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Red blood cell (RBC) disorders such as sickle cell disease affect billions world-

wide. While much attention focuses on altered properties of aberrant RBCs

and corresponding hemodynamic changes, RBC disorders are also associated

with vascular dysfunction, whose origin remains unclear, and which provoke

severe consequences including stroke. Little research has explored whether

biophysical alterations of RBCs affect vascular function. Here we employ a de-

tailed computational model of blood that enables characterization of cell dis-

tributions and vascular stresses in blood disorders, and compare simulation

results with experimental observations. Aberrant RBCs, with their smaller

size and higher stiffness, concentrate near vessel walls (marginate) due to con-
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trasts in physical properties relative to normal cells. In a curved channel exem-

plifying the geometric complexity of the microcirculation, these cells distribute

heterogeneously, indicating the importance of geometry. Marginated cells gen-

erate large transient stress fluctuations on vessel walls, indicating a mechanism

for the observed vascular inflammation.

Short title Marginated aberrant RBCs cause vascular stress

Teaser In blood disorders, aberrant red blood cells drive stress fluctuations at blood vessel

walls leading to endothelial inflammation.

Introduction

Disorders that affect red blood cells (RBCs) encompass a diverse range of conditions with

substantial implications for human health, highlighting the need to comprehend their under-

lying mechanisms and effects. One prominent example is sickle cell disease, a monogenic

hemoglobin disorder resulting in stiffened and sickle-shaped or otherwise deformed RBCs.

Sickle cell disease leads to chronic pain, organ damage, and life-threatening complications (1).

In addition, the recent global pandemic of COVID-19, caused by SARS-CoV-2 infection can

lead to substantial alterations of RBCs (2). Emerging evidence suggests that organ dysfunc-

tion associated with severe COVID-19 may result from endothelial damage and microvascular

thrombosis (3). Sepsis, a life-threatening condition arising from severe systemic infection, dis-

rupts the morphology and function of RBCs, precipitating organ failure, hypotension, and in-

creased mortality rates (4). Iron deficiency anemia, adversely affects RBC production and their

oxygen-carrying capacity, consequently exerting detrimental effects on the cardiovascular sys-

tem (5). Hereditary spherocytosis, which is characterized by abnormal spherical-shaped RBC,
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affects cell membrane stability and increases susceptibility to hemolysis (6). A comprehensive

exploration of these RBC disorders will enable a deeper understanding of their intricacies and

the crucial significance of maintaining RBC health and functionality and alleviating vasculopa-

thy.

In individuals with blood disorders, endothelial cells lining the blood vessels are often

dysfunctional and in a pro-inflammatory state, increasing the risk of stroke and atherosclero-

sis (7–11). In particular, stroke, a predominant cause of mortality in sickle cell disease (SCD),

often occurs in highly tortuous cerebral arteries and is associated with endothelial inflammation

and chronic vasculopathy. In patients with cardiovascular disease and iron deficiency anemia

(IDA), improved disease outcomes were observed with iron supplementation and subsequent

resolution of IDA. (12); however, the underlying pathophysiologic basis for the association re-

mains unknown. The interplay among adhesive RBC-endothelial interactions, inflammatory

cytokines, and hemolysis all contribute to vasculopathy in blood disorders, however the po-

tential contribution of the altered physical properties of aberrant RBCs, particularly shape and

stiffness, to the hemodynamic environment experienced by the vascular endothelium remains

poorly understood. This topic is the focus of the present work.

Vascular geometries contribute to vasculopathy in blood disorders (13). The vascular sys-

tem is comprised of diverse geometries, including normal complexities such as curves and bi-

furcations as well as pathologic ones such as aneurysms and stenoses, and variations in vascular

geometry cause substantial changes in the local shear stress profile during blood flow, which are

known to induce endothelial proinflammatory responses (8,10,13,14). Leveraging an endothe-

lialized microfluidic model of multiple geometries, Mannino et al. (15) found that VCAM-1

and E-selectin expression, biomarkers of endothelial cell dysfunction, significantly correlated

with shear stress variation and were most pronounced near bifurcation points. Furthermore, they

found that endothelial cells exposed to SCD RBCs exhibited increased endothelial inflammation
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along the outside wall of the bend in the curved regions of vessels (16). These observations in-

dicate that it is essential to understand the role of vascular geometric complexity on endothelial

dysfunction in blood disorders.

Aberrant RBCs arising in blood disorders often have very different physical properties com-

pared to healthy RBCs. A typical example is SCD, in which abnormal sickle hemoglobin poly-

merizes within RBCs upon deoxygenation, creating long fibers that pathologically disrupt cellu-

lar architecture (17), leading to increased membrane stiffness as well as loss of cellular volume

secondary via dehydration. Subsequently, sickle RBCs are biophysically less deformable than

normal cells and some subpopulations are distorted irreversibly into a sickle-like shape. Simi-

larly, in samples of blood from IDA patients, Caruso et al. (18) identified a subpopulation of very

small and poorly deformable iron deficiency RBCs (idRBCs). When exposed to COVID-19,

morphologically normal RBCs exhibited a conformational change to sphero-echinocytes with

reduced size and deformability (2). Relatedly, plasma from adult COVID-19 patients causes

substantial RBC aggregation under ow, and brinogen-mediated aggregation directly damages

the endothelial glycocalyx (3). In hereditary spherocytosis (HS), genetic mutations affect RBC

membrane proteins, breaking the linkage between the membrane skeleton and the lipid bilayer,

causing membrane loss (6). As a result, instead of being biconcave discoids, RBCs become

inflexible spherical cells called spherocytes.

The spatial distribution of the different cellular components of blood is nontrivial and de-

pends on the relative physical properties of the different components. Normal RBCs migrate

toward the center of a blood vessel, leaving an RBC-depleted cell-free layer (CFL) near ves-

sel walls. In contrast, white blood cells (WBCs) and platelets tend to reside in these layers,

a flow-induced segregation phenomenon called margination (19–21). Experimental observa-

tions of modifications to cell segregation in disease are rare. Observing the flow of suspensions

comprised of SCD RBC populations of two different densities, Claverı́a et al. (22) investi-
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gated whether segregation occurs among SCD RBCs flowing in micron-sized channels. It is

known (23) that SCD RBCs with higher density exhibited greater shear modulus and, conse-

quently increased rigidity. Claverı́a et al. found a heterogeneous distribution of SCD RBC

according to their density: low-density SCD RBC population remained closer to the center of

the channel, while the densest (i.e. stiffest) cells were segregated towards the walls.

The segregation behavior during blood flow is substantially dictated by the contrasts in the

cellular properties, such as shape, size, and deformability, of the various components. Kumar

et al. (24,25) used detailed simulations to probe the effect of rigidity difference in a binary sus-

pension of deformable capsules in shear flow. They found that stiff capsules display substantial

margination when they are the dilute component, while flexible capsules tend to enrich around

the channel’s centerline. Similarly, in a mixture of large and small capsules,the smaller capsules

marginate (25). Sinha et al. (26) investigated the flow-induced segregation behavior in binary

suspensions of spherical and ellipsoidal capsules in simple shear flow by varying the aspect ra-

tio while keeping constant either the equatorial radius or volume of capsules. Direct simulations

with models of blood corroborate these model results (27, 28). A simple theory of margination

based on the two key transport mechanisms of cells in flow – cell-cell collisions and hydrody-

namic migration of deformable cells away from walls (29, 30) predicts that a subpopulation of

rigid particles in a suspension of primarily deformable particles, will strongly concentrate at

walls during flow (31,32).

