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A B S T R A C T 

The detection of an intermediate-mass black hole population (10 
2 –10 

6 M �) will provide clues to their formation environments 
(e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. 
Ground-based gra vitational-wa ve detectors are sensitive to mergers that can form intermediate-mass black holes weighing 

up to ∼450 M �. Ho we ver, ground-based detector data contain numerous incoherent short duration noise transients that can 

mimic the gra vitational-wa ve signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, 
we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of 
triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, 
with lab-frame total masses � 55 M � using data from LIGO’s second observing run. Our analysis does not yield evidence for 
new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first 
LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues. 

Key w ords: gravitational w aves – methods: data analysis – methods: statistical – black hole mergers. 
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 INTRODUCTION  

tellar mass ( M BH < 10 2 M �) and supermassive black holes 
 M BH > 10 6 M �) have been observed and well-studied since the 
970s (Webster & Murdin 1972 ; Balick & Brown 1974 ; Ghez et al.
998 ; Genzel, Eisenhauer & Gillessen 2010 ; Abbott et al. 2019b ,
021a ; Event Horizon Telescope Collaboration et al. 2019 ). Ho we ver, 
here is a deficiency of observational evidence for black holes in the
ntermediate-mass range 10 2 − 10 6 M �. A variety of techniques have 
een employed to search for intermediate-mass black hole (IMBH) 
andidates including reverberation mapping (Peterson 2014 ), direct 
inematic measurements (Sch ̈odel et al. 2002 ; Kızıltan, Baum- 
ardt & Loeb 2017 ), applying macroscopic galaxy to black hole 
ass scaling relations, M BH –σ and M BH –L relations (Graham & 

cott 2013 ; Wevers et al. 2017 ), studying X-ray luminosity and
pectra (Greene & Ho 2004 ; Lin et al. 2020 ), gravitational lensing
f gamma-ray burst light curv es (P aynter, Webster & Thrane 2021 ),
nd others (see Koliopanos 2017 ; Mezcua 2017 ; Greene, Strader &
o 2020 ). Ho we v er, because IMBH hav e smaller masses than

hose of supermassive black holes, it is much more challenging to 
bserve them with these observational techniques (Mezcua 2017 ). 
dditionally, numerous IMBH candidates disco v ered using these 

echniques are ambiguous as the observations can be attributed to 
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ther sources (e.g. light sources orbiting clusters of stellar-mass black
oles, Ridolfi et al. 2016 ; Freire et al. 2017 ; anisotropic emission
rom neutron stars, Israel et al. 2017 ; Rodr ́ıguez Castillo et al. 2020 ).
he disco v ery of an IMBH population will bridge the intermediate-
ass observational gap, probe IMBH formation environments (e.g. 

ccretion discs of active galactic nuclei, McKernan et al. 2012, 2014 ,
018 , 2019 ; Bellovary et al. 2016 ; Yang et al. 2019a , b ; Gr ̈obner
t al. 2020 ; Ishibashi & Gr ̈obner 2020 ; Samsing et al. 2022 ; Tagawa,
aiman & Kocsis 2020 ; Tagawa et al. 2021 ; the centres of dense

tellar clusters, Romero-Shaw et al. 2020b ; Anagnostou, Trenti & 

elatos 2020 ; Martinez et al. 2020 ; Banerjee 2021a , b ; Ballone et al.
021 ; Bouffanais et al. 2021 ; Kumamoto et al. 2021 ; Mapelli et al.
021 ; Weatherford et al. 2021 ; Zevin et al. 2021 ; Population-III
tars, Inayoshi et al. 2017 ; Liu & Bromm 2020 ; Safarzadeh & Haiman
020 ; Farrell et al. 2021 ; Toubiana et al. 2021 ), and illuminate
ur understanding of supermassive black hole formation (G ̈urkan, 
regeau & Rasio 2006 ; Amaro-Seoane et al. 2007 ; Arca Sedda &
astrobuono-Battisti 2019 ; Askar, Davies & Church 2021 ). 
Compact binary coalescences (CBCs) can provide gravitational- 

ave signals for IMBH candidates e.g. the 142 + 28 
−16 M � (90 per cent 

redible intervals) remnant observed from the gra vitational-wa ve 
vent GW190521 (Abbott et al. 2020c ) and other candidates (Abbott
t al. 2019a ; Chandra et al. 2021 ; Abbott et al. 2022 ). As a binary’s
ab-frame total mass M is associated with its gra vitational-wa ve 
erger frequency, f ∝ M 

