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ABSTRACT

The detection of an intermediate-mass black hole population (102~10% M) will provide clues to their formation environments
(e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes.
Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing
up to ~450 M. However, ground-based detector data contain numerous incoherent short duration noise transients that can
mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here,
we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of
triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines,
with lab-frame total masses = 55 Mg, using data from LIGO’s second observing run. Our analysis does not yield evidence for
new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first
LIGO-Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.
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1 INTRODUCTION

Stellar mass (Mgy < 10? Mg) and supermassive black holes
(Mgy > 10° M) have been observed and well-studied since the
1970s (Webster & Murdin 1972; Balick & Brown 1974; Ghez et al.
1998; Genzel, Eisenhauer & Gillessen 2010; Abbott et al. 2019b,
2021a; Event Horizon Telescope Collaboration et al. 2019). However,
there is a deficiency of observational evidence for black holes in the
intermediate-mass range 10> — 10° M. A variety of techniques have
been employed to search for intermediate-mass black hole (IMBH)
candidates including reverberation mapping (Peterson 2014), direct
kinematic measurements (Schodel et al. 2002; Kiziltan, Baum-
gardt & Loeb 2017), applying macroscopic galaxy to black hole
mass scaling relations, Mgy—o and Mpgy-L relations (Graham &
Scott 2013; Wevers et al. 2017), studying X-ray luminosity and
spectra (Greene & Ho 2004; Lin et al. 2020), gravitational lensing
of gamma-ray burst light curves (Paynter, Webster & Thrane 2021),
and others (see Koliopanos 2017; Mezcua 2017; Greene, Strader &
Ho 2020). However, because IMBH have smaller masses than
those of supermassive black holes, it is much more challenging to
observe them with these observational techniques (Mezcua 2017).
Additionally, numerous IMBH candidates discovered using these
techniques are ambiguous as the observations can be attributed to
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other sources (e.g. light sources orbiting clusters of stellar-mass black
holes, Ridolfi et al. 2016; Freire et al. 2017; anisotropic emission
from neutron stars, Israel et al. 2017; Rodriguez Castillo et al. 2020).
The discovery of an IMBH population will bridge the intermediate-
mass observational gap, probe IMBH formation environments (e.g.
accretion discs of active galactic nuclei, McKernan et al. 2012, 2014,
2018, 2019; Bellovary et al. 2016; Yang et al. 2019a,b; Grobner
et al. 2020; Ishibashi & Grobner 2020; Samsing et al. 2022; Tagawa,
Haiman & Kocsis 2020; Tagawa et al. 2021; the centres of dense
stellar clusters, Romero-Shaw et al. 2020b; Anagnostou, Trenti &
Melatos 2020; Martinez et al. 2020; Banerjee 2021a,b; Ballone et al.
2021; Bouftanais et al. 2021; Kumamoto et al. 2021; Mapelli et al.
2021; Weatherford et al. 2021; Zevin et al. 2021; Population-I1I
stars, Inayoshi et al. 2017; Liu & Bromm 2020; Safarzadeh & Haiman
2020; Farrell et al. 2021; Toubiana et al. 2021), and illuminate
our understanding of supermassive black hole formation (Giirkan,
Fregeau & Rasio 2006; Amaro-Seoane et al. 2007; Arca Sedda &
Mastrobuono-Battisti 2019; Askar, Davies & Church 2021).
Compact binary coalescences (CBCs) can provide gravitational-
wave signals for IMBH candidates e.g. the 142735 Mg, (90 per cent
credible intervals) remnant observed from the gravitational-wave
event GW190521 (Abbott et al. 2020c) and other candidates (Abbott
et al. 2019a; Chandra et al. 2021; Abbott et al. 2022). As a binary’s
lab-frame total mass M is associated with its gravitational-wave
merger frequency, f o M~!, ground-based gravitational-wave
detectors (f~ 10" — 10° Hz) are sensitive to the last milliseconds of
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merging systems with 100 Mg < M < 400 Mg (LIGO Scientific
Collaboration et al. 2015; Martynov et al. 2016; Moore, Cole &
Berry 2014; Acernese et al. 2015), while space-based detectors
(f ~ 1072-10' Hz) can study the full signals of merging systems
with 10* Mgy < M < 107 Mg, (Moore et al. 2014; Lu, Tan & Shao
2019). Because of the short duration of IMBH gravitational-wave
signals in ground-based detectors, data quality is critical for their
detection. Gravitational-wave data is characterized by numerous
non-stationary terrestrial artifacts called glitches (Nitz 2018; Powell
2018; Cabero et al. 2019). Like signals from IMBH mergers, most
glitches last for a fraction of a second, making them difficult to
distinguish from astrophysical signals. These glitches can decrease
the sensitivity of searches for binary black hole mergers with
M 2 55 Mg (Nitz 2018).

