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Abstract: We consider a point process (PP) generated by superimposing an independent Poisson point
process (PPP) on each line of a 2D Poisson line process (PLP). Termed PLP-PPP, this PP is suitable
for modeling networks formed on an irregular collection of lines, such as vehicles on a network of
roads and sensors deployed along trails in a forest. Inspired by vehicular networks in which vehicles
connect with their nearest wireless base stations (BSs), we consider a random bipartite associator graph in
which each point of the PLP-PPP is associated with the nearest point of an independent PPP through
an edge. This graph is equivalent to the partitioning of PLP-PPP by a Poisson Voronoi tessellation
(PVT) formed by an independent PPP. We first characterize the exact distribution of the number of
points of PLP-PPP falling inside the ball centered at an arbitrary location in R2 as well as the typical
point of PLP-PPP. Using these distributions, we derive cumulative distribution functions (CDFs) and
probability density functions (PDFs) of kth contact distance (CD) and the nearest neighbor distance
(NND) of PLP-PPP. As intermediate results, we present the empirical distribution of the perimeter
and approximate distribution of the length of the typical chord of the zero-cell of this PVT. Using
these results, we present two close approximations of the distribution of node degree of the random
bipartite associator graph. In a vehicular network setting, this result characterizes the number of
vehicles connected to each BS, which models its load. Since each BS has to distribute its limited
resources across all the vehicles connected to it, a good statistical understanding of load is important
for an efficient system design. Several applications of these new results to different wireless network
settings are also discussed.

Keywords: Poisson line process; Poisson point process; Cox process; load distribution in vehicular
communication; vehicular network

1. Introduction
1.1. Background and Motivation

To provide control and connectivity to a network of devices, a set of control/access
nodes are often deployed that form a control/communication network where each device
(acting as a user node) is connected to one control/access node (acting as a master node).
Consider, for instance, a wireless cellular network consisting of several base stations (BSs)
providing connectivity to a set of mobile users, where each user is connected to a BS to
receive channel access control and exchange data. Which user connects with which BS
(termed cell or BS association) is a function of the network geometry (since users usually
connect with their proximate BSs). A specific example of this setting is when each user
node is associated with its closest master node. The association between these two types
of nodes can be represented using a simple bipartite many-to-one associator graph with
edges from the user nodes to master nodes with each edge representing an association.

Given the natural irregularity in the node locations, tools from stochastic geometry
(SG) have been used extensively to model and analyze such networks. The underlying
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idea is to model the locations of these two types of nodes as realizations of appropriately
selected point processes (PPs) [1]. Therefore, the associator graph on this network can be
thought of as a variant of AB random geometric graph and is hence termed the random bipartite
geometric associator graph in this paper. As we will discuss in the sequel, the properties of
this graph are of key importance in the modeling and analysis of control/communication
networks. For instance, the degree of a master node provides the number of user nodes
associated with this master node, which we term as its load. Since the amount of resources
allocated by a master node to each of its user nodes will depend upon its load (such as
bandwidth assigned to each user in the cellular network example above), it is easy to
deduce that the load directly impacts the performance of each user node.

Before going further, it is useful to note that models from stochastic geometry (such as
point and line processes) have also been used extensively in statistical physics. Therefore,
one can find numerous examples of PPs and related models that were originally inspired
by networks but later found interest in the statistical physics community, such as [2–8].
Our hope is that the current contribution will also lie in the same category. In general, SG
has found applications in many diverse fields, such as forestry, geophysics, economics,
biology, and telecommunications, e.g., see [1,9–12] for a small sample.

1.2. PLP-PPP Random Bipartite Geometric Associator Graph

Now we introduce the main object of this paper, which is inspired by vehicular
networks. We first describe the underlying PP of interest using which the random associator
graph will be constructed.

If we consider a single road, the locations of vehicles on a road can be modeled using
a Poisson point process (PPP). However, a general vehicular network consists of multiple
vehicles distributed on multiple roads located throughout the city. A popular model for
this setting involves modeling the underlying road network as a Poisson line process
(PLP) and then distributing vehicles on each road as a 1D PPP. Since conditioned on the
road locations, the vehicles form a PPP with density determined by the realization of the
roads (equivalently the PLP), the overall process is a Cox process with density driven by a
PLP [10]. We term this doubly-stochastic point process as a PLP-driven-Poisson Cox point
process or a PLP-PPP in short [10]. It was first presented in [13] to model a vehicular mobile
communication network and was studied comprehensively in [10].

We now enrich this model by considering an overlaid cellular network of BSs (modeled
as an independent 2D PPP), such that each vehicle from the PLP-PPP is associated with
the closest BS from this PPP (which will also maximize its received signal-to-noise-plus-
interference ratio (SINR)). Such wireless links between vehicles and the BSs are termed
vehicle-to-infrastructure (V2I) links. This type of geometry based association results in an
interesting random bipartite geometric associator graph where the nodes from PLP-PPP
(representing vehicles) connect to the nearest control nodes forming an independent PPP
(representing BSs). We term this the PLP-PPP Random Bipartite Geometric Associator Graph,
which is the main topic of this paper.

For completeness, note that the association can also be seen as a partition of PLP-PPP
by an independent Poisson Voronoi (PV) tessellation. Here, the load on a master node is
simply the number of user nodes lying in its PV cell. By definition, this is the same the node
degree of a control/access node of the above graph. As discussed above already, the load
on each BS will impact the amount of resources allocated to each vehicle and will hence
impact the performance of this network. Using the PLP-PPP model, recent works have
analyzed coverage probability [14–18], load distribution [19], and other such metrics for
vehicular networks.

PLP-PPP can also be used to model other deployments along a set of random lines,
e.g., sensors along the trails in a forest. Here, sensors can associate with a fusion node that
collects their data. Assuming fusion nodes are distributed as a 2D PPP, the load on each
fusion node is given by the node degree of the above graph. We will also consider a case
study inspired by this setting.
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Note that the PLP-PPP can be further generalized (or restricted) to model various
variations of vehicular traffic. In [20], the authors captured platooned vehicular traffic
by modeling vehicles on each line of a PLP by a Matérn cluster process, thereby giving
rise to a PLP-MCP. As another example, if we restrict the orientation of roads to only two
orthogonal directions, the line process reduces to a Manhattan line process (MLP), thereby
giving rise to an MLP-PPP model of vehicular traffic. Although our focus in the paper is
restricted to PLP-PPP, our results and derivations can also be applied to such variations of
the PLP-PPP.

1.3. Context and Contributions

The focus of this paper is on studying several key properties of PLP-PPP and the above-
described random bipartite geometric associator graph. We are specifically interested in
the Laplace functional (LF), probability generating functional (PGFL), contact distance
(CD), and nearest neighbor distance (NND) of this PP. In order to put this contribution in
context, we briefly describe directly relevant prior work in this direction. The characteristic
properties of PLP-PPP have been studied in [14,15,18,21]. In particular, in [21], authors
presented the expressions for the density, CDFs of CD and NND, and LF of PLP-PPP
along with their Palm counterparts. Note that the Palm distribution of a PP refers to
its distribution conditioned on the occurrence of one of its points at a specific location.
The distributions for the number of lines intersecting a convex body and some distances
in PLP-PPP are presented in [14]. The asymptotic properties of PLP-PPP along with the
void probability (the probability that no point is located in a given set) are presented in [15].
In [18], authors presented the CDF and PDF of CD and NND of PLP-PPP.

Despite these existing works, there are some knowledge gaps that this paper will
attempt to fill. First, the k-th CD and NND distributions of PLP-PPP have not been reported
in the literature for general values of k > 1. Second, the load distribution analyses described
in the literature have their own constraints and limitations in the sense that they cannot be
easily extended to a general Cox process in which general 1D PPs are used to model vehicle
locations on each line of a PLP. Further, the study of rate coverage reported in the literature
is inadequate, and metrics such as meta distribution of rate coverage, which quantifies the
rate coverage of an individual link for a specific realization, have not been presented for the
PLP-PPP model. Inspired by these gaps, this paper provides a comprehensive treatment of
PLP-PPP as well as the corresponding associator graph described in Section 1.2. We also
investigate some applications of these new results to wireless communications networks.
The specific contributions of this paper are summarized next.

1. We provide simplified PGFs of the number of points of the PLP-PPP falling in a ball
centered at an arbitrary location from R2 and at a randomly selected point of PLP-PPP.
Using these results, we provide closed form expressions for the CDFs of k-th CD and
NND of PLP-PPP.

2. We then derive the node-degree distribution of the typical and tagged control/access
node of a random bipartite geometric associator graph that associates a PLP-PPP
to an independent PPP (described in Section 1.2). We also provide approximate
distributions for the same.

3. As a key intermediate result, we present the empirical PDF of the perimeter of the
zero-cell of the Poisson Voronoi (PV) cell for this setup as well as an approximate
distribution of the length of any randomly selected chord of the zero-cell.

4. Finally, we discuss several applications of the new node degree distribution result
in wireless networks. Examples include the simple closed form expressions for load
distribution, rate coverage, meta distribution of rate, and coverage as well as content
caching analysis in vehicular networks. We also provided a direct application of the
derived node degree result to the analysis of a wireless sensor network.
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1.4. Notation

Now, we present the important notations that we use throughout the paper. A vector
in R2 and R is denoted by bold style letter (x) and bold italic style (x) with their norms ||x||
and |x|, respectively. A ball in 1D and 2D centered at x and x of radius r is denoted by
b1(x, r) and b2(x, r), respectively. For a set A, |A| denotes its Lebesgue measure, for example
|b1(o, r)| = 2r. For a PP Ψ, the notation Ψ(B) denotes the number of points of Ψ falling
inside the set B. The PGF, CDF, and PDF of a random variable (RV) X is denoted by PX(·),
FX(·) and fX(·), respectively. The expected value and variance of RV X is denoted by E[X]
and Var[X], respectively. The notation f (k)(x) denotes the k-th derivative of function f with
respect to x. For a RV X with PGF PX(s), the mean and the variance can be computed as

E[X] =
[
P (1)

X (s)
]

s=1
, Var[X] = [P (2)

X (s)]s=1 +E[X]− (E[X])2. (1)

The PDF of a generalized Gamma RV X with parameters a, b, and c is

fX(a, b, c, x) = g(a, b, c, x) ∆
= abc/a(Γ(c/a))−1xc−1e−bxa

, x ≥ 0, (2)

with its mean and variance being b−1/aΓ((c+1)/a)
Γ(c/a) and b−2/a

(
(c+2)/a
Γ(c/a) −

(
(c+1)/a
Γ(c/a)

)2
)

, respec-

tively. The Faà di Bruno’s formula [22] states that the k-th derivative dk

dsk exp(h(s)) of
exp(h(s)) with respect to s is given as

dk

dsk exp( f (s)) = exp ( f (s))∑
Nk

k!
n1! · · · nk!

(
f (1)(s)/1!

