Check for
Updates

Output-Directed Dynamic Quantization for DNN Acceleration

Beilei Jiang!, Xianwei Cheng!, Yuan Li!, Jocelyn Zhang!, Song Fu!, Qing Yang!, Mingxiong Liu?,
Alejandro Olvera!
{beilei jiang,yuan.li,song.fu,qing.yang}@unt.edu;mliu@lanl.gov;{xianweicheng,jocelynzhang,alejandroolvera}@my.unt.edu
!University of North Texas, 2Los Alamos National Laboratory

ABSTRACT

Quantization is an effective technique for reducing the number
of computations and improving the performance of deep neural
networks (DNNs). Weight quantization is popular because weights
can be trained beforehand. However, weight quantization only tar-
gets the kernel weights and ignores the sensitivity of input features,
which can lead to reduced accuracy. Fine-grained input quantization
has gained attention as a way to speed up DNNs while maintaining
accuracy. Existing approaches determine computation precision
based on input sensitivity but do not effectively reduce computa-
tions for insensitive outputs or retain the precision of sensitive out-
puts. These limitations motivate us to develop an output-directed
dynamic quantization method named ODQ in this paper. ODQ
is a two-stage DNN quantization scheme designed to improve per-
formance, reduce energy consumption, and maintain and often
improve accuracy, compared with existing quantization methods.
Specifically, inputs and weights go through sensitivity prediction
and result generation. The high-order 2 bits of input and weight are
used to predict output sensitivity. Result generation is performed
only for predicted sensitive outputs. We designed an FPGA accel-
erator to optimize ODQ quantization performance for DNNs. We
implement a prototype of ODQ and evaluate its performance using
several state-of-the-art DNNs. Compared with a state-of-the-art
input-directed quantization approach, ODQ achieves a 67.6% perfor-
mance speedup and a 66.9% energy saving, with minimal accuracy
degradation (<0.6%).

CCS CONCEPTS

« Computer systems organization — Architectures; Neural
networks; Reconfigurable computing.

KEYWORDS

Deep Neural Network, Dynamic Quantization, Sensitivity Predic-
tion, Performance Acceleration, FPGA.

ACM Reference Format:

Beilei Jiang!, Xianwei Cheng!, Yuan Li!, Jocelyn Zhang!, Song Fu!, Qing
Yang!, Mingxiong Liu?, Alejandro Olvera'. 2023. Output-Directed Dynamic
Quantization for DNN Acceleration. In 52nd International Conference on
Parallel Processing (ICPP 2023), August 07-10, 2023, Salt Lake City, UT, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3605573.3605580

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08...$15.00
https://doi.org/10.1145/3605573.3605580

645

Input Layer 1 Layer 2

e
.g =
E 2
S =]
2 B
o
g >
o £
o] ! o
maamna |
r -
g pEun
== EE W
b

Figure 1: Inefficiency of input-directed quantization. We use
LeNet-5 on the MNIST dataset as an illustrating example.
Sensitive features are represented by black squares while
insensitive features are denoted by gray squares.

1 INTRODUCTION

The past decade has witnessed the wide adoption and success of
deep neural networks (DNNs) in various fields, which is attrib-
uted to their capability to capture highly complex, nonlinear in-
put/output relationships with unprecedented accuracy. However, as
DNN s become increasingly complex for better accuracy, the num-
ber of parameters and computations grows drastically, which puts a
heavy burden on the underlying computing platforms and runtime
systems. This poses a critical challenge in developing pervasive
deep learning for real-time inference with low energy consumption
on resource-constrained systems, which is imperative for many new
fields and applications, such as autonomous driving, smart health-
care monitoring, smart manufacturing, and speech and emotion
recognition [5, 7, 16, 21].

Quantization is an effective technique in reducing inference
time and energy consumption by mapping a DNN’s inputs from
a large range to outputs in a smaller range [10, 27]. A number of
quantization methods have been presented in the literature, e.g.,
DRQ [20], OLAccel [15], and FILM-QNN [22], etc. Recent studies
focus on weight and/or input quantization [15, 25]. However, many
suffer from significant accuracy degradation (> 5%). Additionally,
weight-focused quantization has progressed to the point where it is
challenging to speed up the DNNs while maintaining accuracy stan-
dards. Input sensitivity should be considered during quantization
to further speed up DNNs and maintain accuracy [2, 17]. However,
the sensitivity of accuracy to input/activation has not been well
investigated.

Input-based quantization methods, such as DRQ [20], adjust
weights and input precision based on input sensitivity. It compares
input features, or the sum of input features in a region, with a prede-
fined threshold. If the input features are larger than the threshold,
they are sensitive; otherwise, they are insensitive. For sensitive

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

inputs, high-precision weights and inputs are used, whereas low-
precision computations are performed for less sensitive inputs.
Although those methods reduce inference time, they lack the fol-
lowing desirable properties. (1) Preserve model accuracy. High-
precision computations should be performed for sensitive output
features. (2) Improve efficiency. Low-precision computations should
be performed for insensitive output features. Please note that out-
puts that are more sensitive, i.e., those with a larger magnitude,
have a greater impact on a model’s accuracy.

Figure 1 illustrates these issues. Existing input-directed quanti-
zation methods conduct sensitivity analysis on the input feature
maps of each layer before convolution. In both cases (@ and @ in
Figure 1), the output is generated by mixed-precision computations.
In the first case, the sensitive output is calculated from almost all in-
sensitive (i.e., low-precision) inputs, which affects model accuracy,
which is property (1). In the second case, the insensitive output
is computed from almost all sensitive (i.e., high-precision) inputs,
which incurs computation overhead, which is property (2). Both
cases indicate that sensitivity of features is not fully exploited by
input-directed quantization.

To address these problems, this paper proposes an output-
directed dynamic quantization (ODQ) method, aiming to effec-
tively explore low-precision computations while preserving accuracy
for DNN acceleration. ODQ uses sensitivity analysis of output fea-
tures to determine the quantization strategy, i.e., low-precision or
high-precision computation. An output sensitivity prediction algo-
rithm is developed for ODQ to efficiently and accurately predict
sensitive outputs. ODQ streamlines sensitivity prediction and result
generation into a single-shot process, which significantly reduces
sensitivity analysis overhead and enhances quantization efficiency
without compromising model accuracy.

In the sensitivity prediction step, high-order bits of inputs and
weights are used to quickly generate partial results to determine the
output’s sensitivity with respect to model accuracy. The prediction
operation is lightweight by design. In the result generation step, the
remaining computation related to sensitive outputs is performed.
To speed up ODQ execution for real-time applications, an ODQ
accelerator is developed on the FPGA. Our ODQ accelerator can
be reconfigured to maximize the utilization of on-chip resources
and data reuse and mitigate performance degradation caused by
processing elements’ stalls.

