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ABSTRACT

Quantization is an effective technique for reducing the number

of computations and improving the performance of deep neural

networks (DNNs). Weight quantization is popular because weights

can be trained beforehand. However, weight quantization only tar-

gets the kernel weights and ignores the sensitivity of input features,

which can lead to reduced accuracy. Fine-grained input quantization

has gained attention as a way to speed up DNNs while maintaining

accuracy. Existing approaches determine computation precision

based on input sensitivity but do not effectively reduce computa-

tions for insensitive outputs or retain the precision of sensitive out-

puts. These limitations motivate us to develop an output-directed

dynamic quantization method named ODQ in this paper. ODQ

is a two-stage DNN quantization scheme designed to improve per-

formance, reduce energy consumption, and maintain and often

improve accuracy, compared with existing quantization methods.

Specifically, inputs and weights go through sensitivity prediction

and result generation. The high-order 2 bits of input and weight are

used to predict output sensitivity. Result generation is performed

only for predicted sensitive outputs. We designed an FPGA accel-

erator to optimize ODQ quantization performance for DNNs. We

implement a prototype of ODQ and evaluate its performance using

several state-of-the-art DNNs. Compared with a state-of-the-art

input-directed quantization approach, ODQ achieves a 67.6% perfor-

mance speedup and a 66.9% energy saving, with minimal accuracy

degradation (≤0.6%).
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Figure 1: Inefficiency of input-directed quantization. We use

LeNet-5 on the MNIST dataset as an illustrating example.

Sensitive features are represented by black squares while

insensitive features are denoted by gray squares.

1 INTRODUCTION

The past decade has witnessed the wide adoption and success of

deep neural networks (DNNs) in various fields, which is attrib-

uted to their capability to capture highly complex, nonlinear in-

put/output relationships with unprecedented accuracy. However, as

DNNs become increasingly complex for better accuracy, the num-

ber of parameters and computations grows drastically, which puts a

heavy burden on the underlying computing platforms and runtime

systems. This poses a critical challenge in developing pervasive

deep learning for real-time inference with low energy consumption

on resource-constrained systems, which is imperative for many new

fields and applications, such as autonomous driving, smart health-

care monitoring, smart manufacturing, and speech and emotion

recognition [5, 7, 16, 21].

Quantization is an effective technique in reducing inference

time and energy consumption by mapping a DNN’s inputs from

a large range to outputs in a smaller range [10, 27]. A number of

quantization methods have been presented in the literature, e.g.,

DRQ [20], OLAccel [15], and FILM-QNN [22], etc. Recent studies

focus on weight and/or input quantization [15, 25]. However, many

suffer from significant accuracy degradation (≥ 5%). Additionally,

weight-focused quantization has progressed to the point where it is

challenging to speed up the DNNs while maintaining accuracy stan-

dards. Input sensitivity should be considered during quantization

to further speed up DNNs and maintain accuracy [2, 17]. However,

the sensitivity of accuracy to input/activation has not been well

investigated.

Input-based quantization methods, such as DRQ [20], adjust

weights and input precision based on input sensitivity. It compares

input features, or the sum of input features in a region, with a prede-

fined threshold. If the input features are larger than the threshold,

they are sensitive; otherwise, they are insensitive. For sensitive
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inputs, high-precision weights and inputs are used, whereas low-

precision computations are performed for less sensitive inputs.

Although those methods reduce inference time, they lack the fol-

lowing desirable properties. (1) Preserve model accuracy. High-

precision computations should be performed for sensitive output

features. (2) Improve efficiency. Low-precision computations should

be performed for insensitive output features. Please note that out-

puts that are more sensitive, i.e., those with a larger magnitude,

have a greater impact on a model’s accuracy.

Figure 1 illustrates these issues. Existing input-directed quanti-

zation methods conduct sensitivity analysis on the input feature

maps of each layer before convolution. In both cases ( 1 and 2 in

Figure 1), the output is generated by mixed-precision computations.

In the first case, the sensitive output is calculated from almost all in-

sensitive (i.e., low-precision) inputs, which affects model accuracy,

which is property (1). In the second case, the insensitive output

is computed from almost all sensitive (i.e., high-precision) inputs,

which incurs computation overhead, which is property (2). Both

cases indicate that sensitivity of features is not fully exploited by

input-directed quantization.

To address these problems, this paper proposes an output-

directed dynamic quantization (ODQ) method, aiming to effec-

tively explore low-precision computations while preserving accuracy

for DNN acceleration. ODQ uses sensitivity analysis of output fea-

tures to determine the quantization strategy, i.e., low-precision or

high-precision computation. An output sensitivity prediction algo-

rithm is developed for ODQ to efficiently and accurately predict

sensitive outputs. ODQ streamlines sensitivity prediction and result

generation into a single-shot process, which significantly reduces

sensitivity analysis overhead and enhances quantization efficiency

without compromising model accuracy.

In the sensitivity prediction step, high-order bits of inputs and

weights are used to quickly generate partial results to determine the

output’s sensitivity with respect to model accuracy. The prediction

operation is lightweight by design. In the result generation step, the

remaining computation related to sensitive outputs is performed.

To speed up ODQ execution for real-time applications, an ODQ

accelerator is developed on the FPGA. Our ODQ accelerator can

be reconfigured to maximize the utilization of on-chip resources

and data reuse and mitigate performance degradation caused by

processing elements’ stalls.