Although a significant fraction of the glitches can be identified
by testing them for coherence amongst two or more detectors
and performing matched-filtering, these methods are insufficient
to identify all glitches (Nitz 2018; Powell 2018; Cabero et al.
2019). One method to discriminate more glitches while searching for
CBCs is the Bayesian odds (Veitch & Vecchio 2010; Kanner et al.
2016; Isi et al. 2018; Ashton, Thrane & Smith 2019b; Ashton &
Thrane 2020; Pratten & Vecchio 2020). The Bayesian Coherence
Ratio ppcr  (Isi et al. 2018; Ashton et al. 2019b) is a Bayesian
odds comparing the probability that the data contains coherent
signals versus incoherent glitches. In this paper, we use the ppcr
to rank O2’s coincident CBC gravitational-wave candidates with
lab-frame total masses in the range of 55 — 500 M. We present the
candidates’ pj, the probability that the candidate is inconsistent with
the background distributions of pgcr values computed from time-slid
data. Additionally, for comparison, we provide the candidate’s pasyo
values reported by the LIGO-Virgo-KAGRA (LVK) collaboration
in GWTC-1 (Abbott et al. 2019b), the PYCBC-team (Allen 2005;
Allen et al. 2012; Dal Canton et al. 2014; Usman et al. 2016; Nitz
et al. 2017,2018, 2020a, c, b; Davies et al. 2020), by the Institute of
Advanced study’s team (IAS; Venumadhav et al. 2019; Zackay et al.
2021), and by Pratten & Vecchio (2020).

We find that (a) events reported in GWTC-1, including GW 170729
(likely the most massive BBH system in GWTC-1) are statistically
significant pg > 0.9; (b) three out of the eight IAS events and
candidates have p3 > 0.9, corroborating IAS’s detection claims for
GW170304, GW170727, and GW170817A; and that (c) our ranking
statistic does not identify any new IMBH, but does identify an
unreported marginal stellar mass binary black hole candidate, 170222
with pg ~ 0.6.!

The remainder of this paper is structured as follows. We outline our
methods, including details of our ranking statistic and the retrieval of
our candidates in Section 2. We present details on the implementation
of our analysis in Section 3. Finally, we present our results in
Section 4 and discuss these results in the context of the significance
of gravitational-wave candidates in Section 5.

2 METHOD

2.1 A Bayesian ranking statistic

The standard framework to identify CBC gravitational-wave signals
in data is to quantify the significance of candidates with null-
hypothesis significance testing (Abbott et al. 2019b, 2021a). In this

1170222 is a sub-threshold candidate detected by PYCBC (SNR ~ 7.7). The
prefix of GW is not utilized as this is a candidate event.
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framework, the candidates’ ranking statistic is compared against a
background distribution. The independent matched-filter searches,
e.g. PYCBC (Usman et al. 2016), SPIIR (Chu et al. 2022) and
GSTLAL (Sachdev et al. 2019), and Coherent WaveBurst (Klimenko
et al. 2016) used by LVK to search for signals in gravitational-
wave data all use ranking statistics in such a manner (Abbott et al.
2019b). Both PYCBC and GSTLAL'’s ranking statistic incorporate
information about the relative likelihood that the data contains a
coherent signal versus noise. In contrast, CWB’s ranking statistic
uses the information of coherent energy present in the network of
detectors (Abbott et al. 2019b).

Bayesian inference offers an alternative means to rank the signifi-
cance of candidate events by computing the odds that the data contain
a transient gravitational-wave signal versus instrumental glitches (Isi
et al. 2018). This method relies on accurate models for the signal
and glitch morphologies (Isi et al. 2018). In principle, Bayesian
odds is the optimal method for hypothesis testing (Ashton et al.
2019b). Much of its power comes from the Bayesian evidence, the
likelihood of the data given a hypothesis. However, the evidence
is not used in current matched filter searches. Here, we explore
a hybrid frequentist/Bayesian ranking statistic that makes use of
the Bayesian evidence. We compute the Bayesian evidence under
the assumption that the data either contain a coherent gravitational-
wave signal, noise, or a glitch (75, 7N, 79, defined in Appendix A).
However, because we do not have at our disposal a set of PyCBC
triggers generated for simulated signals from a realistic population,
we use the evidences as a ranking statistic, instead of computing
true Bayesian odds. We form a bootstrapped distribution of the
evidence for simulated foreground and background events to form a
frequentist ranking statistic. Our work highlights the importance of
an astrophysically realistic injection set for calculating pso-

