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ABSTRACT KEYWORDS
The quality of teachers’ mathematical knowledge for teaching (MKT) is Elementary school; fractions;
critical for effective teaching and mathematical learning of students. pedagogical content

However, most efforts on measuring MKT tend to focus on teachers’ content knowledge; validity
knowledge (CK), with less attention to teachers’ pedagogical content knowl- argument
edge for teaching (PCK). This study reports on our initial efforts to develop

and pilot a measure for assessing teachers’ PCK for fractions. Analysis of

cognitive interviews from two expert teachers combined with Rasch model-

ing of 85 pre-service and in-service teachers was conducted to examine

validity evidence for the PCK-Fractions measure. Results provide useful valid-

ity evidence for the initial validity argument of the measure. Namely, evi-

dence suggests differences between pre-service (PSTs) and in-service

teachers’ (ISTs) scores based on their professional level (junior PSTs, senior

PSTs, & ISTs). Implications of this and additional validity evidence suggest a

measure useful for assessing the effect of teacher education and professional

experience initiatives, as well as indicators for revising this initial measure.

Mathematics teachers’ professional knowledge plays a significant role in their effective teaching and in
students’ learning of mathematics (Hill et al., 2008). Such knowledge is defined by Ball et al. (2008) as
mathematical knowledge of teaching (MKT) with two pragmatically distinct elements: content knowl-
edge (CK) and pedagogical content knowledge (PCK). Although acquiring skills in both domains is
essential for the quality of teaching, there are relatively few measures of teachers’ PCK constructed
from either a theoretical or statistical perspective (Copur-Gencturk et al., 2019; Hill et al., 2008).
Copur-Gencturk et al. (2019) suggested one possible reason for undertheorizing PCK in assessment
efforts is that most PCK measures are better described as measures of CK. We conjecture what Copur-
Gencturk et al. (2019) observed may be due to a lack of a theoretical framing of PCK in most test
development efforts. Thus, by designing an MKT measure that assesses both CK and PCK, there is a
risk of unintentionally overemphasizing elements of CK and underrepresenting elements of PCK
(Copur-Gencturk et al., 2019; Hill et al., 2008).

In this article, we report on an initial validity argument for a measure of teachers’ (in-service and
pre-service) PCK for teaching fractions to upper elementary students (grades 3-5). The PCK-Fractions
measure is designed specifically to examine teachers’ knowledge of children’s reasoning about frac-
tions, described by Hill et al. (2008) as knowledge of content and students (KCS). Our exclusive focus
on KCS allowed us to study the nature of PCK more closely by constructing such a measure from the
ground up, with an eye toward eventually addressing other domains of PCK (i.e., knowledge of
content and teaching & knowledge of curriculum). Stated differently, rather than construct an over-
arching MKT-fractions measure including CK and PCK and given Copur-Gencturk et al.’s (2019)
critique, we sought to develop a measure beginning with fewer subconstructs of PCK (i.e., KCS).
Therefore, the purpose of this study is to examine initial evidence for a validity argument of an
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assessment of teachers’ PCK-Fractions. We hypothesized that teachers with particular scores on the
PCK-Fractions measure use specific reasoning through each item, thus providing evidence toward
response processes, as well as validity for relationships to other variables.

Theoretical Framework

Many scholars have sought to research PCK, particularly in the area of mathematics education, since
the construct was introduced by Shulman (1986) (e.g., Ball et al., 2008; Izsdk, 2008). Perhaps the most
well-known application of Shulman’s construct is the MKT assessment described by the Learning
Mathematics for Teaching (LMT) project (Ball et al., 2008; Hill et al., 2008). The theoretical framework
described by Ball et al. (2008) includes the primary domains of CK and PCK, with each of these
primary constructs including several subconstructs. While CK focuses on teachers’ knowledge of
doing mathematics, PCK concentrates on teachers’ knowledge of pedagogy of this content, such as
recognizing students’ conceptions and misconceptions of mathematical topics. Measures for CK and
PCK have been constructed for specific mathematical concepts such as High School geometry (Herbst
& Kosko, 2014) and for multiple mathematical concepts within the same measure at both the
secondary (Khakasa & Berger, 2016) and elementary level (Hill et al., 2008). Common across such
studies is the finding that teachers’ experience and quality of experiences are associated with teachers’
PCK (Herbst & Kosko, 2014; Hill, 2010; Khakasa & Berger, 2016).

Assessments focusing exclusively on pre-service teachers’ (PSTs) CK of fractions are not uncom-
mon (Erdem, 2016; Huang et al., 2009; Izsdk et al., 2019). These studies suggest PSTs demonstrate less
mastery of content knowledge of fractions than what is believed needed for teaching. For example,
middle school mathematical PSTs may demonstrate adequate performance of certain fraction proce-
dures and computations, but often do not demonstrate the associated conceptual knowledge (Erdem,
2016). Similarly, Huang et al. (2009) suggested that elementary schools’ PSTs’ fraction procedural
knowledge outweighed their conception knowledge. Contrasting the growing number of CK assess-
ments, few studies focus on measuring teachers’ PCK (Copur-Gencturk et al., 2019). Assessments that
do include PCK items typically include CK items, although there are assessments that include only CK
items (excluding PCK). Validation studies including PCK items suggest there is a positive correlation
between PCK and CK (Depaepe et al., 2015; Kazemi & Rafiepour, 2018; Trobst et al., 2018). However,
such a correlation does not indicate causation. For example, Depaepe et al. (2015) found that
secondary and elementary PSTs with different levels of CK did not show a statistically significant
difference in their PCK scores. Buforn et al. (2020) provided a similar finding suggesting that
elementary PSTs who were able to solve a fraction task correctly were not able to recognize mathe-
matical aspects in students’ responses. This indicates that having higher assessed levels of CK may be
necessary but not a sufficient condition for higher levels of PCK (Buforn et al.,, 2020). Somewhat
contrasting these prior two studies, Trobst et al. (2018) found that elementary PSTs can enhance their
knowledge of PCK for fractions directly, despite having a limited CK of the subject. Beyond indicating
a complicated relationship between PCK and CK, results of these studies indicate that CK is not a
proxy for PCK (Depaepe et al., 2015; Trobst et al., 2018).

