Structure of Molecule-rich Chalcogenide Glasses along the Join P₄Se₃-As₄Se₃: Results from ⁷⁷Se and ³¹P NMR and Raman Spectroscopy

¹Bing Yuan, ²Bruce G. Aitken, ³Derrick C. Kaseman, ³Ping Yu, ¹Sabyasachi Sen*

¹Department of Materials Science & Engineering, University of California at Davis, Davis, CA 95616, USA

²Science & Technology Division, Corning Inc., Corning, NY 14831, USA

³Nuclear Magnetic Resonance Facility, University of California at Davis,

Davis, CA 95616, USA

^{*}Corresponding Author: Sabyasachi Sen (email: sbsen@ucdavis.edu)

ABSTRACT

The atomic structure of unusually molecule-rich glasses along the P₄Se₃-As₄Se₃ join with 0 to 70 mol% P₄Se₃ is studied using Raman, ⁷⁷Se magic-angle-spinning (MAS) and 2D ³¹P phase adjusted spinning sideband (PASS) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate the coexistence of cage-like P_xAs_{4-x}Se₃ molecular moieties and corner-shared P- and As- containing pyramidal network moieties in the structure of these glasses. Increasing substitution of As with P gives rise to a monotonic increase in the total molecule:network ratio, which is shown to be consistent with the compositional variation in the glass transition temperature.

1. INTRODUCTION

Chalcogenide glasses are well known for their remarkable optical properties such as wide infrared transparency and large refractive index and optical nonlinearity, which make them promising photonic materials for a wide range of applications including in telecommunication, remote sensing and switching [1–10]. The unique compositional flexibility of these glasses in the form of continuous alloying enables compositional engineering for the precise tuning of optical, electronic, and other physical properties. Therefore, a fundamental understanding of the compositional evolution of atomic structure of these glasses is crucial in building predictive models of their structure-property relationship. The short- and intermediate-range atomic structure of the archetypal glass-forming chalcogenide systems have been studied extensively in the literature, including but not limited to various binary and ternary Ge-As-P-S/Se/Te glasses. In most cases, As, Ge or P atoms act as crosslinkers of chalcogen (S/Se/Te) atoms to form threedimensionally connected network structures [11-21]. On the other hand, the existence of predominantly molecular chalcogenide glasses with an unusually low degree of structural connectivity has also been reported in Ge/P-doped As-S and P-Se pseudo-binary systems near the stoichiometry of A_4B_3 , where A = As or P and B = S or Se [11-18]. The structure of these glasses primarily consists of cage-like A₄B₃ molecules that contain a basal 3-membered A₃ ring surmounted by an apical AB₃ pyramid with each atom in the A₃ ring being bonded to one of the B atoms in the pyramid.

Both crystalline and amorphous molecular chalcogenides consisting of A₄B₃ molecules held together by weak van der Waals forces have received significant attention due to the unique properties associated with them. For example, all A₄B₃ molecular crystals undergo a phase transition to a plastic crystal phase upon heating where the molecules are fixed in their lattice

positions but are free to perform rotation, attesting to their nearly spherical shape and weak intermolecular bonding [22]. Consequently, the enthalpy and entropy of this phase transition in these molecular crystals are much larger than that of melting [22]. Although stoichiometric A₄B₃ molecular liquids do not form bulk glass upon quenching, compositions close to stoichiometry can be formed into predominantly molecular glasses in the case of As-S and P-Se systems on doping with Ge and P, respectively, such that molecular glasses of composition (GeS₂)_x(As₄S₃)_{100-x} with 1 $\leq x \leq 3$ and P₅Se₃ have been reported in the literature [18,23,24]. Similar to the crystals, the weak intermolecular bonding is also manifested in these glasses in their rather low glass transition temperature ($T_g < 40$ °C) and high thermal expansion coefficient (90-100 ppm/°C) [18]. Moreover, NMR spectroscopy and inelastic neutron scattering studies of these glasses indicated the presence of rapid rotational motion of the constituent molecules at temperatures well below T_g , at timescales that are decoupled from that of the shear relaxation by many orders of magnitude [18,24–27]. Finally, viscosity measurements on the parent liquids in their supercooled state indicated that these molecular liquids are characterized by a rather steep temperature dependence of viscosity as the temperature approaches T_g , thus displaying a "fragile" behavior [27–29]. In contrast to these As₄S₃ and P₄Se₃ based compositions, bulk glass can indeed be formed from a stoichiometric liquid of composition As₄Se₃. This difference in the behavior of the latter is consistent with the results of previous structural studies of As₄Se₃ glass, which indicated that its structure consisted of a relatively small fraction of As₄Se₃ molecules that are interspersed with a As(As,Se)₃ pyramidal network and two-dimensional clusters of homopolar bonded As atoms [16,17,30].

