AFS: A Scalable and Elastic Distributed File System Metadata
Service using Serverless Functions

Benjamin Carver
George Mason University
Fairfax, VA, USA
bcarver2@gmu.edu

Mai Zheng
Iowa State University
Ames, IA, USA
mai@iastate.edu

ABSTRACT

The metadata service (MDS) sits on the critical path for distributed
file system (DFS) operations, and therefore it is key to the over-
all performance of a large-scale DFS. Common “serverful” MDS
architectures, such as a single server or cluster of servers, have a
significant shortcoming;: either they are not scalable, or they make
it difficult to achieve an optimal balance of performance, resource
utilization, and cost. A modern MDS requires a novel architecture
that addresses this shortcoming.

To this end, we design and implement AFS, an elastic, high-
performance metadata service for large-scale DFSes. AFS scales a
DFS metadata cache elastically on a FaaS (Function-as-a-Service)
platform and synthesizes a series of techniques to overcome the
obstacles that are encountered when building large, stateful, and
performance-sensitive applications on Faa$S platforms. AFS takes
full advantage of the unique benefits offered by FaaS—elastic scaling
and massive parallelism—to realize a highly-optimized metadata
service capable of sustaining up to 4.13x higher throughput, 90.40%
lower latency, 85.99% lower cost, 3.33% better performance-per-cost,
and better resource utilization and efficiency than a state-of-the-art
DFS for an industrial workload.

ACM Reference Format:

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue
Cheng. 2023. AFS: A Scalable and Elastic Distributed File System Metadata
Service using Serverless Functions. In 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 4 (ASPLOS ’23), March 25-29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3623278.3624765

1 INTRODUCTION

Many different fields in computing have enjoyed successes in part
due to the availability of large amounts of data [2, 20, 23, 28, 33, 34,
36, 41, 65]. Data-intensive applications [18, 24] in these fields are

*Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0394-2/23/03.

https://doi.org/10.1145/3623278.3624765

Runzhou Han
Iowa State University
Ames, 1A, USA
hanrz@iastate.edu

Jingyuan Zhang
George Mason University
Fairfax, VA, USA
jzhang33@gmu.edu

Yue Cheng”
University of Virginia
Charlottesville, VA, USA
mrz7dp@virginia.edu

characterized by varied, heterogeneous I/O patterns in which I/O
bottlenecks are not uncommon [35, 46, 64]. Large-scale, distributed
file systems (DFSes), such as Google File System (GFS) [38] and
Hadoop Distributed File System (HDFS) [57], are commonly used by
these data-intensive applications. DFSes often use an architecture
that decouples metadata management from file I/O [14, 38, 57].
DFS metadata tracks global file system namespace information,
including hierarchical directories and file names. These DFSes use
a centralized metadata management component called a metadata
service (MDS), which executes file system namespace operations,
such as file open, close, and mv. In a DFS, client applications acquire
a file’s permission and location information from the MDS before
accessing the file’s contents. Therefore, the performance of the
MDS is key to the overall efficiency of a DFS.

Scaling the performance of an MDS is challenging. Using a ded-
icated server (e.g., GFS [38], HDFS [57]) to host the MDS is not
scalable and may suffer from poor performance during highly dy-
namic workloads.

Researchers have proposed various ways to overcome the scala-
bility challenges of DFS MDSes. IndexFS [54] is a middleware that of-
floads metadata storage and processing to a scaled-out, table-based,
key-value store cluster that is co-located with the data storage clus-
ter. INFINTFS [49] uses the same scaled-out cluster architecture as
IndexFS but with deep optimizations along the metadata process-
ing path. HopsFS [51], built on HDFS, further decouples metadata
request handling and metadata storage: it offloads the metadata
storage to a distributed, sharded, in-memory database (MySQL NDB
Cluster [16]) and utilizes a cluster of stateless NameNodes (metadata
servers in HDFS terminology) to scale DB query handling.

While these systems offer scalable MDS solutions with different
tradeoffs, they have a common issue: they lack elasticity support
at the MDS level. IndexFS and INFINTFS employ a fixed cluster
of metadata servers and use client-side metadata caching exten-
sively for performance improvement. HopsFS provides no metadata
caching on the stateless NameNode side and uses the distributed Na-
meNodes only for handling and scaling client requests. Therefore,
HopsFS’ performance is capped by the capacity of the backend NDB
cluster. All three of these systems require explicit server manage-
ment and a large amount of server resources to be reserved to host
the MDS cluster. As reported in [51], HopsFS requires as many as
60 NameNodes and 12 NDB servers in order to significantly outper-
form vanilla HDFS, the latter of which typically uses a small cluster

https://doi.org/10.1145/3623278.3624765
https://doi.org/10.1145/3623278.3624765

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

of NameNodes for high availability but not performance. Worse,
under low load conditions, the scaled-out MDS cluster suffers from
low resource utilization.

Serverless computing or Function-as-a-Service (FaaS) has emerged
as a new cloud computing model [4, 42]. FaaS enables developers
to break traditionally monolithic, server-based applications into
finer-grained serverless (or cloud) functions, thereby providing a
new way of building and scaling applications and services. De-
velopers are tasked with providing the function logic while the
Faa$S provider is responsible for the notoriously tedious tasks of
provisioning, scaling, and managing backend servers that host the
serverless functions [39].

We find that serverless functions provide an appealing envi-
ronment in which to host and scale the metadata management
component of a large-scale DFS. Using serverless functions pro-
vides several key advantages. First, serverless functions have CPU
and memory resources that are elastically scaled out and in with the
functions. This enables the construction of an elastic MDS that can
achieve optimal performance by dynamically adapting the amount
of resources as the workload shifts. Second, the elasticity offered by
Faa$S can greatly improve cost-efficiency and resource utilization
as resources are allocated/deallocated in an on-demand manner
and used more efficiently. Third, the auto-scaling property also
alleviates the need for tedious server management.

The aforementioned challenges pertaining to MDS efficiency and
the emergence of serverless computing together raise a research
question: Can we use serverless functions in a novel way to build a
high-performance, cost-efficient, elastic, and resource-efficient MDS?

To answer this question, we present AFS, the first serverless-
function-based, elastic MDS for large-scale DFSes. In a nutshell,
AFS features a novel MDS architecture that combines an elastically-
scalable, FaaS-based metadata cache with a persistent, strongly-
consistent metadata store. To minimize network overhead, AFS
uses the collective memory of a dynamic fleet of serverless func-
tions for metadata caching. However, simply implementing a meta-
data caching layer is insufficient. AFS further enables elastic and
massively-parallel metadata caching by taking advantage of the
auto-scaling offered by FaaS. Not only does this elasticity improve
metadata query performance, but it also enables high resource effi-
ciency and low cost. Moreover, AFS effectively decouples the man-
agement of metadata caching (and thus, metadata request process-
ing) and metadata storage so that compute and storage can scale in-
dependently. This fully-disaggregated architecture is driven by the
observations that real-world MDS workloads are bursty [35, 55, 60]
and that it is often difficult to manually determine the right MDS
deployment scale offline [27, 58].

Building an elastic serverless MDS for large-scale DFSes requires
addressing two sets of unique challenges:

o First, FaaS platforms have a series of constraints and limitations
that make it challenging to support data-intensive, stateful ap-
plications efficiently: (1) individual serverless functions have
limited CPU, memory, and network resources, and thus offer
limited data processing, storage, and transfer capacity. (2) Server-
less functions occasionally suffer from long cold start times and
execution timeouts. (3) The typical method to communicate with
serverless functions is via HTTP requests, but this can be slow.

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

As such, naively porting the stateful MDS of a large-scale DFS to
a serverless platform leads to poor performance.

e Second, while FaaS platforms offer auto-scaling and elasticity, a
careful, holistic MDS redesign is required to fully utilize these
benefits: (1) Performance-sensitive systems such as MDSes re-
quire careful treatment to balance the performance and auto-
scaling tradeoff. (2) Partitioning the file system namespace across
a dynamic fleet of serverless functions introduces interesting
tradeofls in a FaaS environment. (3) The lack of addressability of
serverless functions means that a metadata entry may be stored
on multiple functions, therefore introducing metadata consis-
tency issues.

AFS addresses these challenges by synthesizing several tech-
niques into an end-to-end, serverless MDS system. First, we find
that AFS can achieve strong performance using a large number
of serverless NameNodes each having relatively small CPU and
memory resources compared to their serverful counterparts. AFS
also leverages a hybrid HTTP-TCP RPC mechanism to enable agile,
lightweight, and performance-preserving auto-scaling.

Second, AFS’ FaaS-powered metadata cache consists of n unique
serverless function deployments. AFS uses path-based hashing of
parent directories to partition the file system namespace among
the n deployments in order to support efficient metadata read oper-
ations. Each deployment can automatically scale out to an arbitrary
number of concurrently-running function instances that elastically
support bursts of metadata requests on hot directories. AFS trades
function-deployment-based auto-scaling (i.e., there is a fixed num-
ber n of deployments) for easy-to-manage, deterministic metadata
partitioning. Third, AFS implements a serverless coherence proto-
col to provide strong consistency in the presence of an arbitrary
number of running “function instances” and clients.

Finally, AFS re-implements many DFS maintenance features, such
as block reports and DataNode discovery, in a serverless-compatible
way by publishing information to the persistent metadata store on
aregular interval.

There are a number of benefits and advantages of using FaaS as
the underlying platform for the MDS of a large-scale DFS. Notably,
these benefits would be difficult or impossible to realize using a
traditional, serverful MDS architecture. First, by using a large num-
ber of relatively lightweight serverless functions, overall resource
utilization can be improved, which ultimately leads to better perfor-
mance and cost-efficiency. This cost-efficiency is further enhanced
by the pay-per-use pricing model of FaaS, which drastically lowers
tenant-side costs without negatively impacting performance. This
is quantified using a performance-per-cost metric in §5.2.5.

In addition to cost-related benefits, the MDS can take advantage
of FaaS-based auto-scaling to automatically adapt to changes in
request volume without requiring management by users or admins.
When request volume increases, the MDS automatically scale-outs
to serve the additional requests. When request volume decreases,
the MDS will scale-in, avoiding the problem of low resource uti-
lization and poor cost-efficiency. This completely circumvents the
typical under/over-provision problem faced by serverful systems.

In summary, this paper makes the following contributions:

e We identify scalability and performance issues of HopsFS, a state-
of-the-art DFS with a scaled-out MDS design.

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

ADFS Nod i] HopsFS
Clients Clients

Client API

Client API

le Blocks Metadata Mgm

(a) HDFS
Figure 1: Architecture of HDFS and HopsFS.

F

e We explore the design space of serverless metadata management
for large-scale DFSes. We identify the key opportunities and
challenges of using FaaS$ for this purpose, and we share insights
into how to address these challenges.

o We present the design and implementation of AFS, a novel meta-
data service that uses massively-parallel serverless functions to
cache and elastically scale the metadata workload. To the best of
our knowledge, AFS is the first serverless-function-based MDS
for large distributed file systems.

e We demonstrate AFS’ generality by porting AFS to two practical
DFSes that have different, scaled-out MDS architectures: HopsFS
and BeeGFS [6] enhanced with IndexFS.

o We extensively evaluate AFS using real-world workloads and
microbenchmarks. Our results show that AFS achieves up to
4.13% higher throughput, 90.40% lower latency, and 85.99% lower
cost than HopsFS and 3.33x greater performance-per-cost than
HopsFS augmented with a metadata cache while providing better
resource utilization.