−1 , ground-based gra vitational-wa ve 
etectors ( f ∼ 10 1 − 10 3 Hz) are sensitive to the last milliseconds of
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erging systems with 100 M � < M < 400 M � (LIGO Scientific
ollaboration et al. 2015 ; Martynov et al. 2016 ; Moore, Cole &
erry 2014 ; Acernese et al. 2015 ), while space-based detectors
 f ∼ 10 −2 –10 1 Hz) can study the full signals of merging systems
ith 10 4 M � < M < 10 7 M � (Moore et al. 2014 ; Lu, Tan & Shao
019 ). Because of the short duration of IMBH gra vitational-wa ve
ignals in ground-based detectors, data quality is critical for their
etection. Gra vitational-wa ve data is characterized by numerous
on-stationary terrestrial artifacts called glitches (Nitz 2018 ; Powell
018 ; Cabero et al. 2019 ). Like signals from IMBH mergers, most
litches last for a fraction of a second, making them difficult to
istinguish from astrophysical signals. These glitches can decrease
he sensitivity of searches for binary black hole mergers with
 � 55 M � (Nitz 2018 ). 
Although a significant fraction of the glitches can be identified

y testing them for coherence amongst two or more detectors
nd performing matched-filtering, these methods are insufficient
o identify all glitches (Nitz 2018 ; Powell 2018 ; Cabero et al.
019 ). One method to discriminate more glitches while searching for
BCs is the Bayesian odds (Veitch & Vecchio 2010 ; Kanner et al.
016 ; Isi et al. 2018 ; Ashton, Thrane & Smith 2019b ; Ashton &
hrane 2020 ; Pratten & Vecchio 2020 ). The Bayesian Coherence
atio ρBCR (Isi et al. 2018 ; Ashton et al. 2019b ) is a Bayesian
dds comparing the probability that the data contains coherent
ignals versus incoherent glitches. In this paper, we use the ρBCR 

o rank O2’s coincident CBC gra vitational-wa ve candidates with
ab-frame total masses in the range of 55 − 500 M �. We present the
andidates’ p ̄B , the probability that the candidate is inconsistent with
he background distributions of ρBCR values computed from time-slid
ata. Additionally, for comparison, we provide the candidate’s p astro 

alues reported by the LIGO-Virgo-KAGRA (LVK) collaboration
n GWTC-1 (Abbott et al. 2019b ), the PYCBC -team (Allen 2005 ;
llen et al. 2012 ; Dal Canton et al. 2014 ; Usman et al. 2016 ; Nitz

t al. 2017 , 2018 , 2020a , c , b ; Davies et al. 2020 ), by the Institute of
dvanced study’s team ( IAS ; Venumadhav et al. 2019 ; Zackay et al.
021 ), and by Pratten & Vecchio ( 2020 ). 
We find that (a) events reported in GWTC-1 , including GW170729

likely the most massive BBH system in GWTC-1 ) are statistically
ignificant p ̄B > 0 . 9 ; (b) three out of the eight IAS events and
andidates have p ̄B > 0 . 9 , corroborating IAS ’s detection claims for
W170304, GW170727, and GW170817A; and that (c) our ranking

tatistic does not identify any new IMBH, but does identify an
nreported marginal stellar mass binary black hole candidate, 170222
ith p ̄B ∼ 0 . 6 . 1 

The remainder of this paper is structured as follows. We outline our
ethods, including details of our ranking statistic and the retrie v al of

ur candidates in Section 2 . We present details on the implementation
f our analysis in Section 3 . Finally, we present our results in
ection 4 and discuss these results in the context of the significance
f gra vitational-wa ve candidates in Section 5 . 

 METHOD  

.1 A Bayesian ranking statistic 

he standard framework to identify CBC gra vitational-wa ve signals
n data is to quantify the significance of candidates with null-
ypothesis significance testing (Abbott et al. 2019b , 2021a ). In this
NRAS 516, 5309–5317 (2022) 

 170222 is a sub-threshold candidate detected by PYCBC (SNR ∼ 7.7). The 
refix of GW is not utilized as this is a candidate event. 

b  

d  

ρ  

t  
ramework, the candidates’ ranking statistic is compared against a
ackground distribution. The independent matched-filter searches,
.g. PYCBC (Usman et al. 2016 ), SPIIR (Chu et al. 2022 ) and
STLAL (Sachdev et al. 2019 ), and Coherent WaveBurst (Klimenko

t al. 2016 ) used by LVK to search for signals in gravitational-
ave data all use ranking statistics in such a manner (Abbott et al.
019b ). Both PYCBC and GSTLAL ’s ranking statistic incorporate
nformation about the relative likelihood that the data contains a
oherent signal versus noise. In contrast, CWB ’s ranking statistic
ses the information of coherent energy present in the network of
etectors (Abbott et al. 2019b ). 
Bayesian inference offers an alternative means to rank the signifi-