It is interesting to note that previous studies of the phase equilibria in these molecular chalcogenide crystals in ternary As-P-S/Se systems indicated the existence of a complete solid solution between As₄Se₃ and P₄Se₃ where P and As atoms randomly replace one another in the

molecule without any preference for the apical and the basal sites [22]. On the other hand, for crystals in the P-As-S system, the P atoms show a strong preference for the apical site in the constituent (P,As)₄S₃ molecules [22]. Although, as noted above, a number of structural and dynamical studies of molecular glasses in doped binary As-S and P-Se systems have been reported in the literature, such studies on molecule-rich ternary As-P-Se glasses have remained scarce [31]. Here we present the results of a structural investigation of glasses along the join As₄Se₃–P₄Se₃ with P₄Se₃ contents varying from 0 to 70 mol.% using a combination of Raman, ⁷⁷Se magic-angle spinning (MAS) and two-dimensional ³¹P phase-adjusted spinning sideband (PASS) nuclear magnetic resonance (NMR) spectroscopy. The spectroscopic results allow the identification of mixed P_xAs_{4-x}Se₃ molecules in these chalcogenide glasses for the first time. The compositional evolution of the structure is shown to be consistent with the corresponding variation in T_g .

2. EXPERIMENTAL

2.1 Sample Synthesis and Physical Characterizations

The P₄Se₃-As₄Se₃ glasses with 0, 20, 40, 50, 60 and 70 mol% P₄Se₃ were prepared in ~ 12g batches from constituent elements using the conventional melt-quench method. Mixtures of red phosphorus (Spectrum, 99.999%), selenium (Alfa Aesar, 99.999%) and arsenic (Alfa Aesar, 99.999%) were taken in 8 mm inner diameter vacuum sealed quartz ampoules (10^{-4} Torr) and melted in a rocking furnace at 873 K for 36 h to ensure melt homogeneity. The ampoules were then quenched in water to obtain the glass samples. The T_g of these glasses was determined using differential scanning calorimetry (Mettler Toledo DSC1). Samples of mass ~15-20 mg were taken in hermetically sealed Al pans and were heated to 20 °C above T_g to erase any thermal history. The samples were then cooled in the calorimeter at a rate of 10K/min and subsequently reheated

at the same rate and T_g was determined as the onset of the glass transition endotherm during reheating. Experimental errors were obtained from multiple scans on the same sample using the same heating and cooling rate.

2.2.Raman Spectroscopy

The Raman spectra of all glasses were collected in backscattering geometry using a Renishaw 1000 Raman microscope spectrometer equipped with a He-Ne laser operating at a wavelength of 633 nm. The backscattered light was detected using a charge-coupled device cooled to 200 K.

2.3. NMR Spectroscopy

 77 Se MAS and 2D 31 P PASS NMR data were collected for the selected molecular join P₄Se₃-As₄Se₃ glasses using a Bruker Advance spectrometer operating at 11.7 T (Larmor frequency of 95.5 MHz and 202.4 MHz for 77 Se and 31 P, respectively). For all 77 Se MAS spectra, samples were crushed and packed into 4 mm ZrO₂ rotors and were spun at 12.5 kHz. A Hahn echo pulse sequence ($\pi/2-\tau-\pi$ -acquisition) was employed for spectral acquisition with a $\pi/2$ pulse length of 2.75 μs and $\tau=60$ μs. A recycle delay of 30 s was used and approximately 500 transients were averaged and Fourier transformed to obtain each spectrum.

For all 2D ³¹P PASS NMR experiments, crushed samples were taken either in 4 or 2.5 mm ZrO₂ rotors and were spun at 6 or 28 kHz, respectively. The PASS pulse sequence consisted of a $\pi/2$ pulse (1.95 μ s) followed by a train of π pulses. The inter-pulse delays were rotor synchronized according to the solutions of the PASS equations given by Antzutkin et al. [32] All pulses were cogwheel phase cycled to eliminate the effects of pulse imperfections. The 2D acquisition consisted of 16 or 4 t_1 increments, each with 12 transients, and a recycle delay of 20 s was used.