2 BACKGROUND AND MOTIVATION

Different DFS architectures have different tradeoffs, but there is
one commonality: all existing solutions use an architecture that
separates metadata management and file data storage manage-
ment. In this section, we use HDFS and HopsFS, two representative,
production-ready DFSes, as examples to illustrate the two gener-
ations of MDS architectures used by today’s DFSes. Specifically,
HopsFS uses a cluster of scaled-out, stateless metadata servers in
front of a scaled-out, strongly-consistent metadata store to support
a scalable MDS for the widely used HDFS. Therefore, HopsFS pro-
vides an ideal platform to experiment with and demonstrate the
efficacy of AFS. This section describes the common limitations of
state-of-the-art MDS solutions to further motivate AFS.
Hadoop Distributed File System. The Hadoop Distributed File
System (HDFS) is an open-source implementation of GFS [38] and is
widely used in practice [57]. HDFS stores metadata in the memory of
a Java process referred to as the Active NameNode. This metadata is
replicated to a Standby NameNode, which is used for checkpointing
and failure recovery. File system operations are executed atomically
by the Active NameNode, thereby providing strong consistency for
file system metadata. POSIX semantics are relaxed in order to allow
for streaming access to the system data. See Figure 1(a).
DataNodes are responsible for storing file data. Each DataNode
connects to both the Active and Standby NameNodes. A DataNode
periodically generates reports that are sent to the NameNode. These
reports are used to ensure the NameNode’s block map is consistent
with the actual data stored in DataNodes. The JournalNodes are

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

used to synchronize state between the Active and Standby NameN-
odes. ZooKeeper [40] provides automatic failover and leader election
for the NameNodes.

HopsFS. HopsFS [51] is a distributed file system developed as an
extension of HDFS. HopsFS provides a scaled-out metadata manage-
ment layer by decoupling the storage and manipulation of metadata.
Specifically, HopsFS supports multiple stateless NameNodes. The
NameNodes persists the metadata to a pluggable storage backend
and collectively serve metadata requests made by clients. HopsFS
uses MySQL Cluster NDB [15] for this persistent backend data store.
The architecture of HopsFS is shown in Figure 1(b).

Each NameNode uses a Data Access Layer (DAL) that provides
a generic interface to an arbitrary persistent storage backend. This
interface is used to manipulate the metadata stored within NDB.
All file system operations require the resolution of each path com-
ponent in order to check for permissions and path validity. HopsFS
introduces techniques to mitigate the performance impact of path
resolutions, such as an “INode Hint Cache”, which allows clients
to cache metadata prefixes locally to reduce the number of round
trips required for path resolution from N round trips (for a path of
length N) to just one single batch query. The cluster of stateless Na-
meNodes cooperates to handle DataNode failures. The NameNodes
elect a leader NameNode to perform administrative tasks.
Limitations of Today’s Scaled-Out MDSes. For the remainder
of the paper, we do not focus on issues that HopsFS has already
addressed—AFS uses the same decoupled compute-and-storage MDS
architecture and uses the same DAL to interface with the persistent
metadata store used by HopsFS. Instead, we focus on the scalabil-
ity and elasticity problems with HopsFS’ statically-fixed, stateless
NameNode cluster design, which we describe next.

There are several aspects of HopsFS’ design that hinder HopsFS’
MDS efficiency. First, the use of stateless NameNodes necessitates
the retrieval of metadata from the persistent metadata store for
every single metadata operation. This means that HopsFS’ perfor-
mance is capped by the capacity of the backend NDB cluster. The
compute (NameNode) and storage (NDB) resources, though phys-
ically decoupled, are essentially logically-bundled resources that
need to be configured together. Otherwise, system performance can
rapidly degrade if either of the two layers becomes a bottleneck.

Second, HopsFS and other scaled-out MDS solutions [49, 54, 63]
lack elasticity and require an admin to empirically configure a
statically-fixed deployment of compute and storage resources for
the serverful MDS cluster. This leads to a choice between resource
under-utilization and degraded performance: if the admin provi-
sions compute resources for the peak load of the metadata workload,
the system wastes both compute and storage resources; if the admin
provisions resources for the average demand, then the performance
degrades when the load increases beyond the provisioned capacity.
Terminology. Before describing AFS’ design, it is necessary to
define some terminology. First, AFS’ NameNodes are organized into
multiple serverless function deployments. Function deployments
consist of user-written code to be executed when the serverless
function runs, configuration info, and metadata, all of which is
registered under a unique name with the Faa$S platform. The code
for a NameNode is written (in Java) as the body of a serverless
function. AFS registers a configurable number of uniquely named

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

' \
AFS Clients]
,

Metadata Management

>
S
>

—!
1 Block
,0perations | serverless Caching Layer

File Blocks

Figure 2: The AFS architecture.

serverless NameNode functions with the FaaS platform. (The bodies
of these functions are identical; the names are different.)

When a user invokes a serverless function defined by a particular
deployment, the FaaS platform automatically provisions an instance
of that function based on the configuration info specified when the
deployment was registered. Thus, a function instance refers to an in-
stantiated, running serverless function. A NameNode then refers to
the Java application executing within the function instance. When
we say that a function instance “belongs” to a deployment, we mean
that the instance is an instantiation of the serverless function de-
fined by that deployment. Only one NameNode can execute within
a function instance, so the two terms are used interchangeably.

3 AFS DESIGN

AFS enables elastic metadata service for large-scale DFSes such
as HDFS. AFS uses a hybrid, FaaS-optimized RPC mechanism that
combines TCP-based RPC and HTTP-based RPC together to enable
high throughput and reduced latency (§3.2). AFS uses a serverless-
function-based memory caching layer for DFS metadata caching
(§3.3) and features an agile auto-scaling policy to enable elastic
and parallel metadata processing at the caching layer (§3.4). While
caching reduces the number of network hops per request, AFS’
auto-scaling significantly improves the cache’s throughput. AFS also
introduces a simple coherence protocol to ensure strong consistency
of metadata operations within the serverless cache (§3.5). Note that
AFS is also usable with other DFSes: as we will show in §4, AFS can
enhance BeeGFS [6] as a drop-in replacement for IndexFS.

3.1 AFS Overview

Figure 2 shows the architecture of AFS. Clients issue RPC metadata
requests to NameNodes, just as clients do in HopsFS. The difference
is that each AFS NameNode is a Java serverless function executing
within a container managed by the serverless platform. RPC meta-
data requests are initially performed as HTTP invocations directed
towards the platform’s API gateway. The serverless platform routes
HTTP requests it receives to already-running NameNode instances,
if available, or it starts a new instance if none are running.

Once a NameNode is up and running, it can establish direct
TCP connections back to clients (after first interfacing with clients
through HTTP requests). TCP-based RPC requests serve as a lower-
latency alternative to HTTP-based RPC requests, as only one net-
work hop (client to NameNode) is required for a TCP RPC. Hybrid
TCP and HTTP RPC mechanisms are discussed in §3.2.

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

AFS ¢~ “Seryeriess M
Client

AFS Library

Cachinglayer §:
o

APl Gateway

Figure 3: AFS supports two different types of metadata RPC
requests: HTTP-based and TCP-based RPCs.

Another key difference between AFS and HopsFS is that the
serverless NameNodes in AFS: are (1) not stateless, and (2) are elas-
tic. This allows the dynamic cluster of serverless NameNodes to
collectively form an elastic metadata caching layer. When a NameN-
ode receives a metadata request, it checks whether the requested
metadata was retained from a previous function invocation. The re-
tained metadata thus form a cache. The caching system is discussed
further in §3.3.

To support elastic caching, AFS’ NameNodes are organized into n
individual function deployments. We partition the namespace among
the function deployments by consistently hashing on the parent
directory path of each file/directory. For example, we may hash
the file “/dir/note.pdf” to the deployment named “NameNode5”. In
this case, the client would issue an HTTP RPC for the deployment
“NameNode5”, or issue a TCP RPC to an already-running function
instance of the NameNode5 deployment. If the NameNode that serves
this request already has the target metadata cached locally, then a
network hop to the persistent metadata store is avoided, resulting in
lower latency for the request. Individual function deployments au-
tomatically scale out in response to the sudden increase of metadata
requests. Our agile auto-scaling policy is described in §3.4.

AFS uses a pluggable “Coordinator” service for tracking NameN-
ode liveness and coordinating NameNodes during write operations.
AFS currently supports both ZooKeeper and MySQL Cluster NDB.
The Coordinator is used in the coherence protocol described in §3.5.

AFS’ design capitalizes on the unique benefits of serverless com-
puting while accounting for the challenges that the platform presents.
First, AFS takes advantage of the intra-deployment auto-scaling of-
fered by Faa$ to rapidly and transparently scale-out in response to
bursts of work. Not only does this enable AFS to responsively and
elastically adapt to changing workload characteristics in real-time,
but it also improves AFS’ resource efficiency and resource utiliza-
tion. When system throughput returns to normal levels, AFS will
transparently scale-in to avoid incurring additional costs. Using tra-
ditional, serverful VMs in place of serverless functions would result
in significantly reduced elasticity and either wasted resources or
poor performance (depending on how resources are provisioned).

3.2 Hybrid Serverless RPC Mechanism

AFS utilizes two different RPC pathways in order to provide high
system throughput and high elasticity. Specifically, HTTP RPCs
directed to the serverless platform’s API gateway are used to scale-
out the number of serverless function instances as the load increases.
At the same time, NameNodes establish direct TCP connections
back to clients. Clients can then use this direct connection as a low-
latency alternative to HTTP requests. During our experiments, we
found that the average end-to-end latency for read operations was
1-2ms for TCP RPCs and 8-20ms for HTTP RPCs. Clients issue TCP

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

1
1

H

L0000

: TcP

:‘.D 000D s}' @ [NameNode 2a] (NameNode 2]
'

=TCP Server 2's Client | Existing TCP C. i
3 a xistin onnection
% ClientVM .-
_~,=. —

- =/ New TCP Connection —

Figure 4: AFS’ “connection sharing” mechanism.

RPCs whenever possible due to the significantly lower latency. (TCP
RPCs also experience much smaller end-to-end latency variance
compared to HTTP RPCs.) The lower latencies lead to substantially
higher throughput and overall much lower costs due to the reduced
overhead for each file system operation.

Figure 3 depicts the two different types of metadata RPCs that
AFS supports. The first, labeled as step (1), is a standard HTTP
invocation directed to the API gateway of the FaaS framework
(e.g., OpenWhisk). At step (2), the FaaS API gateway will route
this request to a serverless function invoker, which will submit the
request to an existing NameNode, or the invoker will provision a
new instance if none exist or all are busy serving other requests. A
NameNode that serves an HT TP request will subsequently establish
TCP connections back to the clients that issued the HTTP request
if no such connection already exists as shown in step (3).

By default, all clients on the same VM will use the same TCP
server (on that VM) to communicate with serverless NameNodes.
Users can optionally configure AFS to assign at-most n clients to
each TCP server. New TCP servers are automatically created for
new clients as needed. Clients transparently include their IP address
and the ports for all TCP servers on their VM within HT TP request
payloads, which enables the NameNodes to proactively connect to
the servers.

Clients also temporarily share connections with one another. Con-
sider the process illustrated in Figure 4. Client a wishes to submit a
metadata request to deployment 2 (D2). In step 1, a finds that there
is no existing connection between its TCP server and an instance
of D2. Thus, in step 2 client a contacts the other TCP servers on its
VM and finds that TCP Server 2 has an existing connection to an
instance of D2. In step 3, a uses TCP Server 2 to issue its metadata
request. After fulfilling the request, NameNode 2a establishes a
TCP connection back to client a’s assigned TCP server.

When HTTP requests time out, clients could resubmit the re-
quests to the Faa$ platform immediately, causing a request storm
that could overwhelm the FaaS platform and lead to the over-
provisioning of NameNodes. We designed the client library so that
clients sleep before resubmitting requests, following an exponential
backoff delay pattern with randomized jitter added.

Similarly, if a TCP connection between a client and a NameN-
ode is dropped, then any incomplete requests are transparently
re-submitted by the client. The client will first determine if there
are any other active TCP connections to instances from the target
deployment. If so, then these connections will be used to re-submit
the requests. If not, then the client queries the other TCP servers
on its VM, if any, for active connections, and uses any connection it
finds to resubmit its request. If no such TCP connections exist, then

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

“FS Serverless

Client Caching Layer
Q@ I

Figure 5: A walkthrough of AFS’ caching protocol.

Persistent
, Metadata Store |]

A}

the client will simply fall-back to HTTP to re-submit the request.
Additionally, NameNodes temporarily cache results returned to
clients in the event that network delays or other failures prevent
the client from receiving the result. When the NameNode receives a
re-submitted request, it will attempt to return cached results before
re-performing the requested operation.

3.3 Serverless Metadata Cache

AFS NameNodes provide a serverless caching layer for performance.
We partition the file namespace across all the NameNode deploy-
ments by consistently hashing on the parent INode ID. Each de-
ployments’ NameNode instances are then responsible for caching a
partition of the namespace, and clients route metadata RPCs based
on this partitioning scheme.

