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Abstract— This paper is the first to examine the
idea of using reconfigurable intelligent surfaces
(RISs) as passive devices that measure the posi-
tion and orientation of certain human body parts
over time. In this paper, we investigate the possibil-
ity of utilizing the available geometric information
provided by on-body RISs that reflect signals from
an off-body transmitter to an off-body receiver for
stroke rehabilitation. More specifically, we investi-
gate the possibility of using on-body RISs to es-
timate the location information over time of upper
limbs that may have been impaired due to stroke.
This location information can help medical profes-
sionals to estimate the possibly time-varying pose
and evaluate progress on the rehabilitation of the
upper limbs. Our analysis indicates that while the
upper limb orientation can be estimated when the receiver is in the near-field of a passive RIS, this orientation cannot
be calculated in the far-field. We also present a lower bound on the achievable accuracy for estimating the upper limbs’
location in the near-field propagation regime. The accuracy provided by the FIM-based analysis is on the order of 0.01 rad
and 1 cm for orientation and position of the upper limbs, respectively. This accuracy can be better than that obtained from
inertial measurement units (IMUs), and it does not degrade due to drift. The accuracy values presented are not specific
to any algorithm. Instead, the accuracy values obtained through the FIM are a benchmark for any future limb location
estimation algorithm. Finally, it is important to state that this work provides a rigorous mathematical framework to take
advantage of the wireless signals that are already present to collect useful in-home health data. We acknowledge that
RISs, in general, are still in their infancy, and their practical use in any setting depends on future advances in hardware.

Index Terms— Reconfigurable intelligent surfaces (RISs), smart health, wireless body area networks (WBANs), Fisher
information, near-field.

I. INTRODUCTION

The wireless channel between a transmitter and a receiver is
usually considered random and uncontrollable. This seemingly
random and uncontrollable wireless channel is often treated as
a nuisance that needs to be estimated and mitigated. However,
the emerging idea of a reconfigurable intelligent surface (RIS)
has challenged this traditional view of the wireless channel.
An RIS is a collection of software-controlled subwavelength
metasurfaces that perform desired transformations on incom-
ing signals thereby controlling the propagation environment to
some extent. This ability to control the incoming signal has
led to several works investigating the suitability of RISs for
localization [1]–[10]. Among other things, these works have

D.-R. Emenonye, H. S. Dhillon and R. M. Buehrer are with Wire-
less@VT, Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, 24061, USA. Email: {donroberts, hd-
hillon, rbuehrer}@vt.edu.

Anik Sarker and Alan T. Asbeck are with the Department of Mechan-
ical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. Email:
{aniks, aasbeck}@vt.edu.

The support of the US National Science Foundation (Grants ECCS-
2030215, CNS-2107276 and Grants IIS-2014499) is gratefully acknowl-
edged.

quantified the available geometric information in signals re-
flected by RISs to a receiver. While this geometric information
could also be used in emerging healthcare applications and
wireless body area networks (WBANs), this connection has
not been made yet, which has inspired this paper.

The basic idea that we develop in this paper is to treat
RISs as passive surfaces that can be placed on certain human
body parts. By estimating the position and orientation of
the passive RIS sensor over time, we can provide location
information about the body parts on which they are placed.
For concreteness, we consider an at-home rehabilitation center
for stroke survivors in which RISs are considered passive
reflecting devices (placed on upper limbs) that can be used to
obtain location information over time about the upper limbs
that may move abnormally due to stroke. This location infor-
mation can help medical professionals to estimate the possibly
time varying pose and obtain progress on the rehabilitation of
the upper limbs. Note that this work is particularly important
due to the increased life expectancy in the United States and
the developed world [11]. Since older adults are susceptible
to strokes and other medical ailments, it is very beneficial to
assist this population through at-home rehabilitation schemes.
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Fig. 1. Overview of wireless strategy for the first scenario (when the upper limbs are at rest) (a) transmitter (red) and receiver (blue) are installed
around the home. The patient wears a small piece of passive RIS on his wrist. (b) The passive RIS is worn on the hand. We must estimate the
orientation information in the near-field propagation regime (blue).

To provide more data for future at-home rehabilitation
centers, we propose using RISs for rehabilitation purposes.
Note that most stroke patients suffer from hemiplegia [12].
Hemiplegia results in partial paralysis of one side of the
body. This paralysis affects the arms, legs, and facial muscles.
Hence, to take advantage of the wireless signals that are
present in most homes to collect more data about the paralyzed
arms1, we propose using RISs, in addition to other sensors. It
is essential to note that we do not offer to replace other data
collection devices, such as inertial measurement units (IMU),
but we propose to use the presence of wireless signals to
collect more data.

Also, the estimation accuracy derived from data in the
wireless signal presented in this paper is not specific to any
algorithm; instead, the accuracy in this paper is the highest
possible accuracy that any limb location estimation algorithm
can attain.

A. Related Works
This paper is related to the following three research di-

rections: i) smart health applications and WBANs, ii) pose
reconstruction, and iii) analysis of the available geometric
information in RIS-aided wireless systems. The relevant works
in each of these areas are summarized next.

1) Smart health applications and WBANs: Smart health in-
cludes the research area of deploying distributed sensors in
at-home rehabilitation centers for assisted living. The sensors
can collect healthcare-related data and upload them to remote

1It is essential to note that this use of RISs can be extended to collect more
information about other body parts.

centers where medical professionals can analyze them. The
challenges in smart health start at the data collection stage
and exist at all levels. These challenges range from designing
low-cost sensors for data collection, data security and privacy,
efficient communication protocols, data storage, and data
access management.

In [13]–[15], the issue of spectral and energy efficiency is
tackled for smart health networks. Authors in [13] employ
a differential chaos shift keying to tackle the limited battery
level of several sensors in rehabilitation centers. In [14], sparse
vector coding non-orthogonal multiple access (SVC-NOMA)
is employed to improve spectral efficiency, while in [15], a
game theoretic framework is used to improve data rate and
spectral efficiency simultaneously.

Generally, WBANs refer to the network of nodes implanted
on a human body or close to a human body, usually monitoring
the vital signs and orientation of various human body parts,
subsequently providing healthcare-related data that assists
medical professionals in evaluating a patient’s recovery. Due
to the nature of wireless propagation around the human body,
WBANs have unique challenges, and several works have
investigated potential solutions to these challenges. In [16],
game theory is applied to ensure fairness in scheduling WBAN
sensors while meeting the sensors’ quality of service (QoS)
requirements. Authors in [17] combine sleep scheduling with
energy harvesting to prolong the lifetime of WBAN sensors.
In [18], a priority and delay-aware scheduling algorithm is
investigated. Authors in [19] employ a Markov model to
detect anomalies in order to reduce the risk of malicious
attacks. The authors in [20] optimize the RIS phase shifts of
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Fig. 2. Wireless strategy during the kinematic assessment exercises. (a) Sample setup of the Rehabilitation Center. The patient performs different
exercises while sitting in a chair. Such as moving different objects from one place to another on the table. A camera is placed in front of the patient
to record and monitor the performance of the exercises. (b) Scenarios: Hand position before, during, and after exercises. There is a predefined
marker on the table. Before any exercises, the patient’s hand position should be inside the marker. During exercises, the hand position will change
based on the task. Finally, after each exercise, the patient will bring back their hand inside the marker.

a reinforcement learning-based WBAN framework to improve
learning efficiency and ensure secure data offloading.