All ⁷⁷Se and ³¹P NMR spectra were externally referenced by recording the ¹⁷O signal of natural abundance H₂O and using the appropriate frequency ratios as reported in the IUPAC recommendations [33].

The isotropic and anisotropic spectral line shapes, as obtained from the PASS data, were simulated using the software program DMFit to obtain the relative fractions of the various P environments and their corresponding chemical shift anisotropy (CSA) parameters [34]. The ³¹P CSA tensors reported here follow the Haeberlen convention [35] defined as:

$$|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|,$$

$$\delta_{iso} = \frac{1}{3}(\delta_{zz} + \delta_{xx} + \delta_{yy}),$$

$$\Delta = \delta_{zz} - \delta_{iso}$$
,

$$\eta = \frac{\delta_{yy} - \delta_{xx}}{\Delta},$$

where δ_{xx} , δ_{yy} , and δ_{zz} are the principal components of the chemical shift tensor, the magnitude of the CSA is Δ , and its asymmetry is denoted as η , and δ_{iso} is the isotropic chemical shift.

3. RESULTS AND DISCUSSION

The ⁷⁷Se MAS NMR spectra of select P₄Se₃-As₄Se₃ glasses are shown in Figure 1 and are compared with the ⁷⁷Se MAS NMR spectrum of the P₅Se₃ glass reported by us in a recent study [13]. Two resonances centered at isotropic chemical shifts $\delta_{iso} \sim 800$ ppm and ~ 500 ppm can be clearly identified for the As₄Se₃ glass. The resonance at ~ 800 ppm can be assigned on the basis of previous studies to Se atoms bonded to an apical and a basal As atom in the As₄Se₃ molecules [16,17,30]. On the other hand, the resonance at ~ 500 ppm was shown in these studies to be a composite peak with components at ~ 600 and 400 ppm, corresponding, respectively, to Se-Se-As

and As-Se-As sites in the As-Se network [16,17,30]. Progressive addition of P₄Se₃ to As₄Se₃ results in a splitting of the molecular peak at ~ 800 ppm into at least two partially resolved resonances located at $\delta_{iso} \sim 845$ ppm and 770 ppm (Figure 1). These resonances most likely correspond to Se atoms bonded to various combinations of apical and basal P and As atoms in mixed-atom $P_x As_{4-x} Se_3$ molecules as shown in Figure 2. Moreover, the relative intensity of the resonance at ~845 ppm increases with increasing P₄Se₃ content, which is consistent with the observation that the ⁷⁷Se resonance for the P(apical)-Se-P(basal) site in the P₄Se₃ molecules in P₅Se₃ glass is located at $\delta_{iso} \sim 830$ ppm (Figure 1). Besides the formation of P_xAs_{4-x}Se₃ molecules, the addition of P₄Se₃ to As₄Se₃ results in a progressive lowering of the relative intensity of the ⁷⁷Se resonance at ~500 ppm corresponding to the network moieties compared to the intensity of the resonances corresponding to the molecular moieties. The results of previous ⁷⁷Se NMR spectroscopic studies of binary As-Se and P-Se glasses suggest that, in Se-deficient glasses such as these, both As and P atoms primarily exist in three-coordinated environments, which can form corner-shared As(Se,As)₃ and P(Se,P)₃ pyramids in the network moieties (Figure 2) and (As/P)₄Se₃ cage-like molecules in Se-deficient compositions [13,16]. The molecular fraction maximizes near ~ 40 atom% Se in compositions close to the (As/P)₄Se₃ stoichiometry. However, it is clear from the ⁷⁷Se NMR spectra in Figure 1 that the molecule : network fraction in glasses along the P₄Se₃ -As₄Se₃ join continuously increases on replacement of As by P.

While ⁷⁷Se NMR results provide information on the compositional evolution of the total molecule vs. network content in the structure of P₄Se₃ - As₄Se₃ glasses, further insight into the structure can be obtained from the ³¹P isotropic NMR spectra (Figure 3), which provide information on the relative participation of the P atoms in the network vs. molecular moieties. The ³¹P isotropic NMR spectrum of the P₅Se₃ glass is dominated by two relatively sharp resonances at