The main contributions of this paper are:

e Qualitative and quantitative characterization of current
input-focused DNN dynamic quantization limitations.

e Design of a novel output-directed dynamic quantization
(ODQ) method that predicts output sensitivity and fine-tunes
computation precision at runtime. Sensitive output features
are computed with high-precision weights and inputs, while
insensitive outputs are produced with low-precision ones.

e Development of a reconfigurable ODQ accelerator in Ver-
ilog that includes three types of PE arrays: reconfigurable
PE arrays, predictor PE arrays, and executor PE arrays. The
reconfigurable PE arrays can be set up as predictor PE ar-
rays or executor PE arrays depending on the percentage of
sensitive output features.

e Implementation of a prototype of ODQ and its accelera-
tor and extensive evaluation of performance on ResNet-56,

646

Beilei Jiang, Xianwei Cheng, Yuan Li, Jocelyn Zhang, Song Fu, Qing Yang, Mingxiong Liu, Alejandro Olvera.

B75%-100% B50%-75% B825%-50% 00%-25%

Percentage
S
(=1 wn

ayers
cnQoo0onaoaQaaogaQaoaoao0aad
— N W R AN X O = —_— —_— =

S = N W s
Figure 2: Percentage of low-precision inputs used in generat-

ing sensitive outputs via input-directed quantization applied
to ResNet-20 on CIFAR-10.

W100%-75% O75%-50% B50%-25% D025%-0%
1.93 147 { 111

‘E_Tn‘ﬂ__m_ . —— _I“_ = — b

QO QO O Q O 0 0 0 o o o o o 0 0
~Nm4>mm\lmos—s;;;;
Figure 3: Precision loss from computing sensitive outputs
using low-precision inputs via input-directed quantization
applied to ResNet-20 on CIFAR-10.

Precision loss
g
(V.]

_ “LJ;

o

ResNet-20, VGG-16 and DenseNet. ODQ achieves promis-
ing results, including a 97.8% performance improvement in
terms of execution time and a 97.6% energy consumption
reduction compared to static quantization methods. More-
over, ODQ achieves a 67.6% reduction in execution time
and a 66.9% energy reduction over DRQ, an input-directed
dynamic quantization framework.

2 MOTIVATION

Quantization can be applied to weights and inputs. Weight-based
quantization has advanced to the point where it is difficult to speed
up the DNNs while maintaining accuracy standards. Recent studies
have found that different input features exhibit varying degrees of
model accuracy sensitivity. However, less effort has been devoted to
input sensitivity analysis and the design of input-based quantization
methods due to high input variability.

Input-directed quantization approaches, such as DRQ [20], typ-
ically measure the importance of inputs based on the magnitude
of input features. However, they suffer from the following major
problems, which motivate this work.

1) Input-directed quantization may compromise the precision of
sensitive outputs due to the use of low-precision inputs.

We measure the percentage of low-precision input features (4-
bits) involved in computing sensitive outputs in input-directed
quantization methods. Figure 2 shows the results from DRQ on
ResNet-20. In the figure, each shade represents the percentage of
low-precision input features among all input features when calcu-
lating one sensitive output feature. We summarize the percentage in
four ranges:(0%-25%,25%-50%,50%-75%,75%-100%). We can see that
in almost every layer, most sensitive output features are calculated
with more than 25% of low-precision input features. In particular,
in the convolutional layers C10, C12, C14, C15, and C16, over 75%
of low-precision inputs are used in producing all sensitive outputs.
In summary, a significant number of sensitive outputs cannot be
generated with the desired precision. What is more, the relation-
ship between the precision of sensitive features and the accuracy
of DNN model is analyzed in [20], it shows that when the precision
loss for sensitive outputs reaches 0.1, more precision loss results in
significant accuracy degradation, i.e., more than 10. Therefore, to
further demonstrate the impact on the accuracy of DNN models,
the precision loss caused by this issue is observed.

Output-Directed Dynamic Quantization for DNN Acceleration

B75%-100% B50%-75% 025%-50% 00%-25%

Percentage
(=1
wn

yers

(=1
o]
o]
o]
o]
o]
o]
o]
o]
o]
%

cagaoQooao
—] w - W (= ~ o« o — — — — —_ —_ —_—
=1 -t 0~ w e W (=2
Figure 4: Percentage of high-precision inputs used in gen-
erating insensitive outputs via input-directed quantization

applied to ResNet-20 on CIFAR-10.

W75%-100% B50%-75% 825%-50% 00%-25%

0.18 0.16
E E HH N

nr

a 0O a0 Qg o0 o o0 g o o O
— N W E U N X O = = =

o
>

o °
& o=

Extra precision
=)

=

n
A a o }.’aycrs

S =8 e R O3
Figure 5: Computation waste from using high-precision in-
puts to generate insensitive outputs via input-directed quan-

tization applied to ResNet-20 on CIFAR-10.

Figure 3 shows the average precision loss caused by using low-
precision inputs to compute sensitive outputs. As can be observed,
the amount of noise introduced to most of the layers is greater than
0.1. In particular, the noise added to the layers C7, C11, C13, and
C14 is even greater than 1, which leads to a significant perturbation
to the DNN model and affects the utilization of smaller bit widths
for effective quantization.

2) Input-directed quantization incurs unnecessary computations
as high-precision inputs are used to produce insensitive outputs.

We measured the number of high-precision inputs (8-bits) in-
volved in generating insensitive outputs in input-directed quanti-
zation methods. Figure 4 shows the DRQ results on ResNet-20. We
observed that over 25% of high-precision inputs are involved in
calculating all insensitive outputs in multiple layers. In particular,
the convolutional layers C1, C2, C4, C7, and C11 use over 50% of
high-precision inputs to compute all insensitive outputs, resulting
in significant high-precision computation for insensitive features.

To prove this will cause redundant computation, the extra pre-
cision (computation waste) that results from using high-precision
inputs to produce insensitive outputs are observed, as shown in
Figure 5. According to DRQ, insensitive outputs have a higher tol-
erance for noise. Adding noise with a magnitude of less than 10 to
inputs has a negligible effect on prediction accuracy. In Figure 5,
we find that for insensitive outputs, using high-precision inputs
leads to extra precision of up to 0.21 compared to low-precision
inputs. The extra precision can be quantified as follows:

Extra_precision = max(abs(Orpo — OLP_input))s (1)

where Oypg refers to the insensitive output features produced by
input-directed quantization, and OLp_jnpyr represents the insensi-
tive output features computed using low-precision inputs. From the
figure, we can see that removing the extra precision only causes up
to 0.21 orders of magnitude of noise, which can be eliminated for
better energy efficiency and speedup.

In short, input-directed quantization not only increases noise
in producing sensitive outputs but also causes unnecessary com-
putations for insensitive outputs using high-precision inputs. We
designed an output-directed dynamic quantization (ODQ) method
to address these problems.

647

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

I s .
B TRCHN ST S_E‘E“_“L‘Y_A_“a_ly_s‘i]
| 3
: —
Input [A ; N
1
Sensitivity Analysis %
Ly / * e e e
i £2-bit Conv ! Output
h
! i
\ 1

Predictor
Figure 6: Structure and key components of the proposed
output-directed dynamic quantization (ODQ).