Margination may have particular significance in the context of vasculopathy in blood cell

disorders. Endothelial cells are responsible for translating biophysical cues, such as the shear

force of the hemodynamic microenvironment, into cellular biological signals (11,33,34). Patho-

logical alterations of such forces promote endothelial activation with the release of proinflam-

matory signals (35–37), which contribute to atherosclerotic plaques susceptible to myocardial

infarction and strokes (38). Indeed, the fact that vasculopathy pervasively occurs even in the

5



oxygenated conditions in both small and larger vessels demands a new understanding of SCD

pathophysiology in the absence of vaso-occlusion, which occurs only under the deoxygenated

conditions in the microvessels.

Inspired by advances in the mechanistic understanding of the distribution and segregation

behaviors during blood flow as well as experimental observations of blood disorders during flow

(15,16,18,22,39), we propose a biophysical hypothesis for the pathophysiology of vasculopathy

in blood disorders: diseased cells strongly marginate, residing primarily in the CFL near the

vascular walls, resulting in endothelial inflammation by provoking fluctuations in local wall

shear stress, which is consistent with the chronic and diffusive nature of vasculopathy in blood

cell disorders. Limited computational studies of this hypothesis, for blood flow in straight tubes,

have been performed for the cases of SCD (40) and IDA (18).

The present work uses detailed simulations of a cellular-scale mathematical model of blood

flow in small vessels to examine this hypothesis. Several diseases are considered: SCD, IDA,

COVID-19, and spherocytosis, in both a simple cylindrical blood vessel geometry and a more

geometrically complex serpentine curved tube. The choice of these disease models arose from

a number of considerations. On biophysical grounds, all of these disorders result in subpopula-

tions of red cells with altered physical, morphological, and geometric properties. Biologically,

they represent a spectrum of disorders that encompass different etiologies, illustrating the gen-

eralizability of our findings: SCD arises from a genetic disorder, iron deficiency anemia a nu-

tritional one; COVID-19 is an example of an infectious disease that gives rise to biophysically

altered red cell subpopulations, and spherocytosis can arise in genetic or acquired disorders.

Not only do the results provide strong and broad-based computational support for our hypoth-

esis, but they also begin to reveal transient aspects of the stress environment experienced by

endothelial cells as well as the strong spatial variations in this environment engendered by a

complex flow geometry.
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An important and distinctive aspect of the study is its focus on mechanism. Because the

study is computational, we can interrogate the results in exquisite detail, revealing for example

not only the presence, but also the physical origin of a strong localization of aberrant cells in

specific regions near the walls of a complex blood vessel. Furthermore, as a computational

study, it can also avoid factors such as the broad variability in cell properties, which are in-

evitable in in vivo studies and hard to avoid even in carefully designed in vitro studies, that can

obscure the dominant phenomena.

Results

Model summary

We simulate a flowing suspension of RBCs, modeled as deformable fluid-filled elastic capsules,

in rigid straight and curved cylindrical tubes with diameter D = 40µm. Unless otherwise

stated, all results are for simulations that have been run to a statistically stationary state. For the

blood disease cases, RBC suspensions are modeled as binary mixtures of normal RBCs with

aberrant RBCs from different blood disorders (e.g., idRBCs, sickle RBCs, sphero-echinocytes,

and spherocytes). In the binary suspensions, the number fraction for normal RBCs is 0.9, and

for aberrant RBCs is 0.1. This is a simplification, as in any real blood cell population there will

be a distribution of cell properties. A suspension of only normal RBCs, referred to as healthy

RBC suspension, is considered as a control. The overall volume fraction (tube hematocrit) is

around 20%, consistent with the observed substantial decrease of hematocrit from large vessel

to the microcirculation (41, 42). (There is some variation between the cases we consider here

because different cell types have different volumes – what we keep constant between cases

are number fraction and number density.) The suspending fluid, blood plasma, is considered

incompressible and Newtonian with a viscosity of about η = 1.10 − 1.35mPas. The discoid

radius a for human RBC is about 4µm. The RBC membrane in-plane shear elasticity modulus
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G ∼ 2.5− 6µN/m. The deformability of a capsule in the pressure-driven flow is measured by

the dimensionless capillary number Ca = ηγ̇wa/G. Ca is set to be 1.0 for normal RBCs, which

corresponds to γ̇w ∼ 1000 s−1.

Increased membrane stiffness has been identified in a range of blood cell disorders. For

example, evidence exists that the membrane shear modulus of a typical sickle cell is approxi-

mately four times greater than that of a healthy RBC (43). For IDA, measurements indicate the

presence of iron deficient RBCs with stiffness up to ten times greater (18). Subpopulations of

RBCs with substantially increased membrane stiffness and smaller dimensions have also been

found in COVID-19 (2), and spherocytosis (44). Consequently, for the present study the interfa-

cial shear modulus G of aberrant cells is taken to be five times that of normal RBCs. Therefore,

Ca for the aberrant RBCs in our study is at most 0.2 times that for normal RBCs.

The spontaneous shape of the RBC membrane is inhomogeneous. Dupire et al. (45) showed

that an RBC maintains its biconcave shape even during tank-treading and hypothesizes that this

effect might come from anisotropic elastic properties or an inhomogeneous natural shape. Fis-

cher et al. (46) found that RBCs have “shape memory”, which arises from spatial variations in

their natural shape. The choice of the spontaneous shape can strongly affect the stable dynam-

ics of the RBC. Sinha et al. (47) investigate the cell dynamics’ dependence on the membrane’s

spontaneous curvature. They found that an oblate spheroidal spontaneous curvature maintains

the dimple of the RBC during tank-treading dynamics and exhibits off-shear-plane, tumbling

consistent with the experimental observations of Dupire et al. (45). For a complex structure such

as an RBC membrane, it is possible that the natural shape for shear elasticity may differ from

that for bending elasticity so the overall natural shape of an element results from the balance of

bending and shear forces. Thus in this work, the spontaneous shape of RBC bending elasticity

is taken to be the oblate spheroid, while the spontaneous shape of RBC shear elasticity is as-

sumed to be the biconcave discoid. Further details are included in the Materials and Methods
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section and Supplementary Information; in particular we show that the results here are robust

against changes in the details of the cell elasticity model.

Cylindrical blood vessel

Figures 1.(A-D) show snapshots from simulations of blood flow in a straight tube for SCD, IDA,

COVID-19, and spherocytosis, respectively. (The SI contains movies of these simulations.) In

all cases, the aberrant cells (blue) appear to be marginated. Fig.1.(E-H), respectively, show the

corresponding radial hematocrit profiles. These indicate that aberrant RBCs strongly marginate,

while the normal RBCs display the expected CFL, and a concentration that increases toward the

centerline. Sample simulations with doubled tube length and the same mesh spacing were also

conducted; changes in the results were negligible. These results demonstrate that differences

in cell size and deformability of the aberrant cells are sufficient to drive strong segregation

behavior.

The presence of stiff and/or small aberrant cells near vessel walls is expected to gener-

ate high velocity gradients, and consequently large shear stresses on the walls, τw. Fig.2

(A,B,C,D) shows snapshots of the spatial distribution of excess wall shear stress τ̂w for the

four cases. Here τ̂w = τw − τ̄w is defined as deviation from the mean wall shear stress τ̄w. The

red regions indicate large local fluctuations, and one can see that these are directly associated

with nearby aberrant RBCs. Fig.2(E) shows time series of additional wall shear stress τ̂w at

a point on the wall for the various cases. Peaks of high additional wall shear stress are larger

and more frequent in all of the disease cases than in the healthy case. These differences are

further quantified in Fig.2(F ), which shows the probability density profiles of excess wall shear

stress in the suspensions. The PDFs for all aberrant RBC cases display a long tail at high τ̂w,

where the probability density of high wall shear stress for cases with aberrant RBCs is orders

of magnitude higher than for the healthy case. This phenomenon is especially prominent for
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sphero-echinocytes and sickle RBCs and less pronounced with spherocytes, and is related to

their morphology: the spiked surfaces of sphero-echinocytes and sickle RBCs induce high lo-

cal wall shear stress, while the round spherocytes, though near the wall, roll smoothly without

generating substantial excess stress.