The main contributions of this paper are:

• Qualitative and quantitative characterization of current

input-focused DNN dynamic quantization limitations.

• Design of a novel output-directed dynamic quantization

(ODQ)method that predicts output sensitivity and fine-tunes

computation precision at runtime. Sensitive output features

are computed with high-precision weights and inputs, while

insensitive outputs are produced with low-precision ones.

• Development of a reconfigurable ODQ accelerator in Ver-

ilog that includes three types of PE arrays: reconfigurable

PE arrays, predictor PE arrays, and executor PE arrays. The

reconfigurable PE arrays can be set up as predictor PE ar-

rays or executor PE arrays depending on the percentage of

sensitive output features.

• Implementation of a prototype of ODQ and its accelera-

tor and extensive evaluation of performance on ResNet-56,

Figure 2: Percentage of low-precision inputs used in generat-

ing sensitive outputs via input-directed quantization applied

to ResNet-20 on CIFAR-10.

Figure 3: Precision loss from computing sensitive outputs

using low-precision inputs via input-directed quantization

applied to ResNet-20 on CIFAR-10.

ResNet-20, VGG-16 and DenseNet. ODQ achieves promis-

ing results, including a 97.8% performance improvement in

terms of execution time and a 97.6% energy consumption

reduction compared to static quantization methods. More-

over, ODQ achieves a 67.6% reduction in execution time

and a 66.9% energy reduction over DRQ, an input-directed

dynamic quantization framework.

2 MOTIVATION

Quantization can be applied to weights and inputs. Weight-based

quantization has advanced to the point where it is difficult to speed

up the DNNs while maintaining accuracy standards. Recent studies

have found that different input features exhibit varying degrees of

model accuracy sensitivity. However, less effort has been devoted to

input sensitivity analysis and the design of input-based quantization

methods due to high input variability.

Input-directed quantization approaches, such as DRQ [20], typ-

ically measure the importance of inputs based on the magnitude

of input features. However, they suffer from the following major

problems, which motivate this work.

1) Input-directed quantization may compromise the precision of

sensitive outputs due to the use of low-precision inputs.

We measure the percentage of low-precision input features (4-

bits) involved in computing sensitive outputs in input-directed

quantization methods. Figure 2 shows the results from DRQ on

ResNet-20. In the figure, each shade represents the percentage of

low-precision input features among all input features when calcu-

lating one sensitive output feature. We summarize the percentage in

four ranges:(0%-25%,25%-50%,50%-75%,75%-100%). We can see that

in almost every layer, most sensitive output features are calculated

with more than 25% of low-precision input features. In particular,

in the convolutional layers C10, C12, C14, C15, and C16, over 75%

of low-precision inputs are used in producing all sensitive outputs.

In summary, a significant number of sensitive outputs cannot be

generated with the desired precision. What is more, the relation-

ship between the precision of sensitive features and the accuracy

of DNN model is analyzed in [20], it shows that when the precision

loss for sensitive outputs reaches 0.1, more precision loss results in

significant accuracy degradation, i.e., more than 10. Therefore, to

further demonstrate the impact on the accuracy of DNN models,

the precision loss caused by this issue is observed.
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Figure 4: Percentage of high-precision inputs used in gen-

erating insensitive outputs via input-directed quantization

applied to ResNet-20 on CIFAR-10.

Figure 5: Computation waste from using high-precision in-

puts to generate insensitive outputs via input-directed quan-

tization applied to ResNet-20 on CIFAR-10.

Figure 3 shows the average precision loss caused by using low-

precision inputs to compute sensitive outputs. As can be observed,

the amount of noise introduced to most of the layers is greater than

0.1. In particular, the noise added to the layers C7, C11, C13, and

C14 is even greater than 1, which leads to a significant perturbation

to the DNN model and affects the utilization of smaller bit widths

for effective quantization.

2) Input-directed quantization incurs unnecessary computations

as high-precision inputs are used to produce insensitive outputs.

We measured the number of high-precision inputs (8-bits) in-

volved in generating insensitive outputs in input-directed quanti-

zation methods. Figure 4 shows the DRQ results on ResNet-20. We

observed that over 25% of high-precision inputs are involved in

calculating all insensitive outputs in multiple layers. In particular,

the convolutional layers C1, C2, C4, C7, and C11 use over 50% of

high-precision inputs to compute all insensitive outputs, resulting

in significant high-precision computation for insensitive features.

To prove this will cause redundant computation, the extra pre-

cision (computation waste) that results from using high-precision

inputs to produce insensitive outputs are observed, as shown in

Figure 5. According to DRQ, insensitive outputs have a higher tol-

erance for noise. Adding noise with a magnitude of less than 10 to

inputs has a negligible effect on prediction accuracy. In Figure 5,

we find that for insensitive outputs, using high-precision inputs

leads to extra precision of up to 0.21 compared to low-precision

inputs. The extra precision can be quantified as follows:

𝐸𝑥𝑡𝑟𝑎_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑂𝐼𝐷𝑄 −𝑂𝐿𝑃_𝑖𝑛𝑝𝑢𝑡 )), (1)

where 𝑂𝐼𝐷𝑄 refers to the insensitive output features produced by

input-directed quantization, and 𝑂𝐿𝑃_𝑖𝑛𝑝𝑢𝑡 represents the insensi-

tive output features computed using low-precision inputs. From the

figure, we can see that removing the extra precision only causes up

to 0.21 orders of magnitude of noise, which can be eliminated for

better energy efficiency and speedup.