3 OUTPUT-DIRECTED DYNAMIC
QUANTIZATION (ODQ)

Accurately predicting output sensitivity is imperative for retaining
DNN models’ accuracy and improving quantization efficiency. How-
ever, this process will introduce additional overhead. Therefore,
a novel design is required to ensure the performance gain from
quantization outweighs the prediction cost.

To this end, we design a two-step output-directed dynamic quan-
tization (ODQ) method that is streamlined into a single-shot process.
The structure and workflow of ODQ are presented in Figure 6. The
key steps of ODQ are sensitivity prediction and result generation. It
dynamically selects the quantization strategy (low-precision/high-
precision computation and bit width) based on the sensitivity pre-
diction of output features on the fly.

Specifically, an output feature is produced by accumulating the
multiplications of input features (I) and weight filters (W). That is

K-1K-1N-1
Olto,x,y) = . D" 3 Wlt, ti, 1, j) #I(ts, i+Swx, j+5xy), (2)
=0 j=0 ;=0
where K denotes the spatial dimension of a filter, S is the step size,
and N is the number of input channels. Subscripts t,, t;, i and j
denote indexes. An input (I) and a weight (W) can be partitioned
into high-order bits Igps and Wips, and low-order bits I; gs and
WL Bs, respectively. Equation (2) can be rewritten as follows.

o= (Z Iyps * WyBs) << 2NLps + Z ILBs * WLBs
+ (Z IyBs * WiBs) << NLps + (Z ILBs * WHBs) << NLBs,

where N s is the bit width of Iy g and W g, and << represents a
shift operation. According to Equation (3), an output feature can
be computed in four parts: (D) computation between the high-order
bits of weights and the high-order bits of activation; (2) computation
between the high-order bits of weights and the low-order bits of
activation; 3) computation between the low-order bits of weights
and the high-order bits of activation; and (%) computation between
the low-order bits of weights and the low-order bits of activation.
We find that the output is dominated by the result from the high-
order input and weight bits, i.e., Igps and Wyps. Therefore, we
design the sensitivity predictor based on the MAC operations on
Iyps and Wiyps. The rest of the MAC operations are performed in
the result generation step.

As shown in Figure 6, given an input feature map, we first quan-
tize the feature map from FP32 to INT4 [27]. Then, we divide it
into two sub-input feature maps, one from the high-order bits (i.e.,
Iy Bs-2 bits) and the other from the low-order bits (i.e., Iy gs-2 bits).
The sub-input feature map with Iyg; is processed by the sensitivity

®)

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

cycle t+3
Figure 7: Architecture of a multi-precision PE.

cycle t cycle t+1

l»l».»@»@»l

M—»I—+I—»@—»@»@ n»m-»@»@»l
m»mu»@- m».m»@»@»n
- GHR PP [-Ghpda-pps

I:I # PE Idleness

Figure 8: Illustration of PE idleness in existing accelerators
with multi-precision PEs.

predictor. The predictor uses convolution results to identify sensi-
tive output features. Specifically, the predictor uses an activation
function to create a bit mask by comparing each calculated out-
put feature with a threshold. That is, if the magnitude of a feature
exceeds the threshold, it is sensitive. Otherwise, the feature is insen-
sitive. The predicted sensitivity values of features are stored in a bit
mask with the same dimension as the output feature map, where“1”
indicates a sensitive feature and “0” denotes an insensitive one.

The result executor uses the bit mask produced by the sensitivity
prediction to perform the remaining computations for sensitive
output. By adding the results from both the sensitivity predictor
and the result executor, ODQ produces the final output.

A key parameter in sensitivity prediction is the threshold. ODQ
adopts an adaptive approach to finding the optimal value. This pro-
cess is illustrated with the following example. A network is initially
trained with 4-bit weights and 4-bit inputs. Next, ODQ randomly
selects N inputs from the test dataset, performs inference using the
high-order bits of the inputs (Iygs) and the trained weights (Wigps),
and generates the output distribution of each layer. A relatively
large initial threshold is chosen based on the output distribution.
Weights are retrained after introducing the threshold to the model
to capture sensitivity information in the input feature maps. Then,
the retrained weights are used for ODQ-based inference. If accuracy
meets the expectation, the threshold is selected. Otherwise, ODQ
halves the threshold value and repeats the above process until a
suitable threshold is found.

4 ODQ ACCELERATOR

ODQ leverages the high-order bits of inputs and weights for output
sensitivity prediction, which directs bit width selection for quan-
tized computation. General-purpose processors execute efficiently
with FP32, FP16, or INT8 operands, when compared to 2-bit data.
Moreover, the sparse characteristics of ODQ can result in resource

648

Beilei Jiang, Xianwei Cheng, Yuan Li, Jocelyn Zhang, Song Fu, Qing Yang, Mingxiong Liu, Alejandro Olvera.

underutilization and performance degradation. Therefore, we de-
sign an accelerator to speed up ODQ for real-time inferences.

ODQ performs mixed-precision computations (i.e., 2-bit and 4-bit
MACs). A brute-force approach is to design 4-bit MAC processing
elements (PEs) that can handle both 2-bit and 4-bit MACs in a
single clock cycle. However, due to the high probability of low-
precision computation, a lot of processing resources will be wasted.
An efficient design is multi-precision PEs, which can be found in
BitFusion and DRQ [19, 20]. The structure of a multi-precision PE
is depicted in Figure 7. Multi-precision PEs are applicable to both
2-bit and 4-bit MACs, taking one clock cycle and four clock cycles,
respectively. With multi-precision PEs, all PEs in the PE group use
one clock cycle to generate the output in the sensitivity prediction
without any loss of computing resources. In addition, weight filters
and inputs can be reused in calculating output features.

We note that the irregularity and sparsity of insensitive out-
put features can cause idle PEs during the result generation step,
challenging on-chip bandwidth management.

4.1 PE Idleness and Bandwidth Management

Existing DNN accelerators, such as [4, 18, 20], usually use a weight-
stationary or input-stationary dataflow to take advantage of data
reference locality in DNN models. Those accelerators process multi-
ple inputs and weights and generate multiple output features from
the same or different output feature maps.

Figure 8 illustrates PE idleness caused by sparsity of insen-
sitive output features. Figure 8 shows a DNN accelerator with
weight-stationary dataflow. Let the output feature computed with
Wo ([Woo, Wo1, Woz, Wo3]) and Iy be sensitive, and the output fea-
ture computed with W ([Wio, W11, Wiz, Wi3]) and Iy be insensitive.
Their sensitivity is used to control PE execution in result generation.
At cycle t, the remaining outputs are computed since the output
feature with Wy and Ij is sensitive. Nonetheless, since the feature
with Wj and I is insensitive, the PE is idle at cycle ¢ + 1, which
cancels out the performance improvement from quantization.

Furthermore, the irregular and sparse insensitive output features
hinder data reuse during result generation. The sensitivity predictor
and the result generator have different bandwidth requirements.
Assume the sensitivity predictor requires N bytes of data every
cycle. The result generator, however, has limited data reuse oppor-
tunities. As a result, more data must be collected every cycle to
avoid PE stalls during result generation. The bandwidth becomes
underutilized during sensitivity prediction if we assign the on-chip
bandwidth based on the result generator requirements. The PE
will stall during result generation, waiting for data if bandwidth is
determined by the sensitivity predictor’s needs.