The inclusion of PCK items alongside CK items in test development has led to issues with
validity. Copur-Gencturk et al. (2019) criticized one of the items that intended to assess teachers’
PCK about ordering of fractions; “which of the following lists of fractions would be best for helping
students learn to develop several different strategies for comparing fractions” (p. 487). They stated
that to find the correct answer, teachers are only required to have content knowledge of the concept
without being challenged with the pedagogical aspect of it (Copur-Gencturk et al., 2019). Hill et al.
(2008) noticed a similar phenomenon with one PCK item stating, “a girl who was asked to count out
what the 2 represents in 23, and she represented it with two checkers” (p. 391). The item was
intended to assess teachers’ knowledge of PCK, but during cognitive interviews some teachers used
their CK to solve it instead (Hill et al., 2008). One potential reason distinguishing content in CK and
PCK items is difficult is that PCK involves using one’s content knowledge in conjunction with their
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understanding of mathematical teaching and learning (Copur-Gencturk et al, 2019).
Acknowledging this, Hill et al. (2008) suggested that scholars seeking to examine this construct
focus on assessing teachers’ knowledge of students’ mathematical conceptions and misconceptions
(a particular instantiation of KCS). Additionally, Hill et al. (2008) advocated careful thought be
given to the content of each individual item and how the collection of items might intersect.
Following these recommendations, we sought to create an initial framework (or construct map)
to characterize how individual items may focus on KCS and how these items related to one another
in a broader sense.

A Hypothetical Construct Map for PCK-Fractions

To measure PCK-Fractions as a construct, we must understand what this construct involves —
particularly regarding what is uniquely measuring PCK and not CK. Rather than considering a set
of isolated skills, we conjectured how PCK for fractions manifests in various ways. Borrowing from
recommendations by Ball and colleagues (Ball et al., 2008; Hill et al., 2008), we turned to the
research literature on children’s fraction reasoning to develop an initial concept map for PCK-
Fractions. We cite a portion of this literature here to help describe our process for item writing. A
construct map in the context of validity argument should not be confused with the pictorial
representations often used in schooling. Rather, Wilson (2005) describes construct maps as a set
of qualitative descriptors for how the construct “extends from one extreme to another” (p. 6). As a
reminder to the reader, we focused specifically on KCS as a first step in conceptualizing and
measuring PCK-Fractions. KCS focuses on teachers’ understanding of students’ mathematical
thinking. Thus, we examined literature on children’s reasoning with fractions (see Table 1),
conjecturing that KCS for fractions may correspond with children’s learning progressions for
fractions (i.e., assessing children’s fair sharing may be easier for teachers than assessing their part-
whole reasoning). This process involved summarizing and then synthesizing the literature on
children’s learning progressions, and observed mathematical reasoning involving fractions (see
Table 1).

Initially, children apply different real-life methods, such as one-to-one correspondence, fragment-
ing, and partitioning to share models (Empson, 1995). Examining children aged 3-4 years old,
Hunting and Sharpley (1988) found that most children successfully shared 12 crackers among three
dolls using one-to-one correspondence or the “dealing out” method. They also use their rudimentary
understanding of fragmenting to fracture a cookie into halves. Similarly, Wilson et al. (2011) found
that children at early ages use their informal knowledge of partitioning to share a single continuous

Table 1. Initial construct map for PCK-fractions related to children’s reasoning with fractions.

Stages Description of KCS at each stage Example Sources
Sharing Discrete Assesses children’s ability to use “dealing out” method to share discrete items. Hunting & Sharpley
Models (1988)
Fragmenting Assesses children’s ability to use their knowledge of sharing a continuous whole Hackenberg et al. (2016)
into two or three parts, but these parts need not be equal.
Partitioning Assesses children’s ability to use their informal knowledge to share a whole Hackenberg et al. (2016)
equally among less than five people and exhaust the whole.
Equi-Partitioning Assesses children’s ability to view a partitioned whole (share a whole equally) in  Empson (1995);
terms of parts within the whole and out of the whole (no limitation on parts). Hackenberg et al.
(2016)
Understanding Non-  Assesses children’s ability to use physical representations of fractions primarily Post et al. (1985)
Unit Fractions to help them to understand non-unit fractions (sequentially ordering

fractions, equivalent fractions, and magnitude/ratio), then detached from
concrete models and see fractions as a ratio or a number itself.
Understanding Assesses children’s ability to construct improper fractions by applying their Tzur (1999)
Improper whole number reasoning onto unit and non-unit fractions.
Fractions
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1,1
Harry and Drake solved for Py + 5 Their work is shown below.

Harry Drake
g
I
I %
e
w [

V¢ +Yg = ?

Which statement(s) below appropriately describe these students’ reasoning?

Select all that apply.
O Harry referenced the same whole when solving the problem.
O Harry had difficulty combining the parts of two different fractions.
O Drake referenced the same whole when solving the problem.
O Drake had difficulty combining the parts of two different fractions.

Figure 1. The example of item (item FO1) for measuring PCK-fractions.

model (such as pizza) among two, four or eight people. This skill improves in sophistication when
children develop part-whole reasoning. Part-whole reasoning occurs when children view a partitioned
whole in terms of parts within the whole and out of the whole (Hackenberg et al., 2016). For instance, a
child can see “a sandwich cut into fourths as one whole sandwich and also as a grouping of four-size
pieces of a sandwich, because each scenario describes the same amount of sandwich” (Empson et al.,
2020, p. 279).

To understand children’s reasoning with non-unit fractions, Post et al. (1985) examined students’
strategies on tasks that related to ordering fractions, equivalent fractions, and the magnitude/ratio.
They found that children use physical representations of fractions primarily to help them understand
non-unit fractions, then later detach from concrete models to conceptualize fractions as the ratio of
two numbers. Later, Tzur (1999) found that children who were not familiar with the notion of
improper fractions were able to construct improper fractions by applying their whole number
concepts onto their unit and non-unit fraction knowledge (e.g., doubling = to make the 12). For
these children, making an improper fraction was not simply adding or multiplying a non-unit or unit
fraction, but understanding of the relationship between the possible wholes and the relation within the
parts and wholes.

The hierarchy of stages presented in Table 1 represents a general overview of research from different
theoretical perspectives on children’s fractions reasoning. We used this hierarchy as an initial construct
map for developing our measure. Specifically, we conjectured that teachers’ KCS for fractions may have
a parallel trajectory to children’s learning progression for fractions (i.e., it is easier to assess children’s
part-whole reasoning than their ability to work with non-unit fractions arithmetically). In this context,
we designed PCK-Fractions to examine teachers’ ability to assess students’ reasoning.