)n1 · · ·
(

f (k)(s)/k!
)nk

, (3)

where the sum is over set Nk consisting of all k−tuples {n1 · · · nk} with ni ≥ 0 and
n1 + 2n2 + . . . + knk = k. The notation l(ρ, ϕ) denotes a line in R2, where ρ is the length of
the normal from the origin to the line, and ϕ is the angle that the normal subtends from the
x-axis in the counter-clockwise direction. The point (ρ cos ϕ, ρ sin ϕ) is the point on the line
that is nearest to the origin, which is termed the base of line l(ρ, ϕ).

The line l(ρ, ϕ) can also be represented as an element (ρ, ϕ) in the representation space
C ≡ R× [0, π). Let Tl(·) denote the transformation of l(0, 0) to the l(ρ, ϕ) given as

Tl(x) = (ρ cos ϕ + x sin ϕ, ρ sin ϕ − x cos ϕ), (4)

Here, Tl(x) denotes the 2D location of a point located at the x-axis (i.e., l(0, 0)) with
coordinates (x, 0) after getting transformed to a line l(ρ, ϕ) as seen in Figure 1. This also
shows the absolute 2D location of a point of line l(ρ, ϕ) which is located at a distance x
from the line’s base. The notation Po[Φ ∈ P] denotes the Palm probability, which is the
probability that the PP satisfies a property P conditioned on there being a point located
at the origin. Further, Po![Φ ∈ P] denotes the reduced Palm probability which is the
distribution of the PP excluding a point at the origin conditioned on the presence of that
point at the origin, i.e., Po![P ∈ Φ] = P[Φ \ {o} ∈ P|o ∈ Φ].

Figure 1. Illustration showing transformation of the point x located on x-axis to the line l(ρ, ϕ).
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2. System Model

In this work, the object of interest for us is a graph associating nodes of a PLP-PPP with
the nodes of an independent PPP on a 2D space. In order to define this graph rigorously,
we first provide the definitions of PLP and PLP-PPP.

Definition 1. (PLP) A random set ΦL = {li(ρi, ϕi), ∀i ∈ N} of lines with ρi and ϕi as the length
and orientation of the perpendicular to the i-th line li from the origin, is a PLP if the pairs (ρi, ϕi)
form a PPP in the representation space C ≡ R× [0, π).

Note that an i-th line li(ρi, ϕi) ∈ ΦL can be uniquely defined using the two parameters
ρi and ϕi which is essentially a 2D coordinate in the representation space C. Therefore, each
line can be represented as a point in C, hence, a set of lines can be equivalently seen as a
PP in C. The above definition says that a PLP is equivalently a PPP in C. Further, the PLP
is characterized using the density parameter (denoted by λL) such that number of lines
hitting a convex body K of perimeter P(K) is Poisson distributed with mean λLP(K) [10].

Definition 2. (PLP-PPP) Let ΦL = {li(ρi, ϕi), ∀i ∈ N} is a PLP with density λL. Let {ψi, i ∈
N} be independent and identically distributed PPPs in R with density λR. We assign i-th PPP ψi
to the i-th line li(ρi, ϕi) and transform the points of ψi to be on the line to get

Ψli =
⋃

xj,i∈ψi

{xj,i = Tli (xj,i)}, (5)

where Tl(·) is defined in (4). Now, Consider a point process Ψ formed as the union of all the Ψli , i.e.,

Ψ =
⋃

li∈ΦL

Ψli , (6)

which includes all points located on each line of ΦL. The PP Ψ is a Cox process driven by PLP [10].
This has also been termed the Poisson line Cox process and also PLP-PPP.

It is easy to check that Ψ is a stationary PP [21] with density µ = πλLλR. Owing to
stationarity, the analysis of the average properties of the PP can be performed by placing
the typical point at the origin. In this work, we consider two types of nodes. The first set of
nodes is distributed as a PLP-PPP Ψ with density µ in the R2 space on a random network
of lines, distributed as a PLP ΦL with density λL. The second set of nodes is distributed as
an independent 2D PPP Φ = {yi} with density λ on the same space.

Further, each node of the first type (PP Ψ) is connected with one (and only one)
node of the second type (PP Φ). Hence, we call the nodes of the first type (PP Ψ) as the
associate nodes and the second (PP Φ) as the master nodes. Further, the association is based
on the mutual distance, where each associate node is connected to the closest master node.
This association is commonly used in selecting access points in wireless networks or fusion
nodes in sensor networks in order to maximize network performance. In general, in any
scenario where the quality of an interaction between two nodes decreases with the distance
between them, this association would be practically relevant. This association results in a
simple graph G with edges from the points of Ψ to Φ where each association is represented
as an edge. The scenario is illustrated in Figure 2. As mentioned earlier, we term this graph
the random bipartite geometric associator graph.
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Master nodes (Points of ))
Voronoi tessellation
Lines of )L

Associate nodes (Points of *)
Edges of associator graph G

Figure 2. Illustration of a PLP-PPP partitioned by a PV tessellation resulting in a graph G.

The above association can also be visualized in terms of Voronoi partitions. In order to
understand that, consider the space partitioned by the Voronoi tessellation V generated
by the master nodes Φ. In V, each master node is associated with a Voronoi cell (region).
In particular, the Voronoi cell associated with the typical master node is termed as the
typical cell. The Voronoi cell of a node located at y, Cy is defined as

Cy = {x ∈ R2 : y = arg min
yi∈Φ

∥x − yi∥}.

This Poisson Voronoi (PV) tessellation V partitions the PLP-PPP Ψ into smaller PPs
{Ψy} associated with master nodes {y} where Ψy is comprised of points of Ψ falling inside
Voronoi cell Cy. It is clear from this construction that Ψy is the same as the set of the
associate nodes connected with the master node y in graph G. Let Sp denote the number
of edges associated with the typical master node of Φ, which essentially denotes its node
degree. It is the same as the number of points of Ψ falling in the typical cell of V which can
also be understood as the load on the typical cell in many applications (such as wireless
cellular networks).

Note that the points in Ψy are located at the chords formed by ΦL in Cy. This brings
us to the notion of the typical chord of the typical Voronoi cell which is defined as any
randomly drawn chord in the typical Voronoi cell without any selection bias.

For this setup, we are interested in deriving the distribution of the node degree along
with various statistics including its mean and variance. In order to do that, we need several
intermediate results, which is derived in the next section.

3. Cell Perimeter, Area and Chord Distribution under PV Tessellation

In this section, we will present some important expressions including the PDF of the
area, and perimeter of the Voronoi cell, and the chord length distribution in the Voronoi
cell, which will be useful in the subsequent sections of this paper.

3.1. Area, Perimeter, and Chord Length Distribution of the Typical Cell

The analytical distributions for the area and perimeter for the typical cell defined
above are presented in [23]. Since the analytical expressions are not in closed form and
hence unwieldy to work with, we will instead use the empirical PDFs of area and perimeter
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presented in [24]. Let the Voronoi region associated with the typical cell be denoted by Vt
with area |Vt| and perimeter Z. The empirical PDFs of |Vt| and Z are given as

f|Vt|(vt) = λg(1.07950, 3.03226, 3.31122, λvt), (7)

fZ(z) =
√

λ
1
4

g
(

2.33609, 2.97006, 7.58060,
√

λ
z
4

)
, (8)

where g(·) denotes the generalized Gamma distribution presented in (2). Further, E[Vt] =
1/λ, E[Z] = 4/

√
λ.

Since the points of Ψ lie on the lines, we need to understand the statistics of the chords
formed by the intersection of the PLP ΦL and the typical cell Vt. For that, we focus on the
typical chord and provide useful results related to this typical chord length. The PDF fC(c)
of the length C of the typical chord is [25] fC(c) =

= (π/2)λ
3
2

∫ π

0

∫ ∞

0

[
λ
(
V (1)(c, y, r(c, θ))

)2
− V (2)(c, y, r(c, θ))

]
e−λV(c,y,r(c,θ))ydydθ, (9)

where V(c, y, r(c, θ)) is the area of union of two disk of radius y and r(c, θ) with cen-
ters c distance away, V (k)(·) denotes the k-th derivative of V(·) with respect to c and
r(c, θ) =

√
y2 + c2 − 2yc cos θ. Further, E[C] = π/(4

√
λ) [25]. For the completeness of

(9), we now present the V(·) and its first and second derivatives with respect to c in the
following lemma.

Lemma 1. The area of the union of two disks of radius y and r(c, θ)(=
√

y2 + c2 − 2yc cos θ)
with centers c distance away is

V(c, y, r(c, θ)) = 2πy2 − 2πyc cos θ − y2(θ − 0.5 sin(2θ)) + πc2

− (y2 − 2yc cos θ + c2)(α(c)− 0.5 sin 2α(c)),

where α(c) = cos−1
(

c−y cos θ
r(c,θ)

)
, further

∂V(c, y, r(c, θ))

∂c
= V (1)(c, y, r(c, θ)) = 2(c − y cos θ)(π − α(c)) + 2y sin θ.

∂2V(c, y, r(c, θ))

∂c2 = V (2)(c, y, r(c, θ)) =
2y sin θ cos(α(c))

r(c, θ)
+ 2 cos−1

(
y cos θ − c

r(c, θ)

)
.

We also provide a result about the dependence of the chord length of a convex polygon
on the perimeter of the polygon in the following propositions. For the proofs, please refer
to Appendices A and B.

Proposition 1. The length of any chord in a convex polygon is upper bounded by half of its
perimeter.

Proposition 2. The lengths of random chords of a convex polygon conditioned on the perimeter of
the polygon are dependent RVs.

3.2. Area, Perimeter, and Chord Length Distribution of the Zero-Cell

We now derive the same set of results for the zero-cell, which is defined as the Voronoi
cell that contains the typical point of Ψ. Due to the stationarity of Ψ, we can assume that
the typical point is located at the origin. Mathematically, the zero-cell Co can be written as

Co =

{
x ∈ R2 : arg min

yi∈Φ
∥x − yi∥ = arg min

yi∈Φ
∥yi∥

}
.

