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Fundamentals of RIS-Aided Localization in the
Far-Field

Don-Roberts Emenonye, Harpreet S. Dhillon, and R. Michael Buehrer

Abstract—This paper develops fundamental bounds for local-
ization in orthogonal frequency division multiplexing (OFDM)
systems aided by reconfigurable intelligent surfaces (RISs).
Specifically, we start from the assumption that the position and
orientation of a RIS can be viewed as prior information for
RIS-aided localization in wireless systems and derive Bayesian
bounds for the localization of a user equipment (UE). To do this,
we first derive the Bayesian Fisher information matrix (FIM) for
channel parameters to derive the Bayesian localization bounds.
Then, to focus on the geometric channel parameters, we derive
the equivalent Fisher information matrix (EFIM) and show that
it has a definite structure. Subsequently, we show through the
information loss associated with the EFIM that when the RIS
reflection coefficients remain constant across all OFDM symbols,
and there is no prior information about the nuisance parameters,
the corresponding submatrix in the EFIM related to the RIS
angle parameters is a zero matrix. As a result of the EFIM
being a zero matrix, estimating the RIS-related angle channel
parameters is not possible when the RIS reflection coefficients
remain constant across all OFDM symbols. This observation is
crucial for the estimation of the RIS-related angle parameters.
It dictates that to estimate the RIS-related angle parameters,
there must be more than one OFDM transmission with differing
RIS reflection coefficients. Furthermore, due to this observation,
we note that localization of a single antenna UE through the
signals received from reflections from a single RIS to the UE is
not feasible in the far-field when the RIS reflection coefficients
remain constant across all OFDM symbols. We also show that the
FIM for the RIS-related channel parameters can be decomposed
into i) information provided by the receiver, ii) information
provided by the transmitter, and iii) information provided by
the RIS components. We then transform the Bayesian EFIM
for geometric channel parameters to the Bayesian FIM for the
UE position and orientation parameters and examine its specific
structure under a particular class of RIS reflection coefficients.

Index Terms—Reconfigurable intelligent surfaces, 6G,
Bayesian Fisher information matrix, far-field localization,
equivalent Fisher information matrix.

I. INTRODUCTION

W IRELESS communications systems are conceptual-
ized, designed, and optimized under the assumption

that the propagation channels are random and uncontrollable.
However, the emerging idea of a reconfigurable intelligent
surface (RIS), also known as an intelligent reflecting surface,
has challenged this fundamental assumption. An RIS is a
novel concept in wireless communications where existing
artificial structures such as walls and ceilings of buildings
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will be equipped with many tightly packed subwavelength-
sized reflecting meta-surfaces. The overall RIS is planar, while
each of the metasurfaces in the RIS is software-controlled
and are designed to perform a desired transformation on
the incoming signal, thereby providing some control over
the propagation environment. This control over the wireless
propagation environment has been proposed as a means to aid
wireless communication systems. It has been shown that with
perfect channel state information, the presence of RISs can
provide significant gains in energy and bandwidth efficiency
when the transmit beamformer and the reflection coefficients
at the RIS are jointly optimized [2]–[6].

Although the initial applications of RIS to wireless systems
were limited to RIS-aided communication system designs, it
has recently gained attention as a means to improve localiza-
tion accuracy. The basic idea is to treat RISs as virtual anchors
if their positions are known, which is a reasonable assumption
for stationary RISs. This assumption is conceptually similar
to assuming perfect knowledge of the locations of actual
anchors, such as the macro base stations (BSs). Hence, there
is the potential of measuring the times of arrival and other
geometric channel parameters valuable for positioning with
respect to different RISs. However, in order to fully harness
the power of RIS-aided localization, we must first understand
its fundamental limits. These fundamental limits are unknown
for the general case in the far-field, which is the focus
of this paper. Thus, in the paper, we derive the Bayesian
CRLB and examine its structural properties, which leads to
critical insights into RIS-aided localization in the far-field case,
including the impact of nuisance parameters, the effects of
RIS reflection coefficients, and the effects of RIS location
uncertainty on localization performance.

A. Related Works

The following three research directions are of interest to
this paper: i) localization using RISs, ii) localization with
large antenna arrays, and iii) Bayesian limits of localization
networks and effects of anchor uncertainty. The relevant prior
work from these three directions is discussed next.

1) Localization using RISs: It has been shown that due
to a large number of geometric channel parameters in RIS-
aided wireless systems, the position error bound (PEB) and the
orientation error bound (OEB) of a user equipment (UE) can
be significantly reduced [7]–[10]. A challenge with exploiting
multiple RISs in localization is identifying which received
signals are associated with specific RISs. In [7], Hadamard
matrices have been proposed as a possible solution to this
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problem as it allows the receiver to extract channel parameters
associated with each RIS. In [8], the focus is on the setup
where an RIS is attached to each intended receiver and a
joint phase design scheme is used to separate the channel
parameters associated with each user resulting in submeter
UE localization. In [9]–[11], the focus is on using an RIS to
enhance the LOS link through coherent combining, thus im-
proving both 3D localization and synchronization. In [12], an
RIS is employed to multi-input-multi-output (MIMO) radar to
provide the location of multiple targets. RIS-aided localization
without a controlling BS has also been considered [13], [14].
In [13], two-step positioning is achieved without a controlling
BS by employing a single receive RF chain at each RIS. In
[14], backscatter modulation is used to enable localization in
the absence of a controlling BS. A key limitation of these
works is their application-specific CRLB analyzes in which
the effect of each scenario is abstracted such that it can be
approximated through suitable modifications of the existing
CRLB results. As a result, the general structure of the Fisher
information matrix (FIM) resulting from deploying multiple
RISs has not been rigorously investigated. Hence, the primary
objective of this paper is to provide a rigorous Bayesian
analysis of the FIM. Moreover, in those prior works [7]–
[14], the RIS reflection coefficients are usually changed across
different Orthogonal frequency-division multiplexing (OFDM)
symbols in order to have enough information to estimate the
RIS reflection angles. Through the analysis of the Bayesian
FIM, we show that changing RIS reflection coefficients across
OFDM symbols is in fact necessary since the RIS reflection
angles cannot be estimated when the RIS coefficients remain
constant across all OFDM symbols.

For completeness, we also discuss the relevant literature on
RIS-aided localization in the near-field. When the RISs are
large enough such that the receivers are considered to be in
their near-field, additional information provided by spherical
wavefront can be used for localization as shown in [15]–
[18]. More specifically, a single RIS is attached to a receiver
and used to localize a transmitter in [15], while multiple
RISs are used to provide continuous positioning capability
by improving the near-field NLOS accuracy in [16]. In [17],
backscatter modulation is used to empower each RIS element
in a single RIS to act as virtual anchors for the time of arrival-
based localization. In [18], the RIS-enhanced bounds for 3D
localization in the near-field are provided for the uplink of a
system operating both synchronously and asynchronously.

2) Localization with Large Antenna Arrays: The reflection
coefficients of the RISs can be designed such that the channel
parameters associated with distinct paths can be separated
and used as information for localization (see [7], [8], [11]),
which is conceptually similar to localization enabled by the
spatial and temporal resolution offered by large antenna sys-
tems operating with large bandwidths [19]–[27]. Hence, as
in massive MIMO-aided localization where the resulting FIM
can be diagonalized due to the presence of a large number of
antennas (e.g., see [21], [22]), the FIM for RIS-localization
can also be diagonalized, albeit for a different reason (unitary
correlation matrix, as will be discussed in detail shortly). As
a consequence, the existing results on localization with large

arrays have the potential of providing useful insights into RIS-
aided localization. With this in mind, we now summarize the
most relevant literature from this research direction. In [19],
source localization is considered by collecting and processing
time of arrival (ToA) and angle of arrival (AoA) estimates at
various distributed BSs. While the ToA estimates are used to
restrict the set of possible source positions to a convex set,
the AoA estimates are exploited to provide an estimate of the
source position. In [20], 2D position and orientation bounds
are derived along with expectation-maximization-based esti-
mation algorithms that achieve these bounds. In [21], these
bounds are used to show that under certain conditions, NLOS
components provide more information about position and
orientation. These bounds are generalized to the 3D scenario,
and various scaling laws are provided for both the uplink and
downlink in [22]. More limits are provided for localization
using measurements on the uplink of a massive MIMO system
in [23]. These additional limits indicate that the CRLB is
unique in the limit of the number of receive antennas because
each possible transmit position leads to distinct observations
at the BS. The case of downlink UE positioning with a single
antenna receiver is considered in [24], [25]. In [26], a single
anchor is used to estimate UE trajectory, and the effect of
I/Q imbalance on single anchor positioning is considered in
[27]. Note that the precoding matrix in large antenna BSs is
analogous to the RIS reflection coefficients. In the literature,
it is known that when the precoding matrix remains constant
across all OFDM symbols, the angle of departure at the BS
can still be estimated [22]. This is because the large antenna
BSs can create multiple spatial streams through the precoding
matrix, and these spatial streams can be detected when the
UE has more than one receive antenna. However, if the
RIS reflection coefficients remain constant across all OFDM
symbols, the RIS angles of incidence and reflection can not be
estimated (irrespective of the number of UE receive antennas).
This is because the passive RIS performs no processing.
Hence, it can not generate multiple spatial streams.