2.2 Formalism

Introduced by Isi et al. (2018), the Bayesian Coherence Ratio for a
signal in a network of D detectors is given by

#5758
PBCR = > (1
I1 [#°2F + 2z}
i=1
where {#5, #N, #C} are ‘pseudo prior probabilities’ that the data

contain a coherent signal, incoherent noise, or an incoherent glitch.
These factors are not true prior probabilities because they are not
chosen a priori. Rather, these factors are obtained by minimizing
the overlap between a signal and background distribution (see
Appendix D). We assume each detector has the same glitch and noise
prior probabilities of {#", #¢}. In the limit where our pseudo prior
probabilities equal the actual prior probabilities, the pgcr becomes
the optimal Bayesian odds described by Ashton et al. (2019b).
However, as we do not (in this work) have a reliable estimate for
the prior probabilities, we cannot interpret the ppcr as a Bayesian
odds to discriminate signals from glitches. Instead, we use the pgcr
as a ranking statistic to obtain a frequentist significance of pgcr.
Since it is impossible to shield ground-based gravitational-wave
detectors from gravitational-wave signals, the LVK empirically
estimates the background by repeatedly time-shifting strain data
by amounts larger than the light-traveltime between the two LIGO
detectors (Abbott et al. 2019b). We use time-shifted data to generate
pb g, the background ranking statistic. Following this, we calculate
the fraction of pjcy greater than or equal to a pScg, the candidate
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Table 1. Trigger-selection lab-frame parameter space (parameters corre-
spond to signals with durations <454 ms and g > 0.1).

Minimum Maximum

Component mass 1, m; [Mg ] 31.54 491.68
Component mass 2, my [M¢ ] 1.32 121.01
Total mass, M [Mg ] 56.93 496.72
Chirp mass, M [Mg ] 8.00 174.56
Mass ratio, g 0.1 0.98
ranking statistic

b .
Pt = Count of pger < PEcr @

Count of p5g

Given a set of simulated signals and their ranking statistic ppcg, One
may calculate the fraction of pjy greater than or equal to a pgcg

s _ Countof ppcg < pper

= (3)

Count of pgeg

With p? and pf, it is possible to compute a candidate’s p,gyo, the
probability that a candidate is of astrophysical origin
P
K b *
P+ pi
However, for this study, we do not have an astrophysical distribution
of simulated signals and so we cannot compute pj or consequently
Daswo- Instead, we opt for a frequentist p-value probability that
a candidate is inconsistent with the background. As we have k

candidates, each with a pgr, we calculate a false-alarm probability
ps that accounts for trial factors given by

pr=1—(1-p)". )

Finally, we compute the probability that a candidate is inconsistent
with the background

“

Pastro =

pe=1-ps. ©)

When pj < 1, the event is consistent with the background distri-
bution. Conversely, when pp & 1, the event is inconsistent with the
background distribution, and is therefore a promising gravitational-
wave candidate.

It is important to note that pp (the probability that an event is not
part of the background distribution) is not the same as pygy0, Which
requires an astrophysical set of simulated signals.

3 ANALYSIS

We acquire candidate signal triggers (times when the detector’s data
has a signal-to-noise ratio above a predetermined threshold) for ppcr
analysis from PYCBC’s search in O2 (Allen 2005; Allen et al. 2012;
Dal Canton et al. 2014; Usman et al. 2016; Nitz et al. 2017, 2018,
2020a; Abbott et al. 2020b; Davies et al. 2020). Some of the triggers
are associated with gravitational-wave events and candidates while
others are glitches. We also acquire background time-slid triggers
and simulated triggers from PYCBC’s O2 search to calculate pheg
and estimate values for {7, 7} (see Appendix B for details on the
estimation process). The triggers are divided into 2-week time-frames
because the detector’s sensitivity does not stay constant throughout
the 8-month-long observing period (Usman et al. 2016).

For our study, we filter PYCBC triggers to include only those
in the parameter ranges presented in Table 1. This region focuses
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our analysis on binary black hole mergers with lab-frame total
masses above 2> 55M, corresponding to binary systems with signal
durations < 454ms and g > 0.1. The filtering process leaves us
with ~70000 background, ~5000 simulated, and 25 candidate
signal triggers. We additionally include events and candidate events
reported by GWTC-1 and the IAS group in our list of candidate signal
triggers. A plot of the lab-fame component mass space constrained
by our search space is presented in Fig. 1.