Here, the expression arg minyi∈Φ ∥x − yi∥ represents the master node that serves the as-
sociate node located at x. If this master node is the same as the master node serving
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the origin, i.e., arg minyi∈Φ ∥yi∥, it indicates that the location x falls within the serving
region of the master node closest to the origin, or in other words, it falls in the zero cell.
Therefore, all locations x satisfying the above condition constitute the zero cell. The master
node with which the zero-cell is associated with is termed the tagged master node. The area
distribution of the zero-cell can be obtained using the area bias sampling [1] and can be
expressed as

f|Vto |(vto) =
vto f|Vt|(vto)

E[|Vt|]
= λvto f|Vt|(vto) = λg(1.07950, 3.03226, 4.31122, λvto),

where note that bc/a

Γ(c/a) = b(c+1)/a

Γ((c+1)/a) for a = 1.07950, b = 3.03226, c = 3.31122.
Now, we present the empirical PDF of the zero-cell’s perimeter. Inspired by the well-
accepted empirical distributions presented in the literature to find the PDF of the area
perimeter of typical cell [24], we have also used a three-variable generalized gamma
distribution to fit the distribution of perimeter of the zero-cell of PVT. These empirical
approximations are common (and necessary) while dealing with Voronoi tessellations.
Using simulations, we generate 105 samples of zero-cells and compute the empirical PDF
of the zero-cell’s perimeter. We fit a generalized Gamma distribution’s PDF (2) via maxi-
mum likelihood estimation (MLE) to determine the parameters (a, b, and c). Consequently,
the fitted PDF of the zero-cell’s perimeter is

fZ′(z′) =
√

λg
(

2.1804, 0.16839, 10.2823,
√

λz′
)

, (10)

where g(·) is given in (2). Further, E[Z′] = 4.4906√
λ

.
To quantify the accuracy of the PDF presented in (10), we plot the Bhattacharya’s

coefficient (BC) [26] between the PDF given in (10) and the empirical PDF obtained using
simulations. The BC coefficient measures the similarity between the two PDFs of continuous
RV or two PMFs of discrete RV. Let the PDFs and PMFs for continuous and discrete
probability distributions are defined as p(x), q(x), p(ω) and q(ω), respectively, then the
DBC between the continuous PDFs and discrete PMFs is

DBC(p, q) =
∫ √

p(x)q(x)dx, DBC(p, q) = ∑
ω∈Ω

√
p(ω)q(ω), (11)

respectively. Here, we would like to highlight that the BC ranges from 0 to 1, and a value
close to 1 denotes the higher similarity between the distributions. Figure 3 presents the
BC coefficient between the fitted and the empirical PDF of the perimeter of the zero-cell.
As the BC coefficient is close to 1, the derived PDF is close to the exact PDF of the perimeter
of the zero-cell.

20 40 60 80 100

0.99988

0.9999

0.99992

0.99994

0.99996

Figure 3. The plot showing the BC coefficient between the empirical (Emp.) PDF and the PDF
obtained from simulation (Simul.) of the perimeter of the zero-cell. The plot demonstrates a high
accuracy of our result for a range of values of λ.
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For the chord distribution of the zero-cell, we can easily identify that there are two
types of chords for the zero-cell (i) the tagged chord that goes through the typical point (in
our case, the origin) with its length denoted as Co, and (ii) the randomly selected chord of
zero-cell with length C̃. The length distribution of Co is presented in [20] as

fCo(co) =
∫ co

0
fL1,L2(co, co − l2)dl2, (12)

where

fL1,L2(l1, l2) = 8λ3
∫ π

0

∫ ∞

0
e−λV(l1+l2,r(l1),r(l2))v(1)1 (l1)v(2)(l2)ydydθ, (13)

where V(·) is given in Lemma 1 and

v1(l1)=2(l1 + y cos θ)(π − α1(l1))+2y sin θ, v2(l2)=2(l2 + y cos θ)(π − α2(l2))+2y sin θ

and α1(l1) = cos−1
(

l1−y cos θ
r(l1)

)
and α2(l2) = cos−1

(
l2+y cos θ

r(l2)

)
. We now give the approxi-

mate length distribution of C̃ in the following Lemma. Please see Appendix C for the proof.

Lemma 2. The length distribution of C̃ of any randomly selected chord is approximately given as
fC̃(c̃) ≈ η fC(ηc̃) with η = 0.8769.

In the next section, we present the distance distributions for PLP-PPP which are not
only useful on their own right but will also play a role in our subsequent analysis.

4. Distance Distributions for PLP-PPP

In this section, we present the PDFs and CDFs of the k-th CD and NND for
the PLP-PPP.

4.1. Distribution of the k-th CD

The k-th CD is defined as the distance of the k-th point of Ψ from an arbitrary point in
R2. Let S(r) denote the number of points of Ψ falling in b2(o, r). From the definition of k-th
CD [27], the CDF FRk (r) is

FRk (r) = 1 −
k−1

∑
m=0

P[S(r) = m].

Hence, we first derive the PGF followed by the PMF for S(r), i.e., , the number of points of
Ψ falling in ball b2(o, r). Note that an alternative formula for the PMF of S(r) is presented
in [10] (Lemma 4.4) which is slightly more complicated compared to the one presented
here. Please see Appendix D for the proof of the following result.

Theorem 1. The PGF for S(r) is

PS(r)(s) = exp
(

gp(s)
)
, (14)

where

gp(s) = 2πλL

(∫ r

0
exp

(
2λR

√
r2 − ρ2(s − 1)

)
dρ − r

)
.

Let hm(r) = g(m)
p (0)/m! denote the m-th derivative of gp(s) at s = 0 and h0(r) = gp(0).

In the next result, we derive the PMF of S(r) using (3).
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Corollary 1. The PMF of S(r) is

P[S(r) = m] = exp(h0(r))∑
Nm

(h1(r))n1 · · · (hm(r))nm

n1! · · · nm!
, (15)

where the sum is defined in (3) and hm(r) is given as

hm(r) =
g(m)

p (0)
m!

=
2πλL

m!

(∫ r

0

(
2λR

√
r2 − ρ2

)m
exp

(
−2λR

√
r2 − ρ2

)
dρ

)
, (16)

=
2πλL

m!

∫ π/2

0
(2λR cos θ)mrm+1 exp(−2λRr cos θ) cos θdθ. (17)

The last expression of the above Corollary is obtained by substituting ρ = r sin θ.
From Theorem 1, we obtain the distribution of k-th CD as given below.

Corollary 2. The CDF of k-th CD for Ψ is

FRk (r) = 1 − exp(h0(r))
k−1

∑
m=0

∑
Nm

(h1(r))n1 · · · (hm(r))nm

n1! · · · nm!
. (18)

Now, before deriving the CDFs and PDFs for some special cases such as k = 1 and 2,
we derive the first derivative of hm(r) denoted by h(1)m (r) with respect to r which is crucial
for computing the PDF of CD.

h(1)m (r) =
2πλL

m!

∫ π/2

0
(2λR cos θ)m

(
(m + 1)rme−2λRr cos θ

−2λR cos θrm+1e−2λRr cos θ
)

cos θdθ, (19)

h(1)0 (r) = h(1)1 (r)− 1. (20)

Corollary 3. The CDF and PDF of CD for k = 1 and 2 are

FR1(r) = 1 − eh0(r), fR1(r) = exp(h0(r))(1 − h(1)1 (r)),

FR2(r) = 1 − eh0(r)(1 + h1(r)), fR2(r) = fR1(r)(1 + h1(r))− eh0(r)h(1)1 (r).

4.2. Distribution of the k-th NND

Along the same lines as the k-th CD, the k-th NND is defined as the distance of k-th
nearest point from the typical point of Ψ. Without loss of generality, we assume that the
typical point is located at the origin, hence o ∈ Ψ. Let M(r) denote the number of points of
Ψ \ {o} falling in b2(o, r). From the definition [27], CDF of k-th NND R

′
k is

FR′
k
(r) = 1 −

n−1

∑
m=0

P[M(r) = m|o ∈ Ψ] = 1 −
n−1

∑
m=0

Po![M(r) = m],

where Po![·] denotes the probability under the reduced Palm version of Ψ. Before deriving
the CDF of k-th NND, we first derive the PGF of M(r). For the proof of the following
results please refer to Appendix E.

Theorem 2. The PGF of M(r) is

PM(r)(s) = eλR2r(s−1) exp
(

gp(s)
)
. (21)
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Corollary 4. The PMF of M(r) is

P[M(r) = m] =
m

∑
j=0

(
m
j

)
(2λRr)m−jexp(h0(r))∑

Nj

(h1(r))n1 · · · (hj(r))
nj

n1! · · · nj!
. (22)

Using the PMF of M(r), we may derive the CDFs and PDFs of k-th NND as

Corollary 5. The CDF FR′
k
(r) for k-th NND of Ψ is

FR′
k
(r) = 1 −

k−1

∑
m=0

m

∑
j=0

(
m
j

)
(2λRr)m−je−2λRrexp(h0(r))∑

Nj

(h1(r))n1 · · · (hj(r))
nj

n1! · · · nj!
, (23)

where hj(r) is provided in (16).

Corollary 6. The CDF and PDF of NND for k = 1, 2 is

FR′
1
(r) = 1 − eh0(r)e−2λRr, fR′

1
(r) = eh0(r)−2λRr

(
2λR − h(1)0 (r)

)
,

FR′
2
(r) = 1 − exp(h0(r))e−2λRr(1 + 2λRr + h1(r)),

fR′
2
(r) = fR′

1
(r)(1 + 2λRr + h1(r))− eh0(r)−2λRr(2λR + h(1)1 (r)),

where hj(r) can be obtained from (19).

The approach that we utilized to determine the distance distribution for PLP-PPP is
rather general and has several uses in a vehicular network modeled as a PLP-PPP, such as
deriving the load on the BSs which we will revisit in subsequent sections.

5. Node Degree Distribution for the Typical Master Node in the Associator Graph G
We now derive the distribution of the node degree of the typical master node in graph

G which is equal to the number Sp of points falling in the typical Voronoi cell of Φ. For the
exact analysis, one can adopt the following approach.

S–1 Conditioned on the perimeter Z of the typical Voronoi cell, using the property of
PLP, the number of lines n intersecting the Voronoi cell is Poisson RV with mean λLZ.
The empirical distribution of Z is provided in [24] and stated above in (8).

S–2 Conditioned on the perimeter Z and n, we compute the length distribution (PDF) of
all chords of the typical Voronoi cell.

S–3 Once the PDF of the sum of lengths of the n chords is obtained in S-2, we can decondi-
tion it using the distribution of n conditioned on Z. Finally, using the distribution of
Z, we obtain the PGF for the node degree of the typical master node.

Note that Proposition 1 states that the chord length depends on the perimeter while
Proposition 2 states that conditioned on the perimeter Z, the lengths of the chords are not
independent, which requires us to derive the joint PDF. Since the joint distribution of chord
lengths conditioned on Z is not available, the exact analysis is difficult. Therefore, we
present two methods of approximating the node degree for the typical Voronoi cell below.

5.1. Approximation-1-typical (App1 − typ) Approach:

In the App1− typ approach to obtain the approximate value Ŝp, we make the following
approximation in the S-2 step above. Conditioned on the perimeter Z and n, we assume
that the chord length distribution of the typical Voronoi cell is independent of the perime-
ter, i.e., fC|Z(c) = fC(c) and conditioned on the perimeter Z, the lengths of the chords
are independent of each other, i.e., , fC1,C2,...Cn |Z(c1, c2, . . . , cn) = fC1(c1) fC2(c2) . . . fCn(cn).
Due to these two assumptions, the PGF of Ŝp is the product of the PGF’s of the number of
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points on each chord inside the typical Voronoi cell. The following theorem provides the
PGF of Ŝp along with its PMF and key moments. Please see Appendix F for the proof.

Theorem 3. (App1 − typ) The PGF PŜp
(s) for the approximated node degree on the typical

Voronoi cell is

PŜp
(s) =

∫ ∞

z=0
exp

(
−λLz

(
1 −

∫ ∞

0
exp (λRc(s − 1)) fC(c)dc

))
fZ(z)dz. (24)

The PMF of Ŝp is

P
[
Ŝp = k

]
=
∫ ∞

0
exp

(
hp(0, z)

)
∑
Nk

(hp,1(z))n1 · · · (hp,k(z))nk

n1! · · · nk!
fZ(z)dz, (25)

where hp(s, z) and hp,k(z) are

hp(s, z) = λLz
(∫ ∞

0
eλRc(s−1) fC(c)dc − 1

)
, hp,k(z) =

(
λLz
k!