 $\delta_{iso} \sim 62$ ppm and -75 ppm with relative peak-area ratio of 1:3, which correspond, respectively, to the apical and basal P sites in P₄Se₃ molecules [13,24]. The addition of 30% to 40% As₄Se₃ results in the splitting of each of these two resonances into at least three components with the apical P resonances centered at $\delta_{iso} \sim 66$, 87 and 106 ppm and the basal P resonances centered at -73, – 54 and -35 ppm (Figure 3). While the resonances at ~ 66 and -73 ppm correspond to the P₄Se₃ molecules, those at higher ppm values are clearly indicative of the formation of mixed-atom P_xAs₄- $_x$ Se₃ molecules in these glasses, where P and As randomly occupy the apical and basal sites. The chemical shift tensor parameters Δ and η at and around $\delta_{iso} \sim 106, 87, -35$ and -54 ppm are obtained from simulations of the corresponding spinning sideband spikelet pattern in the anisotropic dimension (Figure 4). These simulations yield average values of $\Delta = -65 \pm 10$ ppm and $\eta=0.7\pm0.1$ for peaks at $\delta_{iso}\sim106$ and 87 ppm and $\varDelta=140\pm10$ ppm and $\eta=0.8\pm0.1$ for peaks at $\delta_{iso} \sim -35$ and -54 ppm (Figure 4), which are comparable to the literature reported CSA parameters for the apical ($\Delta = -76 \pm 10$ ppm and $\eta = 0.6 \pm 0.1$) and basal ($\Delta = 140 \pm 10$ ppm and $\eta = 0.8 \pm 0.1$) P sites in P₄Se₃ molecules [13,24]. In addition to these molecular resonances, the 31 P isotropic NMR spectra of these glasses also display a broad resonance centered at $\delta_{iso} \sim 130$ ppm, which can be readily assigned on the basis of previous ³¹P NMR spectroscopic studies of P-Se glasses to three-coordinated P(Se,P)_{3/2} pyramidal units, which comprise the network moieties [11–13]. The compositional evolution of the intensity of this resonance in the ³¹P NMR spectra in Figure 3 clearly indicates that a fraction of P atoms is incorporated into the pyramidal network moieties, and the relative concentration of these moieties increases monotonically with respect to that of the molecular units in the structure of these glasses with increasing As₄Se₃ content. Such a composition dependence of the molecule : network ratio is thus consistent with the ⁷⁷Se MAS NMR results discussed above.

Finally, the compositional evolution of the structure of these glasses, as deduced from the ⁷⁷Se and ³¹P NMR spectroscopic results, is further tested for consistency against the Raman spectroscopic data reported by us in a recent study [36]. The unpolarized Raman spectra of these P₄Se₃-As₄Se₃ glasses are shown in Figure 5 and are compared with the Raman spectrum of the P₅Se₃ glass. The main vibrational bands in the P₅Se₃ glass, which is known to consist mainly of P_4Se_3 molecules, are located at ~ 133, 213, 366, and 484 cm⁻¹. These bands belong to the various intramolecular vibrational modes of the P₄Se₃ molecule [37]. On the other hand, the Raman spectrum of the As₄Se₃ glass is dominated by relatively sharp bands at 203 and 237 cm⁻¹, which can be assigned, respectively, to As clusters which consist of randomly corrugated twodimensional sheets of three-coordinated As atoms and to the breathing mode of the basal As₃ triangle in the As₄Se₃ molecules [16]. It may be noted that such strongly localized vibrational modes tend to have large Raman scattering cross-sections and give rise to sharp bands in the spectrum. Therefore, the strong intensity of these bands may not be necessarily indicative of a correspondingly large fraction of the associated structural moieties. In addition to these sharp bands, the Raman spectrum of the As₄Se₃ glass also consists of strong but broad bands at ~ 224 and 255 cm⁻¹ that correspond to the network moieties, namely the symmetric As-Se stretching in AsSe_{3/2} pyramids and to Se-Se stretches in As-Se-Se linkages, respectively [16,17]. The Raman spectroscopic observation of these structural moieties in the As₄Se₃ glass is fully consistent with the ⁷⁷Se NMR spectroscopic results discussed above. The initial substitution of P for As in P₄Se₃-As₄Se₃ glasses results in a rapid decrease in the intensity of the 203 and 237 cm⁻¹ bands in the Raman spectra (Figure 5) and the eventual disappearance of the former band, implying a decrease in the relative concentration of the As clusters and As₄Se₃ molecular units. Moreover, the intensity of the broad bands at ~ 224 and 255 cm⁻¹ corresponding to the As-Se network moieties also

decrease with increasing P:As ratio in these glasses, while the intramolecular vibrational bands characteristic of the P₄Se₃ molecules start to appear and get stronger with progressive replacement of As with P (Figure 5). Concomitant with these changes, the Raman spectra of the binary P₄Se₃-As₄Se₃ glasses show a slight shift of the 237 cm⁻¹ band characteristic of the As₄Se₃ glass to higher wavenumbers and its splitting into a partially resolved doublet at 243 and 249 cm⁻¹. It is also noteworthy that the intramolecular vibrational band at 366 cm⁻¹ in the P₅Se₃ glass displays companion peaks near ~348 and 330 cm⁻¹ in all binary P₄Se₃-As₄Se₃ glasses. These characteristics of the Raman spectra are strong indicators of formation of the mixed P_xAs_{4-x}Se₃ molecules.

