels 6 & 10 « Channel 10
(Supplementary Figure S6)
Main effect of action sequence in right hemisphere o channel 14, 15 & 18 (social) « Channel 14 « Channels 14, 15, 16, 18, 19, & 20
(Figure 9) o channel 15 & 18 (mechanical)
Entity type x action sequence interaction in left hemisphere | o channel 7 o Channel 4 « Channel 4
Supplementary Figure S7
Entity type x action sequence interaction in right « NS o Channel 17 o Channel 12 & 16
hemisphere (Figure 11)

This table includes patterns for entity type, action sequence, and the interaction between entity type and action sequence. “NS” indicates a nonsignificant effect.

interacting (all BFs < 1, Supplementary Table S4). TD identified an
interaction effect in channels 12 and 16 during the second half of the
stimulus presentation, with a greater response observed to the
interaction event than the no interaction event with mechanical
entities (BF = 3.80) and no difference between the interaction and no
interaction events with social entities (BF < 1, Supplementary Table S4).
In conclusion, the findings from the Social/Mechanical Interactions
dataset support those from the Human Hand/Mechanical Claw dataset,
demonstrating that the tensor decomposition method is a more
sensitive method of analysis and provides a more comprehensive
understanding of the data compared to the grand averaging method.

4. General discussion

The current study examined the use of the tensor decomposition
method for fNIRS signal analysis. The aim was to determine whether the
tensor decomposition method can identify significant hemodynamic
response patterns that the traditional grand averaging method missed, as
the latter collapses temporal and spatial information, which may also lead
to loss of information because the method fails to examine the interactions
between modes. Our key findings were that the tensor decomposition
method could duplicate the significant results identified with the grand
averaging method and identify additional significant hemodynamic
response patterns that the grand averaging method failed to detect. The
tensor decomposition method was able to identify these significant
patterns without having any prior assumptions of the patterns, suggesting
that it is a reliable and sensitive technique for fNIRS data analysis.

The ability to detect patterns in hemodynamic responses can
significantly increase the accuracy in characterizing these responses.
This is demonstrated through the analysis of the Human Hand/
Mechanical Claw dataset. The grand averaging method showed a
significant interaction between the entity type (human hand or
mechanical claw) and action sequence (function or nonfunction),
during 8 s to 15 s, in the left anterior/middle temporal cortex
(Figure 5A). The two tensor decomposition methods also revealed the
same interaction. However, they identified the TOI to be more
specifically around 12 s, at which the difference between the human
hand and mechanical claw was greatest (Figure 5B). These results show
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that the tensor decomposition methods are more effective in accurately
identifying the specific time and region at which the differences in
responses occur compared to the grand averaging method.

One of the key findings was that the tensor decomposition
method could reveal brain activation patterns that are not detectable
through grand averaging, which can improve our understanding of
brain function. Using the Human Hand/Mechanical Claw dataset as
an example, the tensor decomposition methods showed a main effect
of entity type in anterior/middle temporal cortex channels, meaning
that these channels responded differently to the distinction between
the human hand and mechanical claw, regardless of the functional
relevance of the tool action sequences. This is consistent with previous
research that suggests that humans are sensitive to the difference
between human and nonhuman/mechanical entities from an early age
(Woodward, 2009; Gerson and Woodward, 2012). Furthermore, the
study found that the initial response in the anterior temporal cortex is
to the difference between human and mechanical entities. However,
after viewing the event for an extended period, the response becomes
more nuanced, only showing a distinction between human and
mechanical entities within the context of functional tool use. This
highlights the conditions under which infants are most sensitive to
ontological distinctions, which is essential for understanding their
cognitive development.

The current results also demonstrate that applying the tensor
decomposition method, which can identify patterns of activation not
detectable with grand averaging, can significantly improve our
conceptual models of brain function. Again, consider the Human
Hand/Mechanical Claw dataset. Both tensor decomposition methods,
but not grand averaging, identified a main effect of entity type in
anterior/middle temporal cortex channels. That is, tensor
decomposition identified the channels that responded to the
distinction between the human hand and mechanical claw, regardless
of whether the tool action sequences were functionally relevant. This
outcome is consistent with a large body of literature suggesting that
human versus nonhuman/mechanical is an ontological distinction to
which humans are sensitive from the early months of life (Woodward,
2009; Gerson and Woodward, 2012).