3) Bayesian Limits of Localization Networks and Effects
of Anchor Uncertainty: In our work we are concerned with
the fundamental limits of RIS-enabled localization. A major
factor in this analysis is the uncertainty in the exact posi-
tion/orientation of the RIS. Bayesian approaches to localiza-
tion can be used to include this uncertainty. Thus, we briefly
review relevant work in this area. The Bayesian philosophy
to estimation presented in [28], [29] has been applied to the
parameter estimation problem in localization, (see [30]–[37]
for a small subset). In [30], the received waveforms from
various anchors are processed, combined with prior informa-
tion about UE position, and subsequently used to provide
localization bounds. This setting is extended to the case of
multiple UEs that communicate with each other in [31], [32],
resulting in cooperative Bayesian localization bounds. In [33],
Bayesian limits are presented for network localization which
utilizes both position-related parameters and inertial measure-
ment units. In [34], the possibility of improving localization
and tracking systems by exploiting prior UE information is
investigated. Authors in [35], [36] develop the concept of
soft information (SI) for localization. Instead of providing
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hard decisions on NLOS/LOS and the position of a UE, SI
quantifies these decisions through probability distributions.
While the Bayesian philosophy has been used to generate a
posterior distribution that provides localization estimates in the
presence of anchor uncertainty [38], a deterministic approach
to parameter estimation in the presence of anchor uncertainty
has also been considered [39]–[42].

B. Contributions

In this paper, we examine the fundamental limits of RIS-
aided localization of a UE with a single BS, assuming that one
or more RISs provide reflected signals to the UE in addition
to an LOS path. We further assume that the UE and the BS
are both in the far-field of the RISs, and there are multiple
downlink transmissions of OFDM symbols. For this scenario,
the critical contributions of this paper are summarized next:

1) Bayesian FIM for Channel Parameters: We derive the
FIM for the RIS-related channel parameters and show that the
FIM can be decomposed into a sum of the FIMs provided by
each OFDM symbol. The FIM provided by each OFDM sym-
bol can be further decomposed into: i) information provided
by the receiver, ii) information provided by the transmitter,
and iii) information provided by the RIS components. We
show that the information provided by the RISs can be further
decomposed into a correlation matrix and an information
matrix representing the gains due to the RISs. First, through
this decomposition, we show that the structure of the FIM can
be significantly controlled through the RIS correlation matrix,
and this control allows us to investigate the impact of both
nuisance parameters and anchor uncertainty on localization
performance. Second, through this decomposition, we observe
that with identical RIS reflection coefficients across certain
OFDM symbols, the information matrix representing the gains
due to the RIS coefficients remain constant across those
OFDM symbols. In this case of parallel RIS coefficients, the
information matrix produced by the RIS coefficients during
the transmission of the additional OFDM symbols does not
provide any additional information. However, the different
OFDM symbol transmissions increases the signal-to-noise-
ratio (SNR).

2) Bayesian Equivalent Fisher Information Matrix (EFIM)
for Geometric Channel Parameters Provided by the RIS: We
quantify the information loss associated with the geometric
channel parameters along each RIS path due to the unknown
nuisance parameters (channel path gains). This quantification
is achieved by deriving the Bayesian EFIM for the geometric
channel parameters. With this computed information loss, we
show that when the RIS coefficients are parallel in time, and
there is no prior information about the nuisance parameters,
the corresponding submatrix in the EFIM related to the
RIS angle parameters is a zero matrix. As a result of the
EFIM being a zero matrix, estimating the RIS-related angle
parameters is not possible with parallel RIS coefficients. This
result is in contrast to angle of departure estimation at a large
antenna BS. In large antenna BSs, when the precoding matrix
is parallel in time, all the information presented by the EFIM
is not necessarily lost due to a lack of knowledge about the

nuisance parameters. This is because the large antenna BSs can
create multiple spatial streams through the precoding matrix,
and these spatial streams can be detected when the UE has
more than one receive antenna. This contribution explicitly
entails that localization of a single receive antenna UE with
reflections from a single RIS is impossible when there is no
LOS, and the RIS coefficients are parallel in time.

3) Bayesian FIM/EFIM for UE Position and Orientation:
Through a bijective transformation, the FIM of UE position
and orientation is obtained from the EFIM of the geometric
channel parameters. When paths are separable, the FIM of
the UE position and orientation is a sum of the FIM from
each of the RIS paths. While any prior information about
the UE appears as an additive term in the EFIM, the prior
information about the RIS appears in a less simplistic manner.
Finally, through Monte-Carlo simulations, we study the effect
of the number of receive antennas, the number of RISs, and
the number of RIS elements on the localization performance.

II. SYSTEM MODEL

We consider the downlink of an RIS-assisted single-cell
MIMO system consisting of a single BS with NT antennas,
a UE of interest with NR antennas, and M1 distinct RISs.
The mth RIS is assumed to contain N

[m]
L reflecting elements

where m ∈ M1 = {1, 2, . . . ,M1}. We further assume OFDM
for this transmission. The BS has an arbitrary but known array
geometry with its centroid located at pBS ∈ R3. The UE is
defined by its position p ∈ R3, orientation (θ0, ϕ0), and an
arbitrary but known array geometry. We use notations θ and
ϕ, respectively, with appropriate subscripts and superscripts
for all the elevation and azimuth angles. The set of RISs is
also defined by their positions p[m] ∈ R3 and orientation
angles (θ

[m]
0 , ϕ

[m]
0 ), for m ∈ M1. The geometry of each

LOS Path

BS-RIS path

BS-RIS path

Figure 1. An illustration of the system model.

RIS is known but arbitrary. Without loss of generality, we
assume that the arrays can only be rotated in the x and z
directions. More specifically, ϕ0 defines the counter-clockwise
rotation of the UE’s array around its z-axis, and θ0 depicts the
clockwise rotation of the UE’s array around its x-axis. Also,
ϕ
[m]
0 defines the counter-clockwise rotation of the mth RIS’s

array around its z-axis, and θ
[m]
0 depicts the clockwise rotation

of the mth RIS’s array around its x-axis. There are M ≥ 3
paths between the BS and the UE, where the first path m = 0
is the LOS path, a set of paths m ∈ M1 are the virtual LOS
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, ϕ
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t [n]a
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(
θ
[m]
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[m]
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)
aH

[m]
tu

(
θ
[m]
tu , ϕ

[m]
tu

)
, m ∈ M1.

(3)

paths created by M1 distinct RISs, and there is a set of non-
RIS NLOS paths M2 = {M1 + 1,M1 + 2, · · · ,M1 + M2},
where M = M1 + M2 + 1. The non-RIS NLOS paths
(created either by scatterers or reflectors) are usually much
weaker compared to the non-RIS LOS paths as well as the
virtual LOS paths created by the RISs. Therefore, the non-RIS
NLOS paths will not be included in the analysis for notational
simplicity. Further, we partition the set of RISs M1 into a set
with perfectly known position and orientation Ma

1 and a set
with perturbed position and orientation Mb

1. These sets are
mutually exclusive, i.e. |M1| = |Ma

1 | + |Mb
1|. The number

of parameters that needs to be estimated depends on these
mutually exclusive sets.

A. Far-Field Channel Model

All paths are described in part by their angle of departure
(AoD), angle of arrival (AoA), and time of arrival (ToA) as
specified by (θ

[m]
tu , ϕ

[m]
tu ), (θ[m]

ru , ϕ
[m]
ru ), and τ [m], respectively.

The array vector at the transmitter and receiver is specified by

a
[m]
tu

(
θ
[m]
tu , ϕ

[m]
tu

)
≜ e

−j∆T
tu

k
(
θ
[m]
tu

,ϕ
[m]
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)
∈ CNT ,

a[m]
ru

(
θ[m]
ru , ϕ[m]

ru

)
≜ e−j∆

T
ru

k(θ[m]
ru

,ϕ[m]
ru ) ∈ CNR ,

(1)

respectively, where k(θ, ϕ) =
2π
λ [cosϕ sin θ, sinϕ sin θ, cos θ]T is the wavenumber vector, λ

is the wavelength, ∆ru ≜ [uru,1,uru,2, . . . ,uru,NR
] ,uru,n ≜

[xru,n, yru,n, zru,n]
T is a vector of Cartesian coordinates of

the nth receiver element, and NR is the number of receiving
antennas. Similarly, parameters NT ,∆ru and utu,n are
defined for the transmit vector. The array response due to the
AoR (angle of reflection) and AoI (angle of incidence) at the
mth RIS can be written as

a
[m]
tl

(
θ
[m]
tl

, ϕ
[m]
tl

)
≜ e

−j∆T
l,mk

(
θ
[m]
tl

,ϕ
[m]
tl

)
∈ CN

[m]
L ,

a[m]
rl

(
θ[m]
rl

, ϕ[m]
rl

)
≜ e−j∆

T
l,mk(θ[m]

rl
,ϕ[m]

rl
) ∈ CN

[m]
L ,

(2)

with ∆l,m ≜
[
ul,m,1,ul,m,2, . . . ,ul,m,N

[m]
L

]
, where ul,m,n ≜

[xl,m,n, yl,m,n, zl,m,n]
T is a vector of Cartesian coordi-

nates of the nth RIS element. We also define Xl,m =
diag([xl,m,1, · · · , xl,m,N

[m]
L

]T). The definitions of Yl,m and
Zl,m are similar. Assuming synchronization1, the channel at
the nth subcarrier during the tth OFDM symbol is written as

Ht[n] =
∑M
m=0

β[m]√
ρ[m]

H
[m]
t [n]e

−j2πnτ[m]

NTS ∈ CNR×NT , where

β[m] is the complex channel gain,
√
ρ[m] is the pathloss of

the mth path. H[m]
t [n] is expressed in (3).