4.2 Static vs. Dynamic PE Allocation

The PEs in a column form a PE array. Allocating an equal number
of PE arrays to the sensitivity predictor and result generator is
inefficient due to their differing computational workloads, leading
to pipeline bubbles. With 50% sensitive output features, the result
generator has a 1.5x higher computational load than the sensitivity
predictor. PE array allocation should follow the same ratio accord-
ingly. Moreover, the sensitivity predictor PEs compute output in
one cycle, while the result generator takes three cycles. The result
generator does not need to compute insensitive outputs.

Output-Directed Dynamic Quantization for DNN Acceleration

85%

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

o B 80%
]
= o 75%
52
2= 70%
L v
~ 8 65%
g
= 60%
[cNoloeloNeNoloNoloNoRolootoNoioReioRoNe! (')(')(')Oﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬂﬂﬂﬂﬂﬁﬂﬁﬂﬂﬁﬂﬂﬂﬁﬁﬁﬁﬁﬁl‘ﬁyers
SN RN R Nl G i x e SRR R BB R EE NS UL CEESLEEENEEL LR G
Figure 9: Percentage of insensitive output features in ResNet-56 using output-directed dynamic quantization (ODQ)
85%
g 7" configurations. It also indicates that by allowing the percentage of
= ags
%3 sensitive output features to be between 9% and 66%, we can allocate
§ 2 8% PEs without pipeline bubbles.
=1
&2 I I I I I I Dynamic PE management is more efficient as it differentiates
£ 75% - the allocation of PE arrays to the sensitivity predictor and result
(‘Jﬁﬁof)ﬁ()(‘)f)ﬁ Gﬂﬂf'}q[‘g . g
SENYRNGNRY S EONERENRE S generator according to the detected percentage of sensitive output
Figure 10: Percentage of insensitive output features in features. This will speed up ODQ and improve resource utilization.

ResNet-20 using ODQ.

EExe idle OPre idle ONo idle

i 1 EExe_idle OPre_idle ONo_idle

0.5 0.5

‘ ResNet-56ResNet-20 VGG-16 DenseNet
@

Figure 11: Percentage of idle PEs with Static PE allocation. (a)
Executor PE Array: 12, Predictor PE Array: 15. (b) Executor
PE Array: 9, Predictor PE Array: 18.
Table 1: Configuration of PE arrays and the corresponding
maximum percentage of sensitive output features without
causing pipeline bubbles.

ResNet-56ResNet-20 VGG-16 DenseNet

#of PE arrays #of PE arrays

for executor

Maximum percent of sensitive

for predictor output features (%)

9 18 66
12 15 41
15 12 26
18 9 16
21 6 9

We also need to consider DNN models’ characteristics when al-
locating PEs. Figures 9 and 10 present the percentage of insensitive
output features identified by the sensitivity predictor in ResNet-56
and ResNet-20, respectively. The percentage of insensitive output
features exhibits considerable variation across layers and DNN
models. Consequently, static PE allocation can lead to either over-
provisioning or under-provisioning of PEs, impacting resource uti-
lization and/or the performance of ODQ. As shown in Figure 11, the
static PE allocation scheme results in 14%-50% of idle PEs (Pre_idle:
idle predictor PEs and Exe_idle: idle executor PEs).

From experiments, we observe that the percentage of sensitive
outputs in ResNet-20, ResNet-56, VGG16, and DenseNet ranges
from 8% to 50%. A PE slice containing 27 PE arrays can be used
in resource management. Specifically, based on the percentage of
sensitive output features, 12 reconfigurable PE arrays can be dynam-
ically allocated to the sensitivity predictor or the result generator.
The predictor uses the leftmost 9 PE arrays, while the generator
uses the rightmost 6 PE arrays. Table 1 lists the relation between
PE array configuration and the percentage of sensitive output fea-
tures without causing pipeline bubbles. In the table, we can see
that a dynamic allocation scheme allows five alternative PE array

649

4.3 Reconfigurable Accelerator for ODQ

We design an ODQ accelerator that differentiates the management
of the sensitivity predictor and result generator, aiming to reduce
PE idleness and maximize data reuse and resource utilization. To
this end, the ODQ accelerator allocates resources separately to the
two components.

Figure 12 shows the architecture and major components of our
reconfigurable ODQ accelerator. PE slices consist of a predictor PE
array, an executor PE array, and a reconfigurable PE array. The
reconfigurable PE array can be assigned as either the predictor
PE array or executor PE array, depending on the percentage of
sensitive output features, optimizing resource utilization. During
sensitivity analysis, the predictor results are recorded in a bit mask,
which is used by the executor. The executor output is stored in
an output buffer before being transferred to the off-chip DRAM.
The ODQ accelerator employs a global weight and input buffer to
hide DRAM access latency. Moreover, our accelerator introduces
line buffers to exploit data reuse in DNNs. The Im2col/Pack engine
transforms data into the format seen in Figure 17 before packing
it into line buffers, enabling input sharing amongst weight filters
from various channels stored in PE arrays.

PE Architecture. Our ODQ accelerator has three PE groups:
predictor PE, executor PE, and reconfigurable PE. During sensitivity
prediction, a PE performs MAC operations only on the high-order
bits of inputs and weights. Thus, a basic INT2 MAC is used. Fig-
ure 13(a) depicts the architecture of a predictor PE. It comprises
two 2-bit registers to store the high-order 2 bits of an input and a
weight (i.e., I, and Wy,), and a 4-bit register for a partial sum (P).

The executor handles the remaining calculations. This cannot be
done with a single INT2 MAC. Thus, we employ Bitfusion’s multi-
precision PE architecture [19] to ensure the computation is finished
in three clock cycles, as shown in Figure 13(b). In addition, the
executor computes sensitive output features sparsely distributed in
the feature maps. Sensitive output features are irregular and sparse,
which prevents them from being reused. PEs normally request
data on demand without input/weight sharing between PEs, which
incurs more memory accesses. To prevent PEs from being idle,
more data must be retrieved every clock cycle from DRAM. The
ODQ accelerator partitions the PE array for the executor into three
clusters. Every three clock cycles, a PE will make a new data request
because computations take three clock cycles to complete on each

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

q

Beilei Jiang, Xianwei Cheng, Yuan Li, Jocelyn Zhang, Song Fu, Qing Yang, Mingxiong Liu, Alejandro Olvera.

> Weight buffer ‘
Linc buffer ~ Predictor PE Array Re-configurable PE Array ~ Exccutor PE Array, Line buffer -
Linc 0[] ._ {[Tine 0]
-l [B B Heen
| (ol D000 BBy
b=} .=}
= =
] Eaa OO0 BB e
= =
= . . g
= |)) A
2 =
it R (I BE B
&
-l (OO [B s “’
LY — L3
Tm2col/Pack] Tm2col/Pack] :
Engine Engine
[Accumulator |
i i 1]) i i i i
Bit Mask
High Output Final Output
Output buffer L

Figure 12: Architecture of reconfigurable ODQ accelerator.