NameNodes cache more than just the metadata associated with
the terminal INode in a particular path. Specifically, they cache the
metadata for all INodes contained within a particular path. Cached
metadata is stored in a trie data structure maintained in-memory
on the NameNode. This caching scheme allows for metadata read
operations to avoid going to the persistent metadata store, as Na-
meNodes can serve the read entirely from their local cache, called
a cache hit. A cache miss occurs when a missing metadata must be
retrieved from the metadata store. Once retrieved, the NameNode
will cache the metadata in its local cache for future read operations.

Figure 5 provides an illustration of AFS’ serverless metadata
caching. In step (1), the client issues a metadata request for the file
“/nts/notes. txt”. This results in a cache hit on the NameNode in
step (2). As a result, this NameNode can return the metadata directly
to the client in step (3) without having to first retrieve it from the
metadata store. Next, the client issues another metadata RPC for the
file “/bks/book . pdf”. This request is routed to a different NameNode
in step (4) and results in a cache miss in step (5). In step (6), the
consulted NameNode retrieves the metadata from the metadata
store. Finally, the metadata is returned to the client in step (7).

3.4 Agile Serverless NameNode Auto-Scaling

A metadata cache reduces per-operation latency and improves sys-
tem throughput; however, a cache alone is insufficient for support-
ing large-scale, bursty workloads while maximizing cost-effectiveness
and resource efficiency. An MDS equipped with a cache must still
be statically provisioned by the user ahead of time. This creates
a dilemma for the user, which is to over- or under-provision the
resources, trading off performance and cost-efficiency. In order to
avoid this trade-off, we implement an agile and lightweight auto-
scaling policy for managing coordinated scaling within a serverless
framework. We begin by motivating the design of our auto-scaling
policy before discussing the general model in detail.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

of NameNodes

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

Expected scale-out. Upper—bound determined by resource availability of FaaS platform.

Fine-grained

‘TcthtpRepIace% X a

1

_ClusterCPU ClusterRAM

DesiredScale = NumDeployments |

Concurrencylevel X

MIN PerNameNodeCPU , PerNameNodeRAM

Must be 2 1. . N
Determines how namespace is partitioned.

Coarse-grained

Figure 6: Mathematical model of the agile and lightweight FaaS auto-scaling in AFS.

When clients issue metadata requests, they issue either a TCP
RPC or an HTTP RPC (§3.2). Clients will choose to issue a TCP RPC
whenever a TCP connection exists to a NameNode in the target
deployment. This is because HTTP RPCs incur significantly higher
overhead compared to TCP RPCs; clients only choose HTTP RPCs
as a last resort, when no TCP connections exist. However, TCP RPCs
are not FaaS-aware. Only HTTP RPCs are routed through the Faa$S
platform and thus enable the platform to detect when additional
containers are needed. Therefore, exclusive use of TCP RPCs will
ultimately lead to poor scalability and elasticity by preventing auto-
scaling, leading to overload and performance degradation. This
scenario highlights an interesting trade-off between performance
(low latency and high throughput) and elasticity.

To address the scenario above, we implement an agile and light-
weight auto-scaling policy based on a randomized HTTP-TCP re-
placement mechanism. Each TCP RPC can be probabilistically re-
placed by an HTTP RPC, with a configurable probability. As the
request load increases, the absolute number of HTTP RPCs should
increase, enabling the FaaS platform to provision additional server-
less containers as needed. In essence, the randomized replacement
mechanism allows for a majority of RPCs to be TCP-based while
still enabling auto-scaling to occur, leading to better elasticity and
scalability while achieving low latency and high throughput.

The auto-scaling policy can be modeled using the equation in
Figure 6, where « is a parameter encoding the load level (requests
per second and load concurrency), and ConcurrencyLevel is the
function-level concurrency of each individual NameNode. To support
asynchronous ConcurrencyLevel, we extended OpenWhisk [3]
to enable control over how many unique HTTP RPCs a single
function instance can serve simultaneously. This parameter provides
coarse-grained control over the degree of auto-scaling, as small
changes in this value will have a large impact on the number of
provisioned NameNodes. The closer that the ConcurrencyLevel
is to its minimum value of 1, the greater the degree of auto-scaling.
Meanwhile, the HTTP-TCP replacement probability provides fine-
grained control over auto-scaling. We find that empirically setting
the probability of random HTTP-TCP replacement to a value < 1%
tends to provide the best performance for the request loads and
resource limits we used.

AFS’ auto-scaling policy reuses the FaaS platform’s existing auto-
scaling facility while remaining agile and performance-preserving.
We choose not to use sophisticated feedback-based policies, such
as Kubernetes’ Horizontal Pod Autoscaling algorithm [10], as these
policies typically require a long feedback-loop delay, which cannot
be tolerated if sudden load bursts must be dealt with quickly. We
envision that this model is readily applicable to and useful for future
performance-sensitive FaaS-based systems. It provides an effective
methodology that enables traditional Faa$ platforms to embrace high-
throughput, low-latency stateful applications.

Algorithm 1 AFS Coherence Protocol

(1) For each d € D, Ny subscribes to and listens for liveness and
ACK notifications before issuing an INV, whose payload includes
the metadata to be invalidated, to that deployment. All of this
is performed using the Coordinator. ACKs are not required from
NameNodes that terminate mid-protocol.

(2) Upon receiving an INV, NameNodes in each d € D first invali-
date their caches before responding with an ACK.

(3) Once N, has received all required ACKs, the write operation can
safely continue. Metadata changes/updates are persisted to the
persistent datastore.

3.5 Coherence Protocol

Supporting stateful and parallel caching atop serverless NameN-
odes requires special treatment for concurrent metadata operations,
as multiple function instances for the same NameNode deployment
may cache replicas of the same metadata. Like HDFS, AFS’ metadata
operations fall into the following two categories: single INode op-
erations that operate on a single file or directory (e.g., read/create
file), and subtree operations that operate on one or more directories
spanning many INodes (e.g., recursive mv and delete).

Inspired by cache/memory coherence algorithms [43, 47], we
designed a modular, serverless memory coherence protocol that
guarantees data consistency for DFS metadata. The protocol uses
a simple ACK-INV mechanism to ensure that NameNodes have in-
validated their caches before any new metadata is persisted to the
metadata store. That is, when a NameNode performs a write oper-
ation on an INode, it issues an invalidation (INV) to the instances
in the deployment responsible for caching each piece of metadata
related to the modified INode. The write operation blocks until all
active NameNodes have acknowledged (ACK’d) this INV, at which
time the write operation can safely proceed. Our coherence protocol
utilizes the pluggable “Coordinator” service to facilitate commu-
nication among the NameNodes. The Coordinator is used to keep
track of which NameNode instances are actively running in which
deployments and to deliver the ACKs and INVs. AFS builds a subtree
coherence protocol atop the simple, single-INode-based protocol
(see Appendix D).

To describe the coherence protocol, we use the following nota-
tions. First, recall that there are n deployments across which the
NameNodes are partitioned. Let D denote the set of deployments
caching at least one piece of metadata in the target path of a write
operation. Next, let Ny denote the “leader” NameNode, which is
the NameNode performing the write operation. To orchestrate the
coherence protocol, Ny, actively communicates with other NameN-
odes via the Coordinator.

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

Table 1: Lines of code required by the different components
involved in the development and evaluation of AFS.

Component LoC | Component LoC
Benchmark drivers 15,000 | Docker images 2,100
AFS 36,685 | Python scripts 1,200
hammer-bench 3,160 | AIndexFS 4,472

Total: 63,624

The coherence protocol is described in Algorithm 1. It is con-
ceptually divided into three steps. There is also a small amount of
clean-up that is performed after the protocol terminates; this step
is omitted for simplicity. The protocol guarantees the serialization
of concurrent writes by utilizing exclusive locks in the persistent
datastore. First, consider how once the leader NameNode N re-
ceives all ACKs from its followers, it is necessarily true that all other
NameNodes will have invalidated their caches. Next, N; will have
taken exclusive write-locks on the metadata in the persistent data-
store, so it will be impossible for another NameNode to read and
cache the metadata before it is updated. This effectively serializes
write operations against any other concurrent writes on the same
data, thereby guaranteeing strong consistency.

3.6 Fault Tolerance

By default, both single INode and subtree operations do not span
multiple NameNodes; however, a multi-node subtree batching mech-
anism (described in-detail in Appendix D) may be enabled to reduce
the latency of subtree operations. AFS reuses HopsFS’ transaction
model, and thus both individual request- and NameNode-level fail-
ures are handled exactly as HopsFS handles them. Clients transpar-
ently resubmit subtree operations to other NameNodes in the event
of a crash. In the multi-node case, the failure of any node will be
treated as though the entire operation failed, and clients will simply
resubmit the operation. Since AFS’ persistent data store provides
ACID transaction semantics, and coupled with AFS’ consistency
protocol, failures cannot leave the namespace in an inconsistent
state. Likewise, AFS’ Coordination service ensures that crashes are
detected, enabling the easy removal of locks held by crashed Na-
meNodes.

4 IMPLEMENTATION

Implementing AFS. AFS is implemented as a fork of HopsFS 3.2.0.3.
Both AFS [11] and the benchmarking application [12] are open-
sourced. AFS can be used as a drop-in replacement for HopsFS
since AFS’ client API is a superset of the HopsFS APIL AFS uses a
deployment of Apache OpenWhisk [3] as its FaaS platform. AFS
also supports other FaaS platforms including Nuclio [19]. Notably,
adding support for Nuclio required just 108 additional lines of Java
code in AFS. Additionally, AFS uses MySQL Cluster NDB 8.0.26 as its
persistent metadata store and ZooKeeper [40] as its “Coordinator”
service.

Porting AFS to IndexFS. We have also ported AFS to IndexFS,
a scalable middleware MDS [54] for DFSes such as BeeGFS [6].
Thanks to AFS’ modular design, the integration of AFS and IndexFS
is conceptually similar to that of AFS and HopsFS, as shown in
Figure 7. We briefly discuss a few key differences below.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Metadata Operations LevelDB
(CIndexFS ((——\S5 s o Operations

IndexFS Server MndexFS e\

Clients LevelDB Clients

indexFs ||l TR MndexFS e

Library Library ae :
- - Serverless |

‘Caching Layer

(a) IndexFs ‘DFS /0 Servers': (b) iindexFs

DFS 1/0 Servers:

Data Operations | i
. e e

Figure 7: Porting AFS to IndexFS.

First, vanilla IndexFS relies on LevelDB to pack metadata into
SSTables [13]. We decouple in-memory metadata handling from
backend LevelDB by packaging the logic into serverless functions,
and only using LevelDB as the persistent metadata store. Second,
IndexFS leverages a sophisticated metadata partitioning algorithm
adapted from GIGA+ [53]. After discussions with the IndexFS au-
thors, we developed an alternative partitioning scheme that is easier
to integrate with AFS. This scheme uses hashing to partition direc-
tories across LevelDB SSTables by directory names. Third, to make
C++ based IndexFS compatible with AFS’ Java-based serverless
functions, we addressed multiple engineering challenges involving
cross-language data types and library compatibility (e.g., Java’s Kry-
oNet [8] is not available for C++). Overall, we find that porting AFS
is managable as AFS is designed to be modular and generalizable.
For simplicity, we refer to our AFS-ported IndexFS as AINDEXFS.

Porting AFS to Commercial FaaS Platforms. It is straightfor-
ward to port AFS to commercial Faa$S platforms such as AWS Lambda.
AFS’ core techniques are not dependent on any particular FaaS plat-
form. This includes AFS’ RPC mechanism, as other frameworks
have successfully used TCP-RPC-like mechanisms on commercial
FaaS platforms in the past [37]. AFS could in theory be deployed on
any FaaS$ platforms that support custom-container-based function
deployment [1, 9, 17]. One challenge is how to minimize the perfor-
mance impact of warm function reclamation [62], which we leave
as our future work.

Summary of Implementation Efforts. We have implemented
AFS and the software used for its evaluation in roughly 63,624 lines
of Java/C++ code (see Table 1), completed over the course of more
than two person-years. The benchmarking software constitutes
18,160 LoC, while AFS and AINDEXFS together are composed of
approximately 41,157 LoC.