The simulation findings here are further compared with previous experimental observations

in Fig.2(G). To investigate the role of cellular interaction in hematological diseases, Caruso et

al. (39) developed an in vitro microvasculature model comprised of endothelial cells cultured

through the inner surface of a microfluidic system. SCD RBCs were spiked into normal RBC

suspension, suspended, and then perfused into this endothelialized microfluidics. They found,

VCAM1, a biomarker of endothelial cell dysfunction, was upregulated when exposed to flowing

SCD RBCs than normal RBCs. These results together imply that purely physical interactions

between endothelial cells and SCD RBCs are sufficient to cause endothelial inflammation.

Moreover, recent research further corroborates our current observations. Specifically, in the

context of diabetes-associated oxidative stress leading to reduced RBC deformability, Czaja

et al. (49) employed simulations to investigate pulsatile blood flow through segmented reti-

nal microaneurysms. Their findings revealed that diabetic RBCs, characterized by increased

stiffness, induced higher local wall stress and wall shear stress gradients within leading and

draining parental vessels, compared to their healthy RBC counterparts. Additionally, leverag-

ing a high-fidelity computational model of blood flow, Ebrahimi et al. (50) revealed that reduced

cell deformability causes substantial changes in microvascular hemodynamics, and alteration in

RBC dynamics induces localized changes in wall shear stress within vessels and in proxim-

ity to vascular bifurcations. However, these investigations, while addressing the influence of

blood cell deformability on hemodynamics and wall shear stress, did not incorporate the RBC

margination driven by deformability difference as a potential contributor to vascular wall stress

fluctuations.
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Curved blood vessel

We now consider cell and stress distributions in a curved tube. Fig.3 presents simulation results

for a suspension of normal RBCs with sickle RBCs. Snapshots of cell distributions are shown

in Fig.3.(A,B), along with a coordinate system we use for the analysis. Fig.3. (C,E), show

cell number density distributions for the (C) normal and (E) aberrant cells on the center plane

of the channel. The margination of the aberrant cells is apparent. Fig.3.(D,F ) show the num-

ber density distributions for the normal and aberrant cells averaged over various segments of

the channel, including both the normalized center-plane and cross-sectional cell distributions.

Fig.3.(D) shows that the CFL thickness is larger near the outer side (θ = 0◦) and thinnest near

the inner side (θ = 180◦). Fig.3.(F ) indicates that sickle RBCs strongly focus at two near-wall

locations, both at the inner and outer sides, on the centerplane. As the angle φ increases (i.e. as

we move downstream around a bend), the concentration of sickle cells near the outer wall be-

comes more pronounced. Similar results are found for the other aberrant cell suspensions as

well, as seen in the cross-sectional and centerplane distributions shown in Fig.S11 in SI.

These results demonstrate that in the curved tube, not only do we see margination of aberrant

cells as found in the straight tube, but very strong localization of the marginated cells on the

centerplane. The mechanism of this localization originates in the θ-dependence of the cell-free

layer thickness, as illustrated in Fig. 4. Fig.4.(A) shows a simulation snapshot of cross-section

cell distribution at φ = π/2, in which aberrant cells are highly localized near the outer side

centerplane. We noted above that the CFL thickness is approximately uniform for π/2 < θ <

3π/2 – i.e. along the inner wall, but on the outer side, the CFL thickness increases, reaching

a maximum on the centerplane on the outer wall – i.e. the CFL thickness increases as θ → 0.

A marginated cell on the outer wall will experience more collisions from the side with the

thinner CFL than the thicker, thus being driven on average toward the region where the CFL

is thickest, θ = 0. Fig.4.(B) shows the trajectories of marginated aberrant RBCs on the θ − φ
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plane, demonstrating that as φ increases, θ tends to decrease and aberrant cells move towards the

centerplane. We illustrate this mechanism schematically in Fig.4.(C). Finally, we must address

why there is localization along the centerplane on the inner wall (θ = π). This results from the

simple fact that the outer wall over half a wavelength of the curved shape is the inner wall over

the other half; the CFL thickness is nearly constant along the inner wall, driving no net motion

in θ, and cells driven toward θ = 0 on the outer wall tend to remain there while moving along

the inner wall.

Fig.5.(A) shows snapshots of the spatial distribution of excess wall shear stress τ̂w in SCD

suspensions; results for the other blood disorders can be found in Fig.S12, S13, S14 in SI. The

presence of a sickle RBC close to the wall directly causes local fluctuations in wall shear stress,

as can be observed from the transparent view in Fig.5.(B).

To capture the spatial dependence of RBC-induced wall shear stress τ̂w, the probability

density profiles of τw in SCD and healthy RBC suspensions over the different θ−areas on the

vascular surface are presented in Fig.5.(C). In the healthy RBC suspension, the probability of

high τ̂w is largest near the inner side (3π/4 < θ < π), followed by the intermediate area of

(π/4 < θ < 3π/4), and smallest over the outer side (0 < θ < π/4), consistent with the

fact that the CFL is thinnest near the inner side and thickest near the outer side. As in the

straight tube, it is observed that the cases with aberrant RBCs exhibit a distinct excess of large

positive fluctuations, again attributable to the margination of these small stiff cells to the vessel

wall. Furthermore, the disparity at high RBC-induced wall shear stress τ̂w of the probability

distribution profiles between diseased and healthy RBC suspensions is most pronounced at the

outer side, which implies that the localization of the marginated aberrant RBCs to the center

plane elevates the probability of high additional wall shear stress by an order of magnitude over

the outer side wall of the curved tube.

The geometries of blood vessels have been found to play a role in the development of en-
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dothelial dysfunction in blood disorders. Using an endothelialized microfluidic model, Wang

et al. (16) discovered that endothelial cells exposed to SCD RBCs exhibited an increase in

endothelial inflammation along the outside wall of the bend in the curved regions of vessels.

This result is illustrated in Fig.5.(D), which shows expression levels of E-selectin, which is

upregulated when cells are in a pro-inflammatory state, upstream and in a curved segment of

endothelialized microfluidic channels through which RBC suspensions have flowed. While the

channel sizes in the experiments are much larger than those simulated here, the qualitative pat-

tern of endothelial inflammation there is consistent with the margination patterns we observe

here.

To further quantify the cellular segregation in different geometries, we measure the scaled

root-mean-square (RMS) distance from the centerline, s = 〈r2cm〉
1/2

/a, for each cellular com-

ponent in straight and curved channels. At the start of the simulations, all cells are randomly

distributed within the vascular channels. Fig.6 illustrates the temporal evolution of s for both

normal and sickle RBCs. Initially, the aberrant RBCs show a sharp increase in s, then plateau

with s ≈ 3.8; in contrast, for normal cells s ≈ 2.9. This behavior is similar in both straight

and curved channels, consistent with the above observations that aberrant cells are localized to

vessel walls. Here we have measured time in terms of strain units γ̇wt, and Fig.6 indicates that,

for margination under the present conditions, ∼ 200 strain units are required for margination.

This can be translated roughly into downstream distance by noting that the mean velocity for

laminar flow with wall shear rate γ̇w is γ̇wR. Thus in the time of about 200 strain units required

for margination to take place, a cell moving at the mean velocity travels 2mm.