Wi I,

[} - [NZMAc]

(a) Predictor PE

Figure 13: PE architecture of the ODQ accelerator.

(b) Naive executor PE (c) Executor PE

(d) Re-configurable PE

Clusters
PE arrays R
0123y45 :O:Fl::'z::PEarrayO [t |
Tt ! ! PEarray | |f———p! idle |
| T EHIEH d 1 1
: :: :: !'1 PE array 2 L idle EF' ”
1 1 1
) : :,7 ‘\l ! : PE array 3 — idle ! mis
-] T S | \ I
Lj213]4 ! PE array 4 |r—p—
Workload | 14 | 8 | 4 | 4 || PEarray 5 Vidle |
1 1
I 12 21 Cycles

Figure 14: Illustration of PE array execution using static re-
source allocation.

Clusters
PE arrays _ Lty]
0123y45 :O:rl::z::PEarrayO |
A | PEamay 1 b
‘I 1!] ! I I
115 1] |0 PEarray2 e E o
Bl labds T opp array 3 | ! Finish
o= : 1 1
il 4 1 1
OFM 1203 4] ! ppamayd —sis!
Workload | 6 | 0 | 0| 0| | PEarray 5 f——br—>p i
! 1
12 15 Cycles

Figure 15: Illustration of PE array execution using dynamic
resource allocation.

PE. With three PE clusters, data is delivered to one cluster every
cycle, which minimizes the number of memory accesses.
However, workload imbalance across PE arrays may also result
in idle PEs. Figure 14 illustrates this problem. In the figure, the four
output feature maps (OFMs) exhibit varying workload levels. The
computations associated with OFM1 and OFM2 are scheduled to
the first two PE arrays in PE cluster 0, and OFM3 and OFM4 are
assigned to the two PE arrays in PE cluster 1. As OFM1 and OFM2
involve more workload than the others, their computations are

650

PE array 0| 81 2 Slz 2 %lg 2 ‘glz 2 Slz 2

PE array 1 4 3 4 13 2

PEarmay2 ((D[3] [MD[3] [D[3] [D[3] [D[3] EB

PEamay3| Q4] Q4] @I4] Q4] @I4]

PE array 4

L L LE RN
OFM M o 5 a1 slall 1 [2]3]al| 1 [2]3]4 2[3a]| 1 [2]3]4
W"Tklﬂad|4844||6348432 s |22 o [o]o]o

t t+3 t+6 t+9 t+12 t+15 Cycles:

Figure 16: Illustration of the dynamic workload allocation
scheme in ODQ.

divided into halves. One is handled by two PE arrays in cluster 0
and the other by two PE arrays in cluster 2. PE arrays 1, 2, 3, and
5 finish their computations after 12 cycles since they process four
sensitive output features. PE arrays 0 and 4 need 21 cycles since
each of them is assigned three additional sensitive output features.
However, PE arrays 1, 2, 3, and 5 are idle for 9 cycles, waiting for
the job to be finished. Dynamic workload distribution reallocates
OFMT1’s remaining workload to free PE arrays using a dynamic allo-
cation scheme (Figure 15). This maximizes computational resource
utilization but introduces significant hardware overhead.

To better utilize resources and minimize the hardware overhead,
we design a fine-grained dynamic workload scheduling method for
the ODQ accelerator. In our dynamic scheduling method, (1) Each
PE array is responsible for computing several output channels, and a
cluster covers all the output channels. This prevents PE from becom-
ing idle by allowing the workload to be allocated to any clusters. For
example, in Figure 16, each PE array processes two output channels,
e.g., output channels 1 and 2 are assigned to PE array 0, and the clus-
ters handle all output channels, i.e., OFM1, OFM2, OFM3 and OFM4.
(2) Computations performed by all clusters should cover as many
combinations of output channels as possible, balancing the work-
load across output channels. Because there are four output channels
in this example, six possible combinations exist, i.e., 1 and 2, 1 and
3,1and 4, 2 and 3, 2 and 4, 3 and 4. Four possible combinations are
for Cluster 0, i.e., 1 and 3, 1 and 4, 2 and 3, 2 and 4. The possible
combinations for Cluster 1 and Cluster 2 are complementary to
those of Cluster 0. Thus, all of the 6 combinations are covered.

Output-Directed Dynamic Quantization for DNN Acceleration

. [Foo[Fo1|[Fro]Fyy Fuo [Fay
Weight Filter i F,, [Foy
Input Predictor (21) Executor (6)
oo [Tox [Toz [Lol ymacol/ [| | MoeMorToofsl Foo [Fro | —Fao |1 [N
10 L1 L2 T1s Pack [\ [1031102”01[P01 Fu "m ’—||—|'
Lo L1 L2 s Engine [| | Wpllulol | o For o[Fia | 2|1 [H
Lo L1 L2 |Tas | Mslplu] [[o Fos {Fis —{F203] [] [}
1

PoolPo1Pos| [P1/P11[P;5

PosPofPoq PialPiPrg =+
PoslP07Pog [P16P17P 14

‘H

igh Precision = 15%

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

.

Executor (9) |
Tuipiit Predictor (18) Cluster 0
oo [Tou[Toz[Tos|rmacorlL ||| Ho2TorToo /s Forolo[Fan0] —Fs00] Fio || Fao I | [[[
Lo Tu Lz [lis| Pack [[[TMosfle[lor] Jl¥ors bo[Fona] —>Fsou ||| Fou |[Far |[Far | [Loo] [[[]
Lo [lo1 B2 | Ls Engine [| | T, o] | o2, —Fse ||| Foo [Foo [Fz2 | | Ml [[[|
ol | oo o [| P [Faos] —fFasa]| [T]][0 RN
)
Pls, Pls,lPls,Z POO P02 l)10P11Plz
PisaPisdfisd oo oo PoalPodPos [P1glP1fP1s

P1s,oP15F 134

Pog [P1oP1 P14

Figure 17: Execution flow of ODQ accelerator.

In each PE array, the output channel with the greatest workload
has the highest priority. Data from the winning output channel
is sent to the PE array via a crossbar. In Figure 16, the output
channels highlighted in red circles are the output channels chosen
by PE arrays. For example, as output channel 1 has more workload
than output channel 2, the computation from output channel 1 is
assigned to PE array 0. In this way, all computations are completed
in 15 cycles without wasting resources.

The executor’s PEs are designed to match the dynamic workload
schedule. Figure 13(c) shows the PE architecture for the executor.
Specifically, the PEs are multi-precision PEs that allow two weight
sources from two output channels. In addition, two input sources
are enabled since a PE can be operated either as a predictor PE or
an executor PE, as shown in Figure 13(d).