Development of the Measure

Following suggestions by Ball and colleagues (Ball et al., 2008; Hill et al., 2008) and guided by our
initial construct map (Table 1), we designed closed-response items to measure PSTs’ PCK. Closed-
response items allow for quantitative analysis are less time-consuming for coding, and are typically less
time intensive for participants. We used our initial construct map (Table 1), to create tasks of teaching
as stems (see Table 1). Tasks of teaching represent scenarios of professional practice, which align with
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our efforts to contextualize PCK items (Ball et al., 2008). For example, the item shown in Figure 1
represents two different children’s reasoning about the concept of the whole in the context of adding
fractions. The task of teaching involved in this example includes assessing children’s partitioning and
equipartitioning (Table 1).

After initial writing and revision of items, we engaged in a process of collecting initial validity
evidence to establish a validity argument for our preliminary construct map (test content, response
processes, internal structure, relationships to other variables). Collection and analysis of this evidence
aligns with the purpose of this study, which is to design a measure of PCK for fractions and construct
an initial validity argument for that measure. To do this, we sought to answer the following research
questions:

(1) Does the PCK-Fractions measure assess the PCK domain?

(2) How does the preliminary Construct Map for PCK-Fractions align with validity evidence
collected?

(3) How does the PCK-Fractions measure distinguish between teachers’ scores based on their
progress through teacher education (junior PSTs, senior PSTs, & in-service teachers)?

In posing these research questions and stating the above purpose, it is worth noting that we considered
these efforts as the first step among many in developing our PCK-Fractions measure. As noted by
Krupa et al. (2019), “most validity arguments are the result of numerous studies ... It is the
accumulation of evidence from various sources for claims that builds a coherent validity argument,
not a single study or report” (p. 11). In this vein, we position this article as providing initial evidence to
establish a validity argument. Simultaneously, we also view the work presented here as identifying
what additional validity evidence is needed and how the PCK-Fractions measure may be improved.

Methods
Sample

In fall 2019, we surveyed a total of 85 participants which included 58 PSTs and 27 ISTs. PSTs were
enrolled in a teacher education program in a university located in the Midwestern U.S., and ISTs were
recruited from the same geographic area with at least 3 years of teaching experience in upper
elementary mathematics (grades 3-5). Additionally, our sample included two elementary mathematics
coaches (i.e., an expertise teacher in math and pedagogy who provides professional development to
classroom teachers), Zoe and Wade, who participated in cognitive interviews prior to construction of
the piloted measure.

Excluding the two cognitive interview participants, most participants self-identified as female
(91.7%), and the remaining identified as male (8.3%). The PST participants were enrolled in one of
the two majors for teacher licensure: early childhood (n = 47) and middle childhood education (n
= 11). At the time of data collection, early childhood licensure included preschool through third
grade, with an optional fourth- & fifth-grade endorsement. Middle childhood licensure included
grades 4-9. The PST participants were recruited from a mathematics methods class via face-to-face
and emailed solicitation. Each licensure program included two mathematics methods courses with
the first occurring in the second semester of participants’ junior year (i.e., 3rd of 4-year program)
and the second occurring in the first semester of participants’ senior year(i.e., 4th of 4-year
program). PST participants were solicited from both sets of courses across both programs (29
juniors; 29 seniors). IST's were recruited via e-mail and completed the survey virtually. ISTs reported
an average of 17.15 years of experience (Range = 4-32 years). Participation of ISTs was limited to
those with at least 3 years of experience given such experience often distinguishes between novice
and experienced teachers (Herbst & Kosko, 2014).
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Measure

Earlier in this article, we described the development of the measure for PCK-Fractions. The PCK-
Fractions assessment included 15 questions: 9 multiple-choice and 5 multiple-response. Multiple-
choice items included a stem where only one choice may be selected (i.e., select the best choice).
Multiple-response items included the same stem, but each option represented an independent item
(i.e., select all that apply). Specifically, each multiple-response option was treated as an item for coding
following the suggestions from Linacre (2021). Raw responses were dichotomized (0 = incorrect;
1 = correct). So, the 15 questions represented 30 distinct items for item analysis (see Appendix for
additional items).

Analysis

Analysis focused on four forms of validity described in the Standards for Educational and
Psychological Testing (American Educational Research Association [AERA] et al, 2014): test
content, response processes, internal structure, and relationships to other variables (see Table
2). Validity evidence for test content focuses on how an assessment represents the content it is
designed to assess, and whether the assessment scores can be interpreted in line with the
assessment’s intended purpose (AERA et al., 2014). The intended purpose for our PCK measure
is to examine teachers’ level of understanding in assessing students' reasoning with different
professional experiences. This purpose implies an intended use of PCK-Fractions scores to
examine the effect of different professional experiences (such as years of experience, teacher
education, etc.) and not to evaluate individual teachers. The intended purpose and use of the
assessment, as well as the construct map (see Table 1), were considered as evidence sources for
test content. Additionally, we used cognitive interviews as another primary evidence for the test
content. Cognitive interviews with expert teachers and psychometric data both allowed for
analysis of whether the items assess PCK (and not CK) and provided initial evidence regarding
the validity of the hypothetical construct map.

Validity evidence of response processes focuses on whether participants’ responses to items
align with the intended theoretical design of the item. We used evidence from cognitive inter-
view data as a primary source for response processes, as well as item hierarchy provided by our
Wright map (see description of Rasch analysis). Validity of internal structure addresses “the
degree to which the relationships among test items and test components conform to the
construct” (AERA et al, 2014, p. 16). In this study, we used indicators of unidimensionality
estimated through Rasch modeling for this purpose. Validity of internal structure included
investigating point-biserial correlations, in which performance on an item is compared to the
overall test performance (Crocker & Algina, 2006), as well as item fit and other indicators of
reliability (item and person). Validity for Relations to Other Variables refers to the relationship
between assessment scores and other external variables such as categorial variables (AERAet al,,
2014; Bostic et al, 2017). “Categorical variables, including membership variables, become
relevant when the theory underlying the proposed test use suggested that group differences
should be present or absent if a proposed test score interpretation is to be supported” (AERA et
al.,, 2014, p. 16).