In short, input-directed quantization not only increases noise

in producing sensitive outputs but also causes unnecessary com-

putations for insensitive outputs using high-precision inputs. We

designed an output-directed dynamic quantization (ODQ) method

to address these problems.

Figure 6: Structure and key components of the proposed

output-directed dynamic quantization (ODQ).

3 OUTPUT-DIRECTED DYNAMIC
QUANTIZATION (ODQ)

Accurately predicting output sensitivity is imperative for retaining

DNNmodels’ accuracy and improving quantization efficiency. How-

ever, this process will introduce additional overhead. Therefore,

a novel design is required to ensure the performance gain from

quantization outweighs the prediction cost.

To this end, we design a two-step output-directed dynamic quan-

tization (ODQ)method that is streamlined into a single-shot process.

The structure and workflow of ODQ are presented in Figure 6. The

key steps of ODQ are sensitivity prediction and result generation. It

dynamically selects the quantization strategy (low-precision/high-

precision computation and bit width) based on the sensitivity pre-

diction of output features on the fly.

Specifically, an output feature is produced by accumulating the

multiplications of input features (𝐼 ) and weight filters (𝑊 ). That is

𝑂 (𝑡𝑜 , 𝑥, 𝑦) =

𝐾−1∑︁

𝑖=0

𝐾−1∑︁

𝑗=0

𝑁 −1∑︁

𝑡𝑖=0

𝑊 (𝑡𝑜 , 𝑡𝑖 , 𝑖, 𝑗 ) ∗ 𝐼 (𝑡𝑖 , 𝑖 +𝑆 ∗𝑥, 𝑗 +𝑆 ∗ 𝑦), (2)

where 𝐾 denotes the spatial dimension of a filter, 𝑆 is the step size,

and 𝑁 is the number of input channels. Subscripts 𝑡𝑜 , 𝑡𝑖 , 𝑖 and 𝑗

denote indexes. An input (𝐼 ) and a weight (𝑊 ) can be partitioned

into high-order bits 𝐼𝐻𝐵𝑠 and𝑊𝐻𝐵𝑠 , and low-order bits 𝐼𝐿𝐵𝑠 and

𝑊𝐿𝐵𝑠 , respectively. Equation (2) can be rewritten as follows.

𝑂 = (
∑︁

𝐼𝐻𝐵𝑠 ∗𝑊𝐻𝐵𝑠 ) << 2𝑁𝐿𝐵𝑠 +
∑︁

𝐼𝐿𝐵𝑠 ∗𝑊𝐿𝐵𝑠

+ (
∑︁

𝐼𝐻𝐵𝑠 ∗𝑊𝐿𝐵𝑠 ) << 𝑁𝐿𝐵𝑠 + (
∑︁

𝐼𝐿𝐵𝑠 ∗𝑊𝐻𝐵𝑠 ) << 𝑁𝐿𝐵𝑠 ,
(3)

where 𝑁𝐿𝐵𝑠 is the bit width of 𝐼𝐿𝐵𝑠 and𝑊𝐿𝐵𝑠 , and << represents a

shift operation. According to Equation (3), an output feature can

be computed in four parts: 1○ computation between the high-order

bits of weights and the high-order bits of activation; 2○ computation

between the high-order bits of weights and the low-order bits of

activation; 3○ computation between the low-order bits of weights

and the high-order bits of activation; and 4○ computation between

the low-order bits of weights and the low-order bits of activation.

We find that the output is dominated by the result from the high-

order input and weight bits, i.e., 𝐼𝐻𝐵𝑠 and𝑊𝐻𝐵𝑠 . Therefore, we

design the sensitivity predictor based on the MAC operations on

𝐼𝐻𝐵𝑠 and𝑊𝐻𝐵𝑠 . The rest of the MAC operations are performed in

the result generation step.

As shown in Figure 6, given an input feature map, we first quan-

tize the feature map from FP32 to INT4 [27]. Then, we divide it

into two sub-input feature maps, one from the high-order bits (i.e.,

𝐼𝐻𝐵𝑠 -2 bits) and the other from the low-order bits (i.e., 𝐼𝐿𝐵𝑠 -2 bits).

The sub-input feature map with 𝐼𝐻𝐵𝑠 is processed by the sensitivity
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Figure 7: Architecture of a multi-precision PE.

Figure 8: Illustration of PE idleness in existing accelerators

with multi-precision PEs.

predictor. The predictor uses convolution results to identify sensi-

tive output features. Specifically, the predictor uses an activation

function to create a bit mask by comparing each calculated out-

put feature with a threshold. That is, if the magnitude of a feature

exceeds the threshold, it is sensitive. Otherwise, the feature is insen-

sitive. The predicted sensitivity values of features are stored in a bit

mask with the same dimension as the output feature map, whereł1ž

indicates a sensitive feature and ł0ž denotes an insensitive one.

The result executor uses the bit mask produced by the sensitivity

prediction to perform the remaining computations for sensitive

output. By adding the results from both the sensitivity predictor

and the result executor, ODQ produces the final output.

A key parameter in sensitivity prediction is the threshold. ODQ

adopts an adaptive approach to finding the optimal value. This pro-

cess is illustrated with the following example. A network is initially

trained with 4-bit weights and 4-bit inputs. Next, ODQ randomly

selects 𝑁 inputs from the test dataset, performs inference using the

high-order bits of the inputs (𝐼𝐻𝐵𝑠 ) and the trained weights (𝑊𝐻𝐵𝑠 ),

and generates the output distribution of each layer. A relatively

large initial threshold is chosen based on the output distribution.