Workflow of ODQ Accelerator. Figure 17 illustrates the work-
flow of the ODQ accelerator. In this example, a 4x4 input feature
map undergoes a convolution operation with n 2x2 filters, pro-
ducing n output feature maps (OFMs). The ODQ accelerator first
processes the high-order 2 bits of the weight and the input in the
predictor. All 12 reconfigurable PE arrays operate as predictor PE
arrays, i.e., 21 predictor PE arrays in total, as there is no compu-
tation by the executor at the beginning. In Figure 17, the first 21
weight filters are loaded into the PE’s registers, and the input is
transformed by an Im2col/Pack Engine to match the systolic array
convolution before being packed to the line buffer [11]. The output
is stored in an output buffer, which is then used for sensitivity anal-
ysis. The predictor produces partial results of the sensitive output
features, and we use Pxy (partial sum) to denote it in the figure. The
red Pyy refers to sensitive output features.

651

Assuming that after the first 21 OFMs are computed in the pre-
dictor, an average of 15% of the high-precision output features are
identified. Based on Table 1, to ensure that the predictor and the
executor finish their assigned workload almost simultaneously, we
reconfigure the PE arrays so that the predictor uses 18 PE arrays
and the executor uses the remaining nine PE arrays. The nine PE
arrays in the executor are divided into three clusters to relieve the
memory access burden. The predictor can calculate the next 18
OFMs using 18 PE arrays. To keep the system stable, we strive to
keep the number of OFMs waiting to be processed in the executor
equal to 21 in the output buffer. Consequently, in the executor, the
first 18 OFMs computed by the predictor will be processed. In this
figure, the green color refers to high-precision operators (4-bit). As
illustrated in Figure 17, PE array 0 is responsible for the remaining
sensitive output feature calculations in the OFMO0, while PE array 1
and PE array 2 are responsible for the rest of the sensitive output
feature calculations in OFM1 and OFM2, respectively. Note that
each PE array in the executor has two sets of PE registers and can
hold two different weight filters. For simplicity, we only show the
winning candidate in this example. As seen on the right side of
the figure, the required inputs for these three PE arrays come from
three line buffers. The executor’s outputs are then added to the
predictor’s partial outcomes to form the final output.

5 PERFORMANCE EVALUATION

5.1 DNN Accuracy

We have implemented ODQ in PyTorch [1] and comprehensively
evaluated its performance. We have built an ODQ system that
leverages DoReFa_Net [27]. Our ODQ system can dynamically

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

Beilei Jiang, Xianwei Cheng, Yuan Li, Jocelyn Zhang, Song Fu, Qing Yang, Mingxiong Liu, Alejandro Olvera.

E= 16-bit [18-bit [4-bit [2-bit ‘ACCUIaCy
100% 100%
£90% . 80% %
£ 80% " 60% S
8 70% 40% o
< 60% 20% &
50% 0%
crzsaqleETaqeEsaacETaqeesaazesaqgeesaagzsan
EzrexzrglEzezrsgEzesrbzes bz rEzesrEzegrbzes
- 555E" 5557555255555 %5"55%5|2€°55%5&7559%
g & 8 & £ Q £ &] £ & Q & & Q - - £ & A
aa/o 8 R0 8280 8 Q80 ano 8 Ao a2 o0 840
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
ResNet-56 ResNet-20 VGG-16 DenseNet
Figure 18: Comparison of DNN’s Top-1 accuracy and percent of 4/2-bit using different quantization methods.

Table 2: Configuration of DNN accelerators.

| INT16 INTS DRQ oDQ

#PEs 120 1692 1692 4860

Bitwidth INT16 INT4 INT4 INT2

area (mm?) 0.17 0.17 0.17 0.17
On-chip memory (MB) 5 5 5 5

adjust the precision of inputs and weights at runtime. Although we
explore 4-bit and 2-bit dynamic quantization in the implementation,
ODQ is not limited to 4-bit and 2-bit quantization and can be easily
extended to support other types of precision, e.g., INTS, etc.

We use CIFAR-10 and CIFAR-100 [12] in the experiments. The
CIFAR-10 and CIFAR-100 datasets provide a representative set of
images widely used in DNN and accelerator evaluation [3, 19, 20].
CIFAR-10 contains 60,000 images grouped in 10 categories, and
CIFAR-100 consists of 60,000 images in 100 classes. We test a num-
ber of DNN models, including ResNet-56, ResNet-20, VGG16, and
DenseNet [8, 9, 24]. VGG-16 is a classical DNN model, and ResNet
and DenseNet contain shortcut connections. In this paper, the ac-
curacy of ODQ-based DNN models is compared against that using
INT16, INT8 static quantization, and DRQ (INT8 and INT4).

5.2 ODQ Accelerator

We have implemented the ODQ accelerator and synthesized it at
the register transfer level (RTL) using Verilog. Experiments have
been conducted to evaluate its performance, such as measuring the
area of PE slices under different designs using the Design Compiler
and a 45nm TSMC library. CACTI [14] is used to measure power
consumption. We also employ Xilinx Vivado [23] to measure the
execution time under different ODQ configurations (shown in Ta-
ble 1). Furthermore, based on the collected data, we have developed
a simulator to further analyze our ODQ accelerator. Specifically,
we use Pytorch [1] to dump the binary mask maps for inference,
which are then fed into our simulator to test a model’s inference
time.

Table 2 lists the configurations of the accelerators tested in our
experiments. The accelerators have the same amount of on-chip
memory for caching inputs and weights, which reduces the off-chip
memory access latency. For fair comparison, we use the same area
budget (i.e., 0.17mm?) for ODQ and other state-of-the-art accel-
erators in the literature. We compare our 4/2-bit ODQ with: (1)
INT16 [27], in which weights and inputs are quantized to 16-bits
using DoReFa-Net, a static quantization method; (2) INT8 [27], in
which weights and inputs are quantized to 8-bits using DoReFa-Net;
and (3) DRQ [20], which is a fine-grained input-directed dynamic

652

quantization approach that quantizes the weights and inputs in a
network according to input sensitivity.

6 EXPERIMENTAL RESULTS

6.1 DNN Accuracy Results

We evaluate the accuracy of our ODQ system using ResNet-56,
ResNet-20, VGG-16, and DenseNet on the CIFAR-10 and CIFAR-100
datasets. The results are shown in Figure 18. Overall, ODQ achieves
classification accuracy comparable to DRQ, INT8 DoReFa-Net, and
INT16 DoReFa-Net. Compared with INT8-INT4 DRQ, ODQ exhibits
negligible accuracy degradation, i.e., <0.6%. Moreover, DRQ using
INT4-INT2 suffers from high accuracy degradation, ranging from
2.5% to 5%, with the greatest degradation reaching 10% by VGG-16
on CIFAR-100. This is because DRQ introduces noise into computing
sensitive output features, as discussed in Section 2. The precision
loss may not be that significant for INT8-INT4 DRQ. However,
when using low-bitwidth representations, such as INT4-INT2, the
impact on precision is considerable, resulting in a deteriorating
effect on the model accuracy. In contrast, our output-directed ODQ
does not suffer from precision loss and maintains the accuracy of
DNN models.