) ∫ ∞

0
(λRc)ke−λc fC(c)dc. (26)

Further, the mean and the variance of Ŝp are

E
[
Ŝp
]
=

µ

π
E[Z]E[C] = µ/λ, (27)

Var[Ŝp] = (µ/π)2E[Z2](E[C])2 + (µ/π)λRE[C2]E[Z] + µ/λ − (µ/λ)2. (28)

A similar approach to finding the approximate distribution in such models has been
used in [19,20]. In particular, in [19] authors first derive the Laplace functional (LF) of
sum W of the length of all chords falling inside the typical Voronoi cell conditioned on
the perimeter Z. In [20] authors assumed that the chord lengths in the typical Voronoi cell
are independent RVs and then derived the load distribution for the Cox process driven
by PLP by superimposing the 1D MCP on each line of PLP. It is important to note that
in both papers, the lengths of these chords conditioned on the perimeter are assumed
to be independent RVs which is an approximation as shown in the Propositions 1 and 2.
Then, using the PGFL of PLP and deconditioning with the perimeter Z’s distribution,
the PMF of the load is obtained in terms of the derivative of LF. Here, we would like to
highlight that the PGFs and corresponding PMFs of the node degree presented in this
paper are simpler as compared to [19]. For example, in [19] the PMF of load involves a
higher-order derivative of a function; however, the PMF presented in the paper is in closed
form. Due to the simple and closed-form nature of the PMFs, the numerical implementation
of PMFs is much faster in this case. Moreover, we are able to obtain the mean and variance
of the ode degree easily from the PGF, which may not always be as easy from the PMF.
Another significant advantage of the proposed techniques for deriving the node degree
distribution in both approximations is that we primarily utilized the two PGFLs, namely
the PGFL of PLP and PPP. An important consequence of this observation is that these
approximations can be easily extended to the variants of the model used in this paper in
which the PP used to describe the placement of points on lines does not have to be a PPP as
long as it has a known PGFL. Therefore, it is possible to extend these results to the settings
in which vehicles exhibit clustering or repulsion as long as the PP used to describe these
placements has a known PGFL.
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5.2. Approximation-2-typical (App2 − typ) Approach

In this approach, Sp is approximated by S̃p, which is the number of points in the ball
of area equal to the area |Vt| of the typical Voronoi cell. Hence, the radius of the ball is a
random variable given as Rt =

√
|Vt|/π with the distribution

fRt(rt) = 2πrt f|Vt|(πr2
t ) =

√
λg(2.15900, 3.03226π1.07950, 6.62244,

√
λrt). (29)

Here, f|Vt|(·) is given in (7). Therefore, S̃p = S(Rt) where S(·) is given in Theorem 1.
The PGF and corresponding PMF of the approximate node degree S̃p are given below.

Theorem 4. (App2 − typ) The PGF and PMF for S̃p are

PS̃p
(s) =

∫ ∞

rt=0
PS(rt)(s) fRt(rt)drt, P

(
S̃p = m

)
=
∫ ∞

rt=0
P(S(rt) = m) fRt(rt)drt, (30)

where PGF and PMF of S(r) is given in Theorem 1.

Using the properties of PGF stated in (1), we can compute the mean and the variance
of the approximate node degree as given in the following. Please see Appendix G for
the proof.

Corollary 7. The mean and the variance of S̃p are

E
[
S̃p

]
= µπE

[
R2

t

]
= µ/λ, (31)

Var[S̃p] = (πµ)2E[r4
t ] + (16/3)λRµE[r3

t ] + µ/λ − (µ/λ)2, (32)

where E[R2
t ] =

1
(πλ)

, E[R3
t ] =

0.198
λ3/2 , and E[r4

t ] =
0.130

λ2 .

It can be seen that the expressions obtained via App2 − typ are simpler than the
App1− typ. We will numerically compare the accuracy of the two approaches in Section 9.2.

6. Node Degree Distribution for the Tagged Master Node in the Associator Graph G
We now derive the distribution of node degree of the master node of the zero-cell in

graph G which is equal to the number Mp of points falling in the zero-cell. It can also be
seen as the load on the zero cell. Just like the approach discussed in the previous section
for the typical cell, one can adopt the following approach for this derivation.

S–1 As soon as we condition on the typical point of Ψ, we know that there is a line
passing through that location (since points of Ψ lie on the lines). Recall that the chord
corresponding to this line has been defined as the tagged chord above. In addition,
there are other chords in the zero-cell, on which points are located. Hence, the node
degree Mp is the sum of the number of points on the tagged chord and the other
chords of zero-cell.

S–2 Hence, the PGF for Mp is the product of the PGF of the number of points falling on the
tagged chord and the PGF for the number of points falling on the rest of the chords of
the zero-cell.

S–3 The length distribution of the tagged chord is presented in (12). Using that, we can
compute the PGF of the number of points falling on the tagged chord.

S–4 Conditioned on the perimeter of the zero-cell, the number of other chords is Poisson
distributed. Using the distribution of the sum of their lengths conditioned on the
perimeter of the zero-cell and their number, the PGF of the number of points on them
can be computed which can be further averaged over the two.
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As we discussed in the case of the typical cell in the previous section, the exact analysis
is intractable because of the lack of joint distribution of the chord lengths. In order to
overcome this challenge, we present two approximations similar to the typical cell case.

6.1. Approximation-1-zero (App1 − zero)

In this approach, we approximate Mp by M̂p by assuming that the length of the
other chords (other than the tagged chord) in the zero-cell are independent RVs whose
distributions do not depend on the perimeter. Further, owing to symmetry, these lengths
are identically distributed. The length distribution of each chord can then be given by the
distribution fC̃(c) of the typical chord length C̃ of the zero-cell. We derive this distribution
conditioned on the zero-cell perimeter. Averaging over the distribution of the perimeter,
we obtain the following result. Please see Appendix H for the proof.

Theorem 5. The PGF of the approximate node degree M̂p on the zero-cell under the App1− zero is

PM̂p
(s) =

∫ ∞

z′=0
exp

(
−λLz

′
(

1 −
∫ ∞

0
exp (λR c̃(s − 1)) fC̃(c̃)dc

))
fZ′(z′)dz′

×
∫ ∞

co=0
eλRco(s−1) fCo(co)dco, (33)

where fC̃(c̃), fZ′ (z
′
) and fCo(co) and are given in Corollary 2, (10), and (12), respectively. Further,

the PMF is

P
[

M̂p = m
]
=

m

∑
k=0

(
m
k

) ∫ ∞

co=0
(λRco)

m−k fCo(co)dco

×
∫ ∞

0
exp

(
hm(0, z′)

)
∑
Nk

(hm,1(z′))n1 · · · (hm,k(z′))nk

n1! · · · nk!
fZ′(z′)dz′, (34)

where hm(s, z′) and hm,k(z′) are

hm(s, z′)=λLz′
(∫ ∞

0
eλRc(s−1) fC̃(c̃)dc̃ − 1

)
, hm,k(z′)=

λLz′

k!

∫ ∞

0
(λRc)ke−λR c̃ fC̃(c̃)dc̃. (35)

As the PGF of M̂p is the product of the PGFs of two independent RVs, the mean of M̂p
is the summation of the mean number of points on the tagged chord and the other chords
of the zero cell. The next corollary presents this result.

Corollary 8. The mean of node degree on the zero-cell is approximated as

E
[

M̂p

]
=

µ

π
E[C̃]E[Z′] +

4
√

λλR

π
E[C2] =

1.28µ

λ
+

4
√

λλR

π
E[C2].

Similarly, we can derive the variance of M̂p.

6.2. Approximation-2-zero (App2 − zero) Approach

Similar to the typical cell, we can approximate the zero-cell Vto with a ball b2(y, Ro) of
equal area. Here, y is the location of the master node corresponding to Vto . For equal area
|Vto | = πR2

o which gives Ro =
√
|Vto |/π. Hence, the PDF of Ro is

fRo(ro) = 2π2λr3
o f|Vt|(πr2

o) = λπr2
o fRt(ro), (36)

where fRt(·) is given in (29). Under this approximation, the node degree M̃p corresponding
to the zero-cell will be equal to the sum of two independent RVs. One RV represents the
number of points falling on the tagged chord and the second denotes the number of points
in the equivalent ball. This gives us the following PGF. The proof is given in Appendix I.
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Theorem 6. The PGF of M̃p is

PM̃p
(s) =

∫ ∞

ro=0
PS(ro)(s) fRo(ro)dro ×

∫ ∞

co=0
eλRco(s−1) fCo(co)dco, (37)

where the PDFs of Ro and Co are given in (36) and (12), respectively. The PMF P
[

M̃p = m + 1
]

is

P
[

M̃p = m + 1
]
=

m

∑
k=0

(
m
k

) ∫ ∞

ro=0
P(S(ro) = k) fRo(ro)dro

×
∫ ∞

co=0
(λRco)

m−k exp (−λRco) fCo(co)dco,

where P(S(ro) = k) is provided in Theorem 1.

Corollary 9. The mean of the node degree corresponding to the zero-cell can be approximated as

E
[

M̃p

]
= µπE[R2

o] + λRE[Co]
(a)
=

1.28µ

λ
+

4
√

λλR

π
E[C2],

where (a) is due to E
[
R2

o
]
= 1.28

πλ . The second derivative P (2)
M̃p

(s) of the PGF at s = 1 is

[
P (2)

M̃p
(s)
]

s=1
= (πµ)2E

[
R4

o

]
+

16
3

λRµE[R3
o] +

2.48λRµ

λ
E[Co] + λ2

RE[C2
o]. (38)

Using the second derivative and (1), we obtain the variance of M̃p.

Similar to Rt, E[R3
o] =

0.2805
λ3/2 and E[R4

o] =
0.2017

λ3 . The approach that we utilized to
determine the distributions of distances and node degree for PLP-PPP is rather general and
has several applications in wireless applications including load distribution on each BS in a
vehicular network modeled as a PLP-PPP.

The rest of this paper is devoted to several applications of the models and results
discussed so far to problems of practical interest in wireless networks.

7. Application Area 1: Vehicular Communications Networks

The associator graph studied in this paper is largely inspired by vehicular networks.
Therefore, it is quite befitting to consider this as our primary application area. A vehicular
communication network consists of multiple vehicles located on a system of roads and
a wireless network deployed in the same space to provide connectivity to these vehicles
(Figure 4). Because of its ubiquity, we will assume this wireless network to be a cellular
network that provides cellular connectivity to the vehicular nodes. As discussed next, this
setup can be directly mapped to the model introduced in this paper. This will allow us
to use the mathematical properties of the model explored in this paper to study several
practical aspects of vehicular communications networks.