Furthermore, the study found that the initial response in the
anterior temporal cortex was to the difference between human and
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Significant main effect of action sequence in the right hemisphere. (A) Grand Averaging Method: The graph displays the significant difference in
hemodynamic response between interaction and no interaction for the statistically defined ROl and predefined TOIl window within the HRF. (B) Tensor

mechanical entities. However, after viewing the event for an extended
period, the response becomes more nuanced, only showing a
distinction between human and mechanical entities within the
context of functional tool use. This outcome supports the idea that
infants are more sensitive to the distinction between human and
mechanical entities when viewing dynamic events involving these
entities, with the initial response being in the anterior temporal
cortex. This sensitivity was greater when the entities were involved in
functional tool use and other goal-directed behaviors. This finding is
supported by previous research that showed similar results (Gerson
and Woodward, 2012; Biondi et al., 2016). This is significant from a
theoretical viewpoint as it provides insight into the distinctions
between human and mechanical entities that infants are most
sensitive to and the conditions that lead to this sensitivity.

When considering tensor decomposition techniques, it is crucial
to understand the signal-to-noise ratio of the data being analyzed. TD
has been found to perform well on low signal-to-noise ratio data,
making it a potential solution to overcome the limitations of CPD
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(Congetal,, 2013). However, it is important to note that this does not
mean that TD is always the better option. For instance, there have
been successful applications of CPD on infant EEG datasets, which
shows that the choice between the two methods depends on the data
being analyzed (Caicedo et al., 2019; De Wel et al., 2019).

When deciding between TD and CPD, familiarity with the
NIRS signal is another key consideration. TD offers more flexibility
in selecting components from each mode, allowing for a more
accurate examination of combinations of components during
decomposition (Kolda and Bader, 2009; Cong et al., 2013; Rabanser
etal.,, 2017). However, this advantage comes at the cost of needing a
deeper understanding of the hemodynamic response, which is
required to select only the relevant components (Cong et al., 2015).
On the other hand, CPD does not require prior knowledge of every
mode of the signal, and in the current study was found to be easier
to interpret.

Another essential factor to consider when performing tensor
decomposition is the type of constraint used. If the data being
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analyzed is nonnegative, a nonnegativity constraint can be applied as
it makes interpretation easier (Cichocki et al., 2009). However, this
constraint will not reveal the directionality of the signal. It will only
reveal changes in the hemodynamic response, not if they are above
or below zero activity. In the present study, a nonnegativity constraint
was used for CPD, and an orthogonal constraint was used for TD. The
nonnegativity constraint made it easier to interpret the results.
However, if the goal is to examine a response below zero (Race et al.,
2009), then an orthogonal constraint should be used instead. The
choice of constraint can greatly impact the interpretation of results.
It is crucial to choose carefully based on the research goals and
data characteristics.

One potential direction for future work is to further explore the
application of the tensor decomposition method on individual trials
rather than just the averaged hemodynamic response. Examining the
changes in the signal across trials would provide deeper insights into
the changes in the fNIRS signal across the entire experiment and
could help shed light on learning effects (Leff et al, 2008).
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Additionally, by comparing the tensor decomposition method to
other methods, such as the GLM, we could gain a deeper
understanding of the strengths and limitations of both methods and
identify areas where further improvement may be needed. The
current study provides a foundation for such future work, and the
results could contribute to advancing fNIRS research.

5. Conclusion

The current study aimed to investigate the feasibility of the tensor
decomposition method in analyzing fNIRS data. Two datasets were
utilized in this study, the Human Hand/Mechanical Claw dataset and
the Social/Mechanical Interactions dataset, to evaluate the
performance of the tensor decomposition method in comparison to
the traditional grand averaging method. The results of the study
showed that the tensor decomposition method was effective in

identifying significant differences across conditions and that it was
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FIGURE 11

Tensor decomposition method revealed a novel Entity Type X Action Sequence interaction in right hemisphere. (A) Grand Averaging Method: No
significant (NS) difference across conditions was found for the statistically defined ROl and predefined TOI window within the HRF. (B) Tensor
Decomposition Method: CPD and TD agreed on a novel significant difference and identified a ROl (temporal-occipital cortex for CPD; middle
temporal cortex for TD) and TOI (first half and second half of stimulus presentation for CPD and TD, respectively).
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