Weights are retrained after introducing the threshold to the model

to capture sensitivity information in the input feature maps. Then,

the retrained weights are used for ODQ-based inference. If accuracy

meets the expectation, the threshold is selected. Otherwise, ODQ

halves the threshold value and repeats the above process until a

suitable threshold is found.

4 ODQ ACCELERATOR

ODQ leverages the high-order bits of inputs and weights for output

sensitivity prediction, which directs bit width selection for quan-

tized computation. General-purpose processors execute efficiently

with FP32, FP16, or INT8 operands, when compared to 2-bit data.

Moreover, the sparse characteristics of ODQ can result in resource

underutilization and performance degradation. Therefore, we de-

sign an accelerator to speed up ODQ for real-time inferences.

ODQ performsmixed-precision computations (i.e., 2-bit and 4-bit

MACs). A brute-force approach is to design 4-bit MAC processing

elements (PEs) that can handle both 2-bit and 4-bit MACs in a

single clock cycle. However, due to the high probability of low-

precision computation, a lot of processing resources will be wasted.

An efficient design is multi-precision PEs, which can be found in

BitFusion and DRQ [19, 20]. The structure of a multi-precision PE

is depicted in Figure 7. Multi-precision PEs are applicable to both

2-bit and 4-bit MACs, taking one clock cycle and four clock cycles,

respectively. With multi-precision PEs, all PEs in the PE group use

one clock cycle to generate the output in the sensitivity prediction

without any loss of computing resources. In addition, weight filters

and inputs can be reused in calculating output features.

We note that the irregularity and sparsity of insensitive out-

put features can cause idle PEs during the result generation step,

challenging on-chip bandwidth management.

4.1 PE Idleness and Bandwidth Management

Existing DNN accelerators, such as [4, 18, 20], usually use a weight-

stationary or input-stationary dataflow to take advantage of data

reference locality in DNNmodels. Those accelerators process multi-

ple inputs and weights and generate multiple output features from

the same or different output feature maps.

Figure 8 illustrates PE idleness caused by sparsity of insen-

sitive output features. Figure 8 shows a DNN accelerator with

weight-stationary dataflow. Let the output feature computed with

𝑊0 ( [𝑊00,𝑊01,𝑊02,𝑊03]) and 𝐼0 be sensitive, and the output fea-

ture computed with𝑊1 ( [𝑊10,𝑊11,𝑊12,𝑊13]) and 𝐼0 be insensitive.

Their sensitivity is used to control PE execution in result generation.

At cycle 𝑡 , the remaining outputs are computed since the output

feature with𝑊0 and 𝐼0 is sensitive. Nonetheless, since the feature

with𝑊1 and 𝐼0 is insensitive, the PE is idle at cycle 𝑡 + 1, which

cancels out the performance improvement from quantization.

Furthermore, the irregular and sparse insensitive output features

hinder data reuse during result generation. The sensitivity predictor

and the result generator have different bandwidth requirements.

Assume the sensitivity predictor requires 𝑁 bytes of data every

cycle. The result generator, however, has limited data reuse oppor-

tunities. As a result, more data must be collected every cycle to

avoid PE stalls during result generation. The bandwidth becomes

underutilized during sensitivity prediction if we assign the on-chip

bandwidth based on the result generator requirements. The PE

will stall during result generation, waiting for data if bandwidth is

determined by the sensitivity predictor’s needs.

4.2 Static vs. Dynamic PE Allocation

The PEs in a column form a PE array. Allocating an equal number

of PE arrays to the sensitivity predictor and result generator is

inefficient due to their differing computational workloads, leading

to pipeline bubbles. With 50% sensitive output features, the result

generator has a 1.5x higher computational load than the sensitivity

predictor. PE array allocation should follow the same ratio accord-

ingly. Moreover, the sensitivity predictor PEs compute output in

one cycle, while the result generator takes three cycles. The result

generator does not need to compute insensitive outputs.
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Figure 9: Percentage of insensitive output features in ResNet-56 using output-directed dynamic quantization (ODQ).

Figure 10: Percentage of insensitive output features in

ResNet-20 using ODQ.

Figure 11: Percentage of idle PEs with Static PE allocation. (a)

Executor PE Array: 12, Predictor PE Array: 15. (b) Executor

PE Array: 9, Predictor PE Array: 18.

Table 1: Configuration of PE arrays and the corresponding

maximum percentage of sensitive output features without

causing pipeline bubbles.

#of PE arrays

for predictor

#of PE arrays

for executor

Maximum percent of sensitive

output features (%)

9 18 66

12 15 41

15 12 26

18 9 16

21 6 9

We also need to consider DNN models’ characteristics when al-

locating PEs. Figures 9 and 10 present the percentage of insensitive

output features identified by the sensitivity predictor in ResNet-56

and ResNet-20, respectively. The percentage of insensitive output

features exhibits considerable variation across layers and DNN

models. Consequently, static PE allocation can lead to either over-

provisioning or under-provisioning of PEs, impacting resource uti-

lization and/or the performance of ODQ. As shown in Figure 11, the

static PE allocation scheme results in 14%-50% of idle PEs (Pre_idle:

idle predictor PEs and Exe_idle: idle executor PEs).