1To acquire a fundamental understanding of the localization problem,
this assumption is common in the literature [20]–[22], [24], [25], [27].
Although it appears restrictive, it can be attained using a preliminary two-way
synchronization approach or a joint localization and synchronization approach
[43], [44]. These approaches are beyond the scope of this paper.

B. Transmit Processing
We consider the transmission of T OFDM symbols each

containing N OFDM subcarriers. The BS precodes a vector of
communication symbols x[n] = [x1[n], . . . , xNB [n]]

T ∈ CNB

at the subcarrier level with a directional precoding matrix F ∈
CNT×NB . After precoding, the symbols are modulated with an
N−point inverse fast Fourier transform (IFFT). A cyclic prefix
of sufficient length Ncp is added to the transformed symbol.
In the time domain, this cyclic prefix has length Tcp = NcpTs
where Ts = 1/B represents the sampling period. The direc-
tional precoding matrix is defined as F ≜ [f1, f2, . . . fNB

]

where fℓ = 1√
NB

at,b

(
θ
[l]
t,b, ϕ

[l]
t,b

)
, 1 ≤ ℓ ≤ NB, is the

beam pointing in the direction (θℓ, ϕℓ) and has the same
representation as (1). In order to ensure a power constraint,
we set Tr

(
FHF

)
= 1, and E

{
x[n]xH[n]

}
= INB , where

Tr(·) denotes the matrix trace and INB
is the NB-dimensional

identity matrix.

C. Far-Field RIS Reflection Control
The reflection coefficients of the mth RIS during the tth

OFDM symbol can be decomposed into

Ω
[m]

t=t′+T ′q
= γ

[m]

t′
Γ[m]
q , t

′
∈ {1, . . . , T

′
}, q ∈ {1, . . . NQ},

(4)
where T = T

′
NQ, γ[m]

t′
and Γ

[m]
q are termed fast and slow

varying RIS coefficients respectively. This is because γ
[m]

t′

varies across T
′

OFDM symbols, while Γ
[m]
q is constant across

the qth block of T
′

OFDM symbols, and there are NQ blocks
of OFDM symbols. The fast varying RIS coefficients can be
used to orthogonalize the RISs’ paths. When NQ > 1 and
Γ
[m]
q ̸= αΓ

[m]

q′
, where α is a scalar, the RIS coefficients during

the qth and (q
′
)th OFDM symbol blocks are non-parallel. After

the removal of the cyclic prefix and the application of an N -
point fast Fourier transform (FFT), the received signal at the
nth subcarrier during the tth OFDM symbol is

rt[n] = Ht[n]Fx[n] + nt[n], (5)

where nt[n] ∼ CN (0, N0) is the Fourier transform of the
thermal noise local to the UE’s antenna array at the nth

subcarrier during the tth OFDM symbol and x[n] are pilots
transmitted.

D. Far-Field Receive Processing
As stated above already, we assume that the only non-RIS

path is a single LOS path, hence the signals received at the
tth OFDM symbol can be written as

rt[n] =
β[0]√
ρ[0]

H
[0]
t [n]e

−j2πnτ[0]

NTS Fx[n]

+

M1∑
m=1

β[m]√
ρ[m]

H
[m]
t [n]e

−j2πnτ[m]

NTS Fx[n] + nt[n].

(6)
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The first term corresponds to the LOS path and the second
term corresponds to the RIS paths. To facilitate any subsequent
derivations, we also write the received signal as

rt[n] = µt[n] + nt[n], t = 1, 2, . . . , T, n = 1, 2, . . . , N,
(7)

where µt[n] is the noise-free part of rt[n]. Based on the
received signal in (7), the vectors of the unknown channel
parameters related to the RIS paths are defined as

θru ≜
[
θ
[1]
ru , . . . , θ

[M1]
ru

]T
, ϕru ≜

[
ϕ
[1]
ru , . . . , ϕ

[M1]
ru

]T
,

θtl ≜
[
θ
[1]
tl
, . . . , θ

[M1]
tl

]T
, ϕtl ≜

[
ϕ
[1]
tl
, . . . , ϕ

[M1]
tl

]T
,

θrl ≜
[
θ
[1]
rl , . . . , θ

[M1]
rl

]r
, ϕrl ≜

[
ϕ
[1]
rl , . . . , ϕ

[M1]
rl

]r
,

θtu ≜
[
θ
[1]
tu , . . . , θ

[M1]
tu

]T
, ϕtu ≜

[
ϕ
[1]
tu , . . . , ϕ

[M1]
tu

]T
,

β ≜
[
β[1], . . . , β[M1]

]T
, τ ≜

[
τ [1], . . . , τ [M1]

]T
.

Hence, the unknown channel parameters can be represented
by the vector

η ≜
[
θTru ,ϕ

T
ru ,θ

T
tl
,ϕT

tl
,θTrl ,ϕ

T
rl
,θTtu ,ϕ

T
tu , τ

T,βT
R,β

T
I

]T
, (8)

where βR ≜ ℜ{β}, and βI ≜ ℑ{β} are the real and
imaginary parts of β, respectively. Also, the unknown chan-
nel parameters related to the LOS path are written as

ψ ≜
[
θ
[0]
ru , ϕ

[0]
ru , θ

[0]
tu , ϕ

[0]
tu , τ

[0], β
[0]
R , β

[0]
I

]T
. Finally, the un-

known channel parameters related to the LOS plus RIS paths
can be written as ζ ≜

[
ψT,ηT

]T
.

Definition 1. Based on a set of observations r, the Bayesian
Fisher information of a parameter vector, η, is written as

Jη ≜ Er,η

[
−∂2 lnχ(r[n];η)

∂η∂ηT

]
= −Eη

[
Er|η

[
∂2 lnχ(r[n]|η)

∂η∂ηT

]]
− Eη

[
∂2 lnχ(η)

∂η∂ηT

]
= JD

η + JP
η

(9)
where Eν is expectation taken over the random variable ν, χ
is the probability density function (PDF), JD

η , and JP
η are the

FIMs related to the likelihood and the prior, respectively.

Definition 2. If the FIM of a parameter η = [ηT
1 ηT

2 ]
T is

specified by

Jη =

[
Jη1η1 Jη1η2

JT
η1η2

Jη2η2

]
(10)

where η ∈ RN ,η1 ∈ Rn,Jη1η1 ∈ Rn×n,Jη1η2 ∈
Rn×(N−n), and Jη2η2 ∈ R(N−n)×(N−n) with n < N , then
the EFIM [30] of parameter η1 is given by

Je
η1

= Jη1η1
− Jnuη1η1

= Jη1η1
− Jη1η2

J−1
η2η2

JT
η1η2

(11)

Note that the term Jnuη1η1
= Jη1η2

J−1
η2η2

JT
η1η2

describes the
loss of information about η1 due to uncertainty in the nuisance
parameters η2.

III. FISHER INFORMATION FOR RIS PATHS

We define the geometric channel parameters η1 ≜[
θTru ,ϕ

T
ru ,θ

T
tl
,ϕT

tl
,θTrl ,ϕ

T
rl
,θTtu ,ϕ

T
tu , τ

T
]T

and the nuisance

parameter as η2 ≜
[
βT
R,β

T
I

]T
. To derive the FIM of η,

we define the PDF as χ(rt[n];η) = χ(rt[n]|η)χ(η), where
χ(η) = χ(η1)χ(η2). The FIM of the channel parameters due
to the observation r is an 11M1× 11M1 matrix which can be
viewed as a collection of M1 ×M1 submatrices

JD
η ≜


Jθruθru Jθruϕru

· · · JθruβI

JT
θruϕru

. . . · · ·
...

... · · ·
. . .

...
JT
θruβI

· · · · · · JβIβI

 (12)

in which Jηv1
ηv2

≜ 2
σ2

∑N
n=1

∑T
t=1 ℜ

{
∂µt[n]

H

∂ηv1

∂µt[n]
∂ηv2

}
,

where ηv1
, ηv2

are both dummy variables that stand for the
parameters of interest, and 1/σ2 is the SNR which incorpo-
rates the pathloss and composite noise power. To continue and
allow for a compact representation of the FIM, we define the
following terms relating to the AoA at the UE

K[m]
ru ≜ diag

(
∂

∂θ
[m]
ru

∆T
ruk
(
θ[m]
ru , ϕ[m]

ru

))
, (13a)

P[m]
ru ≜ diag

(
∂

∂ϕ
[m]
ru

∆T
ruk
(
θ[m]
ru , ϕ[m]

ru

))
, (13b)

Kru ≜
[
K[1]

ru a
[1]
ru ,K

[2]
ru a

[2]
ru , . . . ,K

[M1]
ru a[M1]

ru

]
, (13c)

Pru ≜
[
P[1]

ru a
[1]
ru ,P

[2]
ru a

[2]
ru , . . . ,P

[M1]
ru a[M1]

ru

]
, (13d)

Aru ≜
[
a[1]ru ,a

[2]
ru , . . . , a

[M1]
ru

]
. (13e)

The corresponding terms for the AoD at the BS can be
obtained by replacing r with t in (13b) and (13d). In addition
to replacing ∆ru with ∆l,m, the term related to the elevation
AoI defined as K