ODQ may incorporate an insensitive output from a previous
layer. However, since the output in the current layer is sensitive,
the insensitive output from the preceding layer is calculated with
high precision (4-bit). In contrast, DRQ only utilizes the high 2-bit
(low precision) of the insensitive input, which is the output from
the preceding layer, when computing the sensitive output. Our
experimental results confirm that ODQ introduces lower precision
loss compared to DRQ. When applied to ResNet-20 on CIFAR-10,
ODQ gets precision loss for each layer as follows: C1: 0.08, C2: 0.1,
C3: 0.04, C4: 0.07, C5: 0.06, C6: 0.04, C7: 0.07, C8: 0.07, C9: 0.02, C10:
0.04, C11: 0.02, C12: 0.02, C13: 0.03, C14: 0.06, C15: 0.04, C16: 0.05.
These results demonstrate that ODQ achieves significantly lower
precision loss in almost all layers, ensuring accurate model preser-
vation. This is in contrast to the higher precision loss observed in
Figure 3 by DRQ.

In addition, we characterize the percentage of high-order bits and
low-order bits in different quantization frameworks using ResNet-
56, ResNet-20, VGG-16, and DenseNet on the CIFAR-10 and CIFAR-
100 datasets. The results are also shown in Figure 18. Both DRQ and
ODQ benefit from low-bit quantization, such as INT4-INT2 bits.
Input-directed quantization approaches, like DRQ, introduce noise
into the sensitive output, reducing accuracy significantly. The accu-
racy results show that output-directed DRQ frameworks perform

Output-Directed Dynamic Quantization for DNN Acceleration

2 1

2 = 0.5
5 BN e e Fpeops Epe
2F [EEElEIEGEIEERaAGEiES
ResNet-56 | ResNet-20 VGG-16 DenseNet Gmean

Figure 19: Normalized execution time of four DNNs using
different accelerators.

EExe_idle OPre idle ONo_idle

ResNet56 ResNet20 VGG16 DenseNet

Figure 20: Percentage of idle PEs with ODQ.

better than input-directed DRQ frameworks with a comparable or
even lower percentage of high-precision output features (INT4).

6.2 Performance Analysis

Deep learning workloads are time-consuming. To determine the
extent of ODQ performance improvement, we evaluate the exe-
cution times of four DNNs (ResNet-56, ResNet-20, VGG-16, and
DenseNet) on various accelerators. Figure 19 shows the results.
Because it incorporates a greater percentage of INT4 precision com-
putation (25% compared to 18% for ResNet-20), the performance
increase of ResNet-56 (97% compared to INT16 DoReFa-Net) is
lower than that of ResNet-20 (97.7% compared to INT16 DoReFa-
Net), balancing the advantage of the extra layers. Overall, ODQ
outperforms INT16 DoReFa-Net by 97.8%. This is because ODQ
computes with INT4-INT2 precision rather than INT16. When com-
pared to INT8 DoReFa-Net, ODQ improves performance by 95.8%
on average. Furthermore, when compared to input-directed quanti-
zation with INT8-INT4 mix precision, ODQ shows a performance
boost of 67.6%.

Futhermore, we evaluate the PE utilization in the reconfigured
ODQ accelerator and Figure 20 presents the results. The figure
demonstrates a notable decrease in the percentage of idle PEs, re-
sulting in a significant performance improvement. The highest PE
idleness observed is 18%, which is in stark contrast to the 50% idle-
ness observed with the static PE allocation scheme (as shown in
Figure 11).

6.3 Energy Efficiency

We evaluate energy savings by using ODQ. Figure 21 illustrates the
energy consumption by ODQ compared with INT16 DoReFa-Net,
INT8 DoReFa-Net, and DRQ measured by CACTI [14]. As can be
seen, ODQ helps reduce energy usage for all four DNNs we evalu-
ated (ResNet-56, ResNet-20, VGG-16 and DenseNet). Compared to
INT16 DoReFa-Net, ODQ reduces energy consumption by 97.6% on
average. Furthermore, when compared to INT8 DoReFa-Net, ODQ
saves 93.5% of energy. When compared to DRQ, a state-of-the-art
dynamic quantization framework, ODQ saves 66.9% of energy.
We analyze the energy consumption of ODQ’s three key compo-
nents: DRAM, Buffer (input, weight, and output buffer), and Cores

653

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

EDRAM OBuffer OCore

=
0o —

Consumption
oo o
ST oY

Normalized Energy

222812228
© o Aole®ad

ResNet-56 | ResNet-20 DenseNet

Figure 21: Normalized energy consumption of four DNNs
using different accelerators.

VGG-16

Gmean

66% AJ-4—bit C12-bit —e—Accuracy 100%
B - 80% ®
g 60% S
= 40 =
%%6 % 40% 8

(o)
[=%}

I 20%
62%

0%
0 03 05 06 | Threshold
Figure 22: Threshold analysis (ResNet-20).

Table 3: Threshold used in this work.

NN Model ‘ Threshold
ResNet-56 0.5
ResNet-20 0.5
VGG-16 0.3
DenseNet 0.05

(PE slices) to have a better understanding of its energy efficiency,
as shown in Figure 21. As can be observed, all of these components
(i.e., DRAM, Buffer, and PE slices) help reduce energy consumption.
To elaborate, DRAM, Buffer, and PE slices help in the reduction of
DNN execution time, which accounts for static energy consumption.
The dynamic energy is mainly saved by the PE Slices. ODQ uses
low-bitwidth calculation in addition to minimizing the number of
operations required between low-bitwidth operators.

In this paper, we evaluate the performance of ODQ on multi-
ple DNNs and find that it offers significant advantages in both
performance and accuracy, particularly for DNNs that include con-
volutional layers. These layers often contribute to the majority of
execution time and power consumption. ODQ specifically optimizes
convolution operations across different types of DNNS.

6.4 Threshold Analysis

The threshold affects the percentage of sensitive output features
that are directly connected to performance and energy efficiency. A
higher threshold identifies fewer sensitive output features, leading
to substantial performance gains. The threshold is closely tied to the
accuracy of DNN models, with a higher threshold causing signifi-
cant accuracy loss. Therefore, finding a suitable threshold is crucial
for balancing accuracy and performance. The influence of threshold
on accuracy and the percentage of high(INT4)/low(INT2) precision
calculations is evaluated in a real-world DNN model (ResNet-20),
and the result is illustrated in Figure 22.

Although the threshold has a negative impact on accuracy, it is
beneficial to overall performance. Increasing the threshold from

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA

0 to 1 reduces accuracy by 1.8% while increasing insensitive out-
put features by about 40%. Based on these results, we determine
that a threshold of 0.5 optimally balances classification accuracy
preservation and performance maximization for ResNet-20. Table 3
lists the thresholds for the DNN models employed in this study and
demonstrate that the optimal threshold varies per DNN model. In
the same DNN model, we use the same threshold across all layers,
which greatly simplifies the design.

The threshold determination time for low-precision data is con-
sidered acceptable in this study. We have trained the model three
times each for Resnet-20, Resnet-56, and VGG-16, and four times
for DenseNet to determine the thresholds. As the threshold is de-
termined offline, time consumption is not a primary concern in
this paper. Instead, our focus is on inference time, with a particular
emphasis on the convolutional layers. These layers make up the
majority of the inference time.