In [21], a game theoretic approach is proposed to guarantee
energy efficiency and minimize the end-to-end packet delay.
In [22], non-coherent modulation, distributed reception, and
supervised learning is used to overcome the issue of outdated
channel state information in WBANs. In [23], the 2.4 GHz
and 60 GHz frequency bands are investigated for WBANs;
the 60 GHz band is shown to be better under a variety
of conditions. In [24], the medium access control layer is
optimized to reduce latency for WBANs. In [25], the transmit
power and encoding rate of WBAN sensors are optimized
to reduce energy efficiency. In [26], the round trip delay is
derived, and the effect of certain parameters in the MAC
layer on the derived delay expression is investigated. With
this plethora of works on WBANs, quite surprisingly, only one
work has investigated the use RISs in WBANs [20]. Our paper
considers the case in which RISs are passive sensors placed on
the human body and reflect wireless signals to wireless access
points (APs).

2) Pose reconstruction: Human pose reconstruction in-
volves localizing various body parts, usually through video
data [27]–[33], and inertia measurement units (IMU) [34]–
[36]. Pose estimation through video data can be done by
learning the space of all plausible poses [27]–[30] or mapping
from image features to pose space [31]–[33]. In [27]–[30],
the pose estimation problem is framed as a learning problem.
This learning system trained in the pose domain is assisted
with prior information about the human body motion [27],
and shape [28]. Also, the learning problem is considered
when the captured video frames have non-humans [29], and a
hashing function is used to minimize the search time in [30]. In
[31], the 3D pose reconstruction problem is investigated with
video-captured silhouettes as inputs to the learning algorithm.

Authors in [32] use a discriminative learning model to pair up
typical human configurations with their realistically generated
2D silhouettes. The work done in [33] primarily increases the
database of human poses by capturing accurate 3D human
models of the various individuals in realistic settings under
various effects such as occlusion. While the frameworks in
[27]–[33] are very appealing, they require a video camera
which may not always be realistic. Moreover, certain human
body parts can be easily occluded during video capture. To
solve this problem, IMUs have been investigated for pose
reconstruction. In [34], inertia measurements obtained from
smartphones are used to position a human body. Authors in
[35] use IMUs to provide a full pose reconstruction for the
human body; while accurate, the framework requires at least
17 sensors. To reduce the number of sensors from 17 to 5, the
authors in [36] develop a framework for combining IMUs with
captured video data. The review of the above papers clearly
shows that a purely video-based system is not always possible.
Moreover, some patients (especially older ones) might not
want a video of them to be captured in data that will be
analyzed at a remote location. On the other hand, a system
based on IMUs will suffer from error accumulation because of
sensor shift, which is an inherent limitation of IMUs [11], [34].
Therefore, there is a need for obtaining more measurements in
order to complement these existing solutions or even develop
new stand-alone solutions. Inspired by this, our paper provides
a framework for obtaining more measurements about certain
body parts through on-body RISs that reflect signals from an
off-body transmitter to an off-body receiver.

3) Analysis of the available geometric information in RIS-
aided system: The information available about geometric pa-
rameters in the signals reflected by RISs has been quantified
through the Fisher information matrix (FIM) for localization
purposes [1]–[10]. Authors in [1], [2] rigorously analyze the
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geometric information in the signals reflected by RISs. While
only the far-field propagation regime is considered in [2], both
the near-field and far-field propagation regimes are considered
in [1]. In [3], authors present a vision for utilizing the available
geometric information. In that work, the effects of massive
RISs apertures, RIS phase shifters optimization, and high-
frequency reflections are considered. While authors in [4]
utilize the received signals to quantify the available geomet-
ric information, authors in [5] approach the same objective
by exploiting Maxwell’s equations. Authors in [6] analyze
the available geometric information and present optimization
schemes to maximize the geometric information that can be
extracted. In [7], each of the RIS elements acts as virtual
anchors, and the available geometric information is analyzed.
The joint timing offset correction and the determination of the
available geometric information are considered in [8]. Finally,
the available information is analyzed under the case of non-
stationarity of RISs [9] and receiver non-stationarity [10]. In
this paper, amongst other contributions, we use the Fisher
information matrix commonly used in RIS-aided localization
literature to determine under what conditions the orientation
of the upper limbs can be estimated when using passive RISs
as on-body sensors.

B. Contributions

This paper is the first to introduce the idea of RISs as
passive devices that measure the position and orientation of
certain human body parts over time2. To introduce this idea,
this paper investigates the location information available in
the signal at a receiver after reflections from an on-body
RIS acting as a passive sensor for stroke rehabilitation. This
location information helps medical professionals to estimate
the possibly time varying pose and obtain progress on the
rehabilitation of the upper limbs. We consider the analysis
under two scenarios: i) after assessment exercises for stroke
rehabilitation when the upper limbs are resting at predefined
points and ii) during the assessment exercises. Under this
framework, our main contributions are

1) Introducing RISs as passive position and orientation mea-
suring devices: We leverage the presence of two transceivers
in a smart health setup to collect more information concerning
the impaired upper limbs.

In addition to other on-body sensors already worn by the
patient, we propose using passive RISs as sensors worn on
both upper limbs. The analysis of the other on-body sensors,
which typically consist of IMU units, is not the focus of
this paper. For a detailed investigation of the position and
orientation accuracy provided by IMU sensors, see [11].

These passive RISs reflect the wireless signal from an
off-body transmitter to an off-body receiver. These reflected
signals contain location information useful for assessing the
impaired upper limb. This location information helps medical

2The motivation of this paper is to find the mathematical suitability of using
RISs to take advantage of the available wireless signals in a rehabilitation
setting. We acknowledge the feasibility of this idea (as well as other RIS-
enabled ideas - communication [37]–[41] or localization [3]–[10], [42]) is
contingent on drastic improvements in hardware.

professionals to estimate pose and obtain progress on the
rehabilitation of the upper limbs.

2) Derivations of the Fisher information for RISs acting as
passive WBAN sensors: We present a derivation of the FIM for
a parameter vector consisting of the RISs’ location parameters
when they act as passive WBAN sensors under both scenarios.
For a comprehensive analysis, both the near-field and far-field
propagation regimes are considered in the derivations.