Additionally, we observe that segregation occurs somewhat more rapidly in the curved chan-

nel compared to the straight channel, as indicated by the faster growth of s for aberrant cells

after the simulation starts. While we are unaware of other work on margination in serpentine

geometries, relatedly, Bächer et al. (51) explored the margination of microparticles in blood
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flow through bifurcations within vascular networks. They found that bifurcations did not sub-

stantially influence the margination propensity of stiff particles relative to flow in straight tubes.

Discussion

Blood disorders lead to changes in red blood cell size, shape, and stiffness, and thus to changes

in how aberrant cells are distributed in the cross-section of blood vessels, and changes in the

interaction between cells and blood vessels. Inflammation and dysfunction of endothelial cells

lining blood vessels are associated with the risk of pathophysiologic complications like stroke

and atherosclerosis.

This study describes results from detailed cell-level simulations of blood in straight and

serpentine tubes, addressing the hypothesis that the margination of aberrant cells leads to sub-

stantial changes in the local shear stress environment of the blood vessel wall, possibly con-

tributing to the observed dysfunction and inflammation. We compare cell distributions and wall

shear stress profiles between suspensions of normal blood and blood containing aberrant RBCs

that model sickle cell disease (SCD), iron deficiency anemia, COVID-19, and spherocytosis.

In all cases, the smaller and stiffer aberrant RBCs marginate and increase the fluctuations in

wall shear stress. Probability density profiles of wall shear stress show that cases with aberrant

RBCs display a significantly higher probability of high wall shear stress than in suspensions of

healthy cells. The difference is most notable in COVID-19 and SCD RBC suspensions.

In the serpentine curved tube case, the marginated aberrant cells tend to marginate most

strongly to the symmetry plane of the channel and the outer side of the curved tube, becoming

very strongly localized in those regions. This result implies the possibility of strongly local-

ized endothelial damage in blood vessels with complex geometries. These findings highlight

the importance of considering vascular geometry and the presence of aberrant RBCs in the

14



development of vasculopathy.

Overall, our study indicates that the biophysical alterations of red cells in various disorders,

in and of themselves, can directly alter the shear stress the underlying endothelium is exposed

to. This suggests that that red cell biophysics and the pathologic changes thereof may directly

affect endothelial mechanobiological pathways, which, in turn, may be associated with chronic

endothelial inflammation or dysfunction that lead to disorders such cardiovascular disease and

stroke. Experiments to complement these computational results are now being conducted in our

group. In addition, our study also suggests that clinically, more attention should be paid to the

biophysical alterations of the red cells themselves, which currently are viewed as hallmarks of

the associated disease but not necessarily as biomarkers per se; our work suggests otherwise

and indicates that the red cell shape, size, deformability should be re-examined more rigor-

ously as potential correlates or predictors of clinical endpoints. Finally, our work indicates that

therapeutic interventions that fix or remove the biophysical alterations of red cells should be

explored for the associated diseases. Indeed red cell pheresis for various hematology conditions

may improve the vascular dysfunction associated with those diseases and for sickle cell disease

in particular, recently FDA-approved treatments that improve red cell health may also alleviate

vasculopathy.

Materials and Methods

We consider a flowing suspension of RBCs, which we model as deformable fluid-filled elastic

capsules, in rigid straight (Fig.1) and curved “serpentine” (Fig.3) cylindrical tubes with radius

R = 20µm. No-slip boundary conditions are imposed on the walls of the tube, while periodic

boundary conditions are applied in the flow direction. The suspension is subjected to a uni-

directional pressure-driven flow, and the velocity field in the absence of RBCs field within the

straight cylindrical tube is given by the Poiseuille flow. In this study, the flow is driven by a con-
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stant pressure gradient, which is equivalent to fixing the mean wall shear rate at γ̇w = 2U0/R,

where U0 is the undisturbed centerline velocity. For the curved cylindrical channel, the pressure

gradients are determined using defining an equivalent straight cylindrical channel with the same

centerline length and radius.

This study considers both homogeneous and heterogeneous suspensions of various compo-

nents, including normal RBCs and aberrant RBCs (e.g., iron deficiency RBCs, sickle RBCs,

sphero-echinocytes, and spherocytes). In binary suspensions, normal RBCs are generally con-

sidered primary components (denoted as “p”), while aberrant RBCs as trace components (de-

noted as “t”). A normal RBC is modeled as a flexible capsule having the spontaneous shape

being a biconcave discoidal for shear elasticity and an oblate spheroid for bending elastic-

ity (47, 52), with a radius of a = 4µm. The idRBCs have the same rest shape as normal

RBCs, except the radius of idRBCs is 0.76a (18). The rest shapes of sickle RBCs, spherocytes,

and sphero-echinocytes are curved oblate, spherical with a diameter of 5µm, and spiked spheri-

cal, respectively. The cell membranes are modeled as an isotropic and hyperelastic surface with

interfacial shear modulus G, incorporating shear elasticity, area dilatation, volume conserva-

tion, and bending resistance. Details of the membrane mechanics model and validation against

experimental observations are given in (47).

The deformability of a capsule in pressure-driven flow is measured by the dimensionless

capillary number Ca = ηγ̇wa/G. In this study, G of the aberrant RBCs is assumed to be five

times that of normal RBCs, which leads to that Cat for aberrant RBCs is always around less

0.2 times that of Cap for biconcave discoid RBCs. In this study, Cap is set to 1.0 for normal

RBCs, Cat is 0.15 for idRBCs, 0.20 for sickle RBCs, 0.15 for sphero-echinocytes, and 0.125

for spherocytes, which corresponds to γ̇w ∼ 1000 s−1. In the binary suspension, the number

fractions for normal RBCs Xb is set to 0.9, and for aberrant RBCs, Xt is 0.1, so the overall

number density ratio np/nt = 9. In this study, the total cell volume fraction (hematocrit) is set
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to be φ ≈ 0.20. To simplify the computations in this initial study, the suspending fluid and the

fluid inside the cells are assumed to have the same viscosity.

In our simulation, the particle Reynolds number, defined as Rep = ργ̇wa
2/η, is set to be

0.1, and the fluid is assumed to be incompressible and Newtonian; therefore the flow is gov-

erned by the Navier-Stokes and continuity equations. A projection method is used to advance

the velocity field in time. The straight tube is embedded in a cuboidal computational domain

with the size of 10a × 10a × 10a, and an Eulerian grid of 100 × 100 × 100 is used. For the

serpentine channel case, the cuboidal computational domain’s size is 32a× 26a× 10a, and the

Eulerian grid of 320×260×100 is used. The immersed boundary method (IBM) is used to han-

dle fluid-structure interaction. Specifically, the current model considers two types of immersed

boundaries: deformable moving cellular membranes and rigid nonmoving vascular walls. The

capsule membrane is discretized into N∆ piecewise flat triangular elements; N∆p = 1280 for

normal RBC, while N∆t = 682 for sickle RBC, N∆t = 816 for idRBC, N∆t = 620 for sphe-

rocytes, and N∆t = 1134 for sphero-echinocytes. Different N∆ are chosen to ensure that the

triangular elements on both capsules are close in size. We use “continuous forcing” IBM and

“direct forcing” IBM methods for the RBC membranes and tube wall, respectively. The numer-

ical methodology follows the approach described in (53,54).

Several limitations pertain to the model we employed in this study. Firstly, we assume

a viscosity ratio of one between the intercellular matrix and plasma, whereas normal RBCs

may exhibit a ratio of up to fifteen (55), and aberrant RBCs may possess even higher ratios.