We used one-way ANOVA as an indicator of teachers’ PCK scores to understand the relationship
between their professional experience and PCK as initial evidence in this regard. Moreover, we used
indicators of reliability of items and persons (participants) as initial evidence for this form of validity
to establish the measure’s capacity for distinguishing between different (sub)groups’ scores. Although
development of new measures requires integration of various sources and types of evidence to
construct a validity argument, not all possible sources or types of evidence need be present in a single
study (AERA et al,, 2014). The validity evidence presented here is considered only a portion (i.e., the
first portion) of a validity argument developed across multiple studies.
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Cognitive Interviews

Cognitive interviews were employed as a primary means to assess whether participants’ responses
aligned with the intended purpose and theoretical design of each item (response processes). Data also
were used to examine whether the content of the items was aligned with the PCK domain and not CK.
Data were obtained through interviewing expert elementary mathematics teachers, Zoe and Wade. We
targeted expert teachers because their knowledge “is not only more than novice teachers but also this
knowledge is greatly structured” (Kazemi & Rafiepour, 2018, p. 750). So, by focusing only on expert
teachers at this initial stage, we sought to focus on whether pedagogy, and not the content, was at the
forefront of reasoning through each item. Following guidelines provided by Karabenick et al. (2007), the
cognitive interviews included three leading questions for each assessment item: 1) What was the
question asking? 2) What is your answer? and 3) Why did you choose that answer? This method of
probing allows for think-aloud responses as participants complete each item (Karabenick et al., 2007).
Analysis of responses consisted of examining whether participants’ rationales for responses aligned with
our item design (i.e., they answered based on their understanding of students’ mathematical reasoning).

Rasch Modeling

We used Rasch modeling to examine validity evidence for internal structure and response
process. The choice of Rasch modeling over a classical approach was due to Rasch being able
to transform raw data, which is typically ordinal by nature, into continuous data using a logistic
approach (Bond & Fox, 2015). The Rasch approach uses patterns in item responses from
individuals, and patterns in individual responses across items to create a logistic model (Bond
& Fox, 2015; Crocker & Algina, 2006). The logistic model estimates participants’ ability level for
the measured latent construct using test statistic theta (), as well as each item’s difficulty level
using test statistic delta (§). This is particularly useful in soliciting validity evidence toward
internal structure and response processes, since it assesses how the items align with the
measured construct by examining the relationship between the test items and the responses of
the participants. This relationship is visualized through a Wright Map (Figure 3), which
juxtaposes participants’ theta statistics with items’ delta statistics on a vertical logistic scale
(Bond & Fox, 2015; Wilson, 2005). This allows for visual analysis of the spread of item difficulty
while simultaneously examining the spread of participants’ assessed ability on the measure.
Items’ ordinal arrangement on the Wright map can be compared to the construct map used
to design items (Figure 3). This in turn can be used to either revise the measure or the theory
(Wilson, 2005). Thus, the Wright Map and accompanying statistics provide useful evidence
toward response processes.

The initial process of Rasch modeling requires the following basic requirements to be met
which include assessing for unidimensionality, local independence, and equal discrimination
(Bond & Fox, 2015; Wright, 1991). For clarity, unidimensionality may refer to a measure
assessing only one aspect of a construct (i.e., PSTs and ISTs level of PCK). In this article, we
examined unidimensionality by evaluating item and person reliability, Rasch principal compo-
nent analysis (PCA), infit and outfit, and the Wright map. Checking for local independence
requires checking for the fit statistics for our items to assure that they are not dependent on each
other. Additionally, equal discrimination of our items is checked through the item difficulty, a
logit score above 1.0 suggests that the item is able to differentiate between high and low ability
participants (Linacre, 2021). Additionally, checking the Rasch requirements helps us to gather
validity evidence toward PCK-Fractions.

Our evidence toward internal structure validity was collected in various ways including item
and person reliability, fit statistics, and unidimensionality of the construct (AERA et al., 2014).
Variance and fit statistics associated with individuals (person reliability index) or with items
(item reliability index) can be teased apart and/or compared (Bond & Fox, 2015). For reference,
person reliability is the replication of person order when using the same sample on “a parallel set
of items measuring the same construct” (Bond & Fox, 2015, p. 49). Item reliability is the



INVESTIGATIONS IN MATHEMATICS LEARNING 237

replication of item order “if the same items were given to another same-sized sample of persons
who [behave] in the same way” (Bond & Fox, 2015, p. 49). Thus, we examined two types of fit
statistics: infit (weighted) and outfit (unweighted) which estimate the responses given the
predicted response (Bond & Fox, 2015). A low-test reliability coefficient, such as Cronbach’s
alpha, may be due either to issues with item design, sample, or both (Crocker & Algina, 2006).
Rasch allows for separate reliability and fit measures, thereby narrowing down whether and
where potential issues with reliability reside.

We also incorporated Rasch principal component analysis (PCA) of the residuals to check for
unidimensionality (Bond & Fox, 2015). This analysis determines how much of the variation is
explained in the model. For this to be valid, there are four basic assumptions that should be met:
1) The amount of variability explained by the total number of residuals should be 4 times greater
than the variability explained by the first contrast, 2) the amount of variability explained by the
total residual model should be greater than 50%, 3) the eigenvalues of the contrast should be less
than 3.0, and 4) the variability of the first contrast should be less than 5% (Linacre, 2021; Wright
& Stone, 2004). If any assumption is violated, investigation of items and/or persons is warranted.
The use of PCA along with item and person reliabilities and infit/outfit statistics allows for a
more cohesive story exclaiming if the construct is assessing the single attribute of PSTs and IST's
PCK of fractions — whereas PCK in this article focuses specifically on knowledge of content and
students (KCS).

ANOVA

We used a one-way between subjects’ analysis of variance (ANOVA) to examine differences in
teachers’ experience levels related to teacher education. This examination aligned with our third
research question as well as providing evidence for a validity of relation to other variables (i.e.,
correlation to external validity of level of experiences). In other words, we used the ANOVA analysis
as a way of examining for differences in PCK scores as related to different levels or amounts of
experience (PST juniors, PST seniors, experienced ISTs). Besides, we compared PCK theta Rasch
model scores of PST juniors, PST seniors, and ISTs with at least 3 years of experience (Author, 2014;
Hill, 2010).