3) Estimation of the orientation of the upper limbs after
assessment exercises for stroke rehabilitation when the upper
limbs are at rest: In this scenario, through an analysis of the
FIM, we present the conditions in which the orientation of the
on-body RIS sensors can be estimated. More specifically, we
show that the possibility of estimating the orientation of the
upper limbs exists in the near-field, but this possibility does
not exist in the far-field. We derive the Schur complement
of the FIM under both propagation regimes to present these
conditions. We then show that the Schur complement is only
positive definite in the near field when there is more than one
antenna on the off-body receivers. With these, we conclude
that the parameter vector containing the orientation informa-
tion can only be estimated when the receiver is experiencing
near-field propagation conditions. We also compute the error
when the RISs are used as on-body orientation measuring
devices through numerical simulations in a WBAN framework.
We compare this orientation error to the error of a conventional
orientation measuring device (a gyroscope). Finally, through
an investigation of the eigenvalues of the FIM, we also present
a discussion of the stability of the orientation information in
the RIS-aided WBAN.

4) Estimation of the location (position and orientation) of the
upper limbs during the assessment exercises: In this scenario,
we present the first derivatives necessary for deriving the FIM
of the location parameters. Through the FIM, we compute the
lower bound on the achievable accuracy for the position and
orientation of upper limbs in the near-field propagation regime.
The lower bound on the position and orientation information
in this scenario decreases as a function of wrist size and the
number of receive antennas. We compare the positioning error
obtained using the passive RIS to that obtained from IMU
and a hybrid system (IMU plus video data) [36]. We note
that for similar configurations of wrist size and number of
receive antennas, the lower bound on the orientation in the
second scenario is much worse than the lower bound in the
first scenario.

II. PROPOSED SOLUTION

We consider a realistic scenario where a patient’s home
is surveyed and partitioned such that there is a partition for
the kinematics assessment of the upper limb, this partition is
referred to as a rehabilitation center [11]. This rehabilitation
center consists of a table and chair on which the patient will
perform the activities needed to assess the functionality or
lack of functionality of the impaired upper limb. In addition,
the rehabilitation center consists of a personal computer that
provides instructions to the patient. These instructions guide
the patient through activities needed for the kinematics assess-
ment. The center also includes cameras placed on tripods used
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to record the activities (providing visual data for analyzing
the functionality of the upper limb) and on-body sensors
for recording data that can provide information about the
orientation and movement of the upper limb. The setup is
shown in Figs. 1 and 2. The table and chair are constrained to
specific positions to allow for consistency in the data collected
during the activities.

Moreover, after each kinematic assessment exercise, the
hand is returned to an exact predefined position on the table.
For patients with extreme hemiplegia, such that this is not
possible, a region could be predefined.

Hence, the table is marked to ensure that the patient’s hand
is positioned correctly. The rehabilitation center also contains
wireless transceivers for connecting the patient’s home to
a licensed medical center; through these transceivers, the
collected data is uploaded to a remote database, where medical
professionals can analyze the data and provide feedback to
the patient. Our contribution leverages the presence of two
transceivers in the rehabilitation center to collect more infor-
mation concerning the impaired upper limb.

In addition to other on-body sensors already worn by the
patient, we propose using passive RISs as sensors worn on
both upper limbs. The analysis of the other on-body sensors,
which typically consist of IMU units, is not the focus of this
paper. For a detailed investigation of the position and orienta-
tion accuracy provided by IMU sensors, see [11]. The wireless
signal reflected from an off-body transmitter to an off-body
receiver contains valuable location information for assessing
the impaired upper limb. In addition, the location information
can assist in determining the progress of the rehabilitation of
the upper limbs. We consider the analysis under two scenarios:
i) after assessment exercises for stroke rehabilitation when
the upper limbs are resting at the predefined points (shown
in Fig. 1) and ii) during the assessment exercises (shown in
Fig. 2). In the first scenario, the hand rests on the table at
an exact predefined position. Hence, the position of the upper
limb is known. In this scenario, we investigate the orientation
information available about the upper limbs. In the second
scenario, the position and orientation of the upper limb are
unknown during the kinematic assessment exercises. Hence,
both parameters are investigated.

A. Upper Limb Orientation Information in Spherical
Wavefront

As we will more rigorously discuss in Section III, obtaining
orientation information about the impaired upper limb from
the signals reflected by the passive RISs is based on the
availability of substantial wavefront curvature at the receiver,
which is available only in the near-field propagation regime.
The Fraunhofer distance df = 2D2/λ specifies the boundary
between the near-field and far-field propagation regimes with
λ indicating the operating wavelength and D the diameter of
the RIS [43]. In the far-field propagation regime, the receiving
antenna array experiences the wavefront as a planar wave. In
contrast, the receiving antenna array experiences the wavefront
as a spherical wave in the near-field propagation regime.
From the Fraunhofer distance, the availability of substantial

wavefront curvature depends on the size of the RIS. However,
due to human wrist size, these sensors are size-limited, and
they can only have practical sizes varying from 3 cm − 8 cm
in breadth. This leads to small near-field propagation regions.
Fig. 3 shows the Fraunhofer distance as a function of the width
of human limbs. In this Fig., the operating frequency is kept
constant, and a square-shaped passive RIS is considered. At
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Fig. 3. Starting point of the Fraunhofer region for different frequencies
and different wrist sizes.

the lowest considered frequencies, fc = 10 GHz, to get the
required wavefront curvature at the receiver, the maximum
distance of the receiver from the RIS sensor must be less
than 0.1 m and 0.85 m for am RIS sensor of dimensions
3 cm × 3 cm and 8 cm × 8 cm, respectively. At the highest
considered frequencies, fc = 100 GHz, to get the required
wavefront curvature at the receiver, the maximum distance of
the receiver from the RIS sensor must be less than 1.2 m
and 8.5 m for an RIS sensor of dimensions 3 cm × 3 cm and
8 cm × 8 cm, respectively.

B. Wireless Setup

To achieve the wireless enabled assessment of the impaired
upper limbs, we consider a single antenna transmitter3, two
RIS sensors with N

[m]
R reflecting elements at the mth RIS

sensor where m ∈ M1 = {1, 2}, and a receiver with NU

antennas.
It is important to note that this number of RISs selected

does not limit the generality of the proposed framework.
In fact, the number of RISs can be arbitrary. The two RIS
case is considered in this paper for the ease of mathematical
exposition.