As the RBC ages, the viscosity of the cytosol increases (56). Nonetheless, past research (57)

has demonstrated that the dynamics of a single sickle cell remain qualitatively unchanged over

a broad range of viscosity ratio. Additionally, Reasor et al. (58) performed simulations to

investigate the margination dependence on the viscosity ratio, finding that the cell-free-layer

thickness and margination of stiff cellular components remain similar. Another limitation of this
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study is the assumption of uniform shape, size, and stiffness within each red cell subpopulation,

which we know does not fully account for the inherent diversity in these properties present

in real red cell populations (59, 60). Nevertheless, while the physical properties of blood cells

exhibit dispersity, the variation of these properties within one cell subpopulation is substantially

narrower when compared to the variation between different cell subpopulations (see e.g. (18)).

Thus we expect that this simplification does not alter the main conclusions drawn here.

Furthermore, sickle cells display increased adhesiveness to the vascular wall, triggering the

vaso-occlusion that is the hallmark of SCD. Claveria et al. (22) underscore the role of cell ag-

gregation in mitigating segregation and amplifying CFL thickness, potentially guarding against

vaso-occlusion in sickle cell anemia patients. In the present work, we do not consider intercel-

lular forces such as aggregation and adhesion, for two reasons. First, our focus is the broader

issue of the role of margination across blood disorders, not just sickle cell disease. Furthermore,

aggregation effects are most prominent at low shear rates, ≲ 10s−1, whereas the wall shear rate

γ̇w in our simulation remains substantially higher, ∼ 1000s−1, a condition representative of

venules and arterioles.

Finally, endothelial cells exposed to shear stress express an endothelial glycocalyx layer

(EGL) that plays a central role in mediating vascular permeability and endothelial anti-inflammatory,

antithrombotic, and antiangiogenic properties (61). Notably, EGL disruption occurs in arterial

regions exposed to disturbed blood flow, accompanied by elevated oxidative stress leading to

atherogenesis (62, 63). Our model, which treats the vascular surface as a non-slip rigid bound-

ary, does not capture the permeability and porosity characteristics of EGL. However, it is im-

portant to underscore that the presence of EGL, while affecting interactions of RBC with vessel

walls, is not anticipated to significantly impact the margination of aberrant cells, which primar-

ily arises from contrasting cellular properties between aberrant and normal RBCs. In addition,

our study focuses on conditions within venules and arterioles, where vessel-cell interactions are
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less pronounced compared to the confined spaces of capillaries. Therefore, the limitations of our

model do not change the central findings in this research: the aberrant cells strongly marginate,

residing primarily in the cell-free layer, and generating physical interactions that damage the

endothelium.
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Fig. 1. Cell distributions within a cylindrical blood vessel. (Top) Simulation snapshots for

(A) sickle cell disease, (B) iron deficiency anemia, (C) COVID-19, and (D) spherocytosis, in

straight cylindrical tube subjected to a unidirectional pressure-driven flow. Red capsules rep-

resent normal RBCs with oblate spheroid shape for bending elasticity and biconcave discoid

shape for shear elasticity, while blue capsules are for aberrant RBCs. (Bottom) Radial hema-

tocrit profile for (red) normal RBCs and (blue) aberrant RBCs of (E) sickle cells in SCD, (F)

idRBCs in IDA, (G) sphero-echinocytes in COVID-19, and (H) spherocytes in spherocytosis.

In all figures, error bars represent estimated standard error using the block averaging method

(48).

Fig. 2. Shear stress on a cylindrical blood vessel. (Top) Simulation snapshots and corre-

sponding transparent views of excess wall shear stress τ̂w, induced by the presence of the cells

in (A) sickle cell diseases, (B) iron deficiency anemia, (C) COVID-19, and (D) spherocyto-

sis RBC suspensions. To distinguish the colors of the cells themselves from the colors of the

RBC-induced wall shear stress on the cylindrical surface, the color of normal RBCs is set to

be pale red, and aberrant RBCs pale blue. (Bottom) (E) Time evolution of the additional wall

shear stress τ̂w (i. e. deviation from the mean) at a fixed wall position for the cases of a ho-

mogeneous suspension of healthy RBCs and binary suspensions of normal RBCs with aberrant

RBCs, respectively. (F) Probability distribution of the additional wall shear stresses τ̂w over the

cylindrical wall in the various cases. (G) Endothelial VCAM-1 expression in ”endothelialized”

microfluidic devices with a width of 100µm after perfusion of suspensions with various frac-

tions of (AA) normal and (SS) SCD RBCs (39).

Fig. 3. Cell distributions within a curved blood vessel. (A, B) Simulation snapshots of a

suspension of normal RBCs with sickle RBCs in a curved channel, showing coordinate def-
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initions for r the distance from the local channel centerline, θ, the relative position between

the “inner side” (θ = 180◦) and “outer side” (θ = 0◦), and φ, the angle around the curve. (C)

Normalized center-plane cell number density and (D) normalized cross-sectional cell number

density for normal RBCs in the binary SCD RBC suspension. (E) Normalized center-plane cell

number density and (F) normalized cross-sectional cell number density for sickle RBCs in the

binary SCD RBC suspension. Note that the curved channel is divided into three parts based on

the value of angle φ; thus, the cross-sectional cell number distribution is computed over each

part. The cell number density distributions are normalized so that if the spatial distributions of

cells is uniform, then the normalized cell number density is unity everywhere within the curved

channel.

Fig. 4. Mechanism of cell-localization on the symmetry plane of a curved vessel. (A)

Simulation snapshot showing the cross-section cell distribution (φ = π/2). (B) Trajectories of

sickle RBCs on the θ − φ plane. Dashed blue curves are individual trajectories; the red line

denotes the root mean squared trajectory of the blue curves, and the red shaded area is for the

corresponding standard deviation. (C) A schematic mechanism for localization of marginated

cells to θ = 0.

Fig. 5. Shear stress on a curved blood vessel. (A) Simulation snapshots and (B) corre-

sponding transparent views of additional wall shear stress τ̂w induced by the presence of the

cells in suspensions of normal RBCs with sickle RBCs within the curved channel. The color

on the vascular surface denotes the RBC-induced wall shear stress strength τ̂w. (C) The time-

averaged probability distribution of the additional wall shear stress τ̂w for SCD RBC suspension

and healthy RBC suspension over the different θ-area on the curved vascular surface. (D) Me-

chanically stiff SCD RBCs upregulate E-selectin at the curvature site of vasculature models,
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indicating pro-inflammatory endothelial signaling (16). Scale bars = 200µm

Fig. 6. Segregation in straight and curved channels. Temporal evolution of RMS distance

from the centerline, s = 〈r2cm〉
1/2

/a for each cellular component (red, normal RBCs; blue,

aberrant RBCs) in an SCD RBC suspension within the straight tube (solid line) and curved

channel (dash line). rcm is the radial center-of-mass position of a cell and angle brackets denote

averaging over the cells in the system. Both the cylindrical straight and curved channels have a

tube radius of 20µm.
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Materials and Methods

We have developed a computational model utilizing the immersed boundary method (IBM)

to investigate cellular blood flow in complex vessel geometries. This approach offers the ad-

vantage of modeling flows in arbitrary geometries and accurately resolving the large deforma-

tion and dynamics of blood cells. Our model considers blood as a confined flowing suspen-

sion of red blood cells (RBCs) in the plasma. Two distinct types of boundaries are involved:

deformable cellular membranes and rigid non-moving vascular walls with complex geome-

try. To handle these two types of interfaces, we use the continuous-forcing and direct-forcing

immersed boundary methods, respectively. Specifically, the continuous-forcing IBM method

couples surface stresses on the RBC membrane with the fluid flow, while the sharp-interface

ghost-node immersed boundary method (GNIBM) is used to treat the rigid, non-moving vascu-

lar walls (53,54). The flow solver is based on a coupled finite-volume/spectral method, and our

IBM code is parallelized using a hybrid MPI/OpenMP strategy.