[m]
rl can be obtained by replacing θ

[m]
ru with

θ
[m]
rl . A similar term for the azimuth AoI defined as P

[m]
rl can

be obtained by swapping ϕ
[m]
ru with ϕ

[m]
rl . The corresponding

terms related to the AoR can be obtained from the terms
related to the AoI by replacing r with t. Other terms related
to the AoI and AoR at the RISs during the qth OFDM symbol
are

ã[m]
q,rl

≜ Γ[m]
q a[m]

rl
, ã

[m]
q,krl

≜ K[m]
rl

ã[m]
q,rl

, a
[m]
ktl

≜ K
[m]
tl

a
[m]
tl

,

ã[m]
q,prl

≜ P[m]
rl

ã[m]
q,rl

, a[m]
ptl

≜ P
[m]
tl

a
[m]
tl

,
(14)

kq,l ≜ pq,l ≜
[
a
H[1]
tl

ã[1]q,rl ,a
H[2]
tl

ã[2]q,rl , . . . , a
H[M1]
tl

ã[M1]
q,rl

]H
,

kq,tl ≜
[
a
H[1]
ktl

ã[1]q,rl ,a
H[2]
ktl

ã[2]q,rl , . . . , a
H[M1]
ktl

ã[M1]
q,rl

]H
,

pq,tl ≜
[
aH[1]
ptl

ã[1]q,rl ,a
H[2]
ptl

ã[2]q,rl , . . . , a
H[M1]
ptl

ã[M1]
q,rl

]H
,

(15)

kq,rl ≜
[
a
H[1]
tl

ã
[1]
q,krl

,a
H[2]
tl

ã
[2]
q,krl

, . . . , a
H[M1]
tl

ã
[M1]
q,krl

]H
,

pq,rl ≜
[
a
H[1]
tl

ã[1]q,prl
,a

H[2]
tl

ã[2]q,prl
, . . . , a

H[M1]
tl

ã[M1]
q,prl

]H
.

(16)

The scalar part of the RIS reflecting coefficients
used for multipath separation is arranged as
γ[m] = [γ

[m]
1 , γ

[m]
2 , . . . , γ

[m]

T ′ ]T, and can be arranged in
a matrix as Dγ = [γ[1],γ[2], . . . ,γ[M1]]. This matrix,
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Jv1v2
=

2

σ2

NQ∑
q=1

ℜ{(Rx factor)⊙ (qth RIS gain)⊙ (RIS correlation)⊙ (Tx factor)⊙ (signal factor)} =
2

σ2

NQ∑
q=1

Jq,v1v2
.

(17)

henceforth referred to as a sequence matrix provides
control in both spatial and temporal domains through the
fast-varying part of reflecting coefficients of the RISs.
The complex channel gains are arranged in a diagonal
matrix B ≜ diag(β) and the signal factor representing
the effect of the transmitted beams is specified by

[Rk]uv ≜
∑N
n=1 (2πn/ (NTs))

k
x[n]xH[n]e−j2πn

τ[v]−τ[u]

NTs ,
where k ∈ {0, 1, 2}.

A. Entries of the FIM

Lemma 1. The entries in the FIM in (12), which represents
the amount of information about the parameter vector, η,
present in the received signals, rt[n], t = 1, 2, . . . , T, n =
1, 2, . . . , N, have a definite structure. This structure is pre-
sented in (17). where v1,v2 ∈ η and ⊙ represents element-
wise matrix multiplication. The FIM, Jq,v1v2

, is the contribu-
tion due to the qth OFDM symbol block (see (4)). From this
equation, we notice that the FIM, Jv1v2 , is a summation of
the contributions from the OFDM symbol blocks. Focusing on
the submatrices of the FIM in (12) that are related to AoA,
we have

Jθruθru =
2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruKruB

)
⊙
(
kq,lk

H
q,l

)
⊙
(
DH
γDγ

)
⊙
(
AH

tuFF
HAtu

)T ⊙R0

}
.

(18)
The information contribution from the qth OFDM sym-
bol block can be decomposed into: i) information pro-
vided by the receiver specified by some combination of
the terms {Pru ,Kru ,B,Aru}, ii) information provided by
the transmitter specified by some combination of the
terms {Ptu ,Ktu ,F,Atu}, iii) information provided by the
RIS gain specified by some combination of the terms
{kq,l,kq,tl ,kq,rl ,pq,tl ,pq,rl}, iv) the correlation across the
RIS specified by the product DH

γDγ , and v) the transmit signal
factor.

Proof. The proof follows after taking the first derivative, and
using the definitions in the previous sections.

In general, all submatrices of the FIM in (12) can be written
similarly. These equations are presented in Appendix A.

Corollary 1. When the slow varying RIS coefficients are
parallel across the qth and (q

′
)th OFDM symbol blocks,

i.e. when Γ
[m]
q = αΓ

[m]

q′
, where α is a scalar, the Fisher

information contributions across both blocks are identical, i.e.
Jq,v1v2

= Jq′ ,v1v2
. In this case of parallel RIS coefficients,

the RIS coefficients of the (q
′
)th OFDM symbol blocks do

not provide any additional information through the RIS co-
efficients. However, the additional transmission of the (q

′
)th

OFDM symbol blocks increases the SNR.

Proof. The proof follows by inspecting Lemma 1, and by
observing that the FIMs are always positive definite.

Corollary 1 describes the effect on the Fisher information of
having parallel RIS coefficients across multiple OFDM symbol
blocks. From this corollary, we notice that the additional
OFDM symbol blocks only increase the SNR in the case of
parallel RIS coefficients.

B. Bayesian FIM

To incorporate any prior knowledge about the unknown
but random channel parameters, the Bayesian FIM is also
analyzed. The channel parameters are random variables be-
cause both the RISs and the UE positions and orientations are
viewed as random variables. The channel parameters, η, are
assumed to be independent of each other such that the prior
Fisher information matrix, JP

η , is an 11M1 × 11M1 diagonal
matrix. The Bayesian FIM of the channel parameters η is also
an 11M1 × 11M1 matrix which contains several M1 × M1

submatrices such that its entries are written as

J̃v1v2
= Jv1v2

+ JP
v1v2

,

=
2

σ2

NQ∑
q=1

Jq,v1v2 + JP
v1v2

,
(19)

where v1,v2 ∈ η, v1 = v2, and

J̃v1v2
= Jv1v2

=
2

σ2

NQ∑
q=1

Jq,v1v2
, (20)

where v1,v2 ∈ η and v1 ̸= v2.

C. Entries in the EFIM with a Unitary RIS Correlation Matrix

In this subsection, we analyze the structure of the EFIM
when the correlation matrix is a unitary matrix. More specif-
ically, we analyze the structure of the FIM when DH

γDγ =
IM1

. A unitary correlation matrix can help establish orthog-
onality among the paths received from different RISs, which
allows the structure of the Bayesian FIM and EFIM to be
analyzed.

Remark 1. The submatrix Jη2η2
and its corresponding entries

{JβRβR ,JβIβI} are diagonal matrices. If the RIS sequence
matrix Dγ produces a unitary correlation matrix DH

γDγ =
IM1

, various RIS paths can be orthogonalized and JβRβR
=

JβIβI =
2
σ2

∑NQ

q=1

{(
AH

ruAru

)
⊙
(
kq,lk

H
q,l

)
⊙
(
DH
γDγ

)
⊙
(
AH

tuFF
HAtu

)T ⊙R0

}
.

To investigate the reduction in information due to uncer-
tainty about the nuisance parameters, we analyze the term
concerning information loss in the Bayesian EFIM Jnuη1η1

.
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Jnuv1v2
=

 2

σ2

NQ∑
q=1

Jq,βRβR
+ JP

βRβR

−1

4

σ4
ℜ


NQ∑
q1=1

NQ∑
q2=1

(Jq1,v1βI + jJq1,v1βR)(Jq2,v2βI
+ jJq2,v2βR

)H

 ,

=

[
2

σ2
JβRβR

+ JP
βRβR

]−1
4

σ4
ℜ


NQ∑
q1=1

NQ∑
q2=1

(Jq1,v1βI
+ jJq1,v1βR

)(Jq2,v2βI
+ jJq2,v2βR

)H

 .

(21)

Lemma 2. The terms representing the information loss about
the geometric parameters, η1, due to the nuisance parameters,
η2, have the structure presented in (21). where v1,v2 ∈ η1.

Proof. The term concerning information loss, Jnuη1η1
, in the

Bayesian EFIM, Je
η1

, is obtained by applying Definition 2 to
the Bayesian FIM given by Jη .

Lemma 2 presents the structure of the information loss about
the geometric channel parameters, η1, due to uncertainty in
the nuisance parameters, η2. In subsequent sections, we use
this structure to present estimation limitations under specific
configurations of RIS coefficients.

Corollary 2. An entry in EFIM of the geometric channel
parameters η1 is obtained by substituting (19), (20), and
Lemma 2 in Definition 2 and it is represented as

Je
v1v2

=
2

σ2

NQ∑
q=1

Jq,v1v2 + JP
v1v2

− Jnuv1v2
(22)

where v1,v2 ∈ η1, v1 = v2, and Je
v1v2

= 2
σ2

∑NQ

q=1 Jq,v1v2
−

Jnuv1v2
, where v1,v2 ∈ η1 and v1 ̸= v2.

The structure of the expressions regarding the information
loss terms and the EFIM of the geometric channel parameters
given in Lemma 2 and Corollary 2, respectively, are difficult
to analyze further. However, we can analyze the structure of
these expressions under different conditions and state when
the estimation problem is infeasible.