The transmitter is located at pB = [0, 0, 4]T and serves as
the global reference for the coordinate system, which contains
the location of the transceivers and the RIS sensors. The mth

RIS sensor is located at p[m]
R , with its rth element located at

p
[m]
r = p

[m]
R + s

[m]
r . The point, s[m]

r , describes the position of
the rth on the mth RIS sensor with respect to p

[m]
R and can be

3We assumed a single-antenna transmitter to account for the possibility
of low-cost transceivers, which are still fairly common in many households.
This assumption can of course be relaxed at the expense of a slightly higher
notational complexity. However, the performance trends and key insights will
remain the same.
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expressed as s
[m]
r = Q

[m]
R s̃

[m]
r , where Q

[m]
R is a 3D rotation

matrix completely specified by its angles Φ[m]
R [44]. The point

s̃
[m]
r describes the location of the rth element, if there is no

orientation difference between the mth sensor and the global
reference axis (axis of the transmitter). The receiver is located
at pU and its uth antenna is located at pu = pU + su. The
point su describes the position of uth antenna with respect to
pU , and the receiver is placed such that its axes align perfectly
with the axis of the transmitter, i.e., su = s̃u. The location
of the mth RIS sensor can be expressed as a function of the
location of the transmitter

p
[m]
R = pB + d[m]

pBpR
∆[m]

pBpR
, (1)

where d
[m]
pBpR is the distance from point pB to point p[m]

R and
∆

[m]
pBpR is the corresponding unit direction vector ∆

[m]
pBpR =

[cosϕ
[m]
pBpR sin θ

[m]
pBpR , sinϕ

[m]
pBpR sin θ

[m]
pBpR , cos θ

[m]
pBpR ]

T. The
location of the receiver can be expressed as a function of the
mth RIS sensor as

pU = p
[m]
R + d[m]

pRpU
∆[m]

pRpU
, (2)

and the location of the receiver can be expressed as a function
of the transmitter as

pU = pB + dpBpU
∆pBpU

. (3)

where d
[m]
pRpU , ∆[m]

pRpU , dpBpU
, and ∆pBpU

are defined similar
to definitions provided about distances and unit vectors in (1).

C. Transmission and Reception Model
We consider the transmission and reception of T OFDM

symbols, each with N subcarriers separated by ∆f subcarrier
spacing. During the transmission of an OFDM symbol, the
single antenna transmitter transforms an N−sized stream of
data symbols from the frequency domain to the time domain
using an inverse fast Fourier transform (IFFT). Subsequently, it
adds an Ncp−sized cyclic prefix and the duration of the OFDM
symbol is NcpTs+NTs, where Ts = 1/B is the sampling time
and B = N∆f is the bandwidth. At the uth receive antenna
after the cyclic prefix is removed, an N−point fast Fourier
transform (FFT) is used to transform the data symbols from
the time to the frequency domain, and the received signal at
the nth subcarrier during the tth OFDM symbol is written as4

yt,u[n] = β[0]e−j2πfcτ
[0]
pBpuxB [n]

+

M1∑
m=1

β[m]a[m]T
pu

Ω
[m]
t a[m]

pB
xB [n] + nt,u[n],

yt,u[n] = β[0]e−j2πfcτ
[0]
pBpuxB [n]

+

M1∑
m=1

γ
[m]
t β[m]a[m]T

pu
Γ[m]a[m]

pB
xB [n] + nt,u[n],

= µt,u[n] + nt,u[n],

(4)

4This framework is easily extended to account for the non-RIS paths by
dividing the transmission into two stages. During the first stage, the RISs are
turned off, and the signals from the non-RIS paths are collected. During the
second stage, the RISs are turned on, and the signals from both the RIS and
non-RIS paths are collected. Subsequently, the signals received during the first
stage are subtracted from those received during the second stage.

TABLE I
TABLE OF THE MOST COMMONLY USED SYMBOLS.

Symbol used Meaning
fc Operating frequency
λ Operating wavelength
c Speed of light
N Number of OFDM subcarriers
T Number of OFDM symbols
N0 Noise spectral density
N

[m]
R Number of elements on the mth RIS

NU Number of receive antennas
pB Position of the centroid of the transmitter
p
[m]
R Position of the centroid of the mth RIS

pU Position of the centroid of the receiver
sr Position of the rth element on the the mth RIS

with respect to the its centroid
su Position of the uth receiver’s antenna

with respect to the receiver’s centroid
p
[m]
r Position of the rth element on the mth RIS

pu Position of the uth antenna on the receiver
dpGpV Distance from point pG to pV

∆pGpV Unit vector pointing from point pG to pV

θpGpV Elevation angle in the Unit vector pointing
from point pG to pV

ϕpGpV Azimuth angle in the Unit vector pointing
from point pG to pV

τpGpV Time delay from point pG to pV

Q[m] Matrix describing the orientation of the mth RIS
Φ[m] Orientation angles of the mth RIS
Ω

[m]
t Reflection coefficients of the mth RIS during the

tth OFDM symbol
Γ
[m]
t Reflection coefficients of the mth RIS that

remains constant across all OFDM symbols
γ
[m]
t Reflection coefficients of the mth RIS that

changes from one OFDM symbol to the next
ϑ
[m]
r Phase of the rth element of the mth RIS

β[m] Complex path gain of the mth RIS
a
[m]
pB

Transmit array response gain in the near-field related
to the transmitter to mth RIS path

a
[m]
pu Receive array response gain in the near-field related

to the mth RIS to receiver path
a
[m]
BR Transmit array response gain in the far-field related

to the transmitter to mth RIS path
a
[m]
RU Receive array response gain in the far-field related

to the mth RIS to receiver path
∇ Represents the derivative
Jη FIM of the parameter, η

where a
[m]
pu = [e−j2πfcτ

[m]
p1pu , · · · , e

−j2πfcτ
[m]
p
N

[m]
R

pu

]T, a[m]
pB =

[e−j2πfcτ
[m]
pBp1 , · · · , e

−j2πfcτ
[m]
pBp

N
[m]
R ]T, and xB [n] is a pilot

symbol. The reflection coefficient of the mth RIS sensor can
be decomposed into Ω

[m]
t = γ

[m]
t Γ[m] where γ[m]

t is a complex

scalar value, Γ[m] = diag(ejϑ
[m]
1 , ejϑ

[m]
2 , · · · , e

jϑ
[m]

N
[m]
R ) is a

diagonal matrix, and ϑ
[m]
r is the phase of the rth element

of the mth RIS sensor. The scalar value, γ
[m]
t , is the fast-

varying part of the reflection coefficient of the mth RIS sensor
because it changes from one OFDM symbol to another. The
diagonal matrix, Γ[m], is the slow-varying part of the reflection
coefficient of the mth RIS sensor. The noise-free part (useful
part) of the signal and the Fourier transformed thermal noise
local to the UE’s antenna array are represented by µt[n] and
nt[n] ∼ CN (0, N0), respectively. The complex path gains of
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the LOS path and the mth RIS sensor path are represented by
β[0] and β[m], respectively. The delay from the transmitter to
the uth receive antenna is represented as τ

[0]
pBpu = d

[0]
pBpu/c,

where d
[0]
pBpu and c is the corresponding distance of the LOS

path and the speed of light, respectively. The delays related
to the mth RIS sensor path are defined similarly. The delay
from the transmitter to the rth element on the mth RIS sensor
is τ

[m]
pBpr and the delay from the rth element to the uth receive

antenna is τ
[m]
prpu .