5 EVALUATION
5.1 Experimental Setup & Methodology

In order to elucidate the effectiveness of AFS’ various techniques
and optimizations, we evaluated AFS against a number of other file
systems. Specifically, we compared AFS against three state-of-the-
art distributed file systems: HopsFS, IndexFS [54], and CephFS [63].
We also performed experiments that evaluated AFS’ performance
against that of a modified HopsFS, denoted “HopsFS+Cache”, whose
NameNodes had been augmented with an in-memory metadata
cache similar to that of AFS. HopsFS+Cache serves as a serverful,
cache-based DFS baseline. Finally, we compared AFS with INFINI-
CACHE [61], an in-memory object cache implemented atop Faa$, in
order to better understand the efficacy of AFS’ FaaS caching layer.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

INFINICACHE uses a static, fixed-size deployment of cloud functions
to serve I/O operations via short TCP connections that require
invoking functions for every operation. INFINICACHE thus serves
as an approximation of AFS with no auto-scaling or long-lived
TCP-RPC request mechanism. All experiments were performed
on Amazon Web Services (AWS), and results were verified to be
consistent with results obtained on Google Cloud Platform (GCP).

The experiments used deployments of the OpenWhisk serverless
platform and MySQL Cluster NDB. Like AFS, HopsFS uses MySQL
Cluster NDB as its persistent metadata store. OpenWhisk was de-
ployed on AWS Elastic Kubernetes Service (EKS). All other VMs
were deployed on AWS EC2. All AWS VMs used the r5.4xlarge
instance type (16 vCPU and 128GB RAM). MySQL Cluster NDB
8.0.26 was deployed on GCE and EC2 with a single master node and
four data nodes. We configured each NDB storage node according
to the sample configuration provided by HopsFS. Unless otherwise
specified, each AFS NameNode was configured with 6.25 vCPU and
30GB RAM. HopsFS’ NameNodes were configured with 16 vCPU,
64GB RAM, and 200 RPC handlers. For clarity, we defer the descrip-
tion of the setup for the portability experiment with IndexFS to §5.7
as IndexFS’ architecture is different from HopsFS.

To ensure a fair comparison between AFS and HopsFS, we allo-
cated an equal amount of vCPUs and RAM to each framework’s
NameNode cluster (unless otherwise specified). However, impos-
ing a fixed, total vCPU limitation on AFS’ NameNodes implicitly
restricted the maximum performance of AFS compared to what AFS
could have achieved with the nearly unbounded resources typically
provided by Faa$S platforms. Because of this self-imposed bound
on vCPUs, unrestricted AFS scale-outs would have over-used re-
sources, leading to thrashing and severe performance degradation.
To prevent this, AFS’ scaling behavior was “toned down”, and con-
sequently AFS never actively provisioned more than 92.77% of the
available vCPUs during these experiments. (We describe AFS’ anti-
thrashing technique in Appendix C.) The resource scaling tests
presented in §5.3.2 illustrate how AFS’ performance improves as
more resources are allocated to AFS, thereby providing insight into
how AFS would perform with nearly unbounded resources.

Our evaluation aims to answer the following questions:

o How does AFS perform under industrial workloads (§5.2)?

e To what extent does AFS’ elasticity improve performance, scala-
bility, resource- efficiency, and cost-efficiency (§5.2.4, §5.4, §5.2.5,
§5.3.3)?

e How does AFS scale for individual DFS operations compared to
other large-scale DFSes (§5.3)?

o Is AFS resilient to serverless NameNode failures (§5.6)?

e Can AFS benefit other DFSes besides HopsFS (§5.7)?

5.2 Industrial Workload

In this section, we present and discuss the results of executing
a real-world, industrial workload on both AFS and HopsFS. The
workload is based on the one used in HopsFS’ evaluation, which
was generated using statistics from traces of Spotify’s 1600-node
HDFS cluster. The frequencies of the file system operations are
shown in Table 2.

5.2.1 Experimental Setup. We implemented a DFS benchmark that
can generate bursty file system loads by modifying the hammer-bench

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

Table 2: Relative frequency of the file system operations used
in the Spotify workload experiment.

Operation Percentage | Operation Percentage
create file 2.7% | read file 69.22%
mkdirs 0.02% | stat file/dir 17%
delete file/dir 0.75% | 1s file/dir 9.01%
mv file/dir 1.3% | Total Read Ops 95.23%

utility used to conduct HopsFS’ evaluation [26, 51]. Our benchmark
randomly varies system throughput over the course of the work-
load’s execution in order to accurately simulate a real-world DFS
workload [55]. Specifically, the workload is executed for 5 minutes.
Every 15 seconds, the benchmark generates a random throughput
value A from a Pareto distribution with a shape parameter a = 2.
(Please refer to [55] for a discussion on why the Pareto distribution
is useful in this scenario.) Each client VM will attempt to sustain
§= % ops/sec, where n is the total number of client VMs. If less than
d operations are completed in a given second, then the remaining
operations roll over to the next second.

In order to demonstrate AFS’ ability to elastically scale in re-
sponse to bursts of metadata requests, the benchmark randomly
generates throughput spikes up to 7x greater than the base through-
put. We ran 2 different versions of the workload: one in which the
Pareto distribution’s scale parameter x; = 25,000 and the other in
which x; = 50, 000. The value of x; determines the workload’s base
throughput. Both workloads were executed by 1,024 clients across
8 VMs. We allocated 512 vCPUs to HopsFS in order to maximize
its performance during these tests. While allocating less vCPUs
would’ve been cheaper, HopsFS’ performance would’ve suffered,
as shown by the resource scaling tests. Each AFS NameNode was
allocated 5 vCPUs, and in the 25,000 ops/sec workload, AFS’ NameN-
ode cluster was collectively allocated just 50% of the total vCPU
allocated to HopsFS’ NameNode cluster in order to better illustrate
AFS’ resource and cost efficiency.

5.2.2 Throughput & Latency. Figure 8(a) shows a throughput com-
parison between AFS, HopsFS, and HopsFS+Cache during an execu-
tion of the Spotify workload with a base throughput of 25,000 op-
s/sec. Note that each of AFS’ NameNodes was configured with 6GB
of RAM for the 25,000 ops/sec workload. AFS achieved an average
throughput of 45,690.34 ops/sec and an average latency of 1.02 ms
during the execution of this workload. HopsFS achieved an average
throughput of 38,134.35 ops/sec and an average latency of 10.58 ms.
HopsFS+Cache achieved an average throughput of 45,945.1032 op-
s/sec and an average latency of 3.348 ms. Summarily, AFS achieved
90.40% (10.41x) lower latency and 16.53% (1.19x) higher throughput
on average than HopsFS, while using 39.45% less resources. Com-
pared to HopsFS+Cache, AFS achieved equivalent average through-
put and 69.53% (3.28X) lower latency on average. AFS was success-
fully completed the entire workload, including the entire 15-second
163,996 ops/sec burst generated at time ¢ = 200. Meanwhile, HopsFS’
clients struggled to sustain loads above 38,000 ops/sec. When the
burst occurred, HopsFS had already “fallen behind” and was strug-
gling to execute operations generated nearly a minute prior. So, AFS’
peak sustained, throughput was 4.3x higher than that of HopsFS.
Figure 8(b) shows a throughput comparison during an execution
of the Spotify workload with a base throughput of 50,000 ops/sec.

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

175k k
—AFS 300
150k ~*HopsFS I 32
HopsFS+Cache ‘
125k ~-AFS Reduced Cache |
8 -CN HopsFS+Cache I '30%
------- AFS NNs (right y-a
»100k ’1‘7\
5 [—285
O 75k i
O Fan E 25
2 Py)
5k R Ted | HEY 22
F — 1 1 |
0o 100 200 300 Y 100

Time (seconds)
(a) Base: 25,000 ops/sec.

Time (seconds)

(b) Base: 50,000 ops/sec

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

)
Q100M . jFs25k
(@] - HopsFS+Ca¢I‘)e 25k
5 80M - AFS 50k]
o HopsFS+Cache 50k
v 60M | ¢
g -
T 40M r "
&
—
8 20M

| ‘26 ¢

200 300 0 100 200 300

Time (seconds)

(c) Performance-per-cost comparison.

Figure 8: Throughput and performance-per-cost comparison between the various systems during the Spotify workload. The
number of active AFS NameNodes (“NNs”) is shown on the secondary y-axis in both Figure 8(a) and 8(b).

100k 150k 200k 250k 300k
Time (milliseconds)

0 50k

a 2.5 AFS

S 2.0 AFS (Simplified)
= === HopsFS

2 1.5- = = HopsFS+Cache
o

> 1.0

2

B 0.5-

=} i

g 0.0

35

O

Figure 9: Cumulative cost of the 25k ops/sec Spotify work-
load. HopsFS’ cost was $2.50. AFS’ cost was $0.35 using AWS
Lambda’s prices, which are $0.0000166667 per GB-second,
charged at 1ms granularity, and $0.20 per 1M requests [5].
Under the “simplified” cost model, AFS NameNodes incur cost
while they’re provisioned, similar to VMs, which overcharges
compared to AWS Lambda’s pay-per-use pricing model.

For this test, AFS’ Faa$S platform was allocated 512 vCPU but used
at most 180/512 (35.15%) of the available vCPUs. AFS achieved an
average throughput of 90,875.60 ops/sec and an average latency of
4.31 ms during this workload. HopsFS achieved an average through-
put of 44,956.28 ops/sec and an average latency of 22.40 ms.
HopsFS was unable to achieve the base throughput of 50,000 op-
s/sec, so it spent the duration of the workload attempting to “catch
up”. Meanwhile, AFS sustained approximately 250,000 ops/sec dur-
ing the burst at around ¢ = 200. To this end, AFS’ peak, sustained
throughput was 456.09% (5.56) higher than that of HopsFS.

AFS’ average throughput was 102.14% (2.02X) greater than HopsFS’;
similarly, AFS’ average latency was 80.76% (5.19x) lower than HopsFS’.

For “read” operations, AFS achieved an average latency anywhere
from 6.93X—20.13% lower than that of HopsFS (see Figure 10). How-
ever, AFS was unable to complete “write” operations as quickly as
HopsFS because of the added overhead required by AFS’ coherence
protocol. Summarily, HopsFS achieved 1.5X—5.55X shorter “write”
latencies compared to AFS.

INFINICACHE failed to complete either of the two Spotify work-
loads. The FaaS platform became overwhelmed by the volume of
HTTP requests: the high-latency HTTP requests and static, fixed-
size deployment were insufficient for both the base throughput and
bursts of work during the workloads.

Because FaaS assumes a near-unbounded amount of resources,
fixing the amount of vCPU allocated to the platform results in poor

performance and scalability. To perform a fair comparison and high-
light the cost-saving benefits of FaaS, we also compared AFS against
a “cost-normalized” configuration of HopsFS+Cache, referred to as
“CN HopsFS+Cache”. Specifically, we configured CN HopsFS+Cache
with 72 and 144 vCPU for the 25,000 and 50,000 ops/sec Spotify
workloads, respectively. In doing so, CN HopsFS+Cache incurred
the same monetary cost as AFS. Considering first the 25,000 ops/sec
workload as shown in Figure 8(a), CN HopsFS+Cache achieved
lower throughput than AFS, failing to sustain the burst of requests
around the 200th second of the workload. This phenomenon occurs
again during the 50,000 ops/sec workload as shown in Figure 8(b).

5.2.3 In-Memory Metadata Cache. To measure the performance im-
pact of AFS’ metadata caching layer, we executed another instance
of the x; = 25,000 workload in which we decreased the capacity of
the serverless NameNode cache to less than half the working set
size (WSS) of the workload. As shown in Figure 8(a), “reduced-cache
AFS” achieved better performance than HopsFS, sustaining between
70,000—80,000 ops/sec during the largest burst. Despite failing to
sustain 163,996 ops/sec, “reduced-cache AFS” quickly caught up and
completed the remainder of the workload.

5.2.4 Elastic Auto-Scaling. The results of the Spotify workload
demonstrate AFS’ ability to handle large bursts of work. Figures 8(a)
and 8(b) show that AFS provisioned additional NameNodes to satisfy
the influx of requests as soon as the workload started. AFS quickly
scaled-out again near the 200-second mark, which is when the 7x
request burst occurred, demonstrating the effectiveness of AFS’
auto-scaling policy. With unbounded resources, AFS could rapidly
scale-out to much higher load spikes. This is supported by the trend
shown in the resource scaling experiments (Figure 12).