Results
Cognitive Interviews

As an initial phase of validation of response processes and test content, two expert elementary
mathematics teachers (Zoe & Wade) were recruited to partake in cognitive interviews for the PCK-
Fractions assessment. Feedback from the two cognitive interviews allowed us to eliminate two items
due to interpretability issues, five items needing revision, eight items unchanged, and five items that
were set aside due to assessing similar content. The two eliminated items were replaced with two lower
difficulty items bringing the overall PCK-Fractions assessment to 15 questions (30 items). Figure 2
illustrates an item that was meant to be easier but led to difficulty for our experts. One participant, Zoe,
struggled with the item by stating that, “I can understand the representation but ... 'm second
guessing myself. I see what he did and understand it but, 'm not convinced it’s right . . . I don’t know if
it’s the multiplication that’s incorrect or the picture.” Similarly, Wade also questioned his reasoning by
thinking aloud “well he counted all the parts of both of the fractions ... that’s what he did. He didn’t
miscount anything.” Although the item was more difficult than we anticipated, evidence from the
cognitive interviews does suggest that Zoe and Wade were focused primarily on student reasoning and
deciphering how the child arrived at their answer. Specifically, the attention to mathematics in the
items was focused on the child’s mathematics and not that of our expert teachers. Thus, cognitive
interview data on this and other items consistently indicated that the items were focusing on the PCK
construct. However, the evidence suggested that the hypothetical construct map we conjectured may
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Table 2. Summary of validity propositions and accompanying evidence.

Validity Type Claim(s) Primary Evidence
Test Content ® The measure assesses PCK (not CK) of fractions. ® Purpose & Intended
® Teachers with more professional experience(s) have higher PCK- Use of Measure
Fractions. ® (Construct Map
® (Cognitive Interviews
Response Processes ® The measure assesses PCK (not CK) of fractions. ® (Cognitive Interviews
® PCK-Fractions has different degrees of sophistication. ® (Construct Key Map &

Wright Map
Infit & Outfit Statistics
® PCA of Standardized
Residuals
® (Construct Key Map &
Wright Map
Relation to other variables ® The measure can assess the effect of professional experience ® Item Separation &
(level of experiences) across different groups/subgroups of teachers. Reliability
® Person Separation &
Reliability
® One-way ANOVA of
PCK-Fractions scores

Internal Structure ® P(CK-Fractions is a unidimensional construct.

need to be modified. Since the items were generally well interpreted, with five items needing minor
revisions, we decided to move forward with a pilot sample to better understand the nature of the items
and construct.

Rasch Modeling

We implemented Rasch modeling to collect certain forms of validity evidence. Recall that to
incorporate this approach, certain requirements should be addressed. An issue of Rasch model fit
is reliant on three requirements: unidimensionality, equal item discrimination, and local item
independence. These general requirements are instilled “in order to achieve invariant interval-
level measurement” (Bond & Fox, 2015, p. 265) that ensures our data fit the model. These
requirements are addressed by examining mean-square fit statistics (i.e., infit and outfit), point
biserial correlations, and Rasch PCA. Our findings suggest that the Rasch model of the measure
of PCK-Fractions has sufficient item reliability of 0.90 (acceptable if near or above 0.90) and a
sufficient item separation reliability of 3.0 (Duncan et al, 2003; Linacre, 2021). An item
separation index above a “2.0 represents a good level of separation” of the items and can
differentiate between high, average, and low levels of item difficulty (Duncan et al., 2003, p.
953). This suggests that the measure can distinguish between more difficult and easier items. In
other words, this insinuates that, when administering PCK-Fractions to other samples, the item
difficulty should remain relatively constant. Thus, from our item reliability, we can expect that
item F14 (Figure 2) would still be the most difficult item for a new set of participants, and F20d
would be the easiest. By contrast, person reliability is considered acceptable if near or above .80.
However, this administration of the PCK-Fractions did not have sufficient person reliability
(0.41). Bond and Heene (2020) suggest two predominant causes of low person reliability: 1) too
few items spread across a range of difficulty and/or 2) too little spread of participants with
varying theta scores (ability). These possibilities can be examined through the Wright map in
Figure 3. As illustrated in Figure 3, several items are evenly distributed between —1.00 and 2.00
logits, with a potential need for additional items targeting below —1.00 logits. However, a more
likely cause for the subpar person reliability is the negative skew in participants’ scores, as 75.3%
of participants have a score above 0.00, or average ability (M = 0.37, SD = 0.64). This implies
that our participants’ measured abilities were much higher than we originally anticipated, thus
suggesting a need for a larger range in measurable ability (i.e., first and second year PSTs) or in
item difficulty (i.e., more difficult items).
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Table 3. Revised item analysis statistics.

Infit Outfit Point-Biserial Correlations
Item Item Difficulty SE Mean Square z Mean Square z
FOla 0.12 0.23 1.01 0.20 0.98 -0.20 0.28
FO1c 0.66 0.23 0.94 —0.90 0.94 —-0.80 0.38
FO3 0.46 0.23 1.05 0.80 1.08 1.10 0.20
F05a 0.12 0.23 0.95 —0.80 0.94 —-0.80 0.37
FO5b -0.39 0.24 1.02 0.20 1.02 0.20 0.24
FO5c 0.39 0.23 1.04 0.70 1.04 0.60 0.22
FO7 -0.84 0.27 1.01 0.10 0.95 —-0.30 0.25
FO8a -0.33 0.24 1.02 0.20 1.09 0.80 0.21
FO8b 0.31 0.24 1.10 1.70 1.15 1.90 0.10
FO8c -0.17 0.24 1.05 0.60 1.1 1.10 0.16
Fo8d —-0.86 0.28 0.94 —0.30 0.88 —-0.60 0.34
FO9 -0.45 0.25 1.10 1.10 1.10 0.80 0.11
F10 —-0.04 0.24 0.90 —1.40 0.87 -1.40 0.43
F11 1.30 0.25 1.08 0.70 1.06 0.50 0.16
F12 -0.01 0.24 1.02 0.30 1.09 1.00 0.22
F14 1.78 0.28 1.05 0.40 1.09 0.50 0.16
F15 0.83 0.24 0.91 -1.10 0.90 -1.10 0.42
F16a -0.64 0.25 1.02 0.20 0.99 0.00 0.23
F16b 0.18 0.23 1.07 1.20 1.06 0.80 0.18
F16c 0.18 0.23 1.00 0.00 0.97 -0.40 0.30
F20a —-0.64 0.25 1.04 0.40 1.03 0.30 0.20
F20b —-0.64 0.25 0.92 —-0.70 0.85 -1.00 0.40
F20c 0.18 0.23 0.84 -2.70 0.81 —2.60 0.54
F20d -2.75 0.52 0.94 0.00 0.64 -0.50 0.28
F20e 1.18 0.25 1.00 0.00 0.94 —-0.40 0.30
F20f —-0.57 0.25 0.98 -0.10 0.98 —-0.10 0.28
F21 1.09 0.25 0.90 -1.10 0.92 —0.60 0.42
F22 -0.45 0.25 1.10 1.10 1.19 1.50 0.08
Mean 0.00 0.25 1.00 0.00 0.99 0.00 0.27