When taken together, these Raman spectroscopic results are clearly consistent with the 77 Se and 31 P NMR spectroscopic results discussed above and indicate that P and As atoms can both be incorporated into the network and molecular moieties and the overall molecule:network ratio in these glasses increases monotonically with increasing P:As ratio. As the cage-like $P_xAs_{4-x}Se_3$ molecules interact with the P-As-Se pyramidal network only through weak van der Waals type forces, this increase in the overall molecule:network ratio lowers the structural connectivity. Such a structural evolution would thus be expected to lower the T_g of these glasses monotonically with increasing P:As ratio. This expectation is indeed borne out in the compositional variation of T_g of these glasses (Figure 6), which shows a rapid drop on the initial replacement of As with P up to 20 mol% P₄Se₃, beyond which a more gradual linear decrease continues up to 70 mol% P₄Se₃.

4. CONCLUSIONS

Bulk chalcogenide glasses along the compositional join P₄Se₃-As₄Se₃ are synthesized with P₄Se₃ content ranging from 0 to 70 mol%. ⁷⁷Se and ³¹P NMR and Raman spectroscopic results indicate that the structure of these glasses primarily consists of isolated molecules and pyramidal

network moieties. The cage-like $P_xAs_{4-x}Se_3$ molecules in these glasses are characterized by random mixing of P and As atoms in the apical and basal sites, similar to that reported in crystalline solid solutions of P_4Se_3 and As_4Se_3 . On the other hand, the network moieties consist of three-coordinated P or As atoms forming corner-shared pyramidal units that display both P-Se and As-Se heteropolar bonds and P/As-P/As metal-metal bonds. The molecule:network ratio in the structure of these glasses monotonically increases with increasing P:As ratio. The weak van der Waals interaction between the molecular and network moieties and consequent decrease in the structural connectivity give rise to a concomitant lowering of the T_g of these glasses.

ACKNOWLEDGEMENTS

This study is supported by the National Science Foundation Grant NSF-DMR 1855176. Jason A. Brown is thanked for assistance with glass synthesis.

REFERENCES

- K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, 2nd ed., Springer Cham, 2021.
- [2] P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Opt. Express. 21 (2013) 29927.
- [3] E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, G. Gadret, Optimization of chalcogenide glass in the As-Se-S system for automotive applications, Opt. Mater. 31 (2009) 1688–1692.
- [4] F. Ding, Y. Yang, S.I. Bozhevolnyi, Dynamic Metasurfaces Using Phase-Change Chalcogenides, Adv. Opt. Mater. 7 (2019) 1–15.
- [5] P. Sachan, R. Singh, P.K. Dwivedi, A. Sharma, Infrared microlenses and gratings of chalcogenide: Confined self-organization in solution processed thin liquid films, RSC Adv. 8 (2018) 27946–27955.
- [6] S. Clima, D. Garbin, K. Opsomer, N.S. Avasarala, W. Devulder, I. Shlyakhov, J. Keukelier, G.L. Donadio, T. Witters, S. Kundu, B. Govoreanu, L. Goux, C. Detavernier, V. Afanas'ev, G.S. Kar, G. Pourtois, Ovonic Threshold-Switching Ge_xSe_y Chalcogenide Materials: Stoichiometry, Trap Nature, and Material Relaxation from First Principles, Phys. Status Solidi Rapid Res. Lett. 14 (2020) 1900672.
- [7] B. Bureau, X.H. Zhang, F. Smektala, J.L. Adam, J. Troles, H.L. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, D. Le Coq, M.R. Riley, J.H. Simmons, Recent advances in chalcogenide glasses, J. Non. Cryst. Solids. 345–346 (2004) 276–283.
- [8] J.M. Harbold, F.Ö. Ilday, F.W. Wise, J.S. Sanghera, V.Q. Nguyen, L.B. Shaw, I.D.