To evaluate {Z5, ZP, Z"} and calculate the ppcr (equation 1)
for triggers, we carry out Bayesian inference with BILBY (Ashton
et al. 2019a, 2020), employing DYNESTY (Speagle 2020) as our
nested sampler. Nested sampling, an algorithm introduced by Skilling
(2004, 2006), provides an estimate of the Bayesian evidence and is
often utilized for parameter estimation within the LIGO collabora-
tion (Ashton et al. 2019a, ¢; Smith et al. 2020).

We use a likelihood that marginalizes over coalescence time, the
phase at coalescence, and luminosity distance (see Thrane & Talbot
2019, equation 80). We use identical parameter estimation priors for
the glitch and signal models. We restrict the spin priors to aligned
spins to reduce the number of parameters we sample. We define our
mass priors to be uniform in chirp mass M and mass ratio g to
avoid sampling issues that arise from sampling in thin regions of
the component mass parameter space (Romero-Shaw et al. 2020a).
As a post-processing step, we convert posterior samples calculated
with uniform {M, ¢} priors to uniform component mass priors by
re-sampling the posterior samples using the Jacobian given in Veitch
etal. (2015, equation 21). The complete list of the priors is in Table 2.

The waveform template we utilize is IMRPHENOMPV2, a phe-
nomenological waveform template constructed in the frequency
domain that models the in-spiral, merger, and ring-down (IMR)
of a CBC (Khan et al. 2016). Although there exist gravitational-
wave templates such as IMRPHENOMXPHM (Pratten et al. 2020),
NRSur7D04 (Blackman etal.2017), and SEOBNRv4 PHM (Ossokine
et al. 2020) which incorporate more physics, such as information on
higher order modes, we use IMRPHENOMPV2 as it is computationally
inexpensive compared to others.

To generate the power spectral density (PSD), we take 31 neigh-
bouring off-source non-overlapping 4-s segments of time-series data
before the analysis data segment d;. A Tukey window with a 0.2-
s roll-off is applied to each data segment to suppress spectral
leakage. After this, we fast-Fourier transform and median-average
the segments to create a PSD (Abbott et al. 2020a). Like other PSD
estimation methods, this method adds statistical uncertainties to the
PSD (Chatziioannou et al. 2019; Biscoveanu et al. 2020; Talbot &
Thrane 2020). To marginalize over the statistical uncertainty, we
use the median-likelihood presented by Talbot & Thrane (2020)
as a post-processing step. This post-processing step reduces the
percentage of background ph.r > 0 by ~ 49 per cent. The details
of this calculation are in the Appendix C.

The data we use are the publicly accessible O2 strain data from the
Hanford and Livingston detectors, recorded while the detectors are
in ‘Science Mode’. We obtain the data from the gravitational-wave
Open Science Center (Abbott et al. 2021b) using GWPY (Macleod
et al. 2020).

Finally, with the p§cg and pbeg for each time-frame of triggers,
we calculate the candidate signal’s pj.

4 RESULTS

We analyse the O2 candidates with M > 55 My, and report candi-
dates with pz > 0.2 in Table 3. The 7% and #¢ values utilized for
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Figure 1. Lab-frame black hole component-mass boundaries for our search space and parameter estimation prior. Our search is constrained to the parameter
space enclosed by the gold-coloured hatches, while our prior is constrained to the slightly larger parameter space enclosed by the teal-coloured hatches. The
purple region labelled ‘IMBH’ is the parameter space where merger remnants may be IMBHs.

Table 2. Prior settings for the lab-frame parameters used during our pa-
rameter estimation. The definitions of the parameters are documented in
Romero-Shaw et al. (2020a, Table El). The trigger time 7. is obtained from
the data products of PYCBC’s O2 search.

Parameter Shape Limits
M (Mg) Uniform 7-180
q Uniform 0.1-1
M (Mgp) Constraint 50-500
di, Mpc) Comoving 100-5000
X1> X2 Uniform -1to1l
0N Sinusoidal 0-m
v Uniform 0-7
¢ Uniform 0-2m
RA Uniform 027
Dec. Cosine 027
1. (s) Uniform t. £0.1

each time-frame are reported in Appendix D. By imposing a pp
threshold of 0.5, we present 13 candidate gravitational wave events.
Various search pipeline p,so are not mathematically equiva-
lent (Galaudage, Talbot & Thrane 2020). Moreover, p,go 1S not
equivalent to pz. However, by comparing candidates’ various pagso
values with p 3, we can compare how significant each pipeline deems
the candidate. For comparison, in Table 3, we report p,go values from
GWTC-1 (Abbott et al. 2019b), PyCBC OGC-2 (Nitz et al. 2020b),
PyCBC OGC-3 (Nitz et al. 2020b), IAS (Venumadhayv et al. 2019;
Zackay et al. 2021), and Pratten & Vecchio (2020)’s analyses.