5.2.5 Monetary Cost. Figure 9 shows the cumulative cost for the
25,000 ops/sec Spotify workload for AFS, HopsFS, and HopsFS+Cache.
For AFS, the cost was computed as follows: for every 1 ms interval
of the workload, we billed each NameNode actively serving an
HTTP or TCP request using AWS Lambda’s prices (as described in
Figure 9). If no requests were actively being served by a particular
NameNode, then that NameNode incurred no cost. For HopsFS and
HopsFS+Cache, we billed the cost of the entire 512-vCPU cluster
for each 1 ms interval of the workload. By the end of the work-
load, the cumulative cost of HopsFS and HopsFS+Cache was $2.50

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

LS DIR CREATE FILE

L et L 1050
¢ 0.98 | /] - | 0.98]
9| 0.6 /] 0.9 | 0.6 09 | lo.06- | 09 | o096 |/

200

| 0 100 200
—A 25k —H 50k
A 50k ~ H+C 25k 0.8 i
{ —H 25k - H+C 50k ~H 25k - H+C 50k
o 2.5k 5k V]
Latency (ms)

0 100 0 100 200
| —A 25k —H 50k ~—A 25k - H 50k
 —A 50k - H+C 25k 0.8 =~ —A50k H+C 25k 0.8 | LA S5
| —H 25k - H+C 50k ~H25k H+C50k +
2k 1] 1k 2k O 2.5k 5k V] 500 1k
Latency (ms) Latency (ms) Latency (ms)

°
©

| —A 50k H+C 25k 0.8 § —A 50k ~H+C 25k
| —H 25k H+C 50k ~H 25k~ H+C 50k
o 2.5k 5k

Latency (ms)

Cumulative Probability
o
©

1k 5k
Latency (ms) Latency (ms)

Figure 10: Latency CDFs of AFS (“A”), HopsFS (“H”), and HopsFS+Cache (“H+C”) for both versions of the Spotify workload.

READ STAT CREATE MKDIR
800k —+AFS 900k 600k
-=-HopsFS 750k
§6°0k -+-HopsFS+Cache 600k 450k
% 400k~ InfiniCache 450k 300k P e e
OQ CephFS 300k ==
200k 150k 150k

072‘3 24 25 26 27 28 29 10
Number of clients

23 24 25 26 27 28 29 310
Number of clients

02‘3 24 25 26 27 28 29 310
Number of clients

02‘3 24 25 26 27 28 29 210
Number of clients

23 24 25 26 27 28 29 210
Number of clients
Figure 11: Client-driven scaling comparison between the various systems. The total amount of vCPUs allocated to AFS and
HopsFS was held constant at 512 vCPUs, and each client performed 3,072 operations. The number of clients ranged from 8 to
1,024. Note that the y-axis for the create operation is log-scale.

while AFS’ cumulative cost was just $0.35. By taking advantage of
FaaS’ pay-per-use pricing model and our agile auto-scaling policy,
AFS reduced the cost of executing the workload by 85.99% (7.14X)
compared to HopsFS and HopsFS+Cache while achieving better
performance with fewer resources.

We also computed the cost of AFS using a simplified pricing
model, which is shown in Figure 9 as “AFS (Simplified).” Under this
model, active NameNode instances incurred cost as long as they
are provisioned [22], which doubled the cost of AFS compared to
the pay-per-use Faa$ pricing model. This illustrates how AFS takes
advantage of FaaS’ pay-per-use pricing model to greatly reduce
tenant-side costs.

While the use of FaaS can yield improved elasticity, scalabil-
ity, and performance, other primary benefits of FaaS are reduced
tenant-side cost and increased cost-effectiveness. In particular, AFS’
cost-effectiveness arises from its ability to achieve superior or equiv-
alent performance while using a smaller amount of resources. By
saturating a large number of relatively small, individual serverless
NameNodes, AFS exhibits high resource utilization and resource
efficiency with respect to the resources provisioned to it by the FaaS
provider. Likewise, by leveraging the pay-per-use property of FaaS,
AFS is ultimately able to reduce workload costs while delivering
equivalent or better performance.

To quantify this notion of cost-efficiency, we define a new met-
instantaneous throughput
instantaneous cost

ric performance-per-cost, given as one of

average throughput operations/second(_ operationS)
total cost $ ~ secondx$ I’

or operations-per-second-per-dollar. This metric provides a mea-

surement of cost-efficiency — a higher value indicates that the
associated framework is able to achieve a higher performance-cost
ratio, which is desirable. Increasing the value of this metric can
be done using some combination of increasing throughput and
decreasing cost.

Figure 8(c) shows the performance-per-cost for each second of
the real-world Spotify workload for AFS and HopsFS+Cache. The
cost for HopsFS+Cache is computed as the cost of running the 32
NameNode VMs for one second, whereas the cost for AFS is calcu-
lated using the pay-per-use pricing model of FaaS. Specifically, the
resources allocated to an active NameNode are only billed if that

. The units are

NameNode served a request within that second. AFS achieved signif-
icantly higher performance-per-cost compared to HopsFS+Cache.
This is because AFS experienced equal or greater throughput com-
pared to HopsFS+Cache for the entirety of the workload while
using significantly fewer resources (at-most 165 or 180 vCPU for
AFS, depending on the workload, compared to the 512 vCPU used
by HopsFS+Cache during both workloads).

5.3 Scalability

Next, we evaluate the scalability of AFS, HopsFS, HopsFS+Cache,
INFINICACHE, and CephFS using two micro-benchmarks covering
key DFS operations including read, stat file, 1s, mkdir, and create
file. All operations target random files and directories across an
existing directory tree. The first microbenchmark tests AFS’ client-
driven scaling: the ability of AFS to automatically scale-out as the
number of clients increases, given a fixed resource cap. The second
microbenchmark, which we call resource scaling, tests horizontal
scalability (i.e., performance scaling with more deployments) and
intra-deployment, vertical auto-scaling. The results of these tests
illustrate AFS’ ability to transparently adapt to increases in both
request load and available resources in order to maximize perfor-
mance. We allocated a maximum of 512 vCPUs to all systems during
these tests, and for AFS we provisioned at-most 76 NameNodes, each
with 6.25 vCPUs, meaning AFS used at-most 76 X 6.25 = 475/512
(92.77%) of its allocated vCPUs during these tests.

5.3.1 Client-Driven Scaling. In this test, the amount of vCPUs allo-
cated to both systems was fixed at 512 vCPUs to maximize perfor-
mance, and each client executed 3,072 operations. The total number
of clients configured for each framework was varied between 8
and 1,024 in order to provide a wide range of scales to evaluate the
frameworks. The results of this experiment are shown in Figure 11.

AFS ultimately achieved higher throughput for all read opera-
tions (i.e., read, stat, and 1s) for all problem sizes: AFS averaged
28.91x%, 8.22x, and 20.53x higher throughput than HopsFS for read,
stat, and 1s, respectively. CephFS outperforms the other file sys-
tems for read, 1s, and stat for the first 4-5 problem sizes but fails
to scale well beyond this point, only outperforming HopsFS and

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

READ LS STAT CREATE

900k —aFs 900k 600k
%) —a- HopsFS 750k 450k-
ﬁgggt, ~-HopsFS+Cache /; 600k

3 _—InfiniCache ¢/ 450k A _.ms 300k
5300k __ caphFs 300k 150K
150k- ey 150k — - ! s

023 25 26 27 28 29 %20 25 26 27 28 20 28 25 26 27 28 29 28 25 36 27 38 29 U4 25 6 37 28 2o

Number of vCPUs Number of vCPUs Number of vCPUs Number of vCPUs Number of vCPUs

Figure 12: Resource scaling comparison between the various systems. The amount of vCPUs allocated to the systems ranged
from 16 to 512. For each problem size, all systems used the same number of clients, each of which performed 3,072 operations.

INFINICACHE. AFS outperforms HopsFS+Cache for read and 1s and
achieves comparable performance for stat.

There are several reasons for the throughput differences. First,
AFS’ elastic caching layer efficiently serves metadata to clients
from the memory of serverless functions rather than the persistent
metadata store that is 2 network hops away. This also decreases the
likelihood of the persistent metadata store becoming a bottleneck, as
it is with HopsFS. Second, AFS elastically scales-out its NameNodes
in accordance with its agile auto-scaling policy in order to satisfy the
increasing request load, whereas HopsFS is limited by its fixed-scale
deployment. Under AFS, there were 20 active NameNode instances
for the 8 client case during the read file test. AFS then scaled-
out to 74 NameNodes for the 1,024 client case, illustrating the
efficacy of AFS’ agile auto-scaling policy. It is also worth noting
that AFS used at-most 462.5, 425, and 475 of the 512 available vCPU
during the read, 1s, and stat client-driven scaling tests, respectively.
This illustrates AFS’ resource efficiency, as AFS achieves strong
performance with a fraction of the available resources.

For create file and mkdir, the performance disparity between
AFS and HopsFS was not as significant as it was with read-based
operations. The magnitude of the throughput achieved by both sys-
tems is also considerably lower than that of read operations. Specif-
ically, AFS achieved 49.09% (1.49%) higher throughput than HopsFS
for create file. For mkdir, the two systems achieved roughly the
same throughput. The reason both systems achieved significantly
lower throughput for write operations is because the persistent
metadata store quickly becomes a bottleneck. INFINICACHE ex-
perienced poor performance for similar reasons as with the read
operations. HopsFS+Cache also experienced low throughput, as the
consistent hashing scheme used by clients can be bottle-necked by
hot directories. CephFS achieved higher throughput than the other
frameworks. One possible explanation for this is because CephFS’
“capabilities” system [7] enables more efficient write operations
compared to the permission system used by HopsFS and AFS.

5.3.2 Resource Scaling. For the resource scaling experiments, the
total amount of vCPUs allocated to each framework was varied
between 16 and 512. As such, this experiment helps to elucidate
how AFS would scale both horizontally and vertically with nearly
unbounded (or at least additional) resources. Note that for each
vCPU value, all systems used the same number of clients, each of
which performed 3,072 operations. The largest throughput obtained
is reported.

Figure 12 shows the results. For read operations (read, stat,
and 1s), AFS exhibited significantly better scaling than HopsFS, IN-
FINICACHE, and CephFS, with higher throughput as the resources
scaled. AFS achieved equivalent or superior throughput compared
to HopsFS+Cache for all operations. For the largest problem size,

LS STAT
40M 20M
30M-
+, 20M "';-0-0‘-0-0 10M
- 10M —
- ° ‘___k.‘,—r e

0557,
23 24 25 26 27 28 29210
Number of clients

23 24 25 26 27 28 29210
Number of clients

'23'—'24— 25 26 27 28 29210
Number of clients
Figure 13: Performance-per-cost comparison between AFS

and HopsFS+Cache for read-based file system operations.

AFS achieved 30.67%, 9.30X, and 20.69% higher throughput than
HopsFS for read, stat, and 1s, respectively. Likewise, AFS’ through-
put increased by 34.60X, 34.80x, and 72.08x This occurred because
allocating more resources to AFS enables a higher degree of auto-
scaling. For smaller vCPU allocations, AFS’ auto-scaling is limited
and it cannot dynamically adapt to the workload, resulting in worse
performance. The performance trend is less dramatic for write op-
erations since the persistent metadata store is the bottleneck.

AFS’ superior scaling behavior can once again be attributed to
its metadata cache and its agile auto-scaling policy. As the total
amount of vCPUs increases, AFS provisions an increasingly large
pool of concurrently-running serverless NameNodes. By using a
large pool of relatively “small” serverless NameNodes, AFS achieves
high resource utilization, as individual NameNodes utilize a major-
ity of their allocated resources. This in turn enables AFS to achieve
high performance with relatively modest resource allocations.

Though each HopsFS NameNode was configured with 200 RPC
handler threads, HopsFS was not able to fully utilize the allocated
resources, because its stateless NameNodes essentially serve as
proxies, forwarding requests/responses between clients and the
metadata store. This also explains why HopsFS’ NameNodes had a
consistently low CPU utilization at around 70%. Adding more Na-
meNode servers may help, but again, it is difficult to pre-determine
how many NameNodes to deploy for optimal performance and
resource utilization.