ance of candidate events by computing the odds that the data contain
 transient gra vitational-wa v e signal v ersus instrumental glitches (Isi
t al. 2018 ). This method relies on accurate models for the signal
nd glitch morphologies (Isi et al. 2018 ). In principle, Bayesian
dds is the optimal method for hypothesis testing (Ashton et al.
019b ). Much of its power comes from the Bayesian evidence, the
ikelihood of the data given a hypothesis. Ho we ver, the e vidence
s not used in current matched filter searches. Here, we explore
 hybrid frequentist/Bayesian ranking statistic that makes use of
he Bayesian evidence. We compute the Bayesian evidence under
he assumption that the data either contain a coherent gravitational-
ave signal, noise, or a glitch ( Z S , Z N , Z G , defined in Appendix A ).
o we ver, because we do not have at our disposal a set of PyCBC

riggers generated for simulated signals from a realistic population,
e use the evidences as a ranking statistic, instead of computing

rue Bayesian odds. We form a bootstrapped distribution of the
vidence for simulated foreground and background events to form a
requentist ranking statistic. Our work highlights the importance of
n astrophysically realistic injection set for calculating p astro . 

.2 Formalism 

ntroduced by Isi et al. ( 2018 ), the Bayesian Coherence Ratio for a
ignal in a network of D detectors is given by 

BCR = 

ˆ πS Z 
S 

D ∏ 

i= 1 

[
ˆ πG 

i Z 
G 

i + ˆ πN 
i Z 

N 
i 

] , (1) 

here { ̂  πS , ˆ πN 
i , ˆ πG 

i } are ‘pseudo prior probabilities’ that the data
ontain a coherent signal, incoherent noise, or an incoherent glitch.
hese factors are not true prior probabilities because they are not
hosen a priori. Rather, these factors are obtained by minimizing
he o v erlap between a signal and background distribution (see
ppendix D). We assume each detector has the same glitch and noise
rior probabilities of { ̂  πN , ˆ πG } . In the limit where our pseudo prior
robabilities equal the actual prior probabilities, the ρBCR becomes
he optimal Bayesian odds described by Ashton et al. ( 2019b ).
o we ver, as we do not (in this work) have a reliable estimate for

he prior probabilities, we cannot interpret the ρBCR as a Bayesian
dds to discriminate signals from glitches. Instead, we use the ρBCR 

s a ranking statistic to obtain a frequentist significance of ρBCR . 
Since it is impossible to shield ground-based gra vitational-wa ve

etectors from gra vitational-wa ve signals, the LVK empirically
stimates the background by repeatedly time-shifting strain data
y amounts larger than the light-traveltime between the two LIGO
etectors (Abbott et al. 2019b ). We use time-shifted data to generate
b 
BCR , the background ranking statistic. Following this, we calculate

he fraction of ρb 
BCR greater than or equal to a ρc 

BCR , the candidate
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Table 1. Trigger-selection lab-frame parameter space (parameters corre- 
spond to signals with durations ≤454 ms and q ≥ 0.1). 

Minimum Maximum 

Component mass 1, m 1 [ M � ] 31.54 491.68 
Component mass 2, m 2 [ M � ] 1.32 121.01 
Total mass, M [ M � ] 56.93 496.72 
Chirp mass, M [ M � ] 8.00 174.56 
Mass ratio, q 0.1 0.98 
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anking statistic 

 
b 
1 = 

Count of ρb 
BCR ≤ ρc 

BCR 

Count of ρb 
BCR 

. (2) 

iven a set of simulated signals and their ranking statistic ρs 
BCR , one

ay calculate the fraction of ρs 
BCR greater than or equal to a ρc 

BCR 

 
s 
1 = 

Count of ρs 
BCR ≤ ρc 

BCR 

Count of ρs 
BCR 

. (3) 

ith p 
b 
1 and p 

s 
1 , it is possible to compute a candidate’s p astro , the

robability that a candidate is of astrophysical origin 

 astro = 

p 
s 
1 

p 
s 
1 + p 

b 
1 

. (4) 

o we ver, for this study, we do not have an astrophysical distribution
f simulated signals and so we cannot compute p 

s 
1 or consequently 

 astro . Instead, we opt for a frequentist p -value probability that
 candidate is inconsistent with the background. As we have k 
andidates, each with a ρc 

BCR , we calculate a false-alarm probability 
 B that accounts for trial factors given by 

 B = 1 − (
1 − p 

b 
1 

)k 
. (5) 

inally, we compute the probability that a candidate is inconsistent 
ith the background 

 ̄B = 1 − p B . (6) 

hen p ̄B � 1, the event is consistent with the background distri- 
ution. Conversely, when p ̄B ≈ 1, the event is inconsistent with the 
ackground distribution, and is therefore a promising gravitational- 
ave candidate. 
It is important to note that p ̄B (the probability that an event is not

art of the background distribution) is not the same as p astro , which
equires an astrophysical set of simulated signals. 