Examining the above issue further, an analysis of global fit suggests that the data does not have a high
degree of misfit (y* = 2886.28, df = 2883, p = 0.48). This suggests that the items on the PCK-Fractions
construct and our sample ISTs and PSTs performance on the construct follow more of a predictive pattern
for the Rasch model (Bond & Fox, 2015). According to Linacre (2021), our data not having a high degree of
misfit may be due to our small sample size. Further, although person reliability was found to be low, the
average mean-square person infit (MNSQ = 1.00, Z = 0.00) and outfit (MNSQ = 0.99, Z = 0.00) were at
Rasch model expectations. These findings suggest that our ISTs and PSTs responded to the items as
predicted by the Rasch model. Average fit indices for PCK-Fractions items also met model expectations for
infit (MNSQ = 1.00, Z = 0.00) and outfit (MNSQ = 0.99, Z = 0.00) statistics. This culmination of evidence
indicates that PCK-Fractions items perform well, but the lack of range in our participants’ measured ability
(i.e., alow person reliability) warrants a need for a wider range of ability within our sample. Such additional
participants could include PST's enrolled earlier within the education program or non-education major
people.

Initial validity evidence toward internal structure includes item and person reliability described in the
preceding paragraphs. It also includes an analysis of infit and outfit statistics (see Table 3). Infit and outfit
statistics contribute toward evidence of a unidimensional construct. Our item-level infit statistics generally
fall between the acceptable range of 0.75 to 1.33, indicating that our items fit within the predicted Rasch
model (Bond & Fox, 2015)." For us, this means that our participants' performance on PCK-Fractions
aligned with how the item should perform (based on difficulty) as predicted by the Rasch model. Typically,
an infit statistic less than 0.75 indicates a potential overfit and could signify a lack of item independence.

'0ur person fit statistics was also within the acceptable range. Our infit statistics ranged from 0.79 to 1.39 (M = 1.00, SD = 0.14). Only
one person had an infit score of 1.39 with the next highest of 1.29.
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Derek was asked to find the product of ; and e
His work is shown below.
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Which of the following statements best describes his work?

@ Derek applied the standard algorithm inappropriately.
(@  Derek applied the standard algorithm appropriately.
Q Derek created an appropriate representation and miscounted the parts of both

fractions.

Derek created an appropriate representation and counted all parts of both
@ fractions.

Figure 2. Example of an item (F14) that was more difficult than intended.

Given the use of multiple-response items, we examined evidence for such overfit but found none. However,
we also examined items’ point-biserial coefficients and found two items (FO1b & F01d) had negative (—-0.17)
and 0.00 correlation coefficients, respectively.

Both items had similar phrasing, which prompted revision following cognitive interviews.
However, the point-biserial coefficients suggest these items were not revised sufficiently, and they
were removed. This resulted in increased point-biserial correlations across items, as well as an
increased person reliability measure (0.51). The revised item statistics are presented in Table 3.
Removal of FO1b and F01d ensured our requirement for equal item discriminations for the Rasch
model was sufficient. Notably, there are items with less than ideal point-biserial coefficients that we
retained. However, given the stage of measure development (pilot) the items were retained for the
present analysis to collect validity evidence for future steps in measure development. Additionally, we
did not observe evidence in cognitive interviews to justify their removal.”

Additional evidence of unidimensionality and, therefore, evidence toward internal structure valid-
ity, comes from Rasch principal component analysis (PCA) (Bond & Fox, 2015; Wright & Stone,
2004). The first contrast identified explained 8.6% of the variance, with an eigenvalue of 2.84.
Regarding Rasch PCA assumptions, the amount of variability explained (82.8%) was 10.1 times
more than the variability of the first component (8.4%), exceeding the recommendation that such
variance explained by the factor analysis is greater than 50% (Linacre, 2021; Wright & Stone, 2004). An
eigenvalue less than 2.0 likely indicates random noise, while a value above 3.0 suggests potential for
multidimensionality (Bond & Fox, 2015). Eigenvalues between 2.0 and 3.0, as observed here, still
warrant investigation, but upon further investigation, the items loading on this potential factor
demonstrated no obvious patterns and so no further action was taken. Although the last assumption

2Such items will be examined in future iterations of the PCK-Fractions measure, including interview data from PSTs.



INVESTIGATIONS IN MATHEMATICS LEARNING 241

«u | ©Fl4
nEw
"
wnn | OFU
O F20e
3 «an| ©F2
»
mnnmn| g F5
mxnxm| O FOlc
»
IR R R R R E RN
© FO03
muwwwwwwwuwp [ o FOSH OF05¢c
R RN OFOIaOFMb O Fo5a © Flée O F20c
0 (NN O=FI0 o-F12
=¥ | O-F08
=xmuunn | oF082
wnnns®| OF® o m < b
© F20a © Fl6a © F20b © F2f
O- F08d © Fo7
-1 (]
"
-2
O F20d

-3

Figure 3. Wright map for PCK-fractions.

of Rasch PCA was not fully met, since variability of 8.6% is somewhat larger than the suggested less
than 5% criteria, Linacre (2021) suggested that the difficulty of some items may impact the variances
along with the lack of range in person PCK ability. As noted, 75.3% of our participants scored above
average (6 2 0.00) on the PCK-Fractions measure (Figure 3) implying negative skew of assessed PCK.
It is also evident in Figure 3 that all items, except one (F20d), have a logit score above — 1.00, which
suggests that our items are more difficult than expected. The addition of Rasch PCA to the examina-
tion of item fit via infit statistics (Bond & Fox, 2015; Wright & Stone, 2004), suggests that the items of
PCK-Fractions measure the same unidimensional construct. This supports our conjecture that PCK-
Fractions is assessing PCK of ISTs and PST's as intended due to unidimensionality being met.

The next step in item analysis was to examine the Wright map (see Figure 3). The Wright map
helps contribute validity evidence for internal structure and response processes. Recall that the
construct map presented earlier in the article hypothesized that how children generally develop
fractional reasoning would correspond to the trajectory for how teachers learn to assess such
reasoning (see Table 1). Evidence from the Rasch model did not support this hypothesis as
envisioned. Rather, delta statistics provided evidence of a hierarchy that corresponded less to the
fraction concept addressed within a question/item and more to the observable actions of children
being assessed in each task of teaching.