Governing Equations

Assuming that blood plasma is both Newtonian and incompressible, the governing equations

for its flow can be expressed as the incompressible Navier-Stokes equations.

Re

✓
@u

@t
+r · uu

◆
= �rP +r2u+ F

r · u = 0

(1)

Flow Solver

The Chorin projection method is utilized to advance the velocity field u. This method in-

volves solving an advection-diffusion equation (ADE) to determine the intermediate velocity

field u⇤, followed by solving a Poisson equation for pressure P to enforce the divergence-free
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constraints.
Re

u⇤ � un

�t
= r2u�Rer · uu+ F

r2
P =

Re

�t
r · u⇤

un+1 � u⇤

�t
= � 1

Re
rP

(2)

For the ADE, we treat both the convection term and the body force term with the 2nd-order

Adams-Bashforth method (AB2), and the diffusion term with the Crank-Nicholson method for

numerical stability.

Re
u⇤ � un

�t
= 0.5r2(u⇤ + un) + 1.5N (un)� 0.5N

�
un�1

�
+ 1.5F n � 0.5F n�1 (3)

where N(u) = �Rer · uu denotes the nonlinear convection, evaluated then by the cen-

tral differencing. To leverage the efficient inversion of tri-diagonal matrices, a Locally One-

Dimensional (LOD) Alternating Direction Implicit (ADI) scheme is employed to solve the

ADE. This scheme involves four steps: first, the explicit terms are handled; then, the x, y,

and z directions are solved implicitly, one at a time. To solve the 3D pressure Poisson equation

(PPE), we assume that the computational domain is periodic in two directions, namely x and y.

We begin by performing a 2D fast Fourier transform (FFT) on each x � y plane. Next, solve

for the Fourier coefficients along the z direction. Finally, perform a 2D inverse fast Fourier

transform (iFFT) on each x� y plane to obtain the pressure field.

Spatial Discretization

The IBM requires an Eulerian representation for the fluid flow and a Lagrangian representation

for the immersed boundaries such as the RBC membrane. The governing equations are solved

on the Eulerian grid. To avoid odd-even decoupling, spatial discretization is based on the stag-

gered mesh, in which these scalar variables, such as pressure P , are located at the grid center,

while vector variables, such as velocity u and force F , are located at the grid faces. All spatial

derivatives are evaluated using second-order differencing. As for the Lagrangian mesh on the
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immersed boundaries, the membrane is discretized into piecewise flat triangular elements. An

open-source software Gmsh (64) is used to generate the surface mesh for both vessels (Fig. S1.)

and various red blood cells (Fig. S2.).

Fig. S1. Surface mesh for (A) a straight cylindrical tube (radius R = 20µm and length L =
40µm) and (B) a curved (serpentine) cylindrical channel (major radius R1 = 32µm and minor
radius R2 = 20µm).

Membrane Mechanics

The RBC membrane is assumed to resist shear deformation, area dilatation, volume conserva-

tion (65), and bending resistance. The total strain energy of the RBC membrane S is given
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by,

E =
KB

2

Z

S

(2H + c0)
2
dS +KB

Z

S

GdS +

Z

S

WdS

whereKB andKB are the bending moduli, andW is the shear strain energy density; H ,G are

the mean and Gaussian curvature of the surface, respectively; c0 = �2H0 is the spontaneous

curvature, where H0 is the mean curvature of the spontaneous shape. The first two terms corre-

spond to the Canham-Helfrich bending energy (66,67), and the third term comes from the shear

strain energy stored in the RBC membrane. The strain energy density is computed based on the

Skalak model (68). A finite element method (FEM) is developed to find the surface stress as a

result of membrane deformation (47).

Continuous Forcing IBM

The cellular membrane is deformed by the fluid flow, while the flow is altered by the membrane

deformation in turn. This fluid-structure interaction (FSI) between flow and membrane is char-

acterized via the continuous forcing IBM. The idea of this method is to add an external force

term F to the right-hand side of the Navier-Stokes equation. The external force term originates

from the membrane stress fmembrane. A discretized delta function is used to spread the singular

force on the membrane to the surrounding fluid and interpolate the fluid velocity back to the

membrane.
F =

Z

S

fmembrane � (x� x0) dx0

umembrane =

Z

T
u� (x0 � x) dx

(4)

� is the three-dimensional Dirac-delta function, and x and x0 are the locations in the flow domain

T and on the cell surface S, respectively. A numerical approximation of the delta function is

chosen to be

� (x� x0) =

8
><

>:

1

64�3

3Y
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h
1 + cos
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0
i
)
i
, |xi � x

0
i
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0
i
| > 2�

(5)
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where � is the Eulerian grid size.

Direct Forcing IBM

Direct forcing IBM is used to treat another type of immersed boundary, the rigid, non-moving

but geometrically complex vessel walls. Specifically, GNIBM is used to impose no-slip ve-

locity boundary conditions on the vessel surface (54). The idea of this method is to mod-

ify these differential operators appropriately to satisfy the no-slip boundaries condition on the

geometrically-complex vascular surface while maintaining second-order accuracy.

Indicator Function for Hematocrit Analysis

To characterize the cellular spatial distribution in RBC suspension, we define an indicator func-

tion I(x, t), such that the indicator function is one inside a cell, and zero outside a cell. It can

be shown (69) that the indicator function I(x, t) follows a Poisson equation as

r2
I = r ·G, G(x, t) =

Z

S

� (x� x0)ndS (6)

where the G(x, t) is an Eulerian variable constructed from the cell surface normals n.

Wall Shear Stress Evaluation

To compute wall shear stress, the traction vector t = ⌧ · n at the wall is determined using the

velocity field approach outlined in (70,71), where ⌧ is the stress tensor and n is the unit normal

vector. The no-slip condition on the blood vessel surface yields the expression for the local wall

shear stress ts = µ@us/@r. Note s denotes the local stream-wise direction. The second-order

differencing method is utilized to numerically evaluate velocity derivatives.
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Model Verification and Validation

Elastic Spherical Capsule in Simple Shear Flow

We consider a moving deformable spherical capsule subjected to simple shear flow, see Fig.S3.(A).

The deformation of a capsule will cause stretching stress and bending stress on its surface. The

deformability of a capsule is characterized by the nondimensional Capillary number Ca =

µ�̇a/G and the nondimensional bending modulus ̂B = KB/a
2
G, where µ is the fluid viscos-

ity, �̇ is shear rate, a is the radius of the capsule, G is the shear elasticity modulus and KB is

the bending modulus. Larger Ca and ̂B means that a capsule is more flexible, while a stiffer

capsule has smallerCa and ̂B. The deformation of the capsule is described by the Taylor shape

parameter defined asDxz = (L�B)/(L+B), where L and B are the maximum and minimum

radial distances of an ellipsoid with the same inertia tensor. In Fig.S3.(B), we show that steady

state values of Taylor deformation parameter D as a function of dimensionless Capillary num-

ber Ca for different ̂B. Good agreement is found between our numerical results and simulation

results from previous literature (72).