5.3.3 Cost-Efficiency. Figure 13 shows the average performance-
per-cost for AFS and HopsFS+Cache for the client-driven scaling
tests. HopsFS+Cache’s cost was computed as before: the cost of the
32 NameNode VMs running for the duration of the test. The cost
of AFS was calculated using the simplified pricing model, which
may have inflated the reported cost. However, since all active Na-
meNodes were likely busy serving the high request volume for the
entire experiment, the reported cost is likely close to the true cost.

AFS achieved higher performance-per-cost values for both read
file and 1s for all problem sizes. For stat file, AFS achieved
higher performance-per-cost for 8 problem sizes and roughly equiv-
alent performance-per-cost for the others. AFS achieved higher

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

., 800k m As
2 600k B Limited AS
2400k ADE
O 200k
0,

read stat Is create mkdir

Figure 14: Performance impact of auto-scaling for AFS.

performance-per-cost for read file because AFS achieved equiv-
alent or higher throughput than HopsFS+Cache using a fraction
of the resources; while HopsFS+Cache used 512 vCPU, AFS used
at-most 475 vCPU by the largest problem size. This phenomenon
occurred to an even greater degree for 1s for which AFS achieved
32.74% higher throughput with fewer resources. For stat file, AFS

achieved equal or better cost-effectiveness compared to HopsFS+Cache,

as the two frameworks achieved similar performance, but AFS used
fewer resources. Note that AFS’ cost-efficiency decreased for the
final few problem sizes. This occurred because AFS saturated an
increasingly large percentage of its available 512 vCPU resources.
This trend can be avoided by increasing the resources allocated to
the FaaS platform, enabling AFS to scale-out further.

5.4 Auto-Scaling
Figure 14 shows the impact on system throughput of enabling or
disabling horizontal, intra-deployment auto-scaling for AFS across
various file system operations. With auto-scaling “enabled”, indi-
vidual deployments were free to scale-out as they did in the other
experiments. With limited auto-scaling, deployments could scale-
out to at most 2-3 active instances. With auto-scaling disabled, each
deployment was limited to a single active NameNode instance.
AFS achieved 2.85—3.17X and 3.53 —3.80x higher throughput for
read and stat file operations with auto-scaling enabled compared
to limited and disabled auto-scaling, respectively. This trend is
even more pronounced for 1s, with AFS achieving 3.07x and 14.37x
higher throughput with auto-scaling enabled compared to limited
and disabled auto-scaling, respectively. The difference is less severe
for write operations, as the bottleneck for writes is the persistent
metadata store. These results further illustrate the importance of
the FaaS-enabled agile auto-scaling policy within AFS’ design as
well as its significant impact on AFS’ performance.

5.5 Subtree Operations
Table 3 shows the end-
to-end latency of the
mv operation performed
on directories whose

Table 3: Average end-to-end la-
tency (ms) of subtree mv opera-
tions for varying dir sizes.

sizes varied between Directory Size HopsFS AFS
218 and 220 files. On 262k (218) 7,511.60 6,455.80
average, AFS completed 524k (21°) 14,184.80 12,509.20

1.04M (2%0) 25,137.00 25,220.80

the mv operation in

16.35% and 13.39% less

time than HopsFS for 218-file and 2!°-file directories, respectively.
End-to-end latency was roughly equal between HopsFS and AFS
for 22%-file directories. For large subtree operations, the persistent
metadata store becomes the bottleneck, as every write operation
must update persistent state in the database.

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

............... .
150k e yp— .
U 125k AFS+Failures
--AFS
8 100k --~AFS+Failures NNs (right y-axis)
g 75k ““AFS NNs (right y-axis)
O 50k , ™ - et
25k 0 T L /
1 H 1
o
V] 50 100 150 200 250 300

Time (seconds)
Figure 15: Fault tolerance test under the Spotify workload.

400k __ indexFs Read 600k
350k — AIndexFS Write 500k
300k AlndexFS Agg
9250k | 400k
9 ~- IndexFS Read
% 200k IndexFS Write 300k
=3
O 150k IndexFS Agg 200k

oo % \ 100k

50k LT T

21 22 23 24 25 26 27 z! ° 21 22 23 24 25 26 27 zB
Number of clients Number of clients

(a) Fixed-sized workload. (b) Variable-sized workload.

Figure 16: Comparison between AINDEXFS and IndexFS on
BeeGFS. Agg denotes the writes-followed-by-reads workload.

5.6 Fault Tolerance

To evaluate AFS’ fault tolerance mechanisms, we executed the 25,000
ops/sec Spotify workload and manually terminated an active Na-
meNode once every 30 seconds, targeting each deployment in a
round-robin fashion. AFS began the workload with 36 active Na-
meNodes (225/512 vCPU).

The results of this test are shown in Figure 15. Despite the fail-
ures, AFS completed the workload as generated, even during the
163,996 ops/sec burst. The darker dashed line shows the number
of active AFS NameNodes. AFS’ throughput decreased slightly fol-
lowing a termination event, as some clients were blocked, waiting
for responses to requests that had been sent to the terminated
NameNode. Once these requests timed-out, they were automati-
cally resubmitted by clients. System throughput then rose briefly
as clients temporarily increased their request rate to “make up” for
the drop in throughput that followed the termination event.

5.7 AINDEXFS vs. IndexFS

To further demonstrate AFS’ portability and performance, we com-
pare AINDEXFS with IndexFS. For this test, we used a 7-VM BeeGFS
cluster with 1 management sever, 1 metadata server, 1 storage
server, and 4 BeeGFS client VMs. The cluster had 112 vCPUs and
448GB RAM. IndexFS was deployed on the 4 BeeGFS client VMs,
which adheres to IndexFS’ co-location principle [54]. AINDEXFS
ran 1 LevelDB instance on each BeeGFS client VM and used an
OpenWhisk cluster with 64 vCPUs and 256GB RAM to host the
serverless functions.

We evaluated AINDEXFS using IndexFS’ built-in benchmarking
tool tree-test. We performed client-driven scaling experiments
with the following two tests. For the variable-sized workload, each
client executed 10,000 mknod write operations followed by 10,000
random getattr read operations. For the fixed-sized workload, the
total number of operations was fixed at 1 million writes followed
by 1 million random reads. We varied the number of clients from 2
to 256.

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

For read operations, AINDEXFS’ throughput is consistently higher
than that of IndexFS, since most of the metadata is cached in server-
less functions (Figure 16). Notably, for both workloads, AINDEXFS
significantly outperforms IndexFS in terms of write throughput,
largely benefiting from AINDEXFS’ auto-scaling. AINDEXFS’ write
throughput decreases when serving more than 2° clients due to
OpenWhisk’s limited resources (64 vCPUs). Despite the limited
resources, AINDEXFS still out-performs IndexFS, demonstrating the
efficacy and portability of AFS.

6 RELATED WORK

INFINIFS [49] implements a technique called speculative path reso-
lution and a client-side directory cache to optimize path resolution.
Instead, AFS opts to use HopsFS’ existing “INode Hint Cache” to op-
timize path resolution. AFS uses cloud-function-side caching rather
than client-side caching.

IndexFS [54] is a layered, scaled-out MDS middleware built atop
an existing DFS (e.g., PVFS [30] and BeeGFS [6]). IndexFS supports
client-side, stateless caching, similar to the “INode Hint Cache”
used in HopsFS and AFS. AFS goes beyond IndexFS by offering MDS
elasticity with a consistent distributed metadata cache built atop
serverless functions.

LocoFS [48] co-locates the metadata of a single directory on the
same server, similar to how AFS’ partitioning mechanism will co-
locate metadata from single directories on the same deployments.
This scheme can lead to single-node bottlenecks, as one metadata
server can end up serving all requests for a hot directory. AFS
avoids this bottleneck by leveraging FaaS’ auto-scaling to scale-out
overloaded deployments.

Lustre [14] hashes on file names. CalvinFS [59] hashes on full
pathnames, while Giraffa [25] uses full file paths as primary keys to
the associated metadata. BetreFS uses the pathname as a file index
into the local file system. Lazy Hybrid [29] combines both directory
subtree management and that hashing-based approach with lazy
metadata relocation and lazily updated dual-entry access control
lists. AFS also uses hashing but hashes on a file’s parent directory.

INFINICACHE [61] exploits the memory of AWS Lambda functions
for caching large, read-only objects for low-throughput web apps.
INFINISTORE [66] is built atop INFINICACHE, incorporating a tiered
storage design that adds serverless memory elasticity and persis-
tence. Faa$T [56] co-locates a key-value memory cache with a FaaS
application to optimize the FaaS application’s I/Os. Pocket [45] and
Jiffy [44] provide elastic, serverful, ephemeral storage for serverless
analytics. The DFS workloads that AFS targets are dramatically dif-
ferent than the applications mentioned above, therefore requiring
new treatments when designing a serverless MDS system.

7 DISCUSSION AND LESSONS

While designing and implementing AFS, we learned several inter-
esting lessons that have applicability beyond the scope of serverless
DFS metadata management. First, creating latency-sensitive appli-
cations atop Faa$S requires techniques to mitigate the relatively high
invocation overheads of serverless functions. Relying exclusively
upon HTTP-based invocations does not enable systems to achieve
high throughput and low latency; instead, mechanisms such as

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

AFS’ hybrid invocation scheme are necessary for achieving good
performance.

Notably, introducing techniques to circumvent the large over-
head of HTTP invocations can reduce the system’s ability to harness
the auto-scaling property of FaaS. Such techniques must be designed
with care so as to effectively optimize the trade-off between maxi-
mizing performance and maximizing elasticity and scalability. This
can be considered an instance of the performance-parallelism trade-
off—a trade-off that has been observed in FaaS systems from other
domains [31, 32].

The use of Faa$ also introduces a number of relatively compli-
cated error states. Serverless functions can be reclaimed by the
cloud provider at any point. If TCP-RPC connections are dropped
unexpectedly, re-establishing connections is non-trivial due to the
lack of addressibility of serverless functions. Additionally, naively
resubmitting erred tasks via HTTP can result in request storms
that overwhelm the serverless platform, leading to extreme over-
provisioning of resources. This can ultimately cause a significant
drop in performance and can cause errors elsewhere in the system—
for example, the persistent metadata store may experience a tem-
porary performance drop due to a wave of new connections from
newly-provisioned NameNodes. To address this, FaaS-based sys-
tems must develop clever techniques to provide fault tolerance that
avoids the aforementioned problems.

Similarly, FaaS-based systems are intended to support hundreds
or thousands of clients. If thousands of clients concurrently issue
HTTP invocations, then the FaaS platform may scale-out more
rapidly than is desired, quickly increasing parallelism beyond what
is necessary to sustain good performance. This can lead to in-
creased costs and thrashing-like behavior, as the system rapidly
over-corrects to changes in traffic patterns.

8 CONCLUSION

AFS is, to the best of our knowledge, the first cloud-native DFS
metadata service, which uses the memory of serverless functions to
cache and elastically scale a DFS’ metadata workload. AFS achieves
high-throughput, low-latency, low cost, and high resource efficiency
by synthesizing a series of techniques built around a FaaS-based
metadata cache. We have ported AFS to both HopsFS and IndexFS.
We hope that this work will provide insight for building new, cloud-
native, performance-sensitive backend services on FaaS. AFS is
open-sourced and is available at:

https://github.com/ds2-lab/LambdaFs.

ACKNOWLEDGMENTS

We are grateful to the anonymous ASPLOS reviewers for their valu-
able feedback and comments that significantly improved the paper.
This work was sponsored in part by NSF grants: CNS 1943204 /
2045680 / 2322860 (NSF CAREER Awards), an NSF CloudBank grant,
CCF 1910747 / 1919075 / 1919113 / 2318628, OAC-2106446, and sup-
ported by an Adobe Research gift. Benjamin Carver was supported
by a Presidential Scholarship from George Mason University.

https://github.com/ds2-lab/LambdaFS

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

REFERENCES

[17

[18]

[19]
[20

[21]

)
£

[23

[24]

[25]

[26

&
=

[28]

[29]

[30

[31]

[32]

[33

[34]

[35]

[36]

Alibaba Cloud Function Compute Custom Container Runtime. https://www.
alibabacloud.com/help/doc-detail/179368 htm.