1. The spatial layout of roads is modeled a PLP ΦL = {li(ρi, ϕi), ∀i ∈ N} with density
λL.

2. We model the vehicles on the i-th road li(ρi , ϕi) by an independent PPP ψi =
{xj,i, ∀{j, i} ∈ N} with density λR. Therefore, the union of all the vehicles located on
each road of ΦL forms PLP-PPP.

3. The BS locations are modeled as a 2-D PPP Φ ≡ {yi} with density λ. The role of the
BS is to provide infrastructure connectivity (V2I) to the vehicles.

4. Further, we assume that the association of a vehicle to its serving BS is based on the
maximum average received power. Assuming the same transmit power for all the BSs,
this is the same as associating each vehicle with its closest BS. In other words, each
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vehicle will connect to the BS whose Voronoi cell it falls in. Therefore, if we consider a
PV tessellation with the BSs as master nodes, each Voronoi cell will denote the service
region of the respective BS.

Figure 4. Illustration of a scenario where the vehicles connect with their nearest BSs.

Owing to their tractability and accuracy, such stochastic geometry based models have
gained popularity within the context of vehicular networks. For instance, the authors
in [28] have illustrated that these models are, at a minimum, as precise as the grid-based
models utilized for wireless standardization by 3GPP. This provides a robust rationale for
their incorporation, especially in foundational theoretical studies, such as the one described
in this paper.

Note, further that since the vehicular users are confined on the road, it is important to
incorporate the impact of roads in the modeling of vehicular users. Hence, the PLP-PPP
turns out to be a suitable choice as it accurately captures the randomness in the both
components. Modeling these users as PPP may lead to simpler expressions; however, it
may not be accurate for a general case as will be seen in the numerical section. Now we
construct an associator graph G with BSs as master nodes and vehicles as associate nodes
where the association represents the BS each vehicle connects with.

7.1. The Load on the Typical BS

For the setting described above, the load served by the typical BS of Φ is defined
as the number of vehicles that are connected to it at any given time. Due to the associ-
ation law discussed above, these are the vehicles falling inside the typical Voronoi cell.
Since the resources at the BSs will be shared by these vehicles, it is important to understand
the distribution of load. Owing to the stationarity of this setup, the typical point can be
placed at the origin. Therefore, the aforementioned load is exactly the node degree of the
typical master node in the graph G or the load (i.e., the number of points of Ψ) Sp on the
typical Voronoi cell as studied in the paper. Hence, we denote this load also by the RV Sp.
Its two approximate distributions were presented in Theorems 3 and 4, respectively.

7.2. The Load on the Tagged BS

In addition to the load on the typical BS, the load on the tagged BS is also important to
understand (especially when we are interested in the performance of the typical user that
is located in the tagged cell). Owing to the stationarity of Ψ, without loss of generality, we
assume that the typical user is located at the origin. Due to the association law described
above, this user will be associated with the zero-cell of the underlying PV tessellation.
The associated BS is termed the tagged BS. Therefore, the load on the tagged BS is exactly
the load (number of points of Ψ) Mp on the zero-cell of the PV tessellation as studied in the
paper. Hence, we denote this load by the RV Mp. Its two approximate distributions are
given in Theorems 5 and 6, respectively.

7.3. Rate Coverage

Let us consider the typical vehicular user located at the origin. It is associated with
the tagged BS located at distance R. Let all the BSs transmit at the same power, which is
considered unity without loss of generality. Furthermore, we assume that a BS with zero
load remains silent and hence does not cause interference at the typical user. We assume
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the standard path-loss model [1]. For this setting, the signal-to-interference ratio (SIR) of
the typical user is

SIR =
h0R−α

∑y∈Φ′ hy∥y∥−α
,

where Φ
′

is PP consisting of active BSs with density λa, α is the path loss exponent, h0 and
hy, respectively, denote the fading gains of the link from the serving BS to the typical user
and the BS at y to the typical user. Further, we assume Rayleigh fading. As a consequence,
the fading coefficients h are exponentially distributed with unit mean. Assuming that the
bandwidth B is equally shared by all users associated with the tagged BS, the achievable
rate of the typical user is given by

R =
B(

Mp + 1
) log2(1 + SIR). (39)

A key performance indicator for such networks is the rate coverage of the typical user,
which is defined as the probability that the achievable rate by the typical user is greater
than a certain threshold τ. Hence, the rate coverage for the typical receiver is defined as

Rc(τ) = P(R > τ).

Now, the probability that a BS is active is pon = 1 − P[Sp = 0]. Using this, we can
approximate the PP of active BSs as a PPP with density λpon [1,29]. Hence, the SIR coverage
can be derived as [29]

pc(τ) = P[SIR > τ] (40)

= 2πλ
∫ ∞

0
r exp

(
−λπr2 − pon

∫ ∞

r

2πλτydy
τ + (y/r)α

)
dr

(a)
=

1
1 + pon

∫ ∞
1

dt
1+tα/2τ−1

, (41)

where (a) is achieved by substituting λπy2 = u and u = vt. Now using (39), (40) and (41),
we obtain the following result.

Theorem 7. The rate coverage for the typical user is

Rc(θ(τ)) =
∞

∑
m=0

P(Mp = m)
1

1 + pon
∫ ∞

1
dt

1+tα/2θ(τ)−1

, (42)

where θ(τ) = 2
(m+1)τ

B − 1.

We can now approximate P(Mp = m) by P(M̂p = m) or P(M̃p = m) to immediately
obtain reasonable approximations for the above result.

7.3.1. Meta Distribution of Rate Coverage

The rate coverage, as defined above, averages over all sources of randomness si-
multaneously regardless of the scale at which they are changing. While this results in a
convenient metric, it is often desirable to obtain more fine-grained information about the
variability of performance across the network. A rigorous way of doing that is through
meta distributions [30]. Interested readers are advised to refer to [31,32] for a pedagogical
treatment of this concept. For the purpose of this paper, it is sufficient to understand that
the meta distribution of the rate coverage is defined as the probability that the typical
vehicle’s conditional rate coverage (conditional on the PP realization) at a certain threshold
τ is greater than a certain reliability target x, i.e., [30–32]

FPr(τ)(x) = P(Pr(τ) > x), ∀x ∈ [0, 1],
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where Pr(τ) is the probability that achievable rate R at the typical user is greater than
threshold τ conditioned on a realization of the BS PP Φ and load Mp on the tagged BS, i.e.,

Pr(τ) = P
(
R > τ|Mp, Φ

)
.

It is difficult to directly derive the meta-distribution of the rate coverage. Hence, first, we
derive the moments of Pr(τ), and then, using the Gill Pelaez inversion theorem [33], we
derive the meta distribution F(t, τ) of rate coverage. The qth moment of Pr(τ) is related to
the meta distribution of rate coverage F(t, θ) as

Mq(τ) = E
[
(Pr(τ))

q] = ∫ 1

0
qtq−1F(t, τ)dt. (43)

Note, that for q = 1, M1(τ) denotes the coverage probability.

Theorem 8. The q-th moment of the downlink coverage probability and the qth moment of rate
coverage, respectively, is

Mq(τ) =
∫ ∞

u=0
exp

(
−2ponu

∫ 1

z=0

(
1 − 1

(1 + τzα)q

)
dz
z3

)
e−udu (44)

Sq(θ(τ)) =
∞

∑
m=0

P(Mp = m)Mq(θ(τ)), (45)

where θ(τ) = 2
(m+1)τ

B − 1.

The proof of the above theorem is provided in Appendix J.
Using Theorem 8, the definition of meta distribution and Gil-Pelaez lemma inversion

theorem [33], we can derive the meta distribution for the rate coverage which is given in
the following theorem. The proof is given in Appendix K.

Theorem 9. The meta distribution for rate coverage is

FPr(τ)(x) =
1
2
− 1

π

∞

∑
m=0

P(Mp = m)
∫ ∞

t=0

sin(t ln(x) + Θ(t, θ(τ)))√
( f1,r(t, θ(τ)) + 1)2 + ( f1,i(t, θ(τ)))2

dt
t

, (46)

where

Θ(t, θ(τ)) = tan−1
(

f1,i(t, θ(τ))

f1,r(t, θ(τ)) + 1

)
,

and fr(t, θ(τ), z) = cos(t ln(1 + θ(τ)zα)), f i(t, θ(τ), z) = sin(t ln(1 + θ(τ)zα)) and
f1,i(t, θ(τ)) = 2pon

∫ 1
z=0 fi(t, θ(τ), z)dz

z3 and f1,r(t, θ(τ)) = 2pon
∫ 1

z=0(1 − fr(t, θ(τ), z))dz
z3 .

7.3.2. β Approximation for the Meta Distribution

Another simple yet tractable approach is to use the β approximation to obtain the meta
distribution [30]. For this, we can use Sq(θ(τ)) for q = 1, 2 to obtain the meta distribution
as [30,34] FPr(τ)(x)

= 1 − Ix

(
S1(θ(τ))(S1((θ(τ)))− S2(θ(τ)))

S2(θ(τ))− S2
1(θ(τ))

,
(S1(θ(τ))− S2(θ(τ)))(1 − S1(θ(τ)))

S2(θ(τ))− S1
2(θ(τ))

)
,

where Ix(·) is the regularized incomplete beta function and S1 and S2 are given as

S1(θ(τ)) =
∞

∑
m=0

P(M̃p = m)M1(θ(τ)) , S2(θ(τ)) =
∞

∑
m=0

P(M̃p = m)M2(θ(τ)).



Entropy 2023, 1, 0 19 of 31

Now, we present the two important applications where the distance distribution can
be directly used for the analysis of vehicular networks modeled by PLP-PPP.

7.4. Coverage under V2I Line of Sight (LOS) Only Communication

In a vehicular network, BS may transmit messages to the other vehicles to communicate
various data including critical updates and traffic information [35]. Various blockages can
block a link making it non-LOS (NLOS). The wireless propagation along urban roads is
usually different for LOS and NLOS links [36] (Figure 5). Especially at higher frequencies,
NLOS may result in total loss of connection. The probability that a link with length r is
LOS is given as pL(r) = e−γr where γ is the blockage parameter [1] dependent on blockage
density. Now, consider V2I communication between a BS and its k-th nearest vehicle. If this
link is LOS, the corresponding signal to noise ratio (SNR) is

SNRk =
R−α

k
No

. (47)

Here, Rk is the distance of the k-th nearest vehicle from the BS and hence, has the distribution
equal to that of the k-th CD of a PLP-PPP. The probability that this link is LOS and it is in
coverage (i.e., SNR is above the threshold τ) is given as

pc(τ) = P[SNRk ≥ τ, link is LOS] = E
[
1

(
R−α

k
No

≥ τ

)
exp (−γRk)

]

=
∫ (τNo)

− 1
α

r=0
exp (−γr) fRk (r)dr, (48)

which can be computed using the CD distribution derived earlier in (18).

Fusion centers
Voronoi tessellation
Lines of )L

Sensor nodes
Communication ball

Figure 5. Illustration showing a graph connecting sensor nodes to associated fusion nodes under
minimum distance based association and finite communication range.