4.1 GWTC-1 events

All the confirmed gravitational-wave events from binary black hole
mergers reported in GWTC-1 and within our prior space (specifically
GW170104, GW170608, GW170729, GW 170809, and GW170814)
have pjz > 0.9, indicating a high probability of an astrophysical
signal.

In addition to the above confirmed gravitational-wave events from
GWTC-1, we have also analysed several candidate events from
GWTC-1, most of which have low pjz. For example, consider the
candidate event 170412 (1, = 1176047817), assigned a pygo of 0.06
by GSTLAL and has a p3 of 0.01. This candidate was reported to be
excess power caused due to noise appearing non-stationary between
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60 and 200 Hz (Abbott et al. 2019b). This candidate demonstrates
that pg may be utilized to eliminate candidates originating from
terrestrial noise sources.

4.2 IAS events

Our analysis of the TAS events and candidates with M 2> 55 Mg
in O2 has resulted in one event with disfavoured pjz < 0.5
(GW170425), and five events and two candidates with pz >
0.5 (GW170121, GW170304, 170302, GWC170402, GW 170403,
GW170727, GW170817A). From this list, four events (GW170121,
GW170304, GW170727, GW170817A) have pz > 0.8 and paswo >
0.9 reported from other pipelines, making them viable gravitational-
wave event candidates.

GWC170402, detected by Zackay et al. (2021), is reported to
originate from a binary with non-zero eccentricity (Zackay et al.
2021). As we used a non-eccentric waveform during analysis, we may
be under estimating this event’s significance at pz < 0.6. Finally,
GW170425 which has pg < 0.25 also has low pago reported in OGC-
2 and OGC-3 (Nitz et al. 2020b, 2021), suggesting that GW 170425
may have been a false alarm.

4.3 New candidate events

Although no IMBH detections are made with the ppcgr, a marginal
stellar mass black hole merger candidate 170222 has been dis-
covered with a pg ~ 0.6. This candidate has a SNR ~ 7.7,
low spin magnitudes, and source-frame component masses of
(47.167899.35.507272)M, (90 per cent credible intervals), making
it one of the heavier black hole mergers from O2 and GWTC-1.
This candidate may be of interest as one component black hole may
lie in the pair-instability mass gap (55in8 - 148fg)MO (Heger &
Woosley 2002; Woosley & Heger 2021). More details on the can-
didate are presented in Appendix E. The remaining coherent trigger
candidates all have pz < 0.5, making them unlikely to originate
from astrophysical sources.

5 CONCLUSION

In this paper, we demonstrate that the Bayesian Coherence Ratio
pecr  (Isi et al. 2018) can be used as a ranking statistic to provide
a measure of significance for gravitational-wave signals originating

€20z Jaquiaoa( 90 uo Jasn ABojouyoa] Jo ainmisu| eiuloled Aq y€+8/99/60ES/v/9 1 S/8101Ue/SEIUW/ WO dno-olWwapeoe//:sdny woJj papeojumoq


art/stac2332_f1.eps

An IMBH candidate follow-up in O2 using the BCR

Table 3. pjp table for gravitational wave events and candidates in our search space with pz > 0.2, calculated using Hanford and Livingston
observatory data. Displayed for comparison are significances of events taken from: GstLAL pgﬁg;AL (Abbott et al. 2019b), PyCBC pgsyt(r:oBC
(Abbott et al. 2019b), IAS p!AS " (Venumadhav et al. 2019; Zackay et al. 2021), P(S|d) (Pratten & Vecchio 2020), PyCBC OGC-2 pQ3C? (Nitz
et al. 2020b), and PyCBC OGC-3 pQ8S3 (Nitz et al. 2020b). The 7, column contains the ‘GPS’ coalescence-times of the gravitational wave
events. The catalogue column displays the first catalogue reporting the event on each row (the catalogues labeled IAS-1 and IAS-2 correspond

to the candidates published by Venumadhav et al. 2019 and Zackay et al. 2021).
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Bren Canlome  py P G P R 0