In our initial design of items, we hypothesized that the difficulty of assessing children’s fractions
reasoning would correspond with the sequence certain fraction concepts are typically learned.
However, the student actions being assessed by the test takers appeared to be a better explainer of
why certain items have different difficulties than predicted. Consider the four items nested in question
F08 (Figure 4). We hypothesized that FO8a would have the lowest delta statistic of the four, since
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children demonstrate this form of reasoning (using whole-number reasoning in a fraction context)
prior to developing the concept of a fraction. This should be followed by F08c, F08b, and F08d,
respectively. Evidence from the Rasch modeling suggests that assessing whether a child is using whole-
number reasoning in a fraction context is more difficult than assessing whether a child has partitioned
a visual whole into equal parts.

Comparing F08d with items of similar difficulty, it appears such items asked participants to assess
children’s creation or use of fractional parts. Items like FO8b, while appearing to ask for the same
assessment, also include a layer of difficulty with coordinating nonstandard versions of fractions (in this
case, assessing a child’s recognition that four 2s, or £, are the same as ). Thus, we reexamined items
with similar delta statistics to gauge whether, and to what degree, the same assessment requests were
made of participants. We found that items with delta statistics below —.50 tasked participants to assess
children’s creation and/or use of fractional parts (i.e., F08d). Items approximately between —.50 and .00
asked participants to assess children’s coordination of parts with and of the whole (i.e., FO8a & F08c).
Items with delta statistics approximately between .00 and .50 tasked participants with assessing children’s
creation and use of non-unit fractions (i.e., multiple iterations of £ as equivalent to 2 in FO8b). Items
with delta statistics higher than .50 tasked participants with assessing children’s coordination of non-unit
fractions with the whole. For example, item F11 tasked participants with assessing a students’ compar-
ison of ¢ and Z.

ANOVA

Results from ANOVA provided validity evidence toward relationships to other variables (i.e., level of
experiences) and addressed our third research question. Specifically, we would expect teachers with more
professional experience with assessing children’s fraction reasoning would have higher PCK-Fractions
scores. Results from ANOVA found a statistically significant difference in PCK scores for PST juniors,
PST seniors, and in-service teachers (ISTs) [F(2,78) = 5.616, p = 0.005]. A Tukey HSD post hoc analysis
indicated a statistically significant (p = 0.040) difference in scores between PST juniors (M = 0.12,
SD = 0.47) compared to PST seniors (M = 0.46, SD = 0.51), as well as statistically significant (p = 0.006)
between PST juniors and ISTs (M = 0.58, SD = 0.56). This indicates a measurable difference in PCK-
Fractions scores for PSTs with an additional methods course and accompanying experiences (student
teaching) in the teacher education program participants were sampled. In contrast, there was no
statistically significant difference observed between PST seniors’ scores and ISTs™ (p = 0.692). This
implies that, although ISTs’ scores were higher than PST seniors’, the difference was not large enough
to be statistically significant. This may be due to the current sample size and range of participants and
should not be considered as generalizable to the larger population of PSTs and ISTs. Rather, Linacre
(1994) notes that sample sizes similar to this study (n = 81) are able to estimate participant scores within
+0.50 logits. This level of precision could account for the ANOVA results observed here. Alternatively,
the results could also be due to either the quality of the teacher education program or the quality of
professional experiences of the ISTs in the sample. In all, these findings provide preliminary evidence that
the PCK-Fractions measure can detect some differences due to teachers’ level of developmental experi-
ences, such as progress within a teacher licensure program. To detect differences in their developmental
experiences, such as those examined here, Linacre (1994) suggests including samples of at least 250 to
have such precision. Results presented here suggest there is potential for the measure to detect such
differences, but future study is necessary to verify such potential.

Discussion

Contrasting prior approaches that developed PCK measures alongside CK measures, we sought to
develop items exclusively focused on the PCK domain, with particular attention to KCS as an initial
effort to item design. We hypothesized this approach would allow for a more nuanced understanding
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and assessment of PCK for fractions, while reducing the risk of including CK items masquerading as
PCK items (Copur-Gencturk et al., 2019; Hill et al., 2008). Such an effort required some theoretical
conjecture of the nature of PCK as a domain, given the lack of scholarship in this area. Similar to Hill et
al. (2008), “we attempted to build the ship while sailing it — by writing items to help push our
conceptualization and definition forward” (p. 396). Such an endeavor necessitates a certain amount
of failure, but with the proposition that the rewards outweigh such risks.

Regarding our initial conjectures on the nature of PCK, we hypothesized that item difficulty would
mimic the trajectories which students tend to develop fractions reasoning (see Table 1). Although
validity evidence supports our intent of items assessing the KCS subconstruct of PCK, findings
illustrated in the Wright map (see Figure 3) and evidence from cognitive interviews suggests our
initial construct map was incorrect (see Table 4). The descriptions of each level in the revised construct
map (see Table 4) appear similar to those shown in Table 1. However, findings from the present study
suggest that the teachers’ actions being assessed at each level do not necessarily correspond with the
sequence of content learned by children. The differences in difficulty for items from the F08 stem (see
Figure 4) serve as a prime example of this phenomenon. To the best of our knowledge, no complete
learning trajectory for PCK of fractions currently exists. However, there are recent, albeit isolated,
findings that provide some preliminary support for the revised construct map presented here. For
example, Tyminski et al. (2020) found that PSTs had a more difficult time analyzing one student’s area
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model where they were asked to solve % of 8 and divided each item into fourths before adding all
fourths. Such reasoning would fall under Level 4 in our revised construct map (Table 4). Although
alignment of such findings is helpful, there are relatively few studies that examine or describe teachers’
difficulty with particular aspects of PCK. The construct map presented here provides a reference for
others engaging in such work, but one that will need revision, evaluation, and expansion as scholars
continue to examine teachers’ PCK for fractions.

The revised construct map (see Table 4) serves as a useful starting point for study of teachers’
PCK for fractions. Prior to this study, such an empirically based starting point was unavailable.
However, we admit the limitations and emphasize that this construct map needs to be empiri-
cally validated and updated through quantitative and qualitative study. Regarding the PCK-
Fractions measure, there is a need to revise item wording to better align with the revised
construct map. Specifically, items written for the original construct map included options and
particular phrasings that aligned with the hypothesized sequence and adjustment is needed to
improve the items in this regard. Other research could also examine the development of PCK
longitudinally through either quantitative or qualitative means. Further, evidence suggests PCK
is correlated with PSTs” CK of fractions (Depaepe et al., 2015; Kazemi & Rafiepour, 2018). Yet, a
proper understanding of how CK facilitates the development of more advanced PCK is lacking.
Similarly, there is a need to better understand how PCK develops across various mathematical
concepts and grade-band foci for educators.