D. Far-Field Approximation of the Received Signal
The first order Taylor series expansion is used to ex-

press the distance from the gth element (located at pg) on
the Gth entity (located at pG) to the vth element (located
at pv) on the V th entity (located at pV ) as dpgpv =
dpGpV

+ ∆T
pGpV

(sv − sg). Hence, the delay is τpgpv ,
and the corresponding phase shift can be expressed as
e−j2πfcτpgpv = e−j2πfcτpGpV e−j2π

λ∆T
pGpV

(sv−sg). This ap-
proximation is equivalent to representing the spherical wave-
front as a plane wave, an approximation that is only valid
at distances greater than the Fraunhofer distance. With this
approximation, the useful part of the signal received in the
far-field at the nth during the tth OFDM symbol is

µt[n] = β[0]aUBe
−j2πfcτ

[0]
pBpU +

M1∑
m=1

γ
[m]
t β[m]a

[m]
URa

[m]H
RU

× Γ[m]a
[m]
RBxB [n]e

−j2πfc(τ
[m]
pBpR

+τ [m]
pRpU

),
(5)

where aUB = e−j2π
λ∆T

pBpU
Su , a

[m]
UR = e−j2π

λ∆[m]T
pRpU

Su ,
a
[m]
RU = e−j2π

λ∆[m]T
pRpU

S[m]
r , a

[m]
RB = e−j2π

λ∆[m]T
pRpU

S[m]
r , Su =

[s1, s2, · · · , sNU
], and S

[m]
r = [s

[m]
1 , s

[m]
2 , · · · , s[m]

N
[m]
R

].

E. Fisher Information Matrix
To investigate the possibility of estimating the orientation

of the upper limb in the first scenario and to provide a lower
bound on the estimation accuracy of the location of the upper
limb in the second scenario, we introduce the FIM. The FIM,
Jη , is related to the covariance of an unbiased estimate, η̂,
through the following information inequality

Eη

{
(η̂ − η)(η̂ − η)T

}
⪰ J−1

η , (6)

and presents a lower bound of the minimum squared error of
the unbiased estimate. Note that the parameter vector, η, can
only be estimated, when the FIM, Jη , is positive definite [45].
The entry in the vth row and the gth column of the FIM is
obtained as

[Jη][v,g] =
2

N0

N∑
n=1

T∑
t=1

ℜ
{
∇H

[η][v]
µt[n]∇[η][g]µt[n]

}
. (7)

To separate the paths provided by the LOS and the RIS
sensors, the following assumptions are made

T∑
t=1

γ
[m]
t = 0,

T∑
t=1

γ
[m]H
t γ

[m]
t = 1, ∀ m, and

T∑
t=1

γ
[m1]H
t γ

[m2]
t = 0, ∀ m1 ̸= m2.

(8)

These constraints make the LOS paths and the paths associated
with different RIS sensors separable. These constraints are
easily achieved by assigning distinct columns of appropriately
sized discrete Fourier transform matrices as the fast-varying
part of the reflection coefficients of distinct RISs.

III. AVAILABLE ORIENTATION INFORMATION IN THE
RECEIVED SIGNAL DURING THE FIRST

RECONSTRUCTION SCENARIO (WHILE THE UPPER
LIMBS ARE AT REST)

In this section, we will rigorously show that when the
receiver is experiencing near-field propagation, an estima-
tion algorithm can extract orientation information about the
impaired upper limb from the signals reflected by the RIS
sensors. However, an estimation algorithm can not extract
this orientation information in the far-field. Note that the
rehabilitation center is designed to have consistency in the
captured data. This consistency is achieved by placing the
transmitter and receiver in the rehabilitation center at identical
positions during each kinematic assessment session. Moreover,
in this scenario, the limbs return to the exact position on
the table after each kinematic assessment exercise. Hence
the position of the transmitter pB , position of the RISs on
the upper limbs (p[1]

R ,p
[2]
R ), and the position of the receiver

pU are known. Since the orientations of the transmitter and
receiver are also known, the only unknown parameters related
to the LOS are η[0] ≜

[
β
[0]
R , β

[0]
I

]
where βR ≜ ℜ{β}, and

βI ≜ ℑ{β} are the real and imaginary parts of β, respectively.
The unknown parameters related to the portion of the received
signal that is provided by reflections from the mth RIS sensor
is

η[m] = [Φ
[m]
R , β

[m]
R , β

[m]
I ],

where β
[m]
R ≜ ℜ{β}, and β

[m]
I ≜ ℑ{β} are the real and

imaginary parts of β[m], respectively. The unknown parameter
vector related to both the LOS, and the two RIS paths is
defined as η = [η[0],η[1],η[2]] ∈ R12×12. Note that in this
scenario the orientation of the upper limbs is only of interest
after each individual kinematic assessment exercise when the
limbs of the patients are returned to the table. Without loss
of generality, we assume that T OFDM symbols are received
during this time interval. With these assumptions, the FIM can
be written as

Jη = diag
[
Jη[0] ,Jη[1] ,Jη[2]

]
, (9)

and the diagonal entries in the above equation is different
under different propagation regimes.

A. FIM Entries under the Far-Field Propagation Regime

To determine if the orientation of the upper limb can be
estimated, we have to determine if the FIM, Jη , is positive
definite. Because Jη is a block diagonal matrix, its positive
definiteness can be determined by analyzing its individual
entries. First, we analyze the FIM related to the LOS path.
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The entries in the FIM, Jη[0] , of the parameters in the LOS
paths are

J
β
[0]
R

= J
β
[0]
I

=
∥∥∥aUBe

−j2πfcτ
[0]
pBpU

∥∥∥2 N∑
n=1

|xB [n]|2 (10)

and J
[β

[0]
R ,β

[0]
I ]

= J
[β

[0]
I ,β

[0]
R ]

= 0. Hence, the matrix, Jη[0] , is
positive definite. Since the FIM related to the LOS path is
positive definite, we now analyze the FIM of the RIS paths.
Because the RIS paths are identical, it is sufficient to consider
only the mth path. We present the first derivatives

∇ΦR
µt[n] =

j2π

λ
γ
[m]
t β[m]aURa

H
RUKRUΓ

[m]aRBa
H
BR

× xB [n]e
−j2πfc(τ

[m]
pBpR

+τ [m]
pRpU

) − j2π

λ
γ
[m]
t β[m]aURa

H
RU

× Γ[m]KRBaRBa
H
BRxB [n]e

−j2πfc(τ
[m]
pBpR

+τ [m]
pRpU

).
(11)

More first derivatives are

∇βR
µt[n] = γ

[m]
t aURa

H
RUΓ

[m]aRBa
H
BRxB [n]×

e−j2πfc(τ
[m]
pBpR

+τ [m]
pRpU

),

∇βI
µt[n] = j∇βR

µt[n],

(12)

where KRU = diag
[
∆T

pRpU
(∇ΦR

QRS̃r)
]

and KRB =

diag
[
∆T

pBpR
(∇ΦR

QRS̃r)
]
. The FIM, Jη[m] , can be ex-

pressed as

Jη[m] =


J
Φ

[m]
R

J
[Φ

[m]
R ,β

[m]
R ]

J
[Φ

[m]
R ,β

[m]
I ]

JT

[Φ
[m]
R ,β

[m]
R ]

J
β
[m]
R

0

JT

[Φ
[m]
R ,β

[m]
I ]

0 J
β
[m]
I

 , (13)

where the entries are obtained by taking the first derivative
of (5) and applying (7). The following entries are related as
J
β
[m]
R

= J
β
[m]
I

. The Schur complement related to Jη[m] of the
mth RIS path is

Je
η[m] = J

Φ
[m]
R

−

J−1

β
[m]
R

[J
[Φ

[m]
R ,β

[m]
R ]

JT

[Φ
[m]
R ,β

[m]
R ]

+ J
[Φ

[m]
R ,β

[m]
I ]

JT

[Φ
[m]
R ,β

[m]
I ]

].