 ANALYSIS  

e acquire candidate signal triggers (times when the detector’s data 
as a signal-to-noise ratio abo v e a predetermined threshold) for ρBCR 

nalysis from PYCBC ’s search in O2 (Allen 2005 ; Allen et al. 2012 ;
al Canton et al. 2014 ; Usman et al. 2016 ; Nitz et al. 2017 , 2018 ,
020a ; Abbott et al. 2020b ; Davies et al. 2020 ). Some of the triggers
re associated with gra vitational-wa v e ev ents and candidates while
thers are glitches. We also acquire background time-slid triggers 
nd simulated triggers from PYCBC ’s O2 search to calculate ρb 

BCR 

nd estimate values for { ̂  πS , ˆ πG } (see Appendix B for details on the
stimation process). The triggers are divided into 2-week time-frames 
ecause the detector’s sensitivity does not stay constant throughout 
he 8-month-long observing period (Usman et al. 2016 ). 

For our study, we filter PYCBC triggers to include only those 
n the parameter ranges presented in Table 1 . This region focuses
ur analysis on binary black hole mergers with lab-frame total 
asses abo v e � 55 M �, corresponding to binary systems with signal

urations < 454 ms and q ≥ 0.1. The filtering process leaves us
ith ∼70 000 background, ∼5000 simulated, and 25 candidate 

ignal triggers. We additionally include events and candidate events 
eported by GWTC-1 and the IAS group in our list of candidate signal
riggers. A plot of the lab-fame component mass space constrained 
y our search space is presented in Fig. 1 . 
To e v aluate { Z 

S , Z 
G 

i , Z 
N 
i } and calculate the ρBCR (equation 1 )

or triggers, we carry out Bayesian inference with BILBY (Ashton 
t al. 2019a , 2020 ), employing DYNESTY (Speagle 2020 ) as our
ested sampler. Nested sampling, an algorithm introduced by Skilling 
 2004 , 2006 ), provides an estimate of the Bayesian evidence and is
ften utilized for parameter estimation within the LIGO collabora- 
ion (Ashton et al. 2019a , c ; Smith et al. 2020 ). 

We use a likelihood that marginalizes o v er coalescence time, the
hase at coalescence, and luminosity distance (see Thrane & Talbot 
019 , equation 80). We use identical parameter estimation priors for
he glitch and signal models. We restrict the spin priors to aligned
pins to reduce the number of parameters we sample. We define our
ass priors to be uniform in chirp mass M and mass ratio q to
 v oid sampling issues that arise from sampling in thin regions of
he component mass parameter space (Romero-Shaw et al. 2020a ). 
s a post-processing step, we convert posterior samples calculated 
ith uniform { M , q} priors to uniform component mass priors by

e-sampling the posterior samples using the Jacobian given in Veitch 
t al. ( 2015 , equation 21). The complete list of the priors is in Table 2 .

The waveform template we utilize is IMRPHENOMPV2 , a phe- 
omenological waveform template constructed in the frequency 
omain that models the in-spiral, merger, and ring-down (IMR) 
f a CBC (Khan et al. 2016 ). Although there exist gravitational-
ave templates such as IMRPHENOMXPHM (Pratten et al. 2020 ), 
RSUR7DQ4 (Blackman et al. 2017 ), and SEOBNRV4PHM (Ossokine 
t al. 2020 ) which incorporate more physics, such as information on
igher order modes, we use IMRPHENOMPV2 as it is computationally 
ne xpensiv e compared to others. 

To generate the power spectral density (PSD), we take 31 neigh-
ouring off-source non-o v erlapping 4-s se gments of time-series data
efore the analysis data se gment d i . A Tuke y window with a 0.2-
 roll-off is applied to each data segment to suppress spectral
eakage. After this, we fast-Fourier transform and median-average 
he segments to create a PSD (Abbott et al. 2020a ). Like other PSD
stimation methods, this method adds statistical uncertainties to the 
SD (Chatziioannou et al. 2019 ; Bisco v eanu et al. 2020 ; Talbot &
hrane 2020 ). To marginalize o v er the statistical uncertainty, we
se the median-likelihood presented by Talbot & Thrane ( 2020 )
s a post-processing step. This post-processing step reduces the 
ercentage of background ρb 

BCR > 0 by ∼ 49 per cent . The details 
f this calculation are in the Appendix C . 
The data we use are the publicly accessible O2 strain data from the

anford and Livingston detectors, recorded while the detectors are 
n ‘Science Mode’. We obtain the data from the gra vitational-wa ve
pen Science Center (Abbott et al. 2021b ) using GWPY (Macleod

t al. 2020 ). 
Finally, with the ρc 

BCR and ρb 
BCR for each time-frame of triggers, 

e calculate the candidate signal’s p ̄B . 

 RESULTS  

e analyse the O2 candidates with M > 55 M � and report candi- 
ates with p ̄ ≥ 0 . 2 in Table 3 . The ˆ πS and ˆ πG values utilized for
MNRAS 516, 5309–5317 (2022) 
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M

Figure 1. Lab-frame black hole component-mass boundaries for our search space and parameter estimation prior. Our search is constrained to the parameter 
space enclosed by the gold-coloured hatches, while our prior is constrained to the slightly larger parameter space enclosed by the teal-coloured hatches. The 
purple region labelled ‘IMBH’ is the parameter space where merger remnants may be IMBHs. 