Apache Hadoop. http://hadoop.apache.org/.

Apache OpenWhisk. https://github.com/apache/incubator-openwhisk.

AWS Lambda. https://aws.amazon.com/lambda/.

AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/.

BeeGFS. https://www.beegfs.io/c/.

Capabilities in CephFS. https://docs.ceph.com/en/quincy/cephfs/capabilities/.
GitHub EsotericSoftware/kryonet. https://github.com/EsotericSoftware/kryonet/
blob/03a135¢2039bd7eb20e436ad70539238563d15a4/README.md.

Google Cloud Run. https://cloud.google.com/run.

kubernetes: Horizontal Pod Autoscaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/.

AFS Source Code. https://github.com/ds2-lab/LambdaFS.

AFS Workload Driver. https://github.com/ds2-lab/LambdaFS-Benchmark- Utility.
LevelDB. https://github.com/google/leveldb.

Lustre file system. http://lustre.org/.

MySQL :: MySQL 8.0 Reference Manual :: 23 MySQL NDB Cluster 8.0.

MySQL Cluster NDB. https://www.mysql.com/products/cluster/.

New for AWS Lambda - Container Image Support. https://aws.amazon.com/
blogs/aws/new-for-aws-lambda- container-image-support/.

NSF Computational and Data-Enabled Science and Engineering (CDS&E). https:
//www.nsf.gov/funding/pgm_summ.jsp?pims_id=504813.

Nuclio. https://nuclio.io/.

NumPy: the fundamental package for scientific computing with Python. http:
//www.numpy.org/.

Preventing Long Tail Latency. https://www.section.io/blog/preventing-long-tail-
latency/.

Provisioned Concurrency for Lambda Functions. https://aws.amazon.com/blogs/
aws/new- provisioned-concurrency-for-lambda-functions/.

PyTorch: A Deep Learning Framework for Fast, Flexible Experimentation. https:
//pytorch.org/.

REALIZING THE POTENTIAL OF DATA SCIENCE: Final Report from the Na-
tional Science Foundation Computer and Information Science and Engineering
Advisory Committee Data Science Working Group. https://www.nsf.gov/cise/ac-
data-science-report/CISEACDataScienceReport1.19.17.pdf.

Scaling Namespace Operations with Giraffa File System | USENIX. https://www.
usenix.org/publications/login/summer2017/shvachko.
Smkniazi/Hammer-Bench: HDFS-Distributed-BenchMark. https://github.com/
smkniazi/hammer-bench.

The exabyte club: LinkedIn’s journey of scaling the Hadoop Distributed File
System. https://shorturl.at/agoyH.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265-283, Savannah, GA, 2016. USENIX Association.

S. A. Brandt, E. L. Miller, D. D. E. Long, and Lan Xue. Efficient metadata man-
agement in large distributed storage systems. In 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and Technologies, 2003. (MSST 2003). Proceed-
ings., pages 290-298, 2003.

Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A
parallel file system for linux clusters. In 4th Annual Linux Showcase & Conference
(ALS 2000), Atlanta, GA, October 2000. USENIX Association.

Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng. Wukong: A scalable and locality-enhanced framework for serverless
parallel computing. In ACM Symposium on Cloud Computing 2020 (SoCC’20),
2020.

Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. In search of a
fast and efficient serverless dag engine. In 2019 IEEE/ACM Fourth International
Parallel Data Systems Workshop (PDSW), pages 1-10, 2019.

Ryan Chard, Tyler J. Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard, Ben
Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard. Serverless supercomputing:
High performance function as a service for science, 2019.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads. Proc. VLDB
Endow., 5(12):1802-1813, August 2012.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107-113, January 2008.

[37

[43

[44

[45]

[46]

[47

(48

[49

[50

[51

[52

[53

o
=

[55

[56

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 363-376, Boston, MA, 2017. USENIX
Association.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages
20-43, Bolton Landing, NY, 2003.

Jim Gray. Why do computers stop and what can be done about it?, 1985.
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10). USENIX Association, June 2010.
Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
Occupy the cloud: Distributed computing for the 99%. In ACM SoCC ’17, 2017.
Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. Cloud programming simplified: A berkeley view on serverless com-
puting. Technical Report UCB/EECS-2019-3, EECS Department, University of
California, Berkeley, Feb 2019.

Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Com-
petitive snoopy caching. In 27th Annual Symposium on Foundations of Computer
Science (sfcs 1986), pages 244-254, 1986.

Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
Jifty: Elastic far-memory for stateful serverless analytics. In Proceedings of the
Seventeenth European Conference on Computer Systems, EuroSys ’22, page 697-713,
New York, NY, USA, 2022. Association for Computing Machinery.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 427-444, Carlsbad, CA, 2018. USENIX Association.

Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller.
Measurement and analysis of large-scale network file system workloads. In
USENIX 2008 Annual Technical Conference, ATC 08, page 213-226, USA, 2008.
USENIX Association.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Trans. Comput. Syst., 7(4):321-359, nov 1989.

Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. Locofs: A loosely-coupled
metadata service for distributed file systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 17, New York, NY, USA, 2017. Association for Computing Machinery.
Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu. InfiniFS: An
efficient metadata service for Large-Scale distributed filesystems. In 20th USENIX
Conference on File and Storage Technologies (FAST 22), pages 313-328, Santa Clara,
CA, February 2022. USENIX Association.

Pulkit A. Misra, Maria F. Borge, iﬁigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel,
and Ricardo Bianchini. Managing tail latency in datacenter-scale file systems
under production constraints. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, EuroSys ’19, New York, NY, USA, 2019. Association for Computing
Machinery.

Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronstrém. Hopsfs: Scaling hierarchical file system metadata using
newsql databases. In 15th USENIX Conference on File and Storage Technologies
(FAST 17), pages 89-104, Santa Clara, CA, February 2017. USENIX Association.
Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,
Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Wareing, Monika Gan-
gapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas,
JR Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. Facebook’s tectonic filesys-
tem: Efficiency from exascale. In 19th USENIX Conference on File and Storage
Technologies (FAST 21), pages 217-231. USENIX Association, February 2021.
Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: File system
directories with millions of files. In 9th USENIX Conference on File and Storage
Technologies (FAST 11), San Jose, CA, February 2011. USENIX Association.

K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs: Scaling file system metadata
performance with stateless caching and bulk insertion. In SC ’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 237-248, 2014.

Zujie Ren, Biao Xu, Weisong Shi, Yongjian Ren, Feng Cao, Jiangbin Lin, and Zheng
Ye. igen: A realistic request generator for cloud file systems benchmarking. In 2016
IEEE 9th International Conference on Cloud Computing (CLOUD), pages 343-350,
2016.

Francisco Romero, Gohar Irfan Chaudhry, Ifiigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications, page
122-137. Association for Computing Machinery, New York, NY, USA, 2021.

https://www.alibabacloud.com/help/doc-detail/179368.htm
https://www.alibabacloud.com/help/doc-detail/179368.htm
http://hadoop.apache.org/
https://github.com/apache/incubator-openwhisk
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://www.beegfs.io/c/
https://docs.ceph.com/en/quincy/cephfs/capabilities/
https://github.com/EsotericSoftware/kryonet/blob/03a135e2039bd7eb20e436ad70539238563d15a4/README.md
https://github.com/EsotericSoftware/kryonet/blob/03a135e2039bd7eb20e436ad70539238563d15a4/README.md
https://cloud.google.com/run
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/ds2-lab/LambdaFS
https://github.com/ds2-lab/LambdaFS-Benchmark-Utility
https://github.com/google/leveldb
http://lustre.org/
https://www.mysql.com/products/cluster/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504813
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504813
https://nuclio.io/
http://www.numpy.org/
http://www.numpy.org/
https://www.section.io/blog/preventing-long-tail-latency/
https://www.section.io/blog/preventing-long-tail-latency/
https://aws.amazon.com/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://pytorch.org/
https://pytorch.org/
https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf
https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf
https://www.usenix.org/publications/login/summer2017/shvachko
https://www.usenix.org/publications/login/summer2017/shvachko
https://github.com/smkniazi/hammer-bench
https://github.com/smkniazi/hammer-bench
https://shorturl.at/agoyH

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[57] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), MSST *10, pages 1-10, Washington,
DC, USA, 2010. IEEE Computer Society.

[58] Konstantin V Shvachko. Hdfs scalability: The limits to growth. ; login:: the

magazine of USENIX & SAGE, 35(2):6-16, 2010.

[59] Alexander Thomson and Daniel J. Abadi. {CalvinFS}: Consistent {WAN} Repli-

cation and Scalable Metadata Management for Distributed File Systems. pages

1-14, 2015.

Huangshi Tian, Yunchuan Zheng, and Wei Wang. Characterizing and synthesiz-

ing task dependencies of data-parallel jobs in alibaba cloud. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC ’19, page 139-151, New York, NY,

USA, 2019. Association for Computing Machinery.

Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios

Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. INFINICACHE: Exploiting

ephemeral serverless functions to build a cost-effective memory cache. In 18th

USENIX Conference on File and Storage Technologies (FAST 20), pages 267-281,

Santa Clara, CA, February 2020. USENIX Association.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael

Swift. Peeking behind the curtains of serverless platforms. In 2018 USENIX

Annual Technical Conference (USENIX ATC 18), pages 133-146, Boston, MA, 2018.

USENIX Association.

[63] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic metadata
management for petabyte-scale file systems. In SC °04: Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, pages 4-4, 2004.

[64] Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta, Michael A.
Kozuch, and Gregory R. Ganger. Springfs: Bridging agility and performance
in elastic distributed storage. In 12th USENIX Conference on File and Storage
Technologies (FAST 14), pages 243-255, Santa Clara, CA, February 2014. USENIX
Association.

[65] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In USENIX NSDI 12, 2012.

[66] Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver, Nicholas John New-
man, Ali Anwar, Lukas Rupprecht, Vasily Tarasov, Dimitrios Skourtis, Feng Yan,
and Yue Cheng. Infinistore: Elastic serverless cloud storage. Proc. VLDB Endow.,
16(7):1629-1642, may 2023.

[60

(61

[62

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A ARTIFACT APPENDIX
A.1 Abstract

This section provides supplementary material and instructions
aimed at facilitating the reproducibility and further exploration
of AFS and the experiments used to evaluate AFS and HopsFS. This
collection encompasses a diverse set of resources, including source
code, datasets, configurations, and tools utilized in the experimental
setup. Additionally, detailed instructions for setting up the environ-
ment and executing experiments are provided primarily within the
referenced GitHub repositories.

A.2 Artifact check-list (meta-information)

Run-time environment: AWS, Linux.

Hardware: EC2 virtual machines.

Metrics: Throughput, latency, monetary cost.

Output: Numerical statistics.

Experiments: Microbenchmarks, real-world workload trace execu-

tions.

e How much disk space required (approximately)?: 10s of GB
across multiple virtual machines.

e How much time is needed to prepare workflow (approxi-
mately)?: Under 10 minutes once components are deployed and
running. The installation process should take 45 - 75 minutes at
most — significantly less if there are no errors.

e How much time is needed to complete experiments (approxi-

mately)?: 1-3 hours.

Publicly available?: Yes.

Code licenses (if publicly available)?: TBD

Data licenses (if publicly available)?: None.

A.3 Description

A.3.1 How to access. AFS and the software used for its evalua-
tion are prepacked in Amazon Machine Images (AMI) on Amazon
Web Services. You can find an up-to-date list of publicly-available
Amazon Machine Images (AMIs) corresponding to the various com-
ponents utilized by AFS and HopsFS in the AFS GitHub repository
(specifically within the aws-setup/public_AMIs.md file). Likewise,
the setup scripts and associated documentation are available in the
aws-setup/ directory of the AFS GitHub repository as well.

A.3.2 Hardware and Software dependencies. Our evaluation work-
loads run on AWS EC2 instances in the us-east-1 region. They also
use an Amazon Elastic Kubernetes Service (EKS) cluster on which
OpenWhisk is deployed. OpenWhisk is the Functions-as-a-Service
(FaaS) platform used by AFS.