- Aggarwal, Highly nonlinear As–S–Se glasses for all-optical switching, Opt. Lett. 27 (2002) 119.
- [9] C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, B.J. Eggleton, Characterization of picosecond pulse nonlinear propagation in chalcogenide As₂S₃ fiber, Appl. Opt. 48 (2009) 5467–5474.
- [10] S.O. Kasap, K. Koughia, M. Munzar, D. Tonchev, D. Saitou, T. Aoki, Recent photoluminescence research on chalcogenide glasses for photonics applications, J. Non. Cryst. Solids. 353 (2007) 1364–1371.
- [11] D.G. Georgiev, M. Mitkova, P. Boolchand, G. Brunklaus, H. Eckert, M. Micoulaut, Molecular structure, glass transition temperature variation, agglomeration theory, and network connectivity of binary P-Se glasses, Phys. Rev. B. 64 (2001) 134204.
- [12] A. Bytchkov, F. Fayon, D. Massiot, L. Hennet, D.L. Price, ³¹P solid-state NMR studies of the short-range order in phosphorus-selenium glasses, Phys. Chem. Chem. Phys. 12 (2010) 1535–1542.
- [13] B. Yuan, B. Aitken, I. Hung, Z. Gan, S. Sen, Compositional Evolution of the Structure and Connectivity in Binary P-Se Glasses: Results from 2D Multinuclear NMR and Raman Spectroscopy, J. Phys. Chem. B. 125 (2021) 13057–13067.
- [14] R.T. Phillips, M.K. Ellis, Microstructure of P-Se glasses and low frequency Raman scattering, J. Non. Cryst. Solids. 164–166 (1993) 135–138.
- [15] A. Bytchkov, M. Miloshova, E. Bychkov, S. Kohara, L. Hennet, D.L. Price, Intermediateand Short-Range Order in Phosphorus-Selenium Glasses, Phys. Rev. B. 83 (2011) 144201.
- [16] D.C. Kaseman, I. Hung, Z. Gan, B. Aitken, S. Currie, S. Sen, Structural and Topological Control on Physical Properties of Arsenic Selenide Glasses, J. Phys. Chem. B. 118 (2014)

- 2284-2293.
- [17] G. Yang, B. Bureau, T. Rouxel, Y. Gueguen, O. Gulbiten, C. Roiland, E. Soignard, J.L. Yarger, J. Troles, J.C. Sangleboeuf, P. Lucas, Correlation between structure and physical properties of chalcogenide glasses in the As_xSe_{1-x} system, Phys. Rev. B. 82 (2010) 195206.
- [18] B.G. Aitken, GeAs Sulfide Glasses with Unusually Low Network Connectivity, J. Non. Cryst. Solids. 345–346 (2004) 1–6.
- [19] D.C. Kaseman, I. Hung, Z. Gan, S. Sen, Observation of a Continuous Random Network Structure in Ge_xSe_{100-x} Glasses: Results from High-Resolution ⁷⁷Se MATPASS/CPMG NMR Spectroscopy, J. Phys. Chem. B. 117 (2013) 949–954.
- [20] T.G. Edwards, S. Sen, E.L. Gjersing, A combined ⁷⁷Se NMR and Raman spectroscopic study of the structure of Ge_xSe_{1-x} glasses: Towards a self consistent structural model, J. Non. Cryst. Solids. 358 (2012) 609–614.
- [21] E.L. Gjersing, S. Sen, Structure, Connectivity, and Configurational Entropy of Ge_xSe_{100-x} Glasses: Results from ⁷⁷Se MAS NMR Spectroscopy, J. Phys. Chem. C. 114 (2010) 8601–8608.
- [22] R. Blachnik, The compounds P₄S₃, P₄Se₃, As₄S₃ and As₄Se₃ and the quaternary system P₄S₃-P₄Se₃-As₄S₃-As₄Se₃, Thermochim. Acta. 213 (1993) 241–259.
- [23] S. Soyer-Uzun, S. Sen, B.G. Aitken, Network vs Molecular Structural Characteristics of Ge-Doped Arsenic Sulfide Glasses: A Combined Neutron/X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Raman Spectroscopic Study, J. Phys. Chem. C. 113 (2009) 6231–6242.
- [24] D.C. Kaseman, O. Gulbiten, B.G. Aitken, S. Sen, Isotropic Rotation vs. Shear Rlaxation in