7.5. Content Caching in V2V within Communication Range Rc

As the number of vehicles on the road increases, the data content requirements for
various vehicular applications and services increase commensurately. According to [37,38],
the majority of mobile multimedia traffic consists of duplicate downloads of a limited
number of popular content files. As current automobiles have large storage capacities, it
is possible to cache frequently accessed files closer to the user [39]. Furthermore, in self-
driving cars, the information related to traffic may be learned through the nearby vehicles
using decentralized learning [40]. Therefore, to reduce the file access time and data depen-
dency on the BS the vehicles may implement data caching, where a vehicle can access the
data available at other vehicles within its communication range Rc [27]. To characterize the
performance of such networks, we can define a metric termed cache hitting probability as the
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probability that at least k neighbors are in the communication range of the typical vehicle.
This gives

fk = Po!
[

R
′
k ≤ Rc

]
= FR′

k
(Rc), (49)

where R′
k is the k-th NND and Po![·] denotes the probability under the reduced Palm

distribution. Further, we can simplify fk using the Corollary 5.

8. Application Area 2: Wireless Sensor Networks

As the second representative application area, we consider a wireless sensor network
(WSN), which is a popular choice for sensing vast areas where human interventions are
mostly limited or unwanted, such as forests. Let us consider a WSN where the sensors are
deployed over a set of lines (for example in a forest along the trails) forming a PLP-PPP.
Let PPP Φ denote the locations of the fusion centers that compile information coming
from these sensors for data collection, monitoring, organizing, or taking further action.
For example, in the barrier coverage [41] application, where the sensors are deployed
by dropping along a line using an aircraft, the sensors’ data may be collected using a
network of unmanned aerial vehicles (UAVs) distributed as a 2D PPP. To minimize power
consumption, it is reasonable to assume that the sensors connect to their nearest fusion
nodes. This results in a graph connecting sensor nodes to associated fusion nodes which is
equivalent to G discussed in the paper. Hence, the number of sensors each fusion center
needs to control can be seen as the load on the fusion center which is given as the number
of sensors falling in its serving region. The information about this load will be useful for
proper dimensioning of the system, such as determining the system bandwidth as well as
the power requirement at the fusion centers. We can see that the distribution of this load is
the same as the approximate load distribution given in Theorems 3 and 4.

Now, let us inspect the uplink connection carrying data from the sensors to the con-
nected fusion node. Owing to limited capability and energy constraints, we can realistically
assume that each sensor node can connect with a fusion center within a certain range
around it. The radius Rs of this communication disk (ball) depends on the sensors’ transmit
power and the path loss. Hence, the i-th fusion node’s serving region Yi is given by the
intersection of its Voronoi cell Cyi with its communication ball b2(yi, Rs). This results in a
slightly different graph connecting sensor nodes to associated fusion nodes as shown in
Figure 5. We can model the resultant tessellation using a germ grain process with fusion
centers as germs and the corresponding serving regions as grains. Note that under the
App2 − typ approximation, the Voronoi cell is approximated as a ball b2(yi, Rt). Hence,
the serving region is given as Yi = b2(yi, Rs) ∩ b2(yi, Rt) = b2(yi, min(Rs, Rt)) Hence,
similar to Theorem 4, the distribution of the uplink load Su on the typical fusion center can
be obtained as

P(Su = m) =
∫ Rs

rt=0
P(S(rt) = m) fRt(rt)drt. (50)

Due to the limited communication range, some of the sensors may not be able to send
their data to fusion centers. It is evident that a sensor is able to communicate if it falls
inside the serving region of a fusion center which is equivalent to the event that it falls in
the communication ball of at least one fusion center. For the setup described above, this
probability is simply 1 − exp(−πλR2

s).
Clearly, one can map the above setup consisting of sensors and fusion centers with

the model discussed in this paper. Hence all the foundational results are either directly
applicable to this setting or can be applied with simple variations.

9. Numerical Results

In this section, we first validate the presented approximations of load distribution by
comparing them with the exact results obtained from Monte Carlo simulations. We have
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used the numerical software MATLAB (R2023a) to obtain the numerical results. We kept
the simulation window size at 400

λ . For the load distribution results, we perform 2 × 105

iterations with each iteration generating a PPP representing the BS deployment, selecting
the typical and tagged cell, generating a PLP-PPP for user distribution and counting the
number of points of PLP-PPP for load inside each of the two cells. Similarly, 2 × 105

realizations of PLP-PPP are generated for getting the CDFs of kth CD and NND for PLP-
PPP. Other parameter values, such as bandwidth, line density (λL), and BS density (λ), are
declared wherever they are used. We present some useful results related to the network
performance of the applications discussed above.

9.1. CD and NND Distributions

In Figure 6a,b, we present the CDF of k-th CD and NND derived in this paper along
with the results obtained from simulations. The purpose of this comparison is to simply
verify the analysis for a variety of settings.
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Figure 6. (a) CDF of k-th CD for PLP-PPP. (b) CDF of k-th NND for the PLP-PPP. The parameters are
λR = 2 vehicle/km, λL = 5/π km and λ = 1 BS/km2.

9.2. Validation of the Approximations Proposed in the Load Distributions

To verify the proposed approximations, the BC of the approximate expression against
the exact values (obtained via simulation) are presented in Figure 7. It can be readily
observed that the BC for both the approximations is closer to 1 for both the typical and zero-
cell cases. Additionally, we see that App2 − typ and App2 − zero are closer to 1 than App1 −
typ and App1 − zero, respectively. Since App2 − typ and App2 − zero approximations are
also simpler and easier to deal with, we will use them in the subsequent numerical analyses.
Furthermore, we observe that BC increases with an increase in the BS density which
indicates that the accuracy of the approximations improves as the BS density increases.
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Figure 7. The analytical expressions obtained for the load distributions in both the typical and the
zero-cell are accurate since the BC is close to 1.

9.3. Mean and Variance of the Load on the Typical and Zero-Cell

The mean and variance of the load in the typical cell under both approximations are
plotted in Figure 8a, along with their respective exact values (i.e., obtained via simulations).
Both the results are remarkably accurate for both the typical and the zero-cells. The mean
load obtained under both approximations is accurate. The variance values obtained under
App2 − typ are accurate for all values of λ, whereas the values obtained under App1 − typ

exhibit slight differences from the respective simulation-based values in the regime of
smaller λ.
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Figure 8. (a)Plot of the mean and variance of the load on the typical cell. (b) Plot of the mean and
variance of the load on the zero-cell. It can be observed that App2 − typ is more accurate compared to
App1 − typ. The parameters are λL = 5/π km−1, λR = 15 vehicle/km.

Similarly, the mean and variance of the zero-cell load under approximations are shown
in Figure 8b. As was the case above, the variance under App2 − zero is accurate for all
values of λ. We have omitted the variance result for App1 − zero since it is not as accurate
as the result obtained under App2 − zero.

9.4. Validation of Rate Coverage and Meta Distribution

Figure 9a shows the variation of the rate coverage with respect to the BS density
for two different values of threshold. We have also plotted the active probability with
the BS density λ. We see that the active probability obtained using App2 − typ closely
approximates the true results obtained from simulations. With an increase in the BS’s
density, the active probability reduces and hence, more BSs remain silent, which reduces
the power consumption. Figure 9b presents the meta distribution for the rate coverage.
We have also shown the values obtained via the beta approximation.
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Figure 9. (a) Plot showing the rate coverage for two different values of threshold, it also shows the
probability that a BS is active with varying BS density. We consider α = 3.5, B = 20 MHz. (b) presents
the meta distribution for the PLP-PPP process with pon = 1. The parameters are λL = 5/π km−1,
λR = 15 vehicles/km, λ = 2BS/km2 and τ = 1 MHz. For both the plots, the load distribution on the
zero-cell is obtained under App2 − zero.

9.5. Comparison with PPP Based Models

Please note that PLP-PPP can be approximated using a 2D PPP to reduce complexity
at the cost of accuracy. It was shown in [15] (Theorem-1) that the PLP-PPP converges to a
PPP with the same density µ asymptotically when the line density of PLP-PPP λL → ∞
while keeping the density µ constant. Hence, such approximation is accurate for a high
line density λL. However, such an approximation may not be valid at lower line density.
To further investigate it, in Figure 10a, we show the variance of load distribution in a
vehicular communication network, where vehicular users are distributed as PLP-PPP
and PPP, respectively, with respect to the road density λL while keeping total vehicular
density constant and the same for the two cases. For higher line density, vehicles in a
single cell are still spread over many roads and hence PLP-PPP resembles PPP. Hence,
we observe that both PPP and PLP-PPP provide the same load distribution. However,
for lower line density, usually only a single line falls inside a cell. Hence, the variance
reduces for PLP-PPP. Further, in Figure 10b, we compare the rate coverage of PLP-PPP and
PPP distributed vehicular users with respect to the road density λL while keeping total
vehicular density the same. We observe that for higher line density, both PPP and PLP-PPP
provide the same rate coverage. However, for lower line density, rate coverage decreases.
This discussion highlights the importance of PLP-PPP-based models. As stated earlier,
PLP-PPP can be approximated by PPPs to simplify analysis; however, such models may
have lower accuracy, especially at lower line densities.
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Figure 10. (a) Variance of the load distribution vs the line density for different values of the BS density
for the cases where users are modeled using PLP-PPP and PPP (b) the rate coverage vs line density
for different values of the BS density for the cases where users are modeled using PLP-PPP and PPP.
The vehicular density µ = 25 vehicle/km, bandwidth B = 20 MHz, α = 4 and τ = 1 MHz.
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9.6. SNR Distribution and Cache Hitting Probability

The SNR distributions for the ten closest LOS vehicles from the typical BS are shown
in Figure 11a. We observe a significant difference between the SNR distributions for
the closest and second-closest vehicles, but the difference between SNR distributions
from k and k + 1-th closest vehicles decreases with the order k. In Figure 11b, the cache
content probability is shown with respect to the vehicular density λR. We observe that
in a situation with heavy traffic (growing vehicle density), the cache striking probability
increases. With an increase in fk, the content is made accessible to nearby vehicles, which
may lower the burden on the BSs in a scenario with heavy traffic. Thus, content caching
and broadcasting could be potentially advantageous in high-traffic situations.
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Figure 11. (a) Probability that the LOS link is in coverage as a function of blockage probability with
No = 10−8 W, α = 3.5, τ = 1 dB, λR = 15 vehicles/km and the road density λL = 5/π km−1.
(b) Variation of the cache hitting probability with road vehicular density λR. The road density
λL = 5/π km−1, the broadcast range Rc = 100 m and λ = 1 BS/km2.