Corollary 3. When the RIS coefficients are parallel, i.e.
when for any scalar, α, the following condition Γ

[m]
q =

αΓ
[m]

q′
holds ∀q, q′ ∈ {1, 2, · · · , NQ}, most of the

information loss terms in the EFIM have a definite
structure. More specifically, this structure is given by

Jnuv1v2
=
[

2
σ2NQJq,βRβR

+ JP
βRβR

]−1
4
σ4NQJq,βRβR

Jq,v1v2

where v1,v2 ∈ η1 , v1 ̸= v2. Also If v1 = θru then
v2 /∈ {θru ,ϕru}. Again for the transmit angles, if v1 = θtu
then v2 /∈ {θtu ,ϕtu}. Information loss terms without this
structure are presented in Appendix B.

Proof. See Appendix C.

Corollary 3 presents the structure of the information loss
about the geometric channel parameters, η1, due to uncertainty
in the nuisance parameters, η2 when the RIS coefficients are
parallel. With this structure, Corollary 4 indicates that all the
information about the RIS AoR is lost when there is no prior
information about the complex path. Because prior information
about the complex path gains is hard to obtain, the RIS AoR
can not be estimated with parallel RIS reflection coefficients.

Corollary 4. With parallel RIS coefficients, the submatrices
in the EFIM which are related to the AoI and AoR are zero
matrices when there is no prior information about the complex
path gains and no prior information about the corresponding
AoI and AoR. More specifically,

Je
θtlθtl

= Je
ϕtl
ϕtl

= Je
θrlθrl

= Je
ϕrl
ϕrl

= 0,

when JP
θtlθtl

= JP
ϕtl
ϕtl

= JP
θrlθrl

= JP
ϕrl
ϕrl

= JP
βRβR

= 0.

Proof. This is a direct consequence of Corollary 3.

With Corollary 4, when the RIS coefficients are parallel, the
RIS AoR can not be estimated. This result is clearly stated in
the Theorem below.

Theorem 1. Practically, even with infinite number of receive
antennas, the azimuth and elevation AoR and the complex path
gains of the mth RIS path can only be jointly estimated when
the mth RIS employs non-parallel RIS coefficients. This entails
explicitly that localization of a single receive antenna UE with
reflections from a single RIS is impossible when there is no
LOS, and the RIS coefficients are constant across all OFDM
symbols.

Proof. The proof follows after noticing that all the angle
information of the mth RIS is lost due to uncertainty in the
complex path gain associated with the mth RIS path (see
Corollary 4).

Remark 2. The fundamental difference between a passive
RIS and a BS is that no processing is done at a passive
RIS. Because there is no processing at a passive RIS, it can
only reflect signals into a single stream. Hence, non-parallel
streams of information cannot be created during a single
OFDM symbol with a passive RIS. This is in stark contrast
to a BS that can (with various precoding techniques) produce
multiple non-parallel streams [45].

Due to this contrast in operation, when there is more than
one receive antenna at the UE, the UE can use the non-parallel
streams during a single OFDM symbol to estimate the AoD
at the BS [24], [25]. However, irrespective of the number of
receive antennas at the UE, it can not estimate the AoR of
the RIS using only reflections during a single OFDM symbol.
Therefore, the AoR can only be calculated at the UE when the
RIS employs non-parallel coefficients across multiple OFDM
symbols.

It is also important to note that the AoD of the BS can also
not be estimated during a single OFDM symbol if the streams
created by the precoding strategies are parallel in the spatial
domain.
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In the previous sections, we have discussed the relationship
between geometric channel parameters, η1 and the nuisance
parameters, η2 under both parallel and non-parallel RIS co-
efficients. In the following sections, we provide mathematical
definitions of the AoI azimuth and elevation angles and the
AoR azimuth and elevation angles. The next section defines
these RIS-related angles with respect to the BS’s position, BS’s
orientation, RISs’ position, RISs’ orientation, UE’s position,
and UE’s orientation.

D. RIS Related Angle Definitions and Relationships

To analyze both the angle relationships and derive the
FIM for positioning, we define the rotation matrix Q (θ0, ϕ0)
given by Q (θ0, ϕ0) = Qz (ϕ0)Q−x (θ0), where Qz (ϕ0)
and Q−x (θ0) define the counter-clockwise rotation around
the z-axis and the clockwise rotation around the x-axis re-
spectively. We define g[m] = (p[m] − pBS), and specify the
AoD at the BS as θ

[m]
tu = cos−1

(
g
[m]
z /∥g[m]∥

)
, ϕ

[m]
tu =

tan−1
(
g
[m]
y /g

[m]
x

)
. Next, we translate the mth RIS to the

origin, and the new coordinates of the BS can be written
as c[m] = (pBS − p[m]), c̃[m] = Q−1

(
θ
[m]
0 , ϕ

[m]
0

)
c[m].

With respect to these new coordinates, we can write θ
[m]
rl =

cos−1
(
c
[m]
z̃ /∥c̃[m]∥

)
, ϕ

[m]
rl = tan−1

(
c
[m]
ỹ /c

[m]
x̃

)
. Subse-

quently, the translated coordinates allow the following defi-
nition v[m] = (p − p[m]), ṽ[m] = Q−1

(
θ
[m]
0 , ϕ

[m]
0

)
v[m]

and we can write θ
[m]
tl

= cos−1
(
v
[m]
z̃ /∥ṽ[m]∥

)
, ϕ

[m]
tl

=

tan−1
(
v
[m]
ỹ /v

[m]
x̃

)
. Similarly, we obtain a new set of

coordinates by translating the UE to the origin, and
we write the following definitions e[m] = −(p −
p[m]), ẽ[m] = Q−1 (θ0, ϕ0) e

[m]. Hence, we can write
θ
[m]
ru = cos−1

(
e
[m]
z̃ /∥ẽ[m]∥

)
, ϕ

[m]
ru = tan−1

(
e
[m]
ỹ /e

[m]
x̃

)
.

E. Relationship between AoI and AoR with a Unitary RIS
Correlation Matrix

Based on the angle relationships and the coordinate trans-
lations in the previous section, we show the relationship
between the information provided by the AoI and information
provided by the AoR for an RIS deployed as a passive uniform
rectangular array (URA). To show this relationship, we state
the following lemma.

Lemma 3. The matrix specified by

V =
[
ν1 ν2

]
=

[
cos(θ

[m]
tl

) sin(ϕ
[m]
tl

) sin(θ
[m]
tl

) cos(ϕ
[m]
tl

)

cos(θ
[m]
tl

) cos(ϕ
[m]
tl

) − sin(θ
[m]
tl

) sin(ϕ
[m]
tl

)

]
(23)

is a full rank matrix. Hence, the 2D vectors ν3 =[
cos(θ

[m]
rl ) sin(ϕ

[m]
rl ) cos(θ

[m]
rl ) sin(ϕ

[m]
rl )

]T
and ν4 =[

sin(θ
[m]
rl ) cos(ϕ

[m]
rl ) − sin(θ

[m]
rl ) sin(ϕ

[m]
rl )

]T
can be ob-

tained as a linear combination of ν1 and ν2.

Proof. By simple geometry and based on the angle definitions,
we can write (23) as

V =


v
[m]
ỹ v

[m]
z̃(

∥ṽ[m]∥
√

(v
[m]
x̃ )2+(v

[m]
ỹ )2

) v
[m]
x̃

∥ṽ[m]∥

v
[m]
x̃ v

[m]
z̃(

∥ṽ[m]∥
√

(v
[m]
x̃ )2+(v

[m]
ỹ )2

) −v[m]
ỹ

∥ṽ[m]∥

 . (24)

Based on the property that a rank deficient matrix has a
zero determinant, we obtain −(v

[m]
ỹ )2 = (v

[m]
x̃ )2 as the only

condition for rank deficiency. Because this rank deficiency
condition is not possible, the lemma is proved. The second
part of the Lemma is obvious as ν3 and ν4 are 2D vectors
which can be obtained from a linear combination of ν1 and
ν2.

The following corollaries establish relationships between
the information provided by the FIMs of various channel
parameters. The first corollary is a vital step in showing
dependence among some of the FIMs of the geometric channel
parameters. It establishes a relationship between the following:
i) the derivative with respect to the elevation AoR of the
exponent in the array response vector due to the reflected
signal at the mth RIS specified by K

[m]
tl

, ii) the derivative
with respect to the azimuth AoR of the exponent in the
array response vector due to reflected signal at the same
RIS specified by P

[m]
tl

, and iii) the derivative with respect
to the elevation AoI of the exponent in the array response
vector due to incident signal at the same RIS specified by
K

[m]
rl . More specifically, the first corollary indicates that there

exists a linear combination of (i) and (ii) that produces (iii).
Additionally, in the first corollary, a similar statement is made
about the azimuth AoI.

Corollary 5. For a RIS deployed as a passive URA with a
normal in the z-direction, there exist scalars α1, α2, α3, and
α4 such that

α1K
[m]
tl

+ α2P
[m]
tl

= K[m]
rl

, α3K
[m]
tl

+ α4P
[m]
tl

= P[m]
rl

.
(25)

Proof. The diagonal matrices in (25) have a size of (N
[m]
L )

and each element in these matrices can be decomposed into
components in the x and y directions. From (14), the angle
component of K[m]

tl
in the x and y direction can be shown to

correspond with the elements of ν1. More specifically K
[m]
tl

=

πYl,m cos(θ
[m]
tl

) sin(ϕ
[m]
tl

) + πXl,m cos(θ
[m]
tl

) cos(ϕ
[m]
tl

). Sim-
ilarly, the angle components of P[m]

tl
and K

[m]
rl can be shown

to equal ν2 and ν3, respectively. Hence, K
[m]
rl is a linear

combination of K
[m]
tl

and P
[m]
tl

. The second equation in this
corollary can be proved similarly.