AFS, HopsFS, and the primary benchmarking application are
all written in Java (OpenJDK 64-bit 1.8.0_382) and compiled with
Maven 3.6.3. They were developed in an Ubuntu-based environ-
ment (Ubuntu 22.04.1 LTS). Some components of the benchmarking
software also use Python 3.10.12. These software dependencies are
all pre-installed within the publicly-available AMIs.

A.4 Installation

The installation process primarily consists of provisioning the nec-
essary virtual machines on Amazon Web Services, and then adjust-
ing the configuration of software contained within those virtual
machines as-needed. In order to simplify the process of creating the

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

necessary VMs, we’ve provided a number of Amazon Machine Im-
ages (AMIs) (whose IDs are listed in the aws-setup/public_AMIs.md
file file of the AFS GitHub repository). These are all that is re-
quired to setup/deploy AFS and Vanilla HopsFS as well as run the
experiments from our evaluation.

The aws-setup/ directory of the AFS GitHub repository contains
the latest and most up-to-date scripts and documentation concern-
ing the installation, deployment, and execution of the framework.
At a high-level, a majority of the required AWS infrastructure
is created automatically using the create_aws_infrastructure.py
Python script available in the AFS GitHub repository. There are
also several additional scripts used to automatically apply patches
to various components in order to resolve commonly-encountered
deployment problems.

The source code, as well as additional documentation, is available
in the following GitHub repositories:

(1) AFS source code (primary artifact)

(2) Benchmarking software (for AFS)

(3) Benchmarking software (for HopsFS)

(4) hammer-bench (software used to evaluate HopsFS in [51])
modified to work with AFS

(5) Modified Cluster] library (used by AFS)

(6) AFS’s OpenWhisk Java runtime (for AWS)

(7) OpenWhisk K8s Helm chart with AFS-specific configuration

(8) OpenWhisk (with our configuration and minor modifica-
tions)

A.5 Experiment workflow

The Vanilla HopsFS and AFS experiments are primarily orchestrated
using our bench-marking software/application. There is a GitHub
repository containing the latest version of this software for Vanilla
HopsFS in the “/home/ubuntu/repos/HopsFS-Benchmarking-Utility”
directory of the Vanilla HopsFS Client AMI There is a corre-
sponding repository for the AFS version in the same directory of
the AFS Client AMI. This benchmarking application provides an
real-time, terminal-based interface for interaction with both AFS
and HopsFS. The benchmarking application enables users to per-
form individual file-system operations as well as execute full micro-
benchmarks and real-world workloads.

A.6 Evaluation and expected results

The experiments in the benchmarking utility that correspond to
those described in the evaluation of AFS are as follows:

(1) Client-driven and resource scaling: 17 “Write n Files
with n Threads”, 20 “Weak Scaling Reads v2”, 21 “File Stat
Benchmark”, “23 List Directories from File”, 24 “Stat File”,
and 25 “Weak Scaling (MKDIR)”.

(2) Real-world workload: 26 “Randomly-generated workload”

After selecting a benchmark to execute, the application will re-
quest specific values concerning the number of clients, the number
of operations per client, and in some cases, the number of repeated
trials. The values described in Section 5 can be provided at this
point in order to reproduce the experimental results.

The application will begin the experiment and report results back
to the user through log messages displayed within the terminal.

https://github.com/ds2-lab/LambdaFS
https://github.com/Scusemua/hops/blob/serverless-namenode-aws/aws-setup/
https://github.com/ds2-lab/LambdaFS
https://github.com/Scusemua/HopsFS-Benchmarking-Utility/tree/generic
https://github.com/Scusemua/HopsFS-Benchmarking-Utility/tree/vanilla-distributed
https://github.com/Scusemua/hammer-bench
https://github.com/Scusemua/hammer-bench
https://github.com/Scusemua/clusterj
https://github.com/Scusemua/openwhisk-runtime-java/tree/serverless-nn-aws
https://github.com/Scusemua/openwhisk-deploy-kube/tree/aws
https://github.com/Scusemua/openwhisk/tree/serverless
https://github.com/Scusemua/openwhisk/tree/serverless

AFS: A Scalable and Elastic Distributed File System Metadata Service using Serverless Functions

These messages will include, among other things, metrics from each
trial of the experiment, including average latency and throughput.

The benchmarking application can be deployed in a distributed
mode, thereby enabling multiple VMs to create AFS (or HopsFS)
clients. In our evaluation, we used up to 8 VMs in total to execute
benchmarks. The creation and management of these VMs is del-
egated to an EC2 auto-scaling group. This auto-scaling group is
provisioned by the provided installation scripts.

A.7 Experiment customization

You can modify the real-world Spotify workload by modifying the
associated config file. The default location (in the provided AMI)
is “7repos/HopsFS-Benchmarking-Utility/workload.yaml”. For a de-
scription of all configuration parameters for real-world workloads,
please refer to the documentation in the GitHub repository here.

A.8 Methodology

We performed our evaluation on Amazon Web Services (AWS)
and validated it (i.e., replicated the same results) on Google Cloud
Platform (GCP).

B STRAGGLER MITIGATION

Tail latencies can have a detrimental impact on application perfor-
mance and user experience [21, 50, 52]. In order to mitigate the
negative impact of tail latencies, we employ a technique referred
to as straggler mitigation. AFS clients maintain a moving-window
average latency. When a request’s latency is sufficiently larger than
the average (based on a configurable threshold), the request is can-
celled and resubmitted to another NameNode. This can reduce the
worst-case tail latencies and lead to higher system throughput. We
found that the average TCP RPC latency is between 1-5ms, so we
default this threshold to 10, meaning TCP requests with a latency
> 50ms will be resubmitted.

C ANTI-THRASHING MODE

Typically, the FaaS platform is assumed to provide clients with
virtually infinite compute and memory resources [4], and clients
pay only for the resources they use. However, private clouds have
limited cluster resources for hosting a DFS deployment [35, 54]. Ad-
ditionally, to perform a fair comparison between AFS and HopsFS,
some form of normalization is required, such as assigning equal
vCPU to both frameworks, or provisioning the frameworks such
that they incur the same monetary cost. However, placing a bound
on the amount of resources can result in thrashing behavior in the
FaaS platform. Recall that the serverless functions are organized
into n different deployments, and further that the namespace is
partitioned across these deployments by hashing on the parent di-
rectory’s path. Consider a scenario in which the serverless cluster’s
CPU utilization is approaching 100%. If the FaaS platform attempts
to create a new container, it may have to delete an existing con-
tainer to make room. When this pattern of destroying and creating
containers begins to occur frequently, system throughput plum-
mets. This is because cold starts take a non-negligible amount of
time, and constantly deleting and creating containers results in a
large number of cold starts.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Subtree Operation (Delete)

g SEE mEm Em Em Em oy

s W Em mm mm o my

-~ e e

uh

Figure 17: NameNode Nl1 partitioning the sub-operations of
a subtree delete operation to two other NameNodes NZl and
N;.

3

To address this, client processes compute a moving average (with
a configurable window size) of the latency of individual file system
operations. When a metadata request observes a latency that is Tx
greater than the moving average latency, where T is a configurable
threshold parameter, the client enters anti-thrashing mode. While
in anti-thrashing mode, the client will opt to issue TCP RPCs for
every metadata operation, even when no TCP connection exists to
the NameNode in the deployment that is responsible for caching
the requested metadata. By reusing TCP connections instead of
issuing HT TP invocations, the FaaS platform will not create addi-
tional containers, as clients will issue requests to existing containers
whenever possible. This will ultimately limit scaling and potentially
result in reduced or leveled-off performance, but it avoids the severe
performance degradation that occurs during thrashing. We find
empirically that setting the threshold T between 2-3 provides the
best performance.

D SUBTREE COHERENCE PROTOCOL

HopsFS implements subtree operations using an application-level
distributed locking protocol. Part of this protocol involves partition-
ing the overall subtree operation into a number of sub-operations
that are executed in-parallel.

There are three main phases to this protocol. In Phase 1, an
exclusive lock is acquired on the subtree root, and the subtree lock
flag is persisted to the database (NDB). Active subtree operations
are also stored in a table, which is queried before beginning new
subtree operations in order to ensure no two operations overlap (i.e.,
subtree isolation). In Phase 2, the subtree is quiesced by taking and
releasing database write locks on all INodes within the tree, using
a predefined total ordering to avoid deadlocks. This also builds a
tree data structure in-memory for use during the subtree operation.
Finally, in Phase 3, the whole subtree operation is partitioned into
sub-operations that can execute in-parallel. Batches of INodes are
modified in each transaction in order to improve performance.

AFS augments the standard HopsFS subtree protocol above by
integrating our serverless memory coherence protocol. A naive
integration of the protocol with the standard subtree protocol would

https://github.com/Scusemua/HopsFS-Benchmarking-Utility/blob/generic/documentation/real_world_workload_configuration.md

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

involve executing the coherence protocol once for each individual
sub-operation. This would result in extremely poor performance
for large subtree operations. To address this, AFS performs the
coherence protocol just once for the entire subtree. This is done
using a special type of invalidation, referred to as a subtree or prefix
invalidation. Rather than specifying the individual metadata to be
invalidated, AFS specifies the file path prefix such that any cached
INodes prefixed by this value will be invalidated. We use the subtree
root as this prefix. NameNodes then utilize the trie structure of the
metadata cache (§3.3) to efficiently invalidate all INodes contained
within the subtree.

Subtree invalidations are issued to all deployments responsible
for caching at least one piece of metadata in the subtree. These
deployments are calculated by a NameNode during a step in the
Vanilla HopsFS subtree protocol. Specifically, the NameNode walks
through the subtree in a predefined total order, taking out write
locks. This is done to quiesce the subtree. It is during this step that
we also calculate the set of deployments responsible for caching
metadata in the subtree.

As an example, consider a scenario in which the user deletes
a subtree rooted at directory “/foo/”. This directory may contain
thousands of files and sub-directories. If the baseline coherence
protocol (Algorithm 1) were used here, then thousands of individual
invalidations would be required—one for each INode within the
subtree. Instead, the leader NameNode simply issues a single subtree
invalidation with the prefix “/foo/” to all deployments caching
any metadata within the subtree. Once the leader NameNode has
received all the ACKs, AFS is free to execute the subtree operation
without running any further instances of the coherence protocol.

Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng

Elastically Offloading Batched Operations. The sub-operations
created during subtree operations are typically executed in-parallel
on the NameNode orchestrating the subtree operation. This works
well when each NameNode has a large amount of CPU resources
allocated to it. Serverless NameNodes, however, typically have a
small amount of CPU cores allocated. As a result, executing hun-
dreds or thousands of operations can be slow. To address this, we
designed a technique referred to as serverless offloading. That is,
AFS offloads batches of sub-operations to other NameNodes by tak-
ing advantage of Faa$S elasticity in order to increase parallelism
and scalability. The overhead of the coherence protocol is therefore
minimized, thanks to batching and serverless offloading.

The batch size is a configurable parameter. We found that larger
batch sizes tend to perform better, as there is a trade-off between
increasing parallelism and the network overhead of offloading the
operations. The batch size parameter defaults to 512. Figure 17
illustrates an example of this procedure. In Figure 17, we refer to
the i*" NameNode in the j'# deployment as Nij . We say that a

NameNode N belongs to deployment D; (the i*? deployment) using
N € D;.

In this example, the client sends a “rm -rf /foo/bar” operation
to NameNode Nll, which caches all of the files and sub-directories
rooted under /foo/bar; Nl1 offloads level 2 and level 3 of the subtree
to a different set of helper NameNodes, NZ1 and N31, from deploy-
ment 2 and 3. This does not create a consistency problem as the
helper NameNodes simply help Nl1 process part of Nll’s load to
speedup the subtree processing.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 FS Design
	3.1 FS Overview
	3.2 Hybrid Serverless RPC Mechanism
	3.3 Serverless Metadata Cache
	3.4 Agile Serverless NameNode Auto-Scaling
	3.5 Coherence Protocol
	3.6 Fault Tolerance

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup & Methodology
	5.2 Industrial Workload
	5.3 Scalability
	5.4 Auto-Scaling
	5.5 Subtree Operations
	5.6 Fault Tolerance
	5.7 IndexFS vs. IndexFS

	6 Related Work
	7 Discussion and Lessons
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	B Straggler Mitigation
	C Anti-Thrashing Mode
	D Subtree Coherence Protocol