From experiments, we observe that the percentage of sensitive

outputs in ResNet-20, ResNet-56, VGG16, and DenseNet ranges

from 8% to 50%. A PE slice containing 27 PE arrays can be used

in resource management. Specifically, based on the percentage of

sensitive output features, 12 reconfigurable PE arrays can be dynam-

ically allocated to the sensitivity predictor or the result generator.

The predictor uses the leftmost 9 PE arrays, while the generator

uses the rightmost 6 PE arrays. Table 1 lists the relation between

PE array configuration and the percentage of sensitive output fea-

tures without causing pipeline bubbles. In the table, we can see

that a dynamic allocation scheme allows five alternative PE array

configurations. It also indicates that by allowing the percentage of

sensitive output features to be between 9% and 66%, we can allocate

PEs without pipeline bubbles.

Dynamic PE management is more efficient as it differentiates

the allocation of PE arrays to the sensitivity predictor and result

generator according to the detected percentage of sensitive output

features. This will speed up ODQ and improve resource utilization.

4.3 Reconfigurable Accelerator for ODQ

We design an ODQ accelerator that differentiates the management

of the sensitivity predictor and result generator, aiming to reduce

PE idleness and maximize data reuse and resource utilization. To

this end, the ODQ accelerator allocates resources separately to the

two components.

Figure 12 shows the architecture and major components of our

reconfigurable ODQ accelerator. PE slices consist of a predictor PE

array, an executor PE array, and a reconfigurable PE array. The

reconfigurable PE array can be assigned as either the predictor

PE array or executor PE array, depending on the percentage of

sensitive output features, optimizing resource utilization. During

sensitivity analysis, the predictor results are recorded in a bit mask,

which is used by the executor. The executor output is stored in

an output buffer before being transferred to the off-chip DRAM.

The ODQ accelerator employs a global weight and input buffer to

hide DRAM access latency. Moreover, our accelerator introduces

line buffers to exploit data reuse in DNNs. The Im2col/Pack engine

transforms data into the format seen in Figure 17 before packing

it into line buffers, enabling input sharing amongst weight filters

from various channels stored in PE arrays.

PE Architecture. Our ODQ accelerator has three PE groups:

predictor PE, executor PE, and reconfigurable PE. During sensitivity

prediction, a PE performs MAC operations only on the high-order

bits of inputs and weights. Thus, a basic INT2 MAC is used. Fig-

ure 13(a) depicts the architecture of a predictor PE. It comprises

two 2-bit registers to store the high-order 2 bits of an input and a

weight (i.e., 𝐼ℎ and𝑊ℎ), and a 4-bit register for a partial sum (P).

The executor handles the remaining calculations. This cannot be

done with a single INT2 MAC. Thus, we employ Bitfusion’s multi-

precision PE architecture [19] to ensure the computation is finished

in three clock cycles, as shown in Figure 13(b). In addition, the

executor computes sensitive output features sparsely distributed in

the feature maps. Sensitive output features are irregular and sparse,

which prevents them from being reused. PEs normally request

data on demand without input/weight sharing between PEs, which

incurs more memory accesses. To prevent PEs from being idle,

more data must be retrieved every clock cycle from DRAM. The

ODQ accelerator partitions the PE array for the executor into three

clusters. Every three clock cycles, a PE will make a new data request

because computations take three clock cycles to complete on each
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Figure 12: Architecture of reconfigurable ODQ accelerator.

Figure 13: PE architecture of the ODQ accelerator.

Figure 14: Illustration of PE array execution using static re-

source allocation.

Figure 15: Illustration of PE array execution using dynamic

resource allocation.

PE. With three PE clusters, data is delivered to one cluster every

cycle, which minimizes the number of memory accesses.

However, workload imbalance across PE arrays may also result

in idle PEs. Figure 14 illustrates this problem. In the figure, the four

output feature maps (OFMs) exhibit varying workload levels. The

computations associated with OFM1 and OFM2 are scheduled to

the first two PE arrays in PE cluster 0, and OFM3 and OFM4 are

assigned to the two PE arrays in PE cluster 1. As OFM1 and OFM2

involve more workload than the others, their computations are

Figure 16: Illustration of the dynamic workload allocation

scheme in ODQ.

divided into halves. One is handled by two PE arrays in cluster 0

and the other by two PE arrays in cluster 2. PE arrays 1, 2, 3, and

5 finish their computations after 12 cycles since they process four

sensitive output features. PE arrays 0 and 4 need 21 cycles since

each of them is assigned three additional sensitive output features.

However, PE arrays 1, 2, 3, and 5 are idle for 9 cycles, waiting for

the job to be finished. Dynamic workload distribution reallocates

OFM1’s remaining workload to free PE arrays using a dynamic allo-

cation scheme (Figure 15). This maximizes computational resource

utilization but introduces significant hardware overhead.

To better utilize resources and minimize the hardware overhead,

we design a fine-grained dynamic workload scheduling method for

the ODQ accelerator. In our dynamic scheduling method, (1) Each

PE array is responsible for computing several output channels, and a

cluster covers all the output channels. This prevents PE from becom-

ing idle by allowing the workload to be allocated to any clusters. For

example, in Figure 16, each PE array processes two output channels,

e.g., output channels 1 and 2 are assigned to PE array 0, and the clus-

ters handle all output channels, i.e., OFM1, OFM2, OFM3 and OFM4.