Stationary Rigid Sphere in Simple Shear Flow

We consider a rigid stationary sphere subjected to a linear shear flow, which is given by u1 =

[�̇z, 0, 0]. The schematic of the model set is shown in Fig.S4.(A). The analytical solution for

this problem is given by

u =
y�̇
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(7)

where u, v, w are the velocity component in each dimension, r =
p

x2 + y2 + z2 is the distance

from a point in flow to the center of the sphere, a is the radius of the sphere. Using the direct
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forcing IBM, we set the velocity on the sphere surface to zero (no-slip boundary condition).

Note the solution above is for unbounded shear flow, thus we impose the Dirichlet velocity

boundary conditions on both the upper and bottom walls and choose a larger computation do-

main to reduce the error by periodic boundaries. After the velocity field reaches its steady state,

our numerical results are then compared with the analytical solutions. L1 and L2 error norms

for different velocity components u, v, w are plotted in Fig.S4.(B). It is found that the direct

forcing IBM in our model presents second-order accuracy.

Fåhræus-Lindqvist effect: Blood Relative Apparent Viscosity

Fåhræus and Lindqvist (73) made the noteworthy observation that the apparent viscosity at

shear rates � 100 s�1, determined using Poiseuille’s law in a capillary viscometer, exhibited

a strong dependence on the capillary tube diameter. This phenomenon is called the Fåhræus-

Lindqvist effect. For large tube diameters, a constant viscosity plateau was evident. But within

the range of 10 and 1000µm, the apparent viscosity decreases substantially with decreasing tube

size, before increasing sharply for tubes smaller than 10µm. The increase for very small tubes

is readily explained by the relative size of red blood cells, which are approximately 8µm in

diameter, but the behavior at larger tube diameters is more subtle. In this study, we investigate

the behavior of healthy RBCs flowing through tubes of varying radius, ranging from R = 6µm

to R = 20µm, as illustrated in Fig.S5.(A). Then the computed relative apparent viscosity,

as a function of tube diameter, is shown in Fig.S5.(B). Fig.S5. indicates that our numerical

simulation qualitatively predicts the Fåhræus-Lindqvist effect. For comparison, we also show

the empirical relation established by Pries et al (74) based on in vitro blood flow. It is found

that our model predicts apparent viscosity in good agreement with the empirical relation at the

physiological length scales we study in this work.
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Zweifach-Fung Effect: RBC Partitioning at a Bifurcation

The partitioning of blood plasma and cells near a vascular bifurcation is complex. In the mi-

crocirculation, when RBCs pass through a bifurcating region of a blood vessel, they exhibit

a tendency to preferentially flow into the daughter vessel with the higher flow rate, resulting

in fewer cells flowing into the vessel with the lower flow rate. This phenomenon, termed the

Zweifach-Fung effect (75), plays a crucial role in shaping blood flow distribution within the

microvascular network. Here we compare simulation results from our model with experimental

observations from previous literature (76). The radius of the inlet vessel is taken to be 10µm,

in order to be close to the value used in experiments, as shown in Fig.S6.. The Zweifach-Fung

effect is quantified in Fig.S6.(B). The parameter ⌘Q is defined to characterize partition as the

ratio of the volumetric flow rate at one daughter branch to the volumetric flow rate at the par-

ent vessel. Similarly, ⌘N is defined as the ratio for cell number flow rate. From the results

in Fig.S6., it is found that our simulation results are in good agreement with the experimental

findings (76). Further results on the flow of diseased blood in bifurcations and junctions will be

reported elsewhere.

Impact of Membrane Spontaneous Curvature on RBC Dynamics

Although efforts to understand RBC dynamics numerically have spanned the past two decades,

the majority of these works have focused on RBC dynamics in cases where the RBC shape is

symmetric across the shear plane or where the dimple is centered on the shear plane. Dupont

et al. (77) demonstrated that an elastic capsule with a prolate spheroid rest shape, whose axis

of symmetry is oriented off the shear plane, will exhibit a unique final dynamical motion for

all initial orientations. Depending on the capillary number, they observed three final dynamical

states: (i) rolling for lower capillary numbers, (ii) wobbling in which the capsule processes

around the vorticity axis as the capillary number is increased, and (iii) a swinging-oscillating
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motion in which the long axis of the capsule oscillates around the shear plane with decreasing

amplitude of oscillation as the capillary number increases, resulting in an in-plane swinging

motion at high capillary numbers. Wang et al. (78) investigated the off-plane motion of oblate

and prolate capsules and concluded that the final dynamical state could depend on the initial

inclination angle. A recent study of RBCs in shear flow (79) has demonstrated that RBCs first

tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed

shapes with increasing shear rate when the viscosity contrast between cytosol and blood plasma

is large enough. Minetti et al. (80) give an exhaustive description of the dynamics under a shear

flow of a large number of RBCs in a dilute regime is proposed. They identify which of the

characteristic parameters of motion and of the transition thresholds depend on flow stress only

or also on suspending fluid viscosity.

Similarly, Cordosco and Bagchi (81) studied the off-plane motion of oblate, prolate, and

biconcave capsules. Unlike Dupont et al. (77) and Wang et al. (78), they included membrane

bending stiffness in their formulation and considered a spatially uniform spontaneous curvature

in the case of biconcave capsules. They found that rolling was the dominant mode in the phys-

iologically relevant viscosity ratio case (i.e., 5), tank-treading or wobbling mode at � < 1, and

an intermittent regime at low capillary numbers and low viscosity ratios, where the dynamics

are dependent on the initial orientation. It is noteworthy that Bitbol (82) and Dupire et al. (77)

experimentally observed rolling dynamics in a dextran solution where the viscosity ratio was

less than unity. The discrepancy between simulation and experiment may result from the use of

a spatially uniform spontaneous curvature that corresponds to a biconcave shape. It is important

to note that to model the RBC membrane correctly, an assumption of the spontaneous shape has

to be made, and finding the appropriate shape has been a challenge for both theoreticians and

experimentalists. Sinha et al. (47) investigate the cell dynamics’ dependence on the membrane’s

spontaneous curvature. They found that an oblate spheroidal spontaneous curvature maintains
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the dimple of the RBC during tank-treading dynamics and exhibits off-shear-plane, tumbling

consistent with the experimental observations of Dupire et al. (45). For a complex structure such

as an RBC membrane, it is possible that the natural shape for shear elasticity may differ from

that for bending elasticity so the overall natural shape of an element results from the balance of

bending and shear forces.

There have been endeavors to comprehend the impact of spontaneous shape on the ulti-

mate dynamics of RBCs. Peng et al. (83) conducted a study on the influence of non-biconcave

spontaneous shape on RBC dynamics and concluded that in order for an RBC to maintain its

biconcave shape during tank-treading, as noted by Dupire et al. (45), the spontaneous curvature

must be non-biconcave. In instances where a biconcave spontaneous curvature was employed,

tank-treading could not be achieved without significantly perturbing the initial shape. Addi-

tionally, Cordosco et al. (84) explored non-biconcave spontaneous shapes and ascertained that

the spontaneous shape has a significant impact on cell dynamics, depending on the viscos-

ity ratio. They observed that the dimple in the RBC remained intact for both biconcave and

oblate spontaneous shapes. However, it should be noted that in both works, Peng et al. (83)

and Cordasco et al. (84), non-biconcave spontaneous curvatures were investigated under the

imposition of spatially uniform spontaneous curvature, denoted as c0. It is worth highlighting

that RBC membranes differ from model lipid bilayers in that they possess embedded proteins

with an underlying spectrin cytoskeleton and an asymmetric bilayer leaflet composition, all

of which modify c0, with proteins in particular, having been demonstrated to preferentially

bind via curvature-sensing mechanisms. Hence, it can be argued that c0 would be spatially

inhomogeneous. Recently, using two different simulation techniques, Mauer et al. (85) con-

struct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate

and viscosity contrast (45, 86). Their studies suggest that a nearly spherical stress-free shape

best reproduces experimental results for the tumbling-to-tank-treading transition at low viscos-
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ity contrasts. Reichel et al. (87) combined simulation and experimental investigation of RBC

shapes and dynamics in microchannels to provide a consistent RBC state diagram and illustrate

the complexity of RBC behavior in the microflow. The RBC model employs a stress-free shape

of the elastic spring network, corresponding to a spheroidal shape with a reduced volume of

0.96. Their simulation results agree well with experimental observations, allow the character-

ization of RBC variability in shear elasticity, and permit us to make a significant step toward

quantitative measurements of RBC mechanical properties.