Corollary 6 shows that the information about the AoI can
be obtained as linear combination of the information about the
AoR.

Corollary 6. For a unitary RIS correlation matrix and with
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Corollary 5, there exist scalars α1, α2, α3, and α4 such that

α1Jv1θtl
+ α2Jv1ϕtl

= Jv1θrl
,

α3Jv1θtl
+ α4Jv1ϕtl

= Jv1ϕrl
,

(26)

where v1 ∈ η.

Proof. First, note that the FIMs in the above corollary are
diagonal matrices. Due to the properties relating Hadamard
products with diagonal matrices [46] and Lemma 1, the
left-hand side of the above Corollary can be decomposed as
2

σ2

NQ∑
q=1

ℜ
{
Vv1 ⊙

[
α1

(
kq,v1k

H
q,tl

)
+ α2

(
kq,v1p

H
q,tl

)]
⊙

(
DH

γ Dγ

)}
,

where Vv1
is a dummy diagonal matrix representing the

common terms between Jq,v1θtl
and Jq,v1ϕtl

. Analyzing the
diagonal elements of the matrices in the square brackets gives

2

σ2

NQ∑
q=1

ℜ
{
v
[m]
q,v1 ⊙ a

H[m]
q,tl

[
α1K

[m]
tl

+ α2P
[m]
tl

]
ã
[m]
q,rl ⊙

(
DH

γ Dγ

)}
,

(27)
where v

[m]
q,v1 represents the common terms on

the mth diagonal . From Corollary 5, the
terms in the square brackets equals K

[m]
rl , hence

2
σ2

∑NQ

q=1 ℜ
{
v
[m]
q,v1 ⊙ a

H[m]
q,tl

K
[m]
rl ã

[m]
q,rl ⊙

(
DH
γDγ

)}
, and we

can write 2
σ2

∑NQ

q=1 ℜ
{
Vv1

⊙
(
kq,v1

kH
q,rl

)
⊙
(
DH
γDγ

)}
=

Jv1θrl
. The second part of the corollary can be proved

similarly.

Remark 3. From Corollary 6, the FIM of the channel param-
eters η specified by JD

η is rank deficient and non-invertible.
Also, if there are M1 RISs, the resultant FIM JD

η has a rank of
atmost 11M1−2M1. From Corollary 6, the AoIs and AoRs can
not be estimated separately, irrespective of parallel or non-
parallel RIS coefficients. Hence, the model is non-identifiable.
The cause of the non-identifiability is that the parameter vector
η is parameter redundant. This can be seen by noting that the
parameter vector can be reparameterized in terms of a smaller
set of parameters. This reparameterization can be achieved by:
i) replacing the AoI and AoR (azimuth and elevation) with the
RIS orientation offsets, ii) replacing the azimuth and elevation
AoD with the azimuth and elevation angles in the unit vector
that points from the BS to the RIS, and iii) replacing the
azimuth and elevation AoA with the azimuth and elevation
angles in the unit vector pointing from the RIS to the UE.
This reparameterization reduces the size of the parameter
vector to 9M1, and the length of the parameter vector of
the geometric channel parameters decreases to 7M1. With
this reparameterization, the EFIM of the geometric channel
parameters is now a full-rank matrix when non-parallel RIS
coefficients are used.

F. Fisher Information for RIS Paths Plus LOS

In this subsection, we analyze the FIM of the LOS plus RIS
paths. We define the geometric LOS channel parameters ψ1 ≜[
θ
[0]
ru , ϕ

[0]
ru , θ

[0]
tu , ϕ

[0]
tu , τ

[0]
]T

and the LOS nuisance parameter as

ψ2 ≜
[
β
[0]
R , β

[0]
I

]T
. The LOS plus RIS geometric channel

parameters are defined as ζ1 ≜
[
ψT

1 ,η
T
1

]T
and the LOS

plus RIS nuisance parameters is defined as ζ2 ≜
[
ψT

2 ,η
T
2

]T
.

Hence, the LOS plus RIS channel parameters can be written
as ζ ≜

[
ζT1 , ζ

T
2

]T
. To write the FIM of ζ, we define the

PDF as
χ(rt[n]; ζ) = χ(rt[n]|ζ)χ(ζ), (28)

where χ(ζ) = χ(ψ1)χ(ψ2)χ(η1)χ(η2). The FIM of the
LOS and the RIS channel parameters due to observation

r has the structure JD
ζ ≜

[
JD
ψ JD

ψη

JD
ηψ JD

η

]
, where JD

ζ ∈

R(11M1+7)×(11M1+7), JD
ψ ∈ R7×7, and JD

ψη ∈ R7×11M1 . The
entries of the latter two matrices are written in Appendix
E. The Bayesian FIM Jζ can be written as described in
Section III. Likewise, the equivalent Bayesian EFIM Je

ζ1
can

be written using Definition 2.

G. LOS Related Angle Definitions and Relationships

This section presents the entries in the transformation matrix
that is needed to transform the LOS channel parameters into
location parameters. To analyze both the angle relationships
and derive the FIM for positioning, we define g = (p−pBS),
and specify the angles of departure at the BS as θ

[0]
tu =

cos−1
(
gz/∥g∥

)
, ϕ

[0]
tu = tan−1

(
gy/gx

)
. Next, we translate

the UE to the origin, and the new coordinates of the BS
can be written as e = (pBS − p), ẽ = Q−1 (θ0, ϕ0) e.
With respect to these new coordinates, we can write θ

[0]
ru =

cos−1 (ez̃/∥ẽ∥) , ϕ
[0]
ru = tan−1

(
eỹ/ex̃

)
.

IV. FISHER INFORMATION OF LOCATION PARAMETERS

In this section, we derive the FIM and the EFIM of the
location parameters. We derive these information matrices for
both the case with an arbitrary RIS sequence matrix and
the special case with RIS sequences that both generates a
unitary correlation matrix and sum to zero (see Assumption
1). Based on the FIMs and EFIMs of the location param-
eters, we also derive expressions for the PEB and OEB
for the UE. The location parameters are defined as ηL ≜[
oT,pT,oT[1]

,pT[1]
,oT[2]

,pT[2]
, . . . ,oT[M1],pT[M1]

]T
≜
[
oT,pT,qT

]T
. The PDF χ(rt[n]; ηL) is obtained as

χ(rt[n];ηL) = χ(rt[n]|ηL)χ(ηL) (29)

where χ(ηL) = χ(o;p)
∏
m∈M1

χ(o[m];p[m]|o,p) =

χ(o)χ(p)
∏
m∈M1

χ(o[m]|o,p)χ(p[m]|o,p). Based on the
PDF in (29), the FIM can be written as JηL

= JD
ηL

+ JP
ηL

.
The parameter vector ηL has a nonlinear relationship with the
geometric channel parameters ηL = Υ(ζ1). In [28], it was
shown that this nonlinear relationship allows the FIM to be
written as

JD
ηL

≜ ΥJe
ζ1Υ

T, (30)

where Υ is a transformation matrix obtained by finding the
gradient of the relationship between the location parameters
and the geometric channel parameters.
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A. Transformation Matrix from Geometric Channel Parame-
ters to Location Parameters

The transformation matrix in (30) can be defined as

Υ ≜
∂ζT1
∂ηL

=

[
∂ψ1

∂o
∂ψ1

∂p
∂ψ1

∂q
∂η1

∂o
∂η1

∂p
∂η1

∂q

]T
with the entries of this matrix presented in Appendix F and
Appendix G.

B. Bayesian PEB and OEB: Arbitrary Correlation Matrix

In this section, we derive the FIM for the location param-
eters with an arbitrary RIS correlation matrix. This FIM has
the structure

JD
ηL

≜ ΥJe
ζ1Υ

T =

[
JηL1

ηL1
JηL1

ηL2

JT
ηL1

ηL2
JηL2

ηL2

]
. (31)

With the assumption of independent prior information about
the UE and the RISs, the entries in the Bayesian FIM JηL

can be written as J̃v1v1
= Jv1v1

+ JP
v1v1

, J̃v1v2
= Jv1v2

where v1,v2 ∈ ηL. Using Definition 2 and (31), we can
write the Bayesian FIM as Je

ηL
= JηL1

ηL1
− Jnu

ηL1
ηL1

=

JηL1
ηL1

− JηL1
ηL2

J−1
ηL2

ηL2

JT
ηL1

ηL2

. The term Jnu
ηL1

ηL1

ac-
counts for information loss about the UE location due to the
uncertainty in the RISs orientation and position. The SPEB and
the SOEB with arbitrary RIS correlation matrix are defined as

SOEB =
[(
Je
ηL

)−1
]
1,1

+
[(
Je
ηL

)−1
]
2,2

,

SPEB =
[(
Je
ηL

)−1
]
3,3

+
[(
Je
ηL

)−1
]
4,4

+
[(
Je
ηL

)−1
]
5,5

.

(32)

Assumption 1. To ensure that the LOS path can be separated
from the RIS paths, we restrict the selection of RIS fast-varying
coefficients, γ[m]

t′
, to coefficients that sum to zero. Hence, the

sequence matrix has the following property

DH
γ 1M1 = 0. (33)

Please note that this assumption is not very restrictive since
practical discrete codes, such as Hadamard codes and discrete
Fourier matrices, satisfy it.