Table 2. Prior settings for the lab-frame parameters used during our pa- 
rameter estimation. The definitions of the parameters are documented in 
Romero-Shaw et al. ( 2020a , Table E1). The trigger time t c is obtained from 

the data products of PYCBC ’s O2 search. 

Parameter Shape Limits 

M ( M �) Uniform 7–180 
q Uniform 0.1–1 
M ( M �) Constraint 50–500 
d L (Mpc) Comoving 100–5000 
χ1 , χ2 Uniform –1 to 1 
θ JN Sinusoidal 0–π

ψ Uniform 0–π

φ Uniform 0–2 π
RA Uniform 0–2 π
Dec. Cosine 0–2 π
t c (s) Uniform t c ± 0.1 
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ach time-frame are reported in Appendix D . By imposing a p ̄B 

hreshold of 0.5, we present 13 candidate gravitational wave events. 
Various search pipeline p astro are not mathematically equi v a-

ent (Galaudage, Talbot & Thrane 2020 ). Moreo v er, p astro is not
qui v alent to p ̄B . Ho we ver, by comparing candidates’ various p astro 

alues with p ̄B , we can compare how significant each pipeline deems
he candidate. For comparison, in Table 3 , we report p astro values from
WTC-1 (Abbott et al. 2019b ), PyCBC OGC-2 (Nitz et al. 2020b ),
yCBC OGC-3 (Nitz et al. 2020b ), IAS (Venumadhav et al. 2019 ;
ackay et al. 2021 ), and Pratten & Vecchio ( 2020 )’s analyses. 

.1 GWTC-1 events 

ll the confirmed gra vitational-wa v e ev ents from binary black hole
ergers reported in GWTC-1 and within our prior space (specifically
W170104, GW170608, GW170729, GW170809, and GW170814)
ave p ̄B > 0 . 9 , indicating a high probability of an astrophysical
ignal. 

In addition to the abo v e confirmed gra vitational-wa v e ev ents from
WTC-1 , we have also analysed several candidate events from
WTC-1 , most of which have low p ̄B . For example, consider the

andidate event 170412 ( t c = 1176047817), assigned a p astro of 0.06
y GSTLAL and has a p ̄B of 0.01. This candidate was reported to be
xcess power caused due to noise appearing non-stationary between
NRAS 516, 5309–5317 (2022) 
0 and 200 Hz (Abbott et al. 2019b ). This candidate demonstrates
hat p ̄B may be utilized to eliminate candidates originating from
errestrial noise sources. 

.2 IAS events 

ur analysis of the IAS events and candidates with M � 55 M �
n O2 has resulted in one event with disfa v oured p ̄B < 0 . 5
GW170425), and five events and two candidates with p ̄B ≥
 . 5 (GW170121, GW170304, 170302, GWC170402, GW170403,
W170727, GW170817A). From this list, four events (GW170121,
W170304, GW170727, GW170817A) have p ̄B > 0 . 8 and p astro >

.9 reported from other pipelines, making them viable gravitational-
av e ev ent candidates. 
GWC170402, detected by Zackay et al. ( 2021 ), is reported to

riginate from a binary with non-zero eccentricity (Zackay et al.
021 ). As we used a non-eccentric waveform during analysis, we may
e under estimating this event’s significance at p ̄B ≤ 0 . 6 . Finally,
W170425 which has p ̄B < 0 . 25 also has low p astro reported in OGC-
 and OGC-3 (Nitz et al. 2020b , 2021 ), suggesting that GW170425
ay have been a false alarm. 

.3 New candidate events 

lthough no IMBH detections are made with the ρBCR , a marginal
tellar mass black hole merger candidate 170222 has been dis-
o v ered with a p ̄B ∼ 0 . 6 . This candidate has a SNR ∼ 7.7,
ow spin magnitudes, and source-frame component masses of
 47 . 16 + 8 . 00 

−5 . 77 , 35 . 50 + 5 . 79 
−6 . 35 ) M � (90 per cent credible intervals), making

t one of the heavier black hole mergers from O2 and GWTC-1 .
his candidate may be of interest as one component black hole may

ie in the pair-instability mass gap ( 55 + 10 
−10 − 148 + 13 

−12 ) M � (Heger &
 oosley 2002 ; W oosley & Heger 2021 ). More details on the can-

idate are presented in Appendix E . The remaining coherent trigger
andidates all have p ̄B < 0 . 5 , making them unlikely to originate
rom astrophysical sources. 