10. Conclusions

In this paper, we explored several important properties of the PLP-PPP as well as its
random bipartite geometric associator graph in which each point of the PLP-PPP connects with
its closest point of an independent PPP. This graph is equivalent to partitioning the PLP-PPP
with a PVT formed by an independent PPP. Key contributions related to PLP-PPP involve
the distributions of its k-th CD and NND. We then presented an empirical distribution
for the perimeter distribution of the zero-cell of the aforementioned PVT. The accuracy of
this result is validated by using the BC coefficient for a range of values of the PPP density.
Additionally, we presented the distribution of the length of any randomly selected chord of
a zero-cell of this PVT. Using these results, we provided two approximate distributions of
the node degree of the associator graph mentioned above. We then applied these results to
several wireless network settings. For instance, we presented the distributions of the load
on the typical and the tagged BS in a vehicular network in which the vehicles are modeled
as a PLP-PPP and the BSs are modeled as an independent PPP (and each vehicle connects
to its closest BS). Using this load distribution, we then presented the rate coverage and the
meta-distribution of the rate coverage for a vehicle. We also presented the SNR coverage
probability for a vehicle and content hitting probability using the k-th CD and NND of
PLP-PPP, respectively. We numerically compared the PLP-PPP and PPP-based models
to discuss the accuracy vs complexity trade-off. We concluded the paper by rigorously
demonstrating that the results of this paper can also be applied to wireless sensor networks
in which sensors are deployed over a set of lines (for example in a forest along the trails)
forming a PLP-PPP.
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Appendix A. Proof of Proposition 1
We consider an irregular convex polygon with perimeter Z as shown in the Figure A1a.

Let there be an arbitrary chord intersecting the polygon at two points P and Q. Now using
the triangular inequality, we can obtain the following inequalities

|PP1|+ |P1P2| ≥ |PP2|, |PP2|+ |P2P3| ≥ |PP3|, |PP3|+ |P3Q| ≥ |PQ|. (A1)

From the above, it can be concluded that

|PP1|+ |P1P2|+ P2P3 + P3Q ≥ |PQ|. (A2)

Similarly, we can prove that

|QP4|+ |P4P5|+ . . . + |Pn−1Pn|+ |PnP| ≥ |PQ|. (A3)

Taking the summation of (A2) and (A3), we obtain the following

2|PQ| ≤ |P1P2|+ |P2P3|+ . . . + |Pn−1Pn|, =⇒ 2|PQ| ≤ Z, (A4)

which completes the proof of Proposition 1.

(a) (b)

Figure A1. (a) The irregular convex polygon with perimeter Z and an arbitrary chord PQ. (b)
Irregular convex polygon with perimeter Z featuring two non intersecting chords PQ and RS.

Appendix B. Proof of Proposition 2
Consider the polygon shown in Figure A1b. Now consider two non intersecting

chords PQ and RS of lengths C1 and C2, respectively. To prove this result, we will show
that the length of the chord RS depends on C1. Let us join the opposite edges of chords to
create line segments PS and RQ. By applying the sine rule to the triangle OPQ, we get

C1
sin α

=
b2

sin β2
=⇒ sin α =

C1 sin β2
b2

.

Similarly, by applying the sine rule to the triangle OSR, we get

C2
sin α

=
b1

sin β1
=⇒ C2 =

b1
sin β1

C1 sin β2
b2

=⇒ C2 = C1
R1
R2

,
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where R1 and R2 are the radii of the circumcircles of triangles OPQ and ORS, respectively.
Furthermore, these circumcircles fall inside the convex polygon, and therefore, the perime-
ters of both the circumcircles are upper bounded by the perimeter of polygon [42], which
is assumed to be Z. Therefore, the ratio R1/R2 is dependent on Z. Consequently, C2 is
proportional to C1, which establishes that C1 and C2 are dependent RVs.

Appendix C. Proof of Corollary 2: Proof of Length Distribution of Tagged Chord

To derive the PDF fC̃(c̃), we use the fact that the area of a zero-cell is larger than the
area of the typical cell. Hence, fC̃(c̃) is a scaled version of fC(c) and can be written as

fC̃(c̃) ≈ η fC(ηc). (A5)

To obtain the approximate value of η, we equate the mean load on the tagged BS obtained
by two methods. The first method is using the stationarity property of PP [1]. The second
method is using the PGF of M̂p. In the first method, we know that the average number of
vehicles falling in the zero-cell is the product of the density µ of Ψ and the average size of
the zero-cell [43]. Hence, the mean is equal to 1.28µ

λ . In the second method, we observe from
Corollary 8 that the mean of M̂p is the summation of the mean number of points falling in
the zero-cell which is equal to µ

πE
[
C̃
]
E[Z′] and the mean number of points on the tagged

chord. Therefore, equating µ
πE
[
C̃
]
E[Z′] with 1.28µ

λ , we get

µ

π
E
[
C̃
]
E
[
Z′] = 1.28

µ

λ

(a)
=⇒ E[C̃]4.4906√

λ
=

1.28π

λ
=⇒ E[C̃] = 1.28π

4.4906
√

λ
,

1
η

π

4
√

λ
=

1.28π

4.4906
√

λ
,

where (a) is obtained by replacing the mean of Z
′

obtained in (10). Solving further, we
obtain the value of η.

Appendix D. Proof of Theorem 1: PGF and Corresponding PMF of S(r)
To obtain the PGF of the number of points of Ψ falling in an arbitrary ball of radius r,

we first compute the PGF of the number of points on each line of PLP that intersects the ball.
Due to independence among the lines of PLP, we take the product of the PGFs conditioned
on the number of lines N that are intersecting the ball. Since N is a Poisson RV, we derive
the PGF by deconditioning with the distribution of N. Hence the number of points S(r) is

S(r) = ∑
lk∈ΦL

Ψlk (b2(o, r)).

The length of the segment of road l(ρ, ϕ) is 2
√

r2 − ρ2. Hence, the number of vehicles on
l(ρ, ϕ) have Poisson distribution with mean 2λR

√
r2 − ρ2. Therefore, conditioned on ρ the

PGF for number of points falling inside b2(o, r) is

PΨlk
(b2(o,r))|ρ

(
s,
√

r2 − ρ2
)
= e2λR

√
r2−ρ2(s−1).

Note that, ρ is a uniform RV in the range [−r, r]. Hence, deconditioning over ρ the PGF
expression reduces to

PS(r)(s, r) =
1
2r

∫ r

−r
e
(

2λR
√

r2−ρ2(s−1)
)

dρ
(a)
=

1
r

∫ r

0
e
(

2λR
√

r2−ρ2(s−1)
)

dρ,

where step (a) follows from a definite integral property. Let there be N such lines intersect-
ing b2(o, r), hence the joint PGF is the product of individual PGFs which is equal to

PS(r)|N=n(s, r) =
(

1
r

∫ r

0
e
(

2λR
√

r2−ρ2(s−1)
)

dρ

)n
.
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Here, N is a Poisson RV with mean λL2πr. From the law of total probability, deconditioning
over N, we obtain the PGF as

PS(r)(s) = exp
(

2πλL

(∫ r

0
exp

(
2λR

√
r2 − ρ2(s − 1)

)
dρ − r

))
.

Appendix E. Proof of Theorem 2: The PGF and Corresponding PMF for M(r)

Without loss of generality, we assume that the typical point of Ψ is located at the
origin. Hence the number of points of Ψ falling inside a circle of radius r conditioned on
o ∈ Ψ can be divided into two parts. The first is the number of points falling on the line
passing through the origin of length 2r, for which the PGF is e2λRr(s−1). The second is the
number of points of Ψ falling in ball b2(o, r) for which the PGF is provided in Theorem 1.
Taking the product of the two PGFs, we obtain the desired PGF.

Appendix F. Proof of Theorem 3: Proof of PGF, PMF, Mean and Variance of Ŝp
(App1 − typ)

The number of points falling in the typical Voronoi cell Vt is

Ŝp = ∑
lk∈Φ

ψlk (Vt).

Let N be the number of chords intersecting the typical Voronoi cell. The PGF expression is

PŜp|N=n(s) = EΨ

[
sŜp

∣∣∣N = n
]
= EΨ

[
n

∏
k=1

sψlk (Vt)
∣∣∣N = n

]
=

[∫ ∞

0
eh(s,c) fC(c)dc

]n
,

where h(s, c) = λRc(s − 1). Note that the number of chords N intersecting the typi-
cal Voronoi cell is a Poisson RV with mean λLZ, where Z denotes the perimeter of Vt.
Hence, conditioned on Z = z, deconditioning with the distribution of N, we obtain the
PGF as

PŜp|Z=z(s) =
∞

∑
n=0

e−λLz(λLz)n

n!
PŜp|N(s) = e−λLz(1−

∫ ∞
0 eh(s,c) fC(c)dc). (A6)

Finally, deconditioning with the distribution of Z provided in (8), we obtain the PGF. Note
that, the conditional PGF PŜp|Z

(s) is in the form of exp(·). Further to find the PMF, we

need the k-th derivative of conditional PGF. After obtaining the k-th derivative, we obtain
the PMF of Ŝp as

P
[
Ŝp = k

]
=

[
P (k)

Ŝp
(s)/k!

]
s=0

= (1/k!)
∫ ∞

z=0
P (k)

Ŝp|Z
(s) fZ=z(z)dz. (A7)

To derive the mean of Ŝp, we need the first derivative of the PGF which is[
P (1)

Ŝp
(s)
]

s=1
=
∫ ∞

z=0
λLz

∫ ∞

c=0
λRc fC(c)dc fZ(z)dz = λLλR

∫ ∞

c=0
c fC(c)dc

∫ ∞

z=0
z fZ(z)dz.

Solving further, we obtain the mean of Ŝp. To obtain the variance of Ŝp, we need the second
derivative of PŜp

(s), which is given as

P (2)
Ŝp

(s) = (λLλRE[C])2E[Z2] + λLλ2
RE[Z]E[C

2].

Using (1), we obtain the variance of Ŝp.
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Appendix G. Proof of Corollary 7: Proof of Mean and Variance of S̃p

The mean number of points of Ψ falling in ball b2(o, rt) is µπE[R2
t ]. Substituting

E[R2
t ] = 1/πλ, we obtain the mean of S̃p. To derive the variance of S̃p, we need the second

derivative of the PGF that is given as

[
P2

S̃p
(s)
]

s=1
=
∫ ∞

rt=0


2πλL(2λR)

∫ rt

t=0

t2dt√
r2

t − t2

2

+ 2πλL(2λR)
2
∫ rt

t=0

t3dt√
r2

t − t2

 fRt (rt)drt

=
∫ ∞

rt=0

[(
4πλLλR

π

4
r2

t

)2
+ 8πλLλ2

R
2
3

r3
t

]
fRt (rt)drt

= (πµ)2E[r4
t ] +

16
3

λRµE[r3
t ].

Using (1) and the second derivative, we derive the variance of S̃p.

Appendix H. Proof of Theorem 5: Proof of PGF of M̂p

The number of points falling in the zero-cell is the sum of two RVs. First is the number
of points falling on the tagged chord and second is the number of points falling on any
other chords of zero-cell conditioned on the perimeter of the zero-cell. We further assume
that the two RVs are independent hence we write their PGFs separately. The PGF for the
number of points on the tagged chord is

P1(s) =
∫ ∞

co=0
eλRco(s−1) fCo (co)dco. (A8)

The PGF for the number of points falling in the zero-cell of perimeter Z′ can be derived
similar to Theorem 3. The PGF is given by

P2(s) =
∫ ∞

z′=0
exp

(
−λLz

′
(

1 −
∫ ∞

0
exp (λRc(s − 1)) fC̃(c̃)dc̃

))
fZ′ (z′)dz′. (A9)

Taking the product of (A8) and (A9), we obtain the PGF of M̂p.