GW170104 GWTC-1 0.97 1.00 1.00 1.00 1.00 1167559936.60
GW170121 IAS-1 0.83 1.00 0.53 1.00 1.00 1169069154.57
170209 - 0.32 1170659643.47
170222 - 0.58 1171814476.97
170302 IAS-1 0.78 0.45 1172487817.48
GW170304 IAS-1 0.94 0.99 0.03 0.70 0.70 1172680691.36
GWC170402 IAS-2 0.60 0.68 0.00 1175205128.57
GW170403 IAS-1 0.54 0.56 0.27 0.03 0.71 1175295989.22
170421 - 0.27 1176789158.14
GW170425 IAS-1 0.22 0.77 0.74 0.21 0.41 1177134832.18
GW170608 GWTC-1 0.99 1.00 0.92 1.00 1180922494.50
GW170727 IAS-1 0.98 0.98 0.66 0.99 1.00 1185152688.02
GW170729 GWTC-1 0.98 0.52 0.98 1.00 1.00 0.99 1185389807.30
GW170809 GWTC-1 0.99 1.00 0.99 1.00 1.00 1.00 1186302519.75
GW170814 GWTC-1 1.00 1.00 1.00 1.00 1.00 1.00 1186741861.53
GWI170817A IAS-2 0.92 0.86 0.02 1186974184.72

from CBCs with lab-frame total masses between 55 Mg and 400 Mg,
arange thatincludes IMBHs. To compute the ppcr for candidates, we
utilize Bayesian inference to calculate the probability of data under
various hypotheses (the hypotheses that the data contains a coherent
signal, just noise, or an incoherent glitch). This Bayesian ranking
method takes a step towards building a unified Bayesian framework
that provides a measure of significance for candidates and estimates
their parameters, utilizing the same level of physical information
incorporated during detected parameter estimation studies.

In our study, we analyse O2 binary-black hole events and can-
didates with M > 55 Mg reported by the PYCBC search (Nitz
et al. 2020b), the IAS-team (Venumadhav et al. 2019; Zackay
et al. 2021) and those reported in GWTC-1 (Abbott et al. 2019b).
Using a pj threshold of 0.5, we find that the GWTC-1 events have
high probabilities of originating from an astrophysical source. We
also find that some of the GWTC-1 marginal triggers that have
corroborated terrestrial sources (for example, candidate 170412)
have low pj, indicating this method’s ability to discriminate between
terrestrial artifacts and astrophysical signals. Our analysis of the
IAS events demonstrates that GW170121, GW170304, GW 170727,
and GW170817A are likely to originate from astrophysical sources
(pg = 0.8), while GW 170425 is not (p3 < 0.25). Finally, we report
a new marginal binary-black hole merger candidate, 170222.

With the rapid rate of development in gravitational-wave Bayesian
inference, we anticipate the ability to analyse longer duration signals,
utilize more advanced signal and glitch models, and incorporate
data from the entire detector network. In a similar vein, with
the accumulation of more gravitational wave events, future ppcr
work may utilize astrophysically informed priors during Bayesian
inference and more accurate prior probabilities for each detector.
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APPENDIX A: BAYESIAN EVIDENCE
EVALUATION

A1 Noise model

We assume that each detector’s noise is Gaussian and stationary
over the period being analysed (Abbott et al. 2020a). In practice, we
assume that the noise has a mean of zero that the noise variance o>
is proportional to the noise power spectral density P(f) of the data.
Using P(f), for each frequency-domain data segment d; in each of
the i detectors in a network of D detectors, we can write

zN :./\/’(d,-lu =0,0°

1

= P(f)), (Al)

where N is a normal distribution.

A2 Coherent signal model

We model coherent signals using a binary black hole waveform tem-
plate /L(@) where the vector @ contains a point in the 11-dimensional
space describing aligned-spin binary-black hole mergers. For the
signal to be coherent, 6 must be consistent in each 4-s data segment
d; for a network of D detectors. Hence, the coherent signal evidence

where 71(5 |Hs) is the prior for the parameters in the coherent signal
hypothesis Hg; and L(d;| u(é)) is the likelihood for the coherent
signal hypothesis that depends on the gravitational-wave template
u(@) and its parameters 4.

A3 Incoherent glitch model

Finally, as glitches are challenging to model and poorly understood,
we follow Veitch & Vecchio (2010) and utilize a surrogate model
for glitches. The glitches are modelled using gravitational-wave
templates u(é) with uncorrelated parameters amongst the different
detectors such that 9 #* 9 for two detectors i and j (Veitch &
Vecchio 2010). Modelling ghtches with ;/.(0) captures the worst-case
scenario: when glitches are identical to gravitational-wave signals
(excluding coherent signals). Thus, we can write ZiG as

= / L(d;|11(0)) 76 H) b (A3)

where 7 (0| H) is the prior for the parameters in the incoherent glitch
hypothesis Hg.