(2) Computations performed by all clusters should cover as many

combinations of output channels as possible, balancing the work-

load across output channels. Because there are four output channels

in this example, six possible combinations exist, i.e., 1 and 2, 1 and

3, 1 and 4, 2 and 3, 2 and 4, 3 and 4. Four possible combinations are

for Cluster 0, i.e., 1 and 3, 1 and 4, 2 and 3, 2 and 4. The possible

combinations for Cluster 1 and Cluster 2 are complementary to

those of Cluster 0. Thus, all of the 6 combinations are covered.
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Figure 17: Execution flow of ODQ accelerator.

In each PE array, the output channel with the greatest workload

has the highest priority. Data from the winning output channel

is sent to the PE array via a crossbar. In Figure 16, the output

channels highlighted in red circles are the output channels chosen

by PE arrays. For example, as output channel 1 has more workload

than output channel 2, the computation from output channel 1 is

assigned to PE array 0. In this way, all computations are completed

in 15 cycles without wasting resources.

The executor’s PEs are designed to match the dynamic workload

schedule. Figure 13(c) shows the PE architecture for the executor.

Specifically, the PEs are multi-precision PEs that allow two weight

sources from two output channels. In addition, two input sources

are enabled since a PE can be operated either as a predictor PE or

an executor PE, as shown in Figure 13(d).

Workflow of ODQ Accelerator. Figure 17 illustrates the work-

flow of the ODQ accelerator. In this example, a 4×4 input feature

map undergoes a convolution operation with 𝑛 2×2 filters, pro-

ducing 𝑛 output feature maps (OFMs). The ODQ accelerator first

processes the high-order 2 bits of the weight and the input in the

predictor. All 12 reconfigurable PE arrays operate as predictor PE

arrays, i.e., 21 predictor PE arrays in total, as there is no compu-

tation by the executor at the beginning. In Figure 17, the first 21

weight filters are loaded into the PE’s registers, and the input is

transformed by an Im2col/Pack Engine to match the systolic array

convolution before being packed to the line buffer [11]. The output

is stored in an output buffer, which is then used for sensitivity anal-

ysis. The predictor produces partial results of the sensitive output

features, and we use Pxy (partial sum) to denote it in the figure. The

red Pxy refers to sensitive output features.

Assuming that after the first 21 OFMs are computed in the pre-

dictor, an average of 15% of the high-precision output features are

identified. Based on Table 1, to ensure that the predictor and the

executor finish their assigned workload almost simultaneously, we

reconfigure the PE arrays so that the predictor uses 18 PE arrays

and the executor uses the remaining nine PE arrays. The nine PE

arrays in the executor are divided into three clusters to relieve the

memory access burden. The predictor can calculate the next 18

OFMs using 18 PE arrays. To keep the system stable, we strive to

keep the number of OFMs waiting to be processed in the executor

equal to 21 in the output buffer. Consequently, in the executor, the

first 18 OFMs computed by the predictor will be processed. In this

figure, the green color refers to high-precision operators (4-bit). As

illustrated in Figure 17, PE array 0 is responsible for the remaining

sensitive output feature calculations in the OFM0, while PE array 1

and PE array 2 are responsible for the rest of the sensitive output

feature calculations in OFM1 and OFM2, respectively. Note that

each PE array in the executor has two sets of PE registers and can

hold two different weight filters. For simplicity, we only show the

winning candidate in this example. As seen on the right side of

the figure, the required inputs for these three PE arrays come from

three line buffers. The executor’s outputs are then added to the

predictor’s partial outcomes to form the final output.

5 PERFORMANCE EVALUATION

5.1 DNN Accuracy

We have implemented ODQ in PyTorch [1] and comprehensively

evaluated its performance. We have built an ODQ system that

leverages DoReFa_Net [27]. Our ODQ system can dynamically
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Figure 18: Comparison of DNN’s Top-1 accuracy and percent of 4/2-bit using different quantization methods.

Table 2: Configuration of DNN accelerators.

INT16 INT8 DRQ ODQ

#PEs 120 1692 1692 4860
Bitwidth INT16 INT4 INT4 INT2

area (𝑚𝑚2) 0.17 0.17 0.17 0.17
On-chip memory (MB) 5 5 5 5

adjust the precision of inputs and weights at runtime. Although we

explore 4-bit and 2-bit dynamic quantization in the implementation,

ODQ is not limited to 4-bit and 2-bit quantization and can be easily

extended to support other types of precision, e.g., INT8, etc.

We use CIFAR-10 and CIFAR-100 [12] in the experiments. The

CIFAR-10 and CIFAR-100 datasets provide a representative set of

images widely used in DNN and accelerator evaluation [3, 19, 20].

CIFAR-10 contains 60,000 images grouped in 10 categories, and

CIFAR-100 consists of 60,000 images in 100 classes. We test a num-

ber of DNN models, including ResNet-56, ResNet-20, VGG16, and

DenseNet [8, 9, 24]. VGG-16 is a classical DNN model, and ResNet

and DenseNet contain shortcut connections. In this paper, the ac-

curacy of ODQ-based DNN models is compared against that using

INT16, INT8 static quantization, and DRQ (INT8 and INT4).

5.2 ODQ Accelerator

We have implemented the ODQ accelerator and synthesized it at

the register transfer level (RTL) using Verilog. Experiments have

been conducted to evaluate its performance, such as measuring the

area of PE slices under different designs using the Design Compiler

and a 45nm TSMC library. CACTI [14] is used to measure power

consumption. We also employ Xilinx Vivado [23] to measure the

execution time under different ODQ configurations (shown in Ta-

ble 1). Furthermore, based on the collected data, we have developed

a simulator to further analyze our ODQ accelerator. Specifically,

we use Pytorch [1] to dump the binary mask maps for inference,

which are then fed into our simulator to test a model’s inference

time.