(14)
With appropriate substitutions, the above Schur complement is
zero. More specifically, Je

η[m] = 0. Hence, Jη[m] is not positive
definite. Hence, Jη is not invertible, and the orientation of the
upper limb can not be estimated in the far-field propagation
regime [45].

B. FIM Entries under the Near-Field Propagation
Regime

Under the near-field propagation regime, to determine if
the orientation of the upper limb can be estimated, we have to
determine if the FIM, Jη , is positive definite. Because Jη is
a diagonal matrix, its positive definiteness can be determined
by analyzing the individual entries. First, we analyze the FIM
related to the LOS path. The entries in the LOS related FIM,
Jη[0] , are

J
β
[0]
R

= J
β
[0]
I

=

NU∑
u=1

∥∥∥e−j2πfcτ
[0]
pBpu

∥∥∥2 N∑
n=1

|xB [n]|2 (15)

and J
[β

[0]
R ,β

[0]
I ]

= J
[β

[0]
I ,β

[0]
R ]

= 0. Similar to the far-field case,
the matrix Jη[0] is positive definite. Since the FIM related to
the LOS path is positive definite, we now analyze the FIM
of the RIS paths. Also, similar to the far-field case, the RIS
paths have identical channel parameters. Hence, it suffices to
analyze the mth RIS path. For the mth RIS path when NU = 1,
the near-field and far-field propagation regimes are identical,
and the orientation of the upper limb can not be estimated. To
determine the possibility of estimating the orientation of the
upper limb when NU > 1, we drop the superscript (·)[m] when
notationally convenient. Subsequently, after obtaining the first
derivatives, the FIM is

Jη[m] =


J
Φ

[m]
R

J
[Φ

[m]
R ,β

[m]
R ]

J
[Φ

[m]
R ,β

[m]
I ]

JT

[Φ
[m]
R ,β

[m]
R ]

J
β
[m]
R

0

JT

[Φ
[m]
R ,β

[m]
I ]

0 J
β
[m]
I

 . (16)

Defining K (gg) = diag
[
∇ΦR

τp1gg
, · · · ,∇ΦR

τpNR
gg

]
, the

FIMs in the above equation are written as

J
Φ

[m]
R

= 2/N0(2πfc)
2

N∑
n=1

|xB [n]|2|β[m]|2×

NU∑
u=1

ℜ
{
a[m]H
pB

[
Γ[m]HK∗(pu) +KH(pB)Γ

[m]H

]
a[m]
pu

a[m]T
pu

[
KT(pu)Γ

[m] + Γ[m]K (pB)

]
a[m]
pB

}
,

(17)

J
[Φ

[m]
R ,β

[m]
R ]

= 2/N0(2πfc)

N∑
n=1

|xB [n]|2×

NU∑
u=1

ℜ
{
jβ[m]Ha[m]H

pB

[
Γ[m]HK∗(pu) +KH(pB)Γ

[m]H

]
×

a[m]
pu

a[m]T
pu

Γ[m]a[m]
pB

}
,

(18)

J
[Φ

[m]
R ,β

[m]
I ]

= −2/N0(2πfc)

N∑
n=1

|xB [n]|2×

NU∑
u=1

ℜ
{
β[m]Ha[m]H

pB

[
Γ[m]HK∗(pu) +KH(pB)Γ

[m]H

]
×

a[m]
pu

a[m]T
pu

Γ[m]a[m]
pB

}
,

(19)

J
β
[m]
R

= J
β
[m]
I

= 2/N0

N∑
n=1

|xB [n]|2
NU∑
u=1

|a[m]T
pu

Γ[m]a[m]
pB

|2,

and the Schur complement of Jη[m] is

Je
η[m] = J

Φ
[m]
R

−

J−1

β
[m]
R

[J
[Φ

[m]
R ,β

[m]
R ]

JT

[Φ
[m]
R ,β

[m]
R ]

+ J
[Φ

[m]
R ,β

[m]
I ]

JT

[Φ
[m]
R ,β

[m]
I ]

].

(20)
With appropriate substitutions, it can be shown that Je

η[m] = 0
when NU = 1, and Je

η[m] > 0 when NU > 1. Hence, Jη is
not invertible when NU = 1. However, when NU > 1, Jη is
invertible. Hence, the possibility of estimating the orientation
of the upper limb exists when both NU > 1 and the receiver is
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in the near-field propagation regime defined by the Fraunhofer
distance.

C. Orientation Error Bounds

To quantify the orientation information available about the
upper limbs, we introduce the orientation error bounds (OEB).
The OEB of the mth RIS sensor can be obtained by

OEB[m] = Tr{(Je
η[m])

−1} (21)

where Je
η[m] is the Schur complement of J

η[m] and Tr is the
matrix trace operator. It is important to note the OEB is only
meaningful in the near-field. This is because the possibility of
estimating the orientation information about the upper limbs
only exists in the near-field.

IV. AVAILABLE LOCATION INFORMATION IN THE
RECEIVED SIGNAL DURING THE SECOND

RECONSTRUCTION SCENARIO (DURING THE KINEMATIC
ASSESSMENT EXERCISES)

In this section, we focus on the near-field propagation
regime, and note that location information is essential to
analyze the state of the impaired upper limbs during kinematic
assessment exercises. During these exercises, the impaired
upper limb is not constrained to any location on or off
the table in the rehabilitation center. Hence, we present the
achievable location accuracy of the impaired upper limb
through the wireless signals reflected by the on-body RIS
sensors and received at the off-body receiver. To present
this accuracy, we derive the FIM related to the mth RIS
sensor path. The parameterization for this path is κ[m] =[
p
[m]T
R ,Φ

[m]T
R , β

[m]
R , β

[m]
I

]T
. The location parameters in this

path is κ[m]
1 =

[
p
[m]T
R ,Φ

[m]T
R

]T
, and the nuisance parameters

are collected as κ[m]
2 =

[
β
[m]
R , β

[m]
I

]T
. All location parameters

are collected as κ =
[
κ[1],κ[2]

]T
. Now, the first derivatives

related to the mth RIS sensor path are

∇
p
[m]
R

µt,u[n] = (−j2πfc)γ
[m]
t a

[m]T
pu Γ[m]K

[m]
pR

a
[m]
pBxB [n],

∇
Φ

[m]
R

µt,u[n] = (−j2πfc)γ
[m]
t a

[m]T
pu Γ[m]K

[m]
ΦR

a
[m]
pBxB [n],

∇
β
[m]
R

µt,u[n] = γ
[m]
t a[m]T

pu
Γ[m]a[m]

pB
xB [n],

∇
β
[m]
I

µt,u[n] = jγ
[m]
t a[m]T

pu
Γ[m]a[m]

pB
xB [n],

(22)

where the term concerning the derivatives
related to the position parameters is K

[m]
pR =

diag
[
∇pR

(τ
[m]
p1pu + τ

[m]
pBp1), · · · ,∇pR

(τ
[m]
pN

R
pu + τ

[m]
pBpN

R
)
]
.