 CONCLUSION  

n this paper, we demonstrate that the Bayesian Coherence Ratio
BCR (Isi et al. 2018 ) can be used as a ranking statistic to provide
 measure of significance for gra vitational-wa ve signals originating

art/stac2332_f1.eps
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Table 3. p ̄B table for gravitational wave events and candidates in our search space with p ̄B > 0 . 2, calculated using Hanford and Livingston 

observatory data. Displayed for comparison are significances of events taken from: GstLAL p 
GstLAL 
astro (Abbott et al. 2019b ), PyCBC p 

pyCBC 
astro 

(Abbott et al. 2019b ), IAS p 
IAS 
astro (Venumadhav et al. 2019 ; Zackay et al. 2021 ), P ( S | d) (Pratten & Vecchio 2020 ), PyCBC OGC-2 p 

OGC2 
astro (Nitz 

et al. 2020b ), and PyCBC OGC-3 p 
OGC3 
astro (Nitz et al. 2020b ). The t c column contains the ‘GPS’ coalescence-times of the gravitational wave 

events. The catalogue column displays the first catalogue reporting the event on each row (the catalogues labeled IAS-1 and IAS-2 correspond 
to the candidates published by Venumadhav et al. 2019 and Zackay et al. 2021 ). 

Event Catalogue p ̄B p 

pyCBC 
astro p 

GstLAL 
astro p 

IAS 
astro P ( S | d) p 

OGC2 
astro p 

OGC3 
astro t c 

GW170104 GWTC-1 0.97 1.00 1.00 1.00 1.00 1167559936.60 
GW170121 IAS-1 0.83 1.00 0.53 1.00 1.00 1169069154.57 
170209 – 0.32 1170659643.47 
170222 – 0.58 1171814476.97 
170302 IAS-1 0.78 0.45 1172487817.48 
GW170304 IAS-1 0.94 0.99 0.03 0.70 0.70 1172680691.36 
GWC170402 IAS-2 0.60 0.68 0.00 1175205128.57 
GW170403 IAS-1 0.54 0.56 0.27 0.03 0.71 1175295989.22 
170421 – 0.27 1176789158.14 
GW170425 IAS-1 0.22 0.77 0.74 0.21 0.41 1177134832.18 
GW170608 GWTC-1 0.99 1.00 0.92 1.00 1180922494.50 
GW170727 IAS-1 0.98 0.98 0.66 0.99 1.00 1185152688.02 
GW170729 GWTC-1 0.98 0.52 0.98 1.00 1.00 0.99 1185389807.30 
GW170809 GWTC-1 0.99 1.00 0.99 1.00 1.00 1.00 1186302519.75 
GW170814 GWTC-1 1.00 1.00 1.00 1.00 1.00 1.00 1186741861.53 
GW170817A IAS-2 0.92 0.86 0.02 1186974184.72 
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rom CBCs with lab-frame total masses between 55 M � and 400 M �, 
 range that includes IMBHs. To compute the ρBCR for candidates, we 
tilize Bayesian inference to calculate the probability of data under 
arious hypotheses (the hypotheses that the data contains a coherent 
ignal, just noise, or an incoherent glitch). This Bayesian ranking 
ethod takes a step towards building a unified Bayesian framework 

hat provides a measure of significance for candidates and estimates 
heir parameters, utilizing the same level of physical information 
ncorporated during detected parameter estimation studies. 

In our study, we analyse O2 binary-black hole events and can- 
idates with M > 55 M � reported by the PYCBC search (Nitz 
t al. 2020b ), the IAS -team (Venumadhav et al. 2019 ; Zackay
t al. 2021 ) and those reported in GWTC-1 (Abbott et al. 2019b ).
sing a p ̄B threshold of 0.5, we find that the GWTC-1 events have
igh probabilities of originating from an astrophysical source. We 
lso find that some of the GWTC-1 marginal triggers that have 
orroborated terrestrial sources (for example, candidate 170412) 
ave low p ̄B , indicating this method’s ability to discriminate between 
errestrial artifacts and astrophysical signals. Our analysis of the 
AS events demonstrates that GW170121, GW170304, GW170727, 
nd GW170817A are likely to originate from astrophysical sources 
 p ̄B ≥ 0 . 8 ), while GW170425 is not ( p ̄B < 0 . 25 ). Finally, we report 
 new marginal binary-black hole merger candidate, 170222. 

With the rapid rate of development in gra vitational-wa ve Bayesian 
nference, we anticipate the ability to analyse longer duration signals, 
tilize more advanced signal and glitch models, and incorporate 
ata from the entire detector network. In a similar vein, with 
he accumulation of more gra vitational wa v e ev ents, future ρBCR 

ork may utilize astrophysically informed priors during Bayesian 
nference and more accurate prior probabilities for each detector. 
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PPENDIX  A:  BAYESIAN  EVIDENCE  

VALUATION  

1 Noise model 

e assume that each detector’s noise is Gaussian and stationary 
 v er the period being analysed (Abbott et al. 2020a ). In practice, we
ssume that the noise has a mean of zero that the noise variance σ 2 

s proportional to the noise power spectral density P ( f ) of the data.
sing P ( f ) , for each frequency-domain data segment d i in each of

he i detectors in a network of D detectors, we can write 

 
N 
i = N 

(
d i | μ = 0 , σ 2 = P ( f ) 

)
, (A1) 

here N is a normal distribution. 