Table 2 lists the configurations of the accelerators tested in our

experiments. The accelerators have the same amount of on-chip

memory for caching inputs and weights, which reduces the off-chip

memory access latency. For fair comparison, we use the same area

budget (i.e., 0.17𝑚𝑚2) for ODQ and other state-of-the-art accel-

erators in the literature. We compare our 4/2-bit ODQ with: (1)

INT16 [27], in which weights and inputs are quantized to 16-bits

using DoReFa-Net, a static quantization method; (2) INT8 [27], in

which weights and inputs are quantized to 8-bits using DoReFa-Net;

and (3) DRQ [20], which is a fine-grained input-directed dynamic

quantization approach that quantizes the weights and inputs in a

network according to input sensitivity.

6 EXPERIMENTAL RESULTS

6.1 DNN Accuracy Results

We evaluate the accuracy of our ODQ system using ResNet-56,

ResNet-20, VGG-16, and DenseNet on the CIFAR-10 and CIFAR-100

datasets. The results are shown in Figure 18. Overall, ODQ achieves

classification accuracy comparable to DRQ, INT8 DoReFa-Net, and

INT16 DoReFa-Net. Compared with INT8-INT4 DRQ, ODQ exhibits

negligible accuracy degradation, i.e., ≤0.6%. Moreover, DRQ using

INT4-INT2 suffers from high accuracy degradation, ranging from

2.5% to 5%, with the greatest degradation reaching 10% by VGG-16

onCIFAR-100. This is becauseDRQ introduces noise into computing

sensitive output features, as discussed in Section 2. The precision

loss may not be that significant for INT8-INT4 DRQ. However,

when using low-bitwidth representations, such as INT4-INT2, the

impact on precision is considerable, resulting in a deteriorating

effect on the model accuracy. In contrast, our output-directed ODQ

does not suffer from precision loss and maintains the accuracy of

DNN models.

ODQ may incorporate an insensitive output from a previous

layer. However, since the output in the current layer is sensitive,

the insensitive output from the preceding layer is calculated with

high precision (4-bit). In contrast, DRQ only utilizes the high 2-bit

(low precision) of the insensitive input, which is the output from

the preceding layer, when computing the sensitive output. Our

experimental results confirm that ODQ introduces lower precision

loss compared to DRQ. When applied to ResNet-20 on CIFAR-10,

ODQ gets precision loss for each layer as follows: C1: 0.08, C2: 0.1,

C3: 0.04, C4: 0.07, C5: 0.06, C6: 0.04, C7: 0.07, C8: 0.07, C9: 0.02, C10:

0.04, C11: 0.02, C12: 0.02, C13: 0.03, C14: 0.06, C15: 0.04, C16: 0.05.

These results demonstrate that ODQ achieves significantly lower

precision loss in almost all layers, ensuring accurate model preser-

vation. This is in contrast to the higher precision loss observed in

Figure 3 by DRQ.

In addition, we characterize the percentage of high-order bits and

low-order bits in different quantization frameworks using ResNet-

56, ResNet-20, VGG-16, and DenseNet on the CIFAR-10 and CIFAR-

100 datasets. The results are also shown in Figure 18. Both DRQ and

ODQ benefit from low-bit quantization, such as INT4-INT2 bits.

Input-directed quantization approaches, like DRQ, introduce noise

into the sensitive output, reducing accuracy significantly. The accu-

racy results show that output-directed DRQ frameworks perform
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Figure 19: Normalized execution time of four DNNs using

different accelerators.

Figure 20: Percentage of idle PEs with ODQ.

better than input-directed DRQ frameworks with a comparable or

even lower percentage of high-precision output features (INT4).

6.2 Performance Analysis

Deep learning workloads are time-consuming. To determine the

extent of ODQ performance improvement, we evaluate the exe-

cution times of four DNNs (ResNet-56, ResNet-20, VGG-16, and

DenseNet) on various accelerators. Figure 19 shows the results.

Because it incorporates a greater percentage of INT4 precision com-

putation (25% compared to 18% for ResNet-20), the performance

increase of ResNet-56 (97% compared to INT16 DoReFa-Net) is

lower than that of ResNet-20 (97.7% compared to INT16 DoReFa-

Net), balancing the advantage of the extra layers. Overall, ODQ

outperforms INT16 DoReFa-Net by 97.8%. This is because ODQ

computes with INT4-INT2 precision rather than INT16. When com-

pared to INT8 DoReFa-Net, ODQ improves performance by 95.8%

on average. Furthermore, when compared to input-directed quanti-

zation with INT8-INT4 mix precision, ODQ shows a performance

boost of 67.6%.

Futhermore, we evaluate the PE utilization in the reconfigured

ODQ accelerator and Figure 20 presents the results. The figure

demonstrates a notable decrease in the percentage of idle PEs, re-

sulting in a significant performance improvement. The highest PE

idleness observed is 18%, which is in stark contrast to the 50% idle-

ness observed with the static PE allocation scheme (as shown in

Figure 11).