APPENDIX B: TUNING THE PRIOR
PROBABILITIES

After calculating the ppcr for a set of background triggers and
simulated triggers from a stretch of detector-data (a data chunk), we
can compute probability distributions for the background and sim-
ulated triggers, p,(popcr) and py(ppcr). We expect the background
trigger and simulated signal ppcr values to favour the incoherent
glitch and the coherent signal hypothesis, respectively. Ideally,
these distributions representing two unique populations should be
distinctly separate and have no overlap in their pgcr values. The prior
probability parameters #5 and #¢ from Equation 1 help separate
the two distributions. Altering 75 translates the pgcr probability
distributions while adjusting #¢ spreads the distributions (see Isi
et al. 2018, Appendix A). Although Bayesian hyper-parameter
estimation can determine the optimal values for #5 and #¢, an
easier approach is to adjust the parameters for each data chunk’s
pacr distribution. In this study, we tune #5 and #¢ to maximally
separate the ppcr distributions for the background and simulated
triggers.

To calculate the separation between p,(ppcr) and ps(poBcr), We
use the Kullback-Leibler divergence (KL divergence) Dy, given by

_ Po(x)
Di(polp) =) ”b()‘)l"g(,gx(x)) : (B1)

XEPBCR

The Dy = 0 when the distributions are identical and increases as
the asymmetry between the distributions increases.

We limit our search for the maximum KL-divergence in the # 5 and
#9 ranges of [10~'9, 10°]. We set our values for #° and # € to those
which provide the highest KL-divergence and calculate the ppcr for
candidate events present in this data chunk. Note that we conduct the
analysis in data chunks of two weeks rather than an entire data set of
a few months as the background may be different at different points
of the entire data set.

MNRAS 516, 5309-5317 (2022)

€20z Jaquiaoa( 90 uo Jasn ABojouyoa] Jo ainmisu| eiuloled Aq y€+8/99/60ES/v/9 1 S/8101Ue/SEIUW/ WO dno-olWwapeoe//:sdny woJj papeojumoq


http://dx.doi.org/ 10.1093/mnras/staa2850
http://dx.doi.org/10.3847/2041-8213/abbe26
https://arxiv.org/abs/1901.08580
http://dx.doi.org/10.3847/2041-8213/abc253
http://dx.doi.org/ 10.1038/s41586-021-04333-1
http://dx.doi.org/10.1038/nature01121
http://dx.doi.org/10.1093/mnras/staa2483
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.3847/1538-4357/ab9b8c
http://dx.doi.org/10.3847/1538-4357/abd555
http://dx.doi.org/10.1017/pasa.2019.2
http://dx.doi.org/ 10.1103/PhysRevLett.126.101105
http://dx.doi.org/10.1088/0264-9381/33/21/215004
http://dx.doi.org/ 10.1103/PhysRevD.81.062003
http://dx.doi.org/ 10.1103/PhysRevD.91.042003
http://dx.doi.org/10.1103/PhysRevD.100.023011
http://dx.doi.org/ 10.1103/PhysRevD.101.083030 
http://dx.doi.org/10.3847/2041-8213/abd79c
http://dx.doi.org/10.1038/235037a0
http://dx.doi.org/10.1093/mnras/stx1703
http://dx.doi.org/ 10.3847/2041-8213/abf2c4
http://dx.doi.org/ 10.1103/PhysRevLett.123.181101
http://dx.doi.org/10.3847/1538-4357/ab16e3
http://dx.doi.org/ 10.1103/PhysRevD.104.063030
http://dx.doi.org/10.3847/1538-4357/abe40e

5316  A. Vajpeyi et al.

—
—_
=
-
-
-

=

= .

B .l = = |
2 08 = =

) ~] =]

S 0.6t ; & :
& 0.4 > -
<

202k |
=

;5 {] (] 1 1 L 1

.= —10 0 10 20 30

In ppcr

>

ﬁ 1.0 T T T T

— 0 ™

e i = = |
g 038 = =

'Q ~1 ~]

D% 0.6F il ; .
04t > |
=

2 0.2k -
=

;5 () {] 1 1 1 1

.= 10 0 10 20 30

In ppcr

Figure C1. Histograms represent the survival function (1-CDF) from our selection of background triggers (grey) and simulated signals (blue) triggers obtained
from PYCBC'’s search of data from 2017 August 13-21. Vertical lines mark the In pgcr of IAS’s GW170817A and GWTC-1’s GW170814. Left-hand
panel: Survival functions using the post-processing step to marginalize over PSD statistical uncertainties. Right-hand panel: Survival functions without the
post-processing step. Without the post-processing step, there is a greater overlap between the background (grey) and foreground (blue) survival functions.