C. Bayesian PEB and OEB: Unitary Correlation Matrices and
Assumption 1

Under the conditions of unitary RIS correlation matrices,
the restriction in (33), and independent RIS placements;
there is no mutual information between RISs and each path
conveys information independently. The restriction also im-
plies that there is no mutual information between the RISs
and the LOS path. Hence, the parameters η1 can be rear-
ranged according to paths such η̃1 ≜

[
η
[1]
1 , η

[2]
1 , · · · , η[M1]

1

]
where η[m]

1 ≜
[
θ
[m]
ru , ϕ

[m]
ru , θ

[m]
tl

, ϕ
[m]
tl

, θ
[m]
tu , ϕ

[m]
tu , τ [m]

]T
2. The

nuisance parameters can be arranged similarly η
[m]
2 ≜

2The parameter vector is not completely reparameterized. Instead, the AoIs
are removed from the parameter vector. This constrains the RIS position and
orientation to locations that satisfies these AoIs.

[
β
[m]
R

T
, β

[m]
I

T
]T

. The corresponding rearranged EFIM is

J̄e
η̃1

≜ diag
[
J̄e
1 , J̄

e
2 , · · · , J̄e

M1

]
, where J̄e

m = J̄
η

[m]
1 η

[m]
1

−
J̄
η

[m]
1 η

[m]
2

J̄−1

η
[m]
2 η

[m]
2

J̄T

η
[m]
1 η

[m]
2

m ∈ M1, and we can write

J̄e
ζ̃1

≜

[
J̄e
ψ1

0

0 J̄e
η̃1

]
where J̄e

ψ1
presented in the Appendix

E is the EFIM obtained by applying Definition 2 to the
Bayesian FIM Jψ of the channel parameters for the LOS path.
Accordingly, the translation matrix Υ can be written as

Υ ≜


Υ0 Υ1 Υ2 · · · ΥM1

0 Υ1 · · · · · · 0
...

...
. . . . . .

...
0 0 · · · · · · ΥM1

 , (34)

where Υ0 is a 5× 5 matrix relating the LOS path to the UEs
orientation and position, Υm is the 5× 7 matrix relating the
location of the mth RIS to the UEs orientation and position,
and Υm is the 5 × 7 matrix related to o[m] and p[m]. The
correspondingly rearranged prior matrix is defined as JP

ηL
≜

diag
[
JP
UE,J

P
1 , · · · ,JP

M1

]
. Hence, the Bayesian FIM for the

positioning parameters is presented in (35).
Using Definition 2, the EFIM is presented in (36). Hence,

the FIM is partly composed of the FIM provided by the
LOS path plus the FIM provided by all RIS paths. The
corresponding SPEB and the SOEB can be obtained using
Equation (32).

V. NUMERICAL RESULTS

In this section, we evaluate the derived localization bounds
with Monte Carlo simulations under different scenarios. With-
out loss of generality, we assume that the slow-varying reflec-
tion coefficients, Γ

[m]
q , ∀q ∈ {1, · · · , NQ}, are randomly

generated, and the sequence matrix is a unitary matrix. The
RIS coefficients across any two OFDM symbols are non-
parallel. Hence, Γ

[m]
q ̸= Γ

[m]

q′
, when q ̸= q

′
, ∀q, q′ ∈

{1, 2, · · · , NQ}. Note that when LOS is available, Assumption
1 will be used to ensure that the LOS is orthogonal to the paths
generated by the RIS. We focus on the case with URAs at the
BS, RIS, and the UE with their respective normal vectors in
the z direction. Except stated otherwise, the UE is operating
at a frequency of 30 GHz, the transmit antenna gain is 6 dB
with a transmit power of 5 dBm, the UE antenna gain is 2 dB,
N0 = −174 dBm / Hz and there are N = 256 subcarriers.
There are NT = 4 transmit antennas, NB = NT transmit
beams, and the UE orientation offset is (θ0, ϕ0) = (10◦, 0◦).
The considered area is 100 m × 100 m, and the considered
bandwidth is 0.1 GHz with a non-specular reflection pathloss

model of [47] 1/ρ[m] =
λ4(cos θ

[m]
tl

cos θ[m]
rl

)0.57

512π2(d
[m]
rl

)2(d
[m]
tl

)2
for the RIS-

paths and 1/ρ[0] = λ2

(4πdru )
2 for the LOS path [18], where dru ,

d
[m]
rl , and d

[m]
tl

are the distances between the BS and the UE,
between the BS and the mth RIS, and between the mth RIS
and the UE, respectively. For the case studies in this section,
we assume that there is no prior information about the UE
position, JP

UE = 05, but the prior information concerning
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JηL
= ΥJ̄e

ζ̃1
ΥT + JP

ηL =


∑M1

m=0 ΥmJ̄e
mΥ

T

m + JP
UE Υ1J̄

e
1Υ

T

1 . . . ΥM1 J̄
e
M1

Υ
T

M1

Υ1J̄
e
1Υ

T

1 Υ1J̄
e
1Υ

T

1 + JP
1 . . . 0

...
...

. . .
...

ΥM1 J̄
e
M1

Υ
T

M1
0 . . . ΥM1 J̄

e
M1

Υ
T

M1
+ JP

M1

 . (35)

Je
ηL

= Υ0J̄
e
0Υ

T

0 +

M1∑
m=1

ΥmJ̄e
mΥ

T

m + JP
UE −

M1∑
m=1

ΥmJ̄e
mΥ

T

m

(
ΥmJ̄e

mΥ
T

m + JP
m

)−1

ΥmJ̄e
mΥ

T

m. (36)

the perturbed RISs is given as JP
m = 0.5

σ2 I5 , m ∈ Mb
1.

The orientation offset of the perturbed RIS is given by
(θ

[m]
0 , ϕ

[m]
0 ) = (45◦, 35◦), m ∈ Mb

1. In the subsequent
figures, the Bayesian error bounds derived from (36) are
plotted. The plots without the term “LOS” refer to the error
bounds with prior information on the perturbed RISs in the
absence of an LOS path. The plots with the term “LOS” refer
to the error bounds with prior information on the perturbed
RISs in the presence of an LOS path.

In Figs. 2 and 3, the BS is located at (0, 0, 40m), the RIS
and the UE are at a height of 35m and 5m respectively. In
both figures, |Mb

1| = 1. The (x, y) coordinate of both RIS
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Figure 2. (a) PEB and (b) OEB with varying number receive antennas,
|Mb

1| = 1 with JP
m = 0.5

σ2 I5 , m ∈ Mb
1. Each RIS has N

[m]
L = 144

elements.

and UE are randomly generated. In Fig. 2, the localization
bounds for different numbers of RISs are presented; each RIS
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Figure 3. (a) PEB and (b) OEB with varying number of RIS elements,
|Mb

1| = 1 with JP
m = 0.5

σ2 I5 , m ∈ Mb
1. There are NR = 16 receive

antennas.

has N [m]
L = 144 elements. We observe that in general the PEB

and OEB decrease for increasing number of OFDM symbols,
NQ. The PEB and OEB also decrease for increasing number
of RISs. In Fig. 2, there is a noticeable decrease in the error
bounds when there is an LOS path present.

In Fig. 3, the number of receive antennas is set to NR = 16.
We observe that the PEB and OEB decrease as the number
of RIS elements increases. In general, we also notice that the
error bounds reduce as a function of the number of OFDM
symbols, NQ, and the number of RISs. It is important to
emphasize that in Figs. 2 and 3, we present results for the
scenarios where LOS paths are present in addition to the RIS
paths. These scenarios provide lower bounds for the systems
without LOS. Note that the gap between the localization
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bounds in the RIS-only scenarios and the RIS plus LOS
scenarios reduces as the number of RISs increases.

VI. CONCLUSION

In this paper, the effect of the multipath created due to multi-
ple RISs on wireless-enabled localization has been investigated
from a Bayesian perspective. This was achieved by viewing
the position and orientation of the RISs as prior information
to assist in downlink UE localization. We derived the FIM
for the RIS-related channel parameters and showed that the
FIM can be decomposed into a sum of the FIMs provided
by the OFDM symbols. The FIM provided by each OFDM
symbol can be decomposed into: i) information provided by
the receiver, ii) information provided by the transmitter, and
iii) information provided by the RIS components. We showed
that the information provided by the RIS can be further
decomposed into a correlation matrix and an information
matrix representing the gains due to the RIS. Through this
decomposition, we observed that with parallel RIS reflection
coefficients across OFDM symbols, the information matrix
produced by the RIS coefficients during the additional OFDM
symbols does not provide any further information. Next, for
parallel RIS coefficients, we showed through the derivations of
the Bayesian EFIM that all information about the RIS-related
angle channel parameters is lost when the complex path gains
are unknown. We noted that this loss of information has severe
implications and can hinder localization. Next, we transformed
the Bayesian EFIM of the geometric channel parameters to
the Bayesian FIM for localization. We obtained the Bayesian
EFIM of localization by considering RISs, with position and
orientation offsets. As a future work, we intend to simulta-
neously analyze the impact of different UE architectures and
RIS location offset on localization performance.