Appendix I. Proof of Theorem 6: Proof for PGF of M̃p

The M̃p is the sum of two independent RV, the first is the number of points falling
on chord of length co and the second is number of vehicles falling inside ball of radius
ro. Hence,

M̃p = ψlo (b1(o, co/2)) + Ψ(b2(o, ro)), (A10)

where ψlo(b1(o, co/2)) denotes the number of points on zero chord of length co with PGF
exp(λRco(s − 1)) and Ψ(b2(o, ro)) denotes the number of points of Ψ falling inside a ball
of radius ro, and |b2(o, ro)| = |Vto |. The PGF of Ψ(b2(o, ro)) can be determined using
Theorem 4. The product of these two PGFs provides the PGF of M̃p.

Appendix J. Proof of Theorem 8: Proof for qth Moment of Rate Coverage
The coverage probability conditioned on the nearest BS distance R is

Pr(τ) = E[P(SIR > τ)|Φ, R = r] = E
[
P
(

h0r−α

I
> τ|Φ, R = r

)]
= E[P(h0 > τ Irα)|Φ, R = r] = [E[exp(−τ Irα)|Φ, R = r]]

(a)
= ∏

y∈Φ

[
1

1 + τrα||y||−α
|R = r

]
,
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where (a) is obtained using the Laplace transform of interference [1]. Hence, the qth
moment of Pr(τ) is

Mq(τ) = EΦ

[
∏

y∈Φ

1
(1 + τrα||y||−α)q

∣∣∣R].

Using the PGFL of PPP and deconditioning over R, we obtain the q-th moment of the
coverage probability as

2πλ
∫ ∞

r=0
exp

(
−2πponλ

∫ ∞

r

(
1 − 1

(1 + τrαy−α)q

)
ydy

)
e−λπr2

rdr,

which can be further simplified by substituting r/y = z and λπr2 = u, which completes
the proof of Theorem 8. Further the q-th moment of the rate coverage is

Sq(θ(τ)) = E
[(

P
(
(R > τ)

∣∣Φ, M̃p

))q]
= E

[(
P
(

B
M̃p + 1

log2(1 + SIR) > τ

) ∣∣∣ Φ, M̃p

)q]

= E
[(

P
((

SIR > 2
(M̃p+1)τ

B − 1
)∣∣∣Φ, M̃p

))q]
=
[
P
(
Mq(θ(τ))

∣∣∣M̃p

)]
,

where θ(τ) = 2
(M̃p+1)τ

B − 1. Deconditioning over M̃p, we obtain the qth moment of rate
coverage probability.

Appendix K. Proof of Theorem 9: Proof for the Meta Distribution of Rate Coverage
From the definition of the meta distribution of rate coverage, we get

FPr(τ)(x) = P(Pr(τ) > x)
(a)
=

1
2
+

1
π

∫ ∞

t=0

Im
[
e−it ln(x)Sit(θ(τ))

]
t

dt

(b)
=

1
2
+

1
π

∞

∑
m=0

P(M̃p = m)
∫ ∞

t=0

Im
[
e−it ln(x)Mit(θ(τ))

]
t

dt, (A11)

where step (a) is obtained using the Gill-Pelaez lemma for the inversion of the it-th
moment of Pr(τ) which turns out to be the function of the it-th moment Sit(θ(τ)), of the
rate coverage and step (b) is obtained by substituting Sit(θ(τ)) from (45). After step (b),
we can further simplify by extracting the imaginary part of e−it ln(x)Mit(θ(τ)). First, we
determine the imaginary part of Mit(θ(τ)). The Mit(θ(τ)) is

Mit(θ(τ)) =
∫ ∞

u=0
exp

(
−2ponu

∫ 1

0

(
1 − 1

(1 + θ(τ)zα)it

)
dz
z3

)
e−udu. (A12)

Now in (A12) the term (1 + θ(τ)zα)−it can be written as

(1 + θ(τ)zα)−it = e−it ln(1+θ(τ)zα) = cos(t ln(1 + θ(τ)zα))− i sin(t ln(1 + θ(τ)zα))

= fr(t, θ(τ), z)− i fi(t, θ(τ), z).

Substituting the above in (A12) and simplifying further, we get

Mit(θ(τ)) =
∫ ∞

u=0
exp

(
−2ponu

∫ 1

z=0
(1 − fr(t, θ(τ), z) + i fi(t, θ(τ), z))

dz
z3

)
e−ud u

=
∫ ∞

u=0
exp

(
−u2pon

∫ 1

z=0
(1 − fr(t, θ(τ), z))

dz
z3

)
exp

(
−iu2pon

∫ 1

z=0
fi(t, θ(τ), z)

dz
z3

)
e−udu.

In order to provide a compact form of the equations, let f1,i(t, θ(τ)) = 2pon
∫ 1

z=0( fi(t, θ(τ), z))dz
z3

and f1,r(t, θ(τ)) = 2pon
∫ 1

z=0(1 − fr(t, θ(τ), z))dz
z3 . Now, we can easily extract the imaginary

term, Im
[
e−it ln(x)Mit(θ(τ))

]
, that appears in (A11) as
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Im
[
e−it ln(x)Mit(θ(τ))

]
= Im

(∫ ∞

u=0
exp(−u f1,r(t, θ(τ))) exp(−i(t ln(x) + u f1,i(t, θ(τ))))

)
e−ud u

= −
∫ ∞

u=0
exp(−u f1,r(t, θ(τ))) sin(t ln(x) + u f1,i(t, θ(τ)))e−udu.

By substituting this in (A11), we obtain the meta distribution FPr(τ)(x) as

=
1
2
− 1

π

∞

∑
m=0

P(M̃p = m)
∫ ∞

t=0

∫ ∞

u=0
exp(−u(1 + f1,r(t, θ(τ)))) sin(t ln(x) + u f1,i(t, θ(τ)))du

dt
t

,

(a)
=

1
2
− 1

π

∞

∑
m=0

P(M̃p = m)
∫ ∞

t=0

f1,i(t, θ(τ)) cos(t ln(x)) + (( f1,r(t, θ(τ) + 1) sin(t ln(x))))

( f1,r(t, θ(τ)) + 1)2 + ( f1,i(t, θ(τ)))2
dt
t

,

where step (a) is obtained by apply sin(t ln(x) + u f1,i(t, θ(τ))) =
sin(t ln(x)) cos(u f1,i(t, θ(τ))) + cos(t ln(x)) sin(u f1,i(t, θ(τ))) and then using the follow-
ing integral identity∫ ∞

0
e−ax sin(bx)dx =

b
a2 + b2 ,

∫ ∞

0
e−ax cos(bx)dx =

a
a2 + b2 .

Solving further from step (a), we obtain the meta distribution of the rate coverage.
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4. Černỳ, R.; Funken, S.; Spodarev, E. On the Boolean model of Wiener sausages. Methodology and Computing in Applied Probability

2008, 10, 23–37.
5. Chetlur, V.V.; Dhillon, H.S.; Dettmann, C.P. Shortest path distance in manhattan Poisson line cox process. J. Stat. Phys. 2020,

181, 2109–2130.
6. Parida, P.; Dhillon, H.S. Multilayer Random Sequential Adsorption. J. Stat. Phys. 2022, 187, 1–22.
7. Subramaniam, S. Statistical representation of a spray as a point process. Phys. Fluids 2000, 12, 2413–2431.
8. Lowen, S.B.; Teich, M.C. Doubly stochastic Poisson point process driven by fractal shot noise. Phys. Rev. A 1991, 43, 4192.
9. Chiu, S.N.; Stoyan, D.; Kendall, W.S.; Mecke, J. Stochastic Geometry and its Applications; John Wiley & Sons: Chichester, UK 2013.
10. Dhillon, H.S.; Chetlur, V.V. Poisson Line Cox Process: Foundations and Applications to Vehicular Networks; Morgan & Claypool

Publishers: Vermont, USA 2020.
11. Sabu, N.V.; Gupta, A.K. Analysis of diffusion based molecular communication with multiple transmitters having individual

random information bits. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2019, 5, 176–188.
12. Deng, Y.; Noel, A.; Guo, W.; Nallanathan, A.; Elkashlan, M. 3D Stochastic Geometry Model for Large-Scale Molecular Communi-

cation Systems. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8
December 2016; pp. 1–6.

13. Baccelli, F.; Zuyev, S. Stochastic geometry models of mobile communication networks. In Frontiers in Queueing: Models and
Applications in Science and Engineering; CRC Press: Boca Raton, FL, USA, 1996.

14. Chetlur, V.V.; Dhillon, H.S. Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process.
IEEE Trans. Wirel. Commun. 2018, 17, 4401–4416.

15. Chetlur, V.V.; Dhillon, H.S. Coverage and rate analysis of downlink cellular vehicle-to-everything (C-V2X) communication. IEEE
Trans. Wirel. Commun. 2019, 19, 1738–1753.

16. Guha, S. Cellular-Assisted Vehicular Communications: A Stochastic Geometric Approach. Master’s Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, 2016.

17. Choi, C.S.; Baccelli, F. An analytical framework for coverage in cellular networks leveraging vehicles. IEEE Trans. Commun. 2018,
66, 4950–4964.

18. Sial, M.N.; Deng, Y.; Ahmed, J.; Nallanathan, A.; Dohler, M. Stochastic geometry modeling of cellular V2X communication over
shared channels. IEEE Trans. Veh. Technol. 2019, 68, 11873–11887.

19. Chetlur, V.V.; Dhillon, H.S. On the load distribution of vehicular users modeled by a Poisson line Cox process. IEEE Wirel.
Commun. Lett. 2020, 9, 2121–2125.

20. Pandey, K.; Perumalla, K.R.; Gupta, A.K.; Dhillon, H.S. Fundamentals of Vehicular Communication Networks with Vehicle
Platoons. IEEE Trans. Wireless Commun. 2023, early access.

21. Choi, C.S.; Baccelli, F. Poisson Cox point processes for vehicular networks. IEEE Trans. Veh. Technol. 2018, 67, 10160–10165.



Entropy 2023, 1, 0 31 of 31

22. Johnson, W.P. The Curious History of Faà di Bruno’s formula. Am. Math. Mon. 2002, 109, 217–234.
23. Calka, P. Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional

Poisson-Voronoi tessellation and a Poisson line process. Adv. Appl. Probab. 2003, 35, 551–562.
24. Tanemura, M. Statistical distributions of Poisson Voronoi cells in two and three dimensions. Forma 2003, 18, 221–247.
25. Muche, L.; Stoyan, D. Contact and chord length distributions of the Poisson Voronoi tessellation. J. Appl. Probab. 1992, 29, 467–471.
26. Bhattacharyya, A. On a measure of divergence between two multinomial populations. Sankhyā Indian J. Stat. 1946, 7, 401–406.
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