APPENDIX C: MARGINALIZING OVER PSD
STATISTICAL UNCERTAINTIES

To generate the results presented in Table 3, we applied a post-
processing step to marginalize the uncertainty in the PSD. In
Fig. Cl1, we demonstrate the impact of the post-processing step.
Marginalizing over uncertainty in the PSD yields an improvement
in the separation of the noise and signal distributions (left plot).
Quantitatively, at a threshold pgcr’ = 0, the post-processing step
reduces the percentage of background ppcr > opcr | from 60 to
25 per cent (a 58 per cent improvement) in the August 13-21 time-
frame of data. For the entirety of O2, PSD marginalization reduces the
percentage of pgcr > pecr | from 64 to 33 per cent (a ~ 49 per cent
improvement).

APPENDIX D: TUNED PRIOR PROBABILITIES

02 lasted several months, over which the detector’s sensitivity varied.
Hence, a part of our analysis entailed tuning the prior probabilities for
obtaining a signal and a glitch, 75 and 7# ¢, as described in Section 2.
Table D1 presents the signal and glitch prior probabilities utilized
for each time-frame of O2 data.

Tuning the prior probabilities can dramatically affect the pj.
For example, consider Table D2, which reports tuned pj and
un-tuned p; (where #5 =1 and #¢ = 1) for various events and
candidates. By tuning the prior probabilities, the pz for some IAS
events (for example, GW170403 and GW170817A) can change by
more than 0.5, resulting in the promotion/demotion of a candidate’s
significance.

Table D1. The prior odds used for each time-frame of data from O2. Each
time frame commences at the start date and concludes at the following time-
frame’s start date.

Start Date #s #C

2016-12-23 1.00E+-00 6.25E-01
2017-01-22 1.00E+4-00 2.33E-02
2017-02-03 1.00E-10 2.44E-01
2017-02-12 1.76E-08 5.96E-02
2017-02-20 6.55E-10 2.22E-03
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Table D1 - continued

Start Date #S #G
2017-02-28 1.00E-10 5.96E-02
2017-03-10 2.56E-10 3.91E-01
2017-03-18 1.60E-10 1.00E+4-00
2017-03-27 1.10E-08 5.96E-02
2017-04-04 3.73E-02 2.33E-02
2017-04-14 1.05E-09 2.44E-01
2017-04-23 2.68E-09 1.46E-02
2017-05-08 1.00E+00 2.44E-01
2017-06-18 6.55E-10 3.39E-04
2017-06-30 2.02E-05 5.69E-03
2017-07-15 1.05E-09 9.54E-02
2017-07-27 1.00E+00 2.12E-04
2017-08-05 2.12E-04 3.73E-02
2017-08-13 2.68E-09 8.69E-04

Table D2. Table of pjz using ‘tuned’ prior odds and pj using uninformed
prior odds of #% =1 and #9 = 1 (represented by pé). Details of other
columns are provided in Table 3.

Event Catalogue P P te

GW170104 GWTC-1 0.97 0.95 1167559936.60
GW170121 TIAS-1 0.83 0.68 1169069154.57
170209 - 0.32 0.00 1170659643.47
170222 - 0.58 0.50 1171814476.97
170302 1AS-1 0.78 0.54 1172487817.48
GW170304 TIAS-1 0.94 0.80 1172680691.36
GWC170402 1AS-2 0.60 0.00 1175205128.57
GW170403 TIAS-1 0.54 0.90 1175295989.22
170421 - 0.27 0.21 1176789158.14
GW170425 TIAS-1 0.22 0.16 1177134832.18
GW170608 GWTC-1 0.99 0.99 1180922494.50
GW170727 TIAS-1 0.98 0.99 1185152688.02
GW170729 GWTC-1 0.98 0.95 1185389807.30
GW170809 GWTC-1 0.99 0.99 1186302519.75
GW170814 GWTC-1 1.00 1.00 1186741861.53
GWI170817A IAS-2 0.92 0.30 1186974184.72
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APPENDIX E: A CLOSER LOOK AT 170222

PyCBC found the candidate 170222 with M = 49.46 My, and ¢ =
0.68, values contained inside the 90 per cent credible intervals of our
posterior probability distributions for 170 222. Some of the posteriors

5317

Figure E1. Posterior distributions for eight parameters of 170222. Left-hand panel: Posterior probability distributions for 4 of the 12 search parameters.
Right-hand panel: Posterior probability distributions for four derived parameters.

produced as a by-product of our ppcr calculation can be viewed in

Fig. EI.
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