- Supercooled Liquids with Globular Cage Molecules, J. Chem. Phys. 144 (2016) 174501.
- [25] A.C. Wright, B.G. Aitken, G. Cuello, R. Haworth, R.N. Sinclair, J.R. Stewart, J.W. Taylor, Neutron Studies of an Inorganic Plastic Glass, J. Non. Cryst. Solids. 357 (2011) 2502–2510.
- [26] J. Li, M. Madhavi, S. Jeppson, L. Zhong, E.M. Dufresne, B. Aitken, S. Sen, R. Kukreja, Observation of Collective Molecular Dynamics in a Chalcogenide Glass: Results from X-ray Photon Correlation Spectroscopy, J. Phys. Chem. B. 126 (2022) 5320–5325.
- [27] E.L. Gjersing, S. Sen, P. Yu, B.G. Aitken, Anomalously Large Decoupling of Rotational and Shear Relaxation in a Molecular Glass, Phys. Rev. B. 76 (2007) 214202.
- [28] S. Sen, W. Zhu, B. Yuan, B.G. Aitken, Rheological behavior of molecular vs network chalcogenide supercooled liquids, J. Chem. Phys. 153 (2020) 134504.
- [29] B. Yuan, B.G. Aitken, S. Sen, Rheology of supercooled P-Se glass-forming liquids: From networks to molecules and the emergence of power-law relaxation behavior, J. Chem. Phys. 156 (2022) 224502.
- [30] G. Yang, O. Gulbiten, Y. Gueguen, B. Bureau, J.-C. Sangleboeuf, C. Roiland, E.A. King,
 P. Lucas, Fragile-strong behavior in the As_xSe_{1-x} glass forming system in relation to
 structural dimensionality, Phys. Rev. B Condens. Matter Mater. Phys. 85 (2012) 144107.
- [31] V. Kovanda, M. Vlček, H. Jain, Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy, J. Non. Cryst. Solids. 326–327 (2003) 88–92.
- [32] O.N. Antzutkin, S.C. Shekar, M.H. Levitt, Two-Dimensional Sideband Separation in Magic-Angle-Spinning NMR, J. Magn. Reson. Ser. A. 115 (1995) 7–19.
- [33] R.K. Harris, E.D. Becker, S.M. Cabral De Menezes, R. Goodfellow, P. Granger, NMR nomenclature: Nuclear spin properties and conventions for chemical shifts (IUPAC

- recommendations 2001), Pure Appl. Chem. 73 (2001) 1795–1818.
- [34] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.O. Durand, B. Bujoli,
 Z. Gan, G. Hoatson, Modelling one- and two-dimensional solid-state NMR spectra, Magn.
 Reson. Chem. 40 (2002) 70–76.
- [35] U. Haeberlen, High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance, Elsevier, 2012.
- [36] B. Yuan, B.G. Aitken, S. Sen, Viscoelastic behavior and fragility of Se-deficient chalcogenide liquids in As-P-Se system, J. Non-Crystalline Solids X. 16 (2022) 100128.
- [37] R.T. Phillips, D. Wolverson, M.S. Burdis, Y. Fang, Observation of discrete molecular structures in glassy P_xSe_{1-x} by Raman spectroscopy, Phys. Rev. Lett. 63 (1989) 2574–2577.

Figure Captions

Figure 1. ⁷⁷Se MAS NMR spectra of P₄Se₃-As₄Se₃ glasses collected at 11.7 T. Glass compositions are listed alongside the spectra. ⁷⁷Se MAS NMR spectrum of P₅Se₃ glass is taken from [13] and is shown here for comparison. This spectrum was collected at 19.6 T with a spinning speed of 10 KHz.

Figure 2. Cartoon showing network and molecular moieties in the structure of P₄Se₃-As₄Se₃ glasses.

Figure 3. ³¹P isotropic NMR projections of P₄Se₃-As₄Se₃ glasses collected at 11.7 T. Glass compositions are noted alongside the spectra.

Figure 4. Experimental (empty red circles) and simulated (black traces) ^{31}P NMR spinning sideband intensity in the anisotropic dimension for (a) apical and (b) basal P sites in $P_xAs_{4-x}Se_3$ molecules in $(P_4Se_3)_{70}$ (As₄Se₃)₃₀ glass.

Figure 5. Unpolarized Raman spectra of P₅Se₃ and P₄Se₃-As₄Se₃ glasses. Glass compositions are listed alongside the spectra.

Figure 6. Compositional variation of glass transition temperature T_g of P₄Se₃-As₄Se₃ glasses.