Toward a More Complete Validity Argument

Despite writing items for a measure based on a flawed, albeit research-informed, initial construct
map, the PCK-Fractions measure performed remarkably well for an initial pilot. Rather, if “we
attempted to build the ship while sailing it” (Hill et al., 2008, p. 396), we managed not to sink,
and developed an initial validity argument that can be expanded upon with a basis of empirical
evidence. Recall that the intended purpose for the PCK-Fractions measure is to assess profes-
sional knowledge of teachers with different professional experiences. As such, the intended use of
the measure is to evaluate the effectiveness of various experiences that are intended to contribute
to improving teachers’ PCK. Validity evidence presented in this article provides initial support
toward this purpose and use statements. However, we have and continue to stress validity
evidence and validity arguments are best constructed over a series of several studies (Krupa et
al., 2019). Therefore, results and findings in this article provide support for an initial validity
argument while simultaneously indicating next steps for improving the measure and constructing
the validity argument.

Analysis of cognitive interviews provided evidence toward the response processes and test
content of the measure aligning with the PCK subconstruct of KCS. Coupled with the results
from the Rasch analysis, this set of validity evidence indicated our initial construct map was flawed.
In essence, we needed the psychometric data to fully understand and make use of evidence that
emerged in the cognitive interviews. Given the revised construct map (Table 4), and the need for
new items to assess lower PCK, an additional step in the validation of the PCK-Fractions measure is
to review the structure and wording of all items for better correlation with the revised construct
map. Additionally, interviewing PSTs at different stages in their teacher education about their
responses may provide a better understanding of the nature of their PCK and how it develops.
Given the need for future revision, we provide a sample of items in the Appendix, but not the entire
instrument. We believe this allows for transparency regarding the strengths and current limitations
of the measure following its initial pilot.

ANOVA results were used as evidence related to other variables (i.e., level of experience).
This preliminary evidence suggests that the PCK-Fractions measure may detect differences due
to professional experiences (i.e., participation in a teacher education program). Such evidence
provides the first indication of relationships to other variables, and additional evidence is
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Table 4. Revised construct map for PCK-fractions.

Level Description Items®

Level  Assess children’s creation and/or use of fractional parts. F07, FO8d

Le\:el Assess children’s coordination of parts and of the whole. FO8a, FO8c,

Le\fel Assess children’s creation and use of non-unit fractions & comparison of fractions. F01Fg,9F08b

Le\?el Assess children’s coordination of non-unit fractions with the whole & comparison of fractions and FO1c, F14, F21
4 wholes.

*These are example items provided in the Appendix.

necessary to better evaluate PCK-Fractions’ capacity in this regard. Such evidence may include
both cross-sectional and/or longitudinal data. Second, evidence from Rasch modeling indicated
the current measure lacks items with lower difficulty, and the current sample included too few
such individuals. Thus, in addition to sampling participants, we anticipate would have low
PCK scores, next steps should include writing and piloting items focusing on assessing
lower PCK.

Rasch analysis provided validity evidence for internal structure, as results from Rasch modeling
indicated a need for items of less difficulty and participants with lower levels of PCK for fractions. This
latter finding, coupled with the ANOVA results, was particularly unexpected and has significant
implications for future validation work and, perhaps, teacher education. Specifically, there is a
significant amount of literature describing the lack of fraction CK of PSTs (Depaepe et al., 2015;
Trobst et al., 2018). This literature base led us to believe that a sample of junior and senior PSTs would
provide a wider range of demonstrated PCK than what we observed. Instead, only 23.5% of partici-
pants demonstrated “lower than average” PCK for fractions.

Implications for Mathematics Teacher Educators

This article presents validity evidence from the pilot of our PCK-Fractions measure. Despite these
results serving as the first in a series of validity argument studies for this measure, there are clear
implications from the present article toward mathematics teacher education. First and foremost, the
revised construct map (Table 4) provides a useful tool for teacher educators in scaffolding PSTs’
experiences for engaging in such pedagogy. Such efforts can also contribute to scholarship in under-
standing how PSTs develop PCK for fractions, and how such development may be facilitated.

The PCK skew in scores observed in this study also has potential implications for mathematics
teacher education. We caution the reader by noting these results need to be confirmed and expanded
upon. It is possible that teachers may have significantly more professional knowledge than is acknowl-
edged. It is also possible that the current measure does not include PCK items with high enough
difficulty - though evidence presented in this article suggests a more pressing need for simpler tasks.
As the PCK-Fractions measure, and measures like it, become available for such evaluation, it would be
worthwhile to investigate which teacher education practices and professional experiences, across
various teacher education programs and school districts, benefit teachers the most.

Conclusion

The purpose of this study was to construct an initial validity argument for an assessment of PSTs’ PCK.
Following recommendations of others (Herbst & Kosko, 2014; Copur-Gencturk et al., 2019; Hill et al.,
2008), we found that designing items with a focus on student conceptions to be a beneficial approach.
The validity evidence collected from our pilot study provides support for an initial validity argument.
Although preliminary, evidence presented here provides a useful baseline for an initial validity argument
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and an improved construct map for conceptualizing PCK for fractions and studying this construct in the
future.
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Appendix. Example items from the PCK-Fractions measure. See FO1 (Table 1), FO8a-b
(Figure 4) & F14 (Figure 2) for additional examples

Ms. Crusher asked her students (o show one-fourth of two yellow hexagons using a set of Ron was asked to find 5 — 5 , he drew the picture below and said “1 of 2 parts minus 1 of
fraction pattern blocks. 2 3

3 parts is 1 of 3 parts ™.

Of the responses below, which best demonstrates the incorrect conception that
a whole must be one discrete object?

= 2
o
[ = E
<4
Based on his response, which of the following statements best explains his reasoning?
(@  Ron does not understand partitioning a whole into equal parts.
@  Ronunderstands how to partition a whole into equal parts but does not understand
‘what the parts mean.
@ Ron understands how to make parts but does not understand what the whole means
@  Ronis using a fair share approach on a fraction subtraction task.
John was asked to show and tell how much each person gets if four people share five
chocolate bars equally. John’s response is shown below:
MERMES
each person svs
one loar.
o~
>
=

‘Which statement below best describes John’s reasoning?

(@  John correctly partitions the chocolate bar but does not provide a fraction as an answer.

John incorrectly partitions the chocolate bar but does not provide a fraction as an
answer.
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