2 Coherent signal model 

e model coherent signals using a binary black hole waveform tem- 
late μ( 	 θ ), where the vector 	 θ contains a point in the 11-dimensional
pace describing aligned-spin binary-black hole mergers. For the 
ignal to be coherent, 	 θ must be consistent in each 4-s data segment
 i for a network of D detectors. Hence, the coherent signal evidence
s calculated as 

 
S = 

∫ 
	 θ

D ∏ 

i= 1 

[ 
L ( d i | μ( 	 θ ) ) 

] 
π ( 	 θ | H S ) d 	 θ , (A2) 

here π ( 	 θ | H S ) is the prior for the parameters in the coherent signal
ypothesis H S ; and L ( d i | μ( 	 θ ) ) is the likelihood for the coherent
ignal hypothesis that depends on the gra vitational-wa ve template 
( 	 θ ) and its parameters 	 θ . 

3 Incoherent glitch model 

inally, as glitches are challenging to model and poorly understood, 
e follow Veitch & Vecchio ( 2010 ) and utilize a surrogate model

or glitches. The glitches are modelled using gra vitational-wa ve 
emplates μ( 	 θ ) with uncorrelated parameters amongst the different 
etectors such that 	 θi 
= 

	 θj for two detectors i and j (Veitch &
ecchio 2010 ). Modelling glitches with μ( 	 θ ) captures the worst-case
cenario: when glitches are identical to gra vitational-wa ve signals 
excluding coherent signals). Thus, we can write Z 

G 

i as 

 
G 

i = 

∫ 
	 θ

L ( d i | μ( 	 θ ) ) π ( 	 θ | H G ) d 	 θ , (A3) 

here π ( θ | H G ) is the prior for the parameters in the incoherent glitch
ypothesis H G . 

PPENDIX  B:  TUNING  THE  PRIOR  

R  OB  ABILITIES  

fter calculating the ρBCR for a set of background triggers and 
imulated triggers from a stretch of detector-data (a data chunk), we
an compute probability distributions for the background and sim- 
lated triggers, p b ( ρBCR ) and p s ( ρBCR ). We expect the background
rigger and simulated signal ρBCR values to fa v our the incoherent
litch and the coherent signal hypothesis, respectively . Ideally , 
hese distributions representing two unique populations should be 
istinctly separate and have no overlap in their ρBCR values. The prior
robability parameters ˆ πS and ˆ πG from Equation 1 help separate 
he two distributions. Altering ˆ πS translates the ρBCR probability 
istributions while adjusting ˆ πG spreads the distributions (see Isi 
t al. 2018 , Appendix A). Although Bayesian hyper-parameter 
stimation can determine the optimal values for ˆ πS and ˆ πG , an 
asier approach is to adjust the parameters for each data chunk’s
BCR distribution. In this study, we tune ˆ πS and ˆ πG to maximally 
eparate the ρBCR distributions for the background and simulated 
riggers. 

To calculate the separation between p b ( ρBCR ) and p s ( ρBCR ), we
se the Kullback–Leibler divergence (KL divergence) D KL , given by 

 KL ( p b | p s ) = 

∑ 

x∈ ρBCR 

p b ( x ) log 

(
p b ( x ) 

p s ( x ) 

)
. (B1) 

he D K L = 0 when the distributions are identical and increases as
he asymmetry between the distributions increases. 

We limit our search for the maximum KL-divergence in the ˆ πS and
ˆ G ranges of [10 −10 , 10 0 ]. We set our values for ˆ πS and ˆ πG to those

hich provide the highest KL-divergence and calculate the ρBCR for 
andidate events present in this data chunk. Note that we conduct the
nalysis in data chunks of two weeks rather than an entire data set of
 few months as the background may be different at different points
f the entire data set. 
MNRAS 516, 5309–5317 (2022) 
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M

Figure C1. Histograms represent the survi v al function (1-CDF) from our selection of background triggers (grey) and simulated signals (blue) triggers obtained 
from PYCBC ’s search of data from 2017 August 13–21. Vertical lines mark the ln ρBCR of IAS ’s GW170817A and GWTC-1 ’s GW170814. Left-hand 
panel: Survi v al functions using the post-processing step to marginalize o v er PSD statistical uncertainties. Right-hand panel: Survi v al functions without the 
post-processing step. Without the post-processing step, there is a greater o v erlap between the background (grey) and foreground (blue) survi v al functions. 
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Table D1 – continued 