In our work, to investigate the effects of membrane curvature on the RBC dynamics, two

types of homogeneous normal RBCs suspension are simulated: one with spontaneous bending

curvature being biconcave discoid, while another being oblate spheroid. Various vascular ge-

ometries are considered, including a slit (Fig.S7.), a straight cylindrical tube (Fig. S8.), and a

curved (serpentine) channel (Fig. S9.). The simulation snapshots tell that RBC rest shape has

a nontrivial impact on its near-wall dynamics: RBCs with biconcave discoid rest shape tend to

”rolling”, while RBCs with oblate spheroid rest shape perform ”tank-treading”, consistent with

the findings in a prior numerical investigation by Sinha et al. (47). In spite of the change in ori-

entational dynamics when the spontaneous shape is changed, no substantial change is observed

in the number density distribution for normal RBCs.

Simulation snapshots of Cell Distributions in Straight Cylindrical Tube

The simulation snapshots showing the segregation phenomenon between normal and aberrant

cells in the straight cylindrical tube are given in Fig. S10..

RBC-induced LocalWall Shear Stress Fluctuation on Curved Channel Sur-

face

Cross-sectional and center-plane normalized cell number density distribution of iron deficiency

RBCs, sphero-echinocytes, and spherocytes over the curved channel in each corresponding
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binary suspension of normal RBCs with aberrant RBCs are shown in Fig.S11.. Aberrant RBCs

margination provokes local wall shear stress fluctuation on curved channel surfaces are shown

in Fig. S12., S13., and S14..

Movies

Movie S1.

SCD RBC suspension in Straight Cylindrical Tube

Movie S2.

IDA RBC suspension in Straight Cylindrical Tube

Movie S3.

COVID-19 RBC suspension in Straight Cylindrical Tube

Movie S4.

Spherocytosis RBC suspension in Straight Cylindrical Tube

Movie S5.

SCD RBC suspension in Curved Channel

Movie S6.

IDA RBC suspension in Curved Channel

Movie S7.

COVID-19 RBC suspension in Curved Channel
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Movie S8.

Spherocytosis RBC suspension in Curved Channel
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Fig. S2. The surface mesh for capsules of (A) biconcave-discoid normal RBC, (B) sickle RBC,
(C) iron deficiency RBC, (D) sphere-echinocyte, and (E) spherocyte. Note the size of each cell
species in this figure is corresponding to the cell used in our simulation. The radius of normal
RBC is 4µm; aberrant RBCs are smaller than normal RBCs.
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BA

Fig. S3. (A) Schematic diagram of an elastic spherical capsule in simple shear flow. Velocity
Dirichlet boundary conditions are imposed on both the top and bottom plates to create a simple
shear flow. Because of the existence of a constant shear rate, the sphere capsule is stretched and
then deformed into an ellipsoid. (B) Steady-state Taylor deformation parameter for a spherical
capsule as a function of Ca. Dash lines are results from previous literature (72), and symbols
are our simulation results.

A B

Fig. S4. (A) Schematic of simulating a rigid stationary sphere subjected to a linear shear flow.
The velocity field on the top and bottom wall is set to be the analytical solution (Dirichlet
boundary condition). Periodic boundary conditions are imposed along x and y direction. A
rigid sphere is placed at the center of the box. The velocity on the sphere surface is set to zero.
(B) Error norm vs. mesh size for stationary rigid sphere in a linear shear flow
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R/a=1.5

R/a=3

A B

Fig. S5. (A) Simulation snapshots of healthy RBCs with radius a = 4µm flowing through tubes
of various radius R. Hematocrit is set to be 20%. The arrow indicates the direction of flow. (B)
The relative apparent viscosity as a function of tube radiusR and comparison with experimental
relation in (74).

Fig. S6. (A) Simulation snapshots of healthy RBCs partitioning near a bifurcation. The radius
of the inlet vessel is 10µm. (B) Comparison of the Zweifach-Fung effect in our simulation with
experimental results from past literature (76).
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Oblate
spheroid

Biconcave
discoid

Fig. S7. (Top) (A) Simulation diagram of homogeneous normal RBC suspension between the
slit under pressure-driven flow. (Rep = 0.1, Hematocrit = 0.15)(B) Steady-state wall-normal
direction cell number density profile. Note here y/a = 0 denotes the slit center and y/a =
5 close to the wall. (Bottom) The side view of RBC suspension with bending spontaneous
curvature being (C) oblate spheroid and (D) biconcave discoid.
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B

C

Oblate spheroid

Bicancave discoid

Fig. S8. (Top)Simulation snapshots for homogeneous normal RBC suspension within the
straight cylindrical tube with spontaneous bending curvature being (A) oblate spheroid and (B)
biconcave discoid. (Rep=0.1, Hematocrit = 0.20). (Bottom) (C) Steady-state radial cell number
density profile for two types of RBC suspensions.
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A B

C

D

Oblate spheroid Biconcave discoid

Fig. S9. (Top) Simulation snapshots for normal RBC suspension in the curved serpentine chan-
nel with spontaneous curvature being (A) oblate spheroid and (B) biconcave discoid. (Bot-
tom) Center-plane and cross-sectional cell number density distribution for RBC suspension
with spontaneous curvature being (C) oblate spheroid and (D) biconcave discoid.
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B

C

D

Fig. S10. Simulation snapshots (left: side view; right: top view) for (A) SCD, (B) IDA, (C)
spherocytosis, and, (D) COVID-19 RBC suspension in the cylindrical straight channel.
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COVID

Spherocytosis
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C

A

B

Fig. S11. Distributions of aberrant cells within a curved blood vessel. Cross-sectional and
center-plane normalized cell number density distribution of (A) iron deficiency RBCs, (B)
sphero-echinocytes, and (C) spherocytes over the entire curved channel (0� < ✓ < 180�) in
each corresponding binary suspensions of normal RBCs with aberrant RBCs.
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B

Fig. S12. (A) Simulation snapshots and (B) corresponding transparent views of additional wall
shear stress ⌧̂w induced by the presence of the cells in suspensions of normal RBCs with iron
deficiency RBCs within the serpentine channel. The color on the serpentine vascular surface
denotes the RBC-induced wall shear stress strength ⌧̂w.
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B

Fig. S13. (A) Simulation snapshots and (B) corresponding transparent views of additional wall
shear stress ⌧̂w induced by the presence of the cells in suspensions of normal RBCs with sphero-
echinocytes within the serpentine channel. The color on the serpentine vascular surface denotes
the RBC-induced wall shear stress strength ⌧̂w.
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B

Fig. S14. (A) Simulation snapshots and (B) corresponding transparent views of additional
wall shear stress ⌧̂w induced by the presence of the cells in suspensions of normal RBCs with
spherocytes within the serpentine channel. The color on the serpentine vascular surface denotes
the RBC-induced wall shear stress strength ⌧̂w.

25


	adj6423
	adj6423-SI-reduced