7 RELATED WORK

7.1 Uniform Interval Quantization

Uniform quantization includes binary, ternary, and fixed-point
quantization. Binary quantization restricts values to -1 and 1. As
such, multiply-and-accumulate operations can be replaced by accu-
mulation operations, resulting in a drastic reduction in computation
and memory usage. Binarized neural networks that quantize both
inputs and weights can further reduce computation by replacing
addition operations with bitwise operations [6]. Ternary quantiza-
tion includes 0, which requires an extra bit. On the other hand, it
increases the expressive power and retains the benefit of not having
multiplication in binary weight networks since multiplication and
accumulation are not needed for 0.

7.2 Non-Uniform Interval Quantization

Weights, however, are not distributed uniformly. Instead, they fol-
low a Gaussian distribution centered around 0. Power-of-2 quantiza-
tion, a non-uniform quantization scheme, has higher precision near
0 and lower precision at the ends [13, 26]. This better reflects the
distribution of weights. Quantizing weights as powers of 2 replaces
multiplications with efficient bit shifts. However, power-of-2 quan-
tization primarily improves precision near 0 and lacks sufficient
precision for the tails.

In order to address this flaw, Chang et al. proposed the sum-of-
power-of-2 (SP2) quantization scheme [3]. The weights are quan-
tized to a number equivalent to the sum of two powers of 2, which
are multiplied with the activations independently, allowing bit
shifts to be used instead of multiplication. SP2 quantization is also
more precise near 0 and less precise near the ends, but the differ-
ence in precision is less extreme compared to that in power-of-2
quantization. As such, it better fits the distribution of the weights.

8 CONCLUSIONS

We present a novel method for deep learning acceleration. ODQ
dynamically performs high- and low-precision computations based
on the sensitivity of output features. The prediction phase uses
the high-order 2 bits of an input and weight. If the result is pre-
dicted to be sensitive, the execution phase performs the remaining
computation, while the remaining computation is skipped if the

654

Beilei Jiang, Xianwei Cheng, Yuan Li, Jocelyn Zhang, Song Fu, Qing Yang, Mingxiong Liu, Alejandro Olvera.

output is predicted to be insensitive. We have designed and imple-
mented a reconfigurable deep neural network accelerator based
on ODQ. Our experimental results demonstrate that ODQ can sig-
nificantly improve performance and reduce power consumption
for deep learning applications, making it a promising solution for
high-performance and energy-efficient deep learning systems.

ACKNOWLEDGMENTS

This work has been supported in part by the U.S. NSF grants CNS-
2231519, CNS-2113805, CNS-1852134, OAC-2017564, ECCS-2010332,
CNS-2037982, DUE-2225229, and CNS-1828105. We thank the re-
viewers for their constructive comments, which helped us improve
this paper.

REFERENCES

[1] 2018. Pytorch: Tensors and dynamic neural networks in python with strong gpu
acceleration. In https:/github.com/pytorch.

[2] David Bau and et. al. 2017. Network dissection: Quantifying interpretability of
deep visual representations. In CVPR.

[3] Sung-En Chang and et. al. 2021. Mix and Match: A novel FPGA-centric deep
neural network quantization framework. In HPCA.

[4] Tianshi Chen and et. al. 2014. Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture
News (2014).

[5] Xiaozhi Chen and et. al. 2017. Multi-view 3d object detection network for
autonomous driving. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition.

[6] Matthieu Courbariaux and et. al. 2016. Binarized neural networks: Training deep
neural networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830 (2016).

[7] LiDeng and et. al. 2013. Recent Advances in Deep Learning for Speech Research
at Microsoft. In ICASSP.

[8] Kaiming He and et. al. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

[9] G.Huang and et. al. 2017. Densely connected convolutional networks. In CVPR.

[10] Beilei Jiang and et. al. 2022. MLCNN: Cross-Layer Cooperative Optimization and
Accelerator Architecture for Speeding Up Deep Learning Applications. In IPDPS.

[11] Norman P. Jouppi and et. al. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In ISCA ’17.

[12] Alex Krizhevsky. 2010. CIFAR-10 and CIFAR-100 datasets. In

https://www.cs.toronto.edu/ kriz/cifar.html.

Daisuke Miyashita and et. al. 2016. Convolutional neural networks using loga-

rithmic data representation. arXiv preprint arXiv:1603.01025 (2016).

[14] N. Muralimanohar and et. al. 2009. CACTI 6.0: A tool to model large caches. In

HP laboratories.

Eunhyeok Park and et. al. 2018. Energy-efficient neural network accelerator

based on outlier-aware low-precision computation. In ISCA.

[16] S Preethi and et. al. 2020. Smart Healthcare Monitoring System for War-End

Soldiers Using CNN. IGI Global.

Marco Sandri and et. al. 2006. Variable selection using random forests. In Data

analysis, classification and the forward search.

Murugan Sankaradas and et. al. 2009. A massively parallel coprocessor for

convolutional neural networks. In ASAP.

Hardik Sharma and et. al. 2018. Bit fusion: Bit-level dynamically composable

architecture for accelerating deep neural network. In ISCA.

[20] Z.Song and et. al. 2020. Drq: dynamic region-based quantization for deep neural

network acceleration. In ISCA. IEEE.

Zhuoran Song and et. al. 2020. VR-DANN: Real-Time Video Recognition via

Decoder-Assisted Neural Network Acceleration. In MICRO.

Mengshu Sun and et. al. 2022. FILM-QNN: Efficient FPGA Acceleration of Deep

Neural Networks with Intra-Layer, Mixed-Precision Quantization (FPGA ’22).

Xilinx. 2020. https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2020_2/ug888-vivado-design-flows-overview-tutorial pdf.

Xiangyu Zhang and et. al. 2015. Accelerating Very Deep Convolutional Networks

for Classification and Detection. In CoRR.

Shixuan Zheng and et. al. 2018. An efficient kernel transformation architecture

for binary-and ternary-weight neural network inference. In DAC.

Aojun Zhou and et. al. 2017. Incremental network quantization: Towards lossless

cnns with low-precision weights. arXiv preprint arXiv:1702.03044 (2017).

Shuchang Zhou and et. al. 2016. Dorefa-net: Training low bitwidth convolutional

neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160

(2016).

=
&

=
&

(17

[18

[19

[21

~
5,

[23

[24

[25

[26

[27

	Abstract
	1 Introduction
	2 Motivation
	3 Output-Directed Dynamic Quantization (ODQ)
	4 ODQ Accelerator
	4.1 PE Idleness and Bandwidth Management
	4.2 Static vs. Dynamic PE Allocation
	4.3 Reconfigurable Accelerator for ODQ

	5 Performance Evaluation
	5.1 DNN Accuracy
	5.2 ODQ Accelerator

	6 Experimental Results
	6.1 DNN Accuracy Results
	6.2 Performance Analysis
	6.3 Energy Efficiency
	6.4 Threshold Analysis

	7 Related Work
	7.1 Uniform Interval Quantization
	7.2 Non-Uniform Interval Quantization

	8 Conclusions
	Acknowledgments
	References