Start Date ˆ πS ˆ πG 

2017-02-28 1.00E–10 5.96E–02 
2017-03-10 2.56E–10 3.91E–01 
2017-03-18 1.60E–10 1.00E + 00 
2017-03-27 1.10E–08 5.96E–02 
2017-04-04 3.73E–02 2.33E–02 
2017-04-14 1.05E–09 2.44E–01 
2017-04-23 2.68E–09 1.46E–02 
2017-05-08 1.00E + 00 2.44E–01 
2017-06-18 6.55E–10 3.39E–04 
2017-06-30 2.02E–05 5.69E–03 
2017-07-15 1.05E–09 9.54E–02 
2017-07-27 1.00E + 00 2.12E–04 
2017-08-05 2.12E–04 3.73E–02 
2017-08-13 2.68E–09 8.69E–04 

Table D2. Table of p ̄B using ‘tuned’ prior odds and p ̄B using uninformed 
prior odds of ˆ πS = 1 and ˆ πG = 1 (represented by p 

′ 
B̄ 

). Details of other 
columns are provided in Table 3 . 

Event Catalogue p ̄B p 
′ 
B̄ 

t c 

GW170104 GWTC-1 0.97 0.95 1167559936.60 
GW170121 IAS-1 0.83 0.68 1169069154.57 
170209 – 0.32 0.00 1170659643.47 
170222 – 0.58 0.50 1171814476.97 
170302 IAS-1 0.78 0.54 1172487817.48 
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PPENDIX  C:  MARGINALIZING  OVER  PSD  

T  ATISTICAL  UNCERT  AINTIES  

o generate the results presented in Table 3 , we applied a post-
rocessing step to marginalize the uncertainty in the PSD. In
ig. C1 , we demonstrate the impact of the post-processing step.
arginalizing o v er uncertainty in the PSD yields an impro v ement

n the separation of the noise and signal distributions (left plot).
uantitatively, at a threshold ρBCR 

T = 0, the post-processing step
educes the percentage of background ρBCR > ρBCR 

T from 60 to
5 per cent (a 58 per cent impro v ement) in the August 13–21 time-
rame of data. For the entirety of O2, PSD marginalization reduces the
ercentage of ρBCR > ρBCR 

T from 64 to 33 per cent (a ∼ 49 per cent
mpro v ement). 

PPENDIX  D:  TUNED  PRIOR  PR  OB  ABILITIES  

2 lasted several months, over which the detector’s sensitivity varied.
ence, a part of our analysis entailed tuning the prior probabilities for
btaining a signal and a glitch, ˆ πS and ˆ πG , as described in Section 2 .
able D1 presents the signal and glitch prior probabilities utilized
or each time-frame of O2 data. 

Tuning the prior probabilities can dramatically affect the p ̄B .
 or e xample, consider Table D2 , which reports tuned p ̄B and
n-tuned p 

′ 
B̄ 

(where ˆ πS = 1 and ˆ πG = 1) for v arious e vents and
andidates. By tuning the prior probabilities, the p ̄B for some IAS
v ents (for e xample, GW170403 and GW170817A) can change by
ore than 0.5, resulting in the promotion/demotion of a candidate’s

ignificance. 
NRAS 516, 5309–5317 (2022) 

able D1. The prior odds used for each time-frame of data from O2. Each 
ime frame commences at the start date and concludes at the following time- 
rame’s start date. 

tart Date ˆ πS ˆ πG 

016-12-23 1.00E + 00 6.25E–01 
017-01-22 1.00E + 00 2.33E–02 
017-02-03 1.00E–10 2.44E–01 
017-02-12 1.76E–08 5.96E–02 
017-02-20 6.55E–10 2.22E–03 

GW170304 IAS-1 0.94 0.80 1172680691.36 
GWC170402 IAS-2 0.60 0.00 1175205128.57 
GW170403 IAS-1 0.54 0.90 1175295989.22 
170421 – 0.27 0.21 1176789158.14 
GW170425 IAS-1 0.22 0.16 1177134832.18 
GW170608 GWTC-1 0.99 0.99 1180922494.50 
GW170727 IAS-1 0.98 0.99 1185152688.02 
GW170729 GWTC-1 0.98 0.95 1185389807.30 
GW170809 GWTC-1 0.99 0.99 1186302519.75 
GW170814 GWTC-1 1.00 1.00 1186741861.53 
GW170817A IAS-2 0.92 0.30 1186974184.72 
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Figure E1. Posterior distributions for eight parameters of 170 222. Left-hand panel: Posterior probability distributions for 4 of the 12 search parameters. 
Right-hand panel: Posterior probability distributions for four derived parameters. 
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PPENDIX  E:  A  CLOSER  LOOK  AT  170222  

yCBC found the candidate 170 222 with M = 49 . 46 M � and q =
.68, values contained inside the 90 per cent credible intervals of our 
osterior probability distributions for 170 222. Some of the posteriors 
roduced as a by-product of our ρBCR calculation can be viewed in
ig. E1 . 
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