Fig. 1

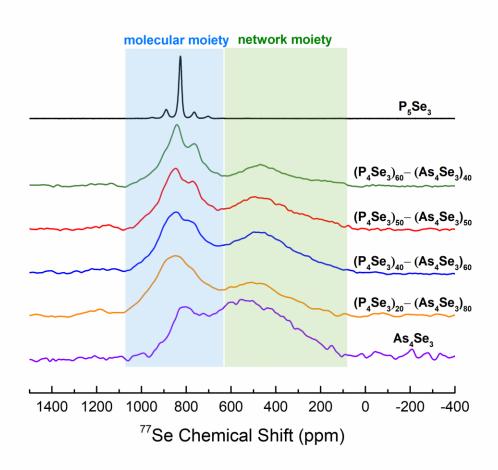


Fig. 2

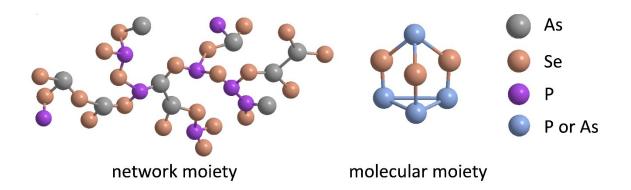


Fig. 3

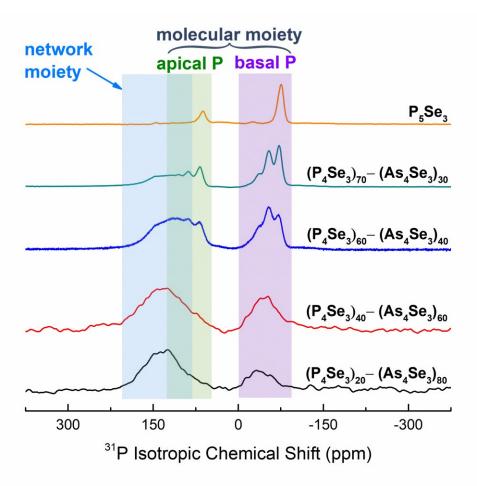


Fig. 4

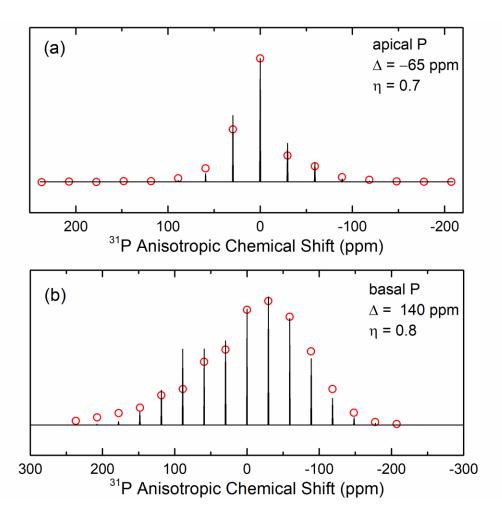


Fig. 5

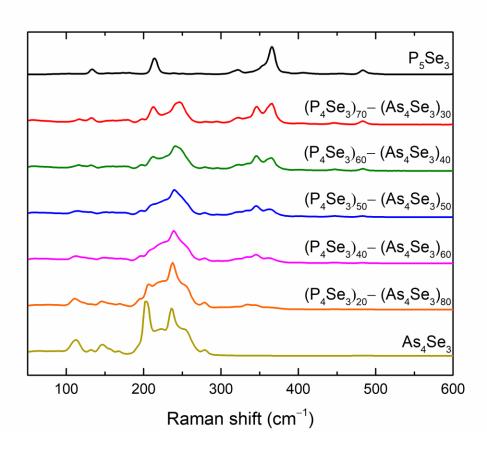
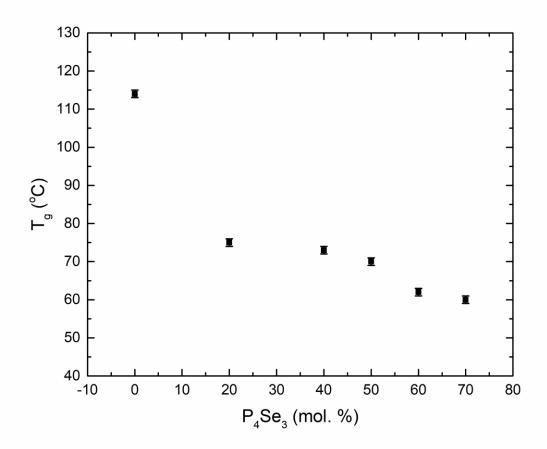



Fig. 6