The term concerning the derivatives re-
lated to the orientation is K

[m]
ΦR

=

diag
[
∇ΦR

(τ
[m]
p1pu + τ

[m]
pBp1), · · · ,∇ΦR

(τ
[m]
pN

R
pu + τ

[m]
pBpN

R
)
]
.

Here, ∇
p
[m]
R

τ
[m]
prpu = (p

[m]
r − pu)/(c × d

[m]
prpu) and

∇
p
[m]
R

τ
[m]
pBpr = (p

[m]
r − pB)/(c × d

[m]
pBpr ). The orientation

related derivatives are ∇
Φ

[m]
R

τ
[m]
prpu =

[
(p

[m]
r − pu) ×

(∇
Φ

[m]
R

Q
[m]
R )s̃

[m]
r

]
/(c × d

[m]
prpu) and ∇

Φ
[m]
R

τ
[m]
pBpr =[

(p
[m]
r − pB) × (∇

Φ
[m]
R

Q
[m]
R )s̃

[m]
r

]
/(c × d

[m]
pBpr ). The

derivative, ∇
Φ

[m]
R

Q
[m]
R , is the first derivative of the 3D

rotation matrix [44]. With these first derivatives, (7), and (8),
the FIM for the channel parameters, κ = [κ[1],κ[2]], is

Jκ = diag [Jκ[1] ,Jκ[2] ] . (23)

Since, the nuisance parameters are not useful for positioning,
we exclude them through the Schur’s complement. The Schur’s
complement of the FIM, Jκ is

Je
κ = diag

[
Je
κ[1] ,J

e
κ[2]

]
, (24)

where

Je
κ[m] = J

κ
[m]
1

−

J−1

β
[m]
R

[J
[κ

[m]
1 ,β

[m]
R ]

JT

[κ
[m]
1 ,β

[m]
R ]

+ J
[κ

[m]
1 ,β

[m]
I ]

JT

[κ
[m]
1 ,β

[m]
I ]

].
(25)

A. Position and Orientation Error Bounds
This section provides metrics to quantify the position and

orientation information available about the upper limbs during
the kinematics assessment exercises. The PEB of the mth RIS
sensor can be obtained by

PEB[m] = Tr{[(Je
κ[m])

−1][1:3,1:3]}. (26)

The OEB of the mth RIS sensor can be obtained by

OEB[m] = Tr{[(Je
κ[m])

−1][4:6,4:6]}, (27)

where Tr is the matrix trace operator.

V. NUMERICAL RESULTS

In this section, we provide numerical results for both scenar-
ios. To demonstrate these results, we investigate the position
error bound (PEB), and orientation error bound (OEB) as a
function of the number of receive antennas and the wrist size.
We compare the PEB obtainable through the RIS sensors with
the position error using IMUs and a hybrid system (IMU plus
video data) [36]. We also compare the OEB obtainable through
the RIS sensors with the orientation error of an average low-
cost gyroscope. The system setup consists of a single antenna
transmitter located at pB = [0, 0, 4]T. All position vectors are
in meters, and all orientation vectors are in radians.

In the first scenario, the information provided by the RIS
sensors is only of interest after each kinematic assessment
exercise when the patient’s hands are at rest. More specifically,
in the first scenario, the information provided by the RIS
sensors is only of interest when the upper limbs return to the
designated position on the table after each kinematic assess-
ment exercise. Based on this designation, the positions of the
RIS sensors are known in the first scenario, but the positions
of the RIS sensors are unknown in the second scenario. The
position of the first RIS sensor is p

[1]
R = [2, 2, 4]T with the

following rotation angles Φ
[1]
R = [0.1, 0.2, 0.1]T, while the

other RIS sensor is located at p
[2]
R = [2, 2.3, 4]T, with

the following rotation angles Φ
[2]
R = [0.15, 0.12, 0.1]T. The
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transmitter serves as the global reference, and the orientation
angles of the RIS sensors are defined with respect to the 3D
axis of the transmitter. The operating wavelength is 3 mm,
and the reflecting elements in both RIS sensors are separated
by 1.5 mm. The transmit and receive antenna gains are both
2 dB, there are N = 256 subcarriers, the transmit power
is 23 dB, and the noise spectral density (PSD) is N0 =
−174 dBm/Hz. The pathloss in the mth RIS path is described
as λ2√GB

√
GU

32π
(
d
[m]
pBpr

)q0+1(
d
[m]
prpu

)q0+1 where q0 = 0.285 is the gain

controlling factor, GB = 20 dB and GU = 20 dB [1].
Based on the operating frequency, the receiver experiences

near-field propagation from an RIS sensor of dimensions
3 cm×3 cm when it is at a distance less than 1.2 m. For an RIS
sensor of dimensions 8 cm × 8 cm, the receiver experiences
near-field at a distance less than 8.5 m. The receiver is located
at pU = [2, 3, 4]T. The receiver is perfectly aligned with the
transmitter such that its 3D orientation matrix is the identity
matrix. With this receiver position, the receiver is in the near-
field of the first and second RIS sensors for the minimum
considered limbs dimensions of 3 cm × 3 cm. Since the RIS
paths are identical, we focus on the PEB and OEB of the first
RIS path.

For generality sake and to ensure that the PEB and OEB
values presented are not dependent on any optimization algo-
rithm, the values of the RIS phase shifters primarily denoted
by Γ[m] are randomly generated.

In all applicable plots, LR, is used to specify the length of
a side of the square-shaped passive RIS sensor5.

A. Comparison to other Approaches

We compare the OEB in the first scenario with the bench-
mark orientation error values of an Analog device (ADIS16490
gyroscope) that has been in use for 30 minutes. We present
these orientation error values for different integration times.
These orientation values are listed in [46].

Again, the OEB values in the figures are benchmark values
obtained from the Analog Devices manufacturer web sheet that
detail the expected error values of an ADIS16490 gyroscope
that has been in use for 30 minutes [46]. It is important to
note that the gyroscope values will deteriorate as a function
of usage time due to drift. However, the OEB obtained from
the wireless signal will not deteriorate due to drift.

In [34], an algorithm uses the data from the accelerometers,
gyroscopes, and magnetometers in a smartphone to provide
position estimates. The initial stage of this algorithm involves
calculating the pitch and roll; this orientation information is
used to perform step detection. Subsequently, step length and
heading information are estimated. The heading information
specifies the direction of motion and is estimated using data
from the magnetometer. Finally, the position information is
calculated using step length and heading information.