6.3 Energy Efficiency

We evaluate energy savings by using ODQ. Figure 21 illustrates the

energy consumption by ODQ compared with INT16 DoReFa-Net,

INT8 DoReFa-Net, and DRQ measured by CACTI [14]. As can be

seen, ODQ helps reduce energy usage for all four DNNs we evalu-

ated (ResNet-56, ResNet-20, VGG-16 and DenseNet). Compared to

INT16 DoReFa-Net, ODQ reduces energy consumption by 97.6% on

average. Furthermore, when compared to INT8 DoReFa-Net, ODQ

saves 93.5% of energy. When compared to DRQ, a state-of-the-art

dynamic quantization framework, ODQ saves 66.9% of energy.

We analyze the energy consumption of ODQ’s three key compo-

nents: DRAM, Buffer (input, weight, and output buffer), and Cores

Figure 21: Normalized energy consumption of four DNNs

using different accelerators.

Figure 22: Threshold analysis (ResNet-20).

Table 3: Threshold used in this work.

NN Model Threshold

ResNet-56 0.5

ResNet-20 0.5

VGG-16 0.3

DenseNet 0.05

(PE slices) to have a better understanding of its energy efficiency,

as shown in Figure 21. As can be observed, all of these components

(i.e., DRAM, Buffer, and PE slices) help reduce energy consumption.

To elaborate, DRAM, Buffer, and PE slices help in the reduction of

DNN execution time, which accounts for static energy consumption.

The dynamic energy is mainly saved by the PE Slices. ODQ uses

low-bitwidth calculation in addition to minimizing the number of

operations required between low-bitwidth operators.

In this paper, we evaluate the performance of ODQ on multi-

ple DNNs and find that it offers significant advantages in both

performance and accuracy, particularly for DNNs that include con-

volutional layers. These layers often contribute to the majority of

execution time and power consumption. ODQ specifically optimizes

convolution operations across different types of DNNs.

6.4 Threshold Analysis

The threshold affects the percentage of sensitive output features

that are directly connected to performance and energy efficiency. A

higher threshold identifies fewer sensitive output features, leading

to substantial performance gains. The threshold is closely tied to the

accuracy of DNN models, with a higher threshold causing signifi-

cant accuracy loss. Therefore, finding a suitable threshold is crucial

for balancing accuracy and performance. The influence of threshold

on accuracy and the percentage of high(INT4)/low(INT2) precision

calculations is evaluated in a real-world DNN model (ResNet-20),

and the result is illustrated in Figure 22.

Although the threshold has a negative impact on accuracy, it is

beneficial to overall performance. Increasing the threshold from
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0 to 1 reduces accuracy by 1.8% while increasing insensitive out-

put features by about 40%. Based on these results, we determine

that a threshold of 0.5 optimally balances classification accuracy

preservation and performance maximization for ResNet-20. Table 3

lists the thresholds for the DNN models employed in this study and

demonstrate that the optimal threshold varies per DNN model. In

the same DNN model, we use the same threshold across all layers,

which greatly simplifies the design.

The threshold determination time for low-precision data is con-

sidered acceptable in this study. We have trained the model three

times each for Resnet-20, Resnet-56, and VGG-16, and four times

for DenseNet to determine the thresholds. As the threshold is de-

termined offline, time consumption is not a primary concern in

this paper. Instead, our focus is on inference time, with a particular

emphasis on the convolutional layers. These layers make up the

majority of the inference time.

7 RELATED WORK

7.1 Uniform Interval Quantization

Uniform quantization includes binary, ternary, and fixed-point

quantization. Binary quantization restricts values to -1 and 1. As

such, multiply-and-accumulate operations can be replaced by accu-

mulation operations, resulting in a drastic reduction in computation

and memory usage. Binarized neural networks that quantize both

inputs and weights can further reduce computation by replacing

addition operations with bitwise operations [6]. Ternary quantiza-

tion includes 0, which requires an extra bit. On the other hand, it

increases the expressive power and retains the benefit of not having

multiplication in binary weight networks since multiplication and

accumulation are not needed for 0.

7.2 Non-Uniform Interval Quantization

Weights, however, are not distributed uniformly. Instead, they fol-

low a Gaussian distribution centered around 0. Power-of-2 quantiza-

tion, a non-uniform quantization scheme, has higher precision near

0 and lower precision at the ends [13, 26]. This better reflects the

distribution of weights. Quantizing weights as powers of 2 replaces

multiplications with efficient bit shifts. However, power-of-2 quan-

tization primarily improves precision near 0 and lacks sufficient

precision for the tails.

In order to address this flaw, Chang et al. proposed the sum-of-

power-of-2 (SP2) quantization scheme [3]. The weights are quan-

tized to a number equivalent to the sum of two powers of 2, which

are multiplied with the activations independently, allowing bit

shifts to be used instead of multiplication. SP2 quantization is also

more precise near 0 and less precise near the ends, but the differ-

ence in precision is less extreme compared to that in power-of-2

quantization. As such, it better fits the distribution of the weights.

8 CONCLUSIONS

We present a novel method for deep learning acceleration. ODQ

dynamically performs high- and low-precision computations based

on the sensitivity of output features. The prediction phase uses

the high-order 2 bits of an input and weight. If the result is pre-

dicted to be sensitive, the execution phase performs the remaining

computation, while the remaining computation is skipped if the

output is predicted to be insensitive. We have designed and imple-

mented a reconfigurable deep neural network accelerator based

on ODQ. Our experimental results demonstrate that ODQ can sig-

nificantly improve performance and reduce power consumption

for deep learning applications, making it a promising solution for

high-performance and energy-efficient deep learning systems.
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