In [36], the IMU and the video data are used to reconstruct
the pose of the human body. While the pose estimation through

5In our simulation, the PEB and OEB does not strictly decrease with
increasing LR because of the random nature of the slow-varying RIS
coefficients, Γ[m].

the video data is very accurate, occlusion negatively affects
the accuracy. Although complementary data obtained using
IMUs are not affected by occlusion, they experience drifts
in continuous operation. Hence, the authors in [36] combine
these two data sources and provide a hybrid approach. In this
approach, the video data compensate for the drift in the IMU
data, and the IMU data reduces the occlusion effect in the
video data.

B. Effect of Number of Receive Antennas on the OEB
while the Upper limbs are at Rest

In Fig. 4, we investigate the available orientation informa-
tion about the upper limbs as a function of both the number
of receive antennas and the size of the RIS sensors. The size
of the RIS sensors depends on the practical dimensions of the
human limbs. As a comparison, we also provide the orientation
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Fig. 4. OEB vs. the number of receive antennas. The OEB from the
wireless setup is compared to the orientation error of an Analog device
(ADIS16490 gyroscope). The gyroscope’s error is the average error after
30 minutes of use, with the variable τ representing the integration time.

error obtainable while using a cheap analog device gyroscope.
The gyroscope is considered to have been in operation for 30
minutes, and we consider different integration times for the
gyroscope. The integration time of the gyroscope refers to the
number of samples used to produce an orientation estimate.
While the integration time of a conventional gyroscope is on
the order of seconds, the time required to collect the T OFDM
symbols needed to provide an orientation estimate from the
wireless signals depends on the signal bandwidth. This signal
bandwidth at higher operating frequencies is on the order of
Gigahertz. Hence the time required to collect the symbols is
on the order of nanoseconds. From Fig. 4, as the length of
the RIS sensor increases, the available orientation information
obtainable through the OFDM symbols received in the near-
field also increases. Also, Fig. 4 indicates that we can obtain
more accurate orientation information as the number of receive
antennas increases.

C. Investigation of the Eigenvalue of the Fisher
Information while the Upper limbs are at Rest

In Fig. 4, the OEB obtainable through the received OFDM
symbols is high when the RIS sensor is small and there are
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Fig. 5. Largest eigenvalue vs. the number of receive antennas.

few numbers of receive antennas. This can be explained by the
instability in the orientation information under these scenarios.
This instability is confirmed by investigating the structure
of the Schur complement of the Fisher information matrix.
More specifically, this instability is observed by investigating
the largest eigenvalue, λe

max, and smallest eigenvalue, λe
min, of

Je
η[1] . These eigenvalues are shown in Fig. 5 and Fig. 6. In

Fig. 6, when the RIS sensor is small, and there are few receive
antennas, the smallest eigenvalue is prohibitively small. Hence,
Je
η[1] is almost not invertible. Because the OEB is derived by

inverting Je
η[1] , this results in high OEB values. As the number

of receive antennas increases, both λe
max and λe

min increases and
more accurate orientation information is obtainable.
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Fig. 6. Smallest eigenvalue vs. the number of receive antennas.

D. Position and Orientation Estimation during the
Kinematic Assessment Exercises

In this section, we present a lower bound on the estimation
accuracy achievable for the position and orientation of the
upper limbs through the RIS sensors during the kinematic
assessment exercises. We compare this positioning error using
the RIS sensor to the error achieved through IMU measure-
ments (accelerometer, magnetometer, and gyroscope) provided
by a smartphone [34] and through a hybrid system (IMU plus
video data) [36]. Similar to the previous section, the OEB

is compared to the orientation error of an Analog device
(ADIS16490 gyroscope) with different integration times. In
Fig. 7, the PEB decreases with RIS sensor size and an in-
creasing number of receive antennas. For most receive antenna
configurations, the PEB obtained using the RIS sensor is lower
than the PEB obtained using IMU measurements. The OEB
derived from the RIS sensor during the kinematic assessment
exercises (as shown in Fig. 8) is higher than the OEB presented
in Fig. 4. This is because there are more unknown parameters
during the kinematic assessment exercises.
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Fig. 7. PEB vs. the number of receive antennas. The PEB from the
wireless setup is compared to the position error derived from IMU-based
measurements [34] and from a hybrid system (IMU plus video data) [36].
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Fig. 8. OEB vs. the number of receive antennas. The OEB from the
wireless setup is compared to the orientation error of an Analog device
(ADIS16490 gyroscope). The gyroscope’s error is the average error after
30 minutes of use, with the variable τ representing the integration time.

VI. LIMITATIONS

It is important to note that although promising, practical
RISs have not been developed. Hence, proposals using RISs
for communication [37]–[41] and localization purposes [3]–
[10], [42], are all mathematical feasibility studies and imprac-
tical at the moment. Our work has a similar flavor. While a
current implementation of RISs involves using antenna arrays
to mimic the proposed effects of RISs [47], that work is in such
infancy that discussing its practical utility for communication,
localization, and remote rehabilitation is futile. At this stage,
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our paper does not seek to present a practical study using RISs
for remote rehabilitation. Instead, we aim to show a rigorous
theoretical study highlighting the accuracy achievable when
RISs are deployed for remote rehabilitation. It is also important
to note that several past technologies are not immediately
practical, but future advances in hardware can make them
useful over time. However, studying the theoretical limits of
such works is still useful. Hence, in this paper, we present
the achievable accuracy and conditions that might enable the
future utility of RISs in rehabilitation settings. Of course, we
acknowledge that the practicality of our work is dependent on
future advances in hardware.

VII. CONCLUSION

This paper is the first to introduce the idea of RISs as
passive devices that measure the position and orientation of
certain human body parts over time. To introduce this idea,
this paper has investigated passive RISs as devices that can
measure the location of upper limbs over time to provide
more information to medical professionals. This location in-
formation helps medical professionals to estimate the possibly
time varying pose and obtain progress on the rehabilitation
of the upper limbs. The accuracy of the location information
presented in this paper is not specific to any algorithm; instead,
the accuracy in this paper is the highest possible accuracy
that any limb location estimation algorithm can attain. The
work in this paper is focused on two scenarios: i) while the
upper limbs are at rest, and ii) during the kinematic assessment
exercises for stroke rehabilitation. This investigation is carried
out through a Fisher information theoretical investigation of
the signals reflected from off-body transmitters by on-body
passive RISs to off-body receivers. In the first scenario, we
show that the orientation of the upper limb can be estimated
when the receiver is experiencing near-field propagation and
has more than one receive antenna. We also showed that the
orientation error obtained in this RIS-enabled smart health
setup can be more accurate than the orientation information
provided by conventional gyroscopes.

Also, in the first scenario, we investigated the stability of the
orientation information as a function of both wrist size and the
number of antennas at the receiver. The investigations indicate
that the orientation information obtained is more stable for
larger upper limbs. In the second scenario, we provided a
lower bound on the estimation accuracy for the position and
orientation of the upper limbs while the patient is performing
the kinematic assessment exercises for stroke rehabilitation.
We noted that for similar configurations of wrist size and
number of receive antennas, the lower bound on the orientation
in the second scenario is much worse than the lower bound in
the first scenario.
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