APPENDIX

A. Entries of the FIM
The entries of the FIM in (12) are presented below

Jθruϕru
=

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruPruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
(37a)

Jθruθtl
= −

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruAruB

)
⊙

(
kq,lk

H
q,tl

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
(37b)

Jθruϕtl
= −

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruAruB

)
⊙
(
kq,lp

H
q,tl

)
⊙
(
DH
γDγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
(37c)

Jθruθrl
=

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruAruB

)
⊙

(
kq,lk

H
q,rl

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
,

(37d)

Jθruϕrl
=

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ru
AruB

)
⊙

(
kq,lp

H
q,rl

)
⊙

(
DH

γ Dγ

)
(37e)

⊙
(
AH

tu
FFHAtu

)T
⊙R0

}
, (37f)

Jθruθtu
= −

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ruAruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
(37g)

⊙
(
KH

tu
FFHAtu

)T
⊙R0

}
, (37h)

Jθruϕtu
= −

2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ru
AruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
(37i)

⊙
(
PH

tu
FFHAtu

)T
⊙R0

}
, (37j)

Jθruτ =
2

σ2

NQ∑
q=1

ℜ
{(

BHKH
ru
AruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R1

}
,

(37k)

JθruβI
+jJθruβR = −

2

σ2

NQ∑
q=1

{(
BHKH

ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙
(
AH

tuFFHAtu

)T
⊙R0

} .

(37l)

The submatrices related to ϕru can be obtained by replacing
Kru with Pru in the appropriate equations. The submatrices
related to θtl are derived next

Jθtl
θtl

=
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,tlk

H
q,tl

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
(38a)

Jθtl
ϕtl

=
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,tlp

H
q,tl

)
⊙

(
DH

γ Dγ

)
⊙

(
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tuFFHAtu

)T
⊙R0

}
(38b)

Jθtl
θrl

= −
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,tlk

H
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)
⊙

(
DH

γ Dγ

)
⊙

(
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tuFFHAtu

)T
⊙R0

}
(38c)

Jθtl
ϕrl

= −
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,tlp

H
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)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
,

(38d)

Jθtl
θtu

=
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,tlk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
KH

tuFFHAtu

)T
⊙R0

}
,

(38e)
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Jθtl
ϕtu

=
2
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NQ∑
q=1

ℜ
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BHAH
ru
AruB

)
⊙

(
kq,tlk
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DH
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)
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(
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(38f)

Jθtl
τ = −
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{(
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DH
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}
.

(38h)

The submatrices related to ϕtl can be obtained by replacing
kq,tl with pq,tl in the appropriate equations. The submatrices
related to θrl are obtained as

Jθrl
θrl

=
2
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NQ∑
q=1
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BHAH
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tuFFHAtu

)T
⊙R0

}
,

(39d)

Jθrl
τ =

2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,rlk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R1

}
,

(39e)

Jθrl
βI

+jJθrl
βR = −

2

σ2

NQ∑
q=1

{(
BHAH

ruAru

)
⊙

(
kq,rlk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
.

(39f)

The submatrices related to ϕrl can be obtained by replacing
kq,rl with pq,rl in the appropriate equations. The submatrices
related to θtu are obtained as

Jθtuθtu
=

2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
KH

tuFFHKtu

)T
⊙R0

}
,

(40a)

Jθtuϕtu
=

2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ru
AruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
PH

tuFFHKtu

)T
⊙R0

}
,

(40b)

Jθtuτ = −
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tu
FFHKtu

)T
⊙R1

}
,

(40c)

JθtuβI
+jJθtuβR =

2

σ2

NQ∑
q=1

{(
BHAH

ru
Aru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tu
FFHKtu

)T
⊙R0

}
.

(40d)

The submatrices related to ϕtu can be obtained by replacing
Ktu with Ptu in the appropriate equations. The submatrices
related to the delay are obtained as

Jττ =
2

σ2

NQ∑
q=1

ℜ
{(

BHAH
ruAruB

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R2

}
,

(41a)

JτβI
+jJτβR = −

2

σ2

NQ∑
q=1

{(
BHAH

ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R1

}
.

(41b)

The submatrices related to the channel complex gain are
obtained as

JβRβR = JβIβI
=

2

σ2

NQ∑
q=1

ℜ
{(

AH
ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
,

(42a)

JβRβI =
2

σ2

NQ∑
q=1

ℜ
{(

jAH
ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}
.

(42b)

B. Entries of the EFIM with Unitary RIS Sequences and
Parallel RIS Configurations

The information loss terms in the EFIM expression that
have a different structure than that described in Corollary 3 are
presented in this section. The information loss terms related
to the receive angles in both elevation and azimuth are written
as

Jnu
θruθru

= J̃−1
βRβR

4

σ4
NQ

[
ℜ
{
∥
(
BHKH

ruAru

)
∥20 ⊙Vq,ru ⊙Vq,ru

}]
,

Jnu
ϕruϕru

= J̃−1
βRβR

4

σ4
NQ

[
ℜ
{
∥
(
BHPH

ruAru

)
∥20 ⊙Vq,ru ⊙Vq,ru

}]
,
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and

Jnu
θruϕru

= J̃−1
βRβR

4

σ4
NQℜ

{(
BHKH

ru
Aru

)
⊙

(
BHPH

ru
Aru

)H

⊙Vq,ru ⊙Vq,ru} ,
(43)

where Vq,ru =
(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tu
FFHAtu

)T
⊙R0.

The terms related to the transmit angles are written as

Jnu
θtuθtu

= J̃−1
βRβR

4

σ4
NQ

[
ℜ
{
∥
(
BHAH

ru
Aru

)
∥20 ⊙VH

q,ktu
⊙Vq,ktu

}]
,

Jnu
θtuϕtu

= J̃−1
βRβR

4

σ4
NQ

[
ℜ
{
∥
(
BHAH

ru
Aru

)
∥20 ⊙Vq,ktu

⊙VH
q,ptu

}]
,

Jnu
ϕtuϕtu

= J̃−1
βRβR

4

σ4
NQ

[
ℜ
{
∥
(
BHAH

ru
Aru

)
∥20 ⊙VH

q,ptu
⊙Vq,ptu

}]
,

(44)
where

Vq,ktu
=

((
AH

tuFFHKtu

)T
)

⊙
(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙R0,

Vq,ptu
=

((
AH

tuFFHPtu

)T
)

⊙
(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙R0.

The term related to the ToA is written as

Jnu
ττ =

4

σ4
NQJ̃−1

βRβR
⊙

[
Jq,τβI

+ jJq,τβR

]
. (45)

C. Proof of Corollary 3

In this proof, we focus on the information loss due to
the nuisance parameters which concerns the cross correlation
between the receive elevation angle and the elevation angle of
reflection

Jnu
θruθtl

= JθruβR
J̃−1
βRβR

JT
θtl

βR
+ JθruβI

J̃−1
βIβI

JT
θtl

βI

= J̃−1
βRβR

[
JθruβR

JT
θtl

βR
+ JθruβI

JT
θtl

βI

]
,

(46)

which is a consequence of Remark 1. Now, applying basic
complex analysis, ℑ(ν1)ℑ(ν2) + ℜ(ν1)ℜ(ν2) = ℜ(ν1νH2 ) =
ℜ(νH1 ν2), we have

Jnu
θruθtl

=

J̃−1
βRβR

4

σ4
NQℜ

{[
(Jq,θruβI

+ jJq,θruβR
)(Jq,θtl

βI
+ jJq,θtl

βR
)H

]}
.

(47)
Now, substituting (37l) and (38h) in the above equation gives

Jnu
θruθtl

= J̃−1
βRβR

[
−
4NQ

σ4
ℜ
{(

BHKH
ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0 ⊙

(
AH

ruAruB
)
⊙

(
kq,lk

H
q,tl

)
⊙

(
DH

γ Dγ

) (
AH

tuFFHAtu

)T
⊙R0

}]
.

(48)
Rearranging the terms and applying the properties relating
Hadamard products with diagonal matrices [46] produces

Jnu
θruθtl

= J̃−1
βRβR

[
−
4NQ

σ4
ℜ
{(

BHKH
ruAruB

)
⊙

(
kq,lk

H
q,tl

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0 ⊙

(
AH

ruAru

)
⊙

(
kq,lk

H
q,l

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tuFFHAtu

)T
⊙R0

}]
.

(49)

Using Remark 1 yields

Jnu
θruθtl

= J̃−1
βRβR

Jq,βRβR

[
−
4NQ

σ4
ℜ
{(

BHKH
ru
AruB

)
⊙

(
kq,lk

H
q,tl

)
⊙

(
DH

γ Dγ

)
⊙

(
AH

tu
FFHAtu

)T
⊙R0

}]
.

(50)
Now, recognizing that the term in the square
brackets is Jq,θruθtl

, we have the structure

Jnu
θruθtl

=
4NQ

σ4 J̃−1
βRβR

Jq,βRβR
Jq,θruθtl

. Here,
J̃βRβR = 2

σ2NQJq,βRβR + JP
βRβR

. Other terms that
have the same structure as those in Corollary 3 can be derived
similarly.

D. Entries of the FIM between the LOS path and the RIS paths

Defining RL1
0 as the signal factor considering a LOS path

and the RIS paths; the entries in the FIM JD
ψη ∈ R7×11M1 are

presented below

J
θ
[0]
ru θru

=
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]aH[0]
ru KH[0]

ru KruB
)
⊙
(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51a)

J
θ
[0]
ru ϕru

=
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru PruB

)
⊙

(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51b)

J
θ
[0]
ru θtl

= −
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
kH
q,tl

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51c)

J
θ
[0]
ru ϕtl

= −
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
pH
q,tl

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51d)

J
θ
[0]
ru θrl

=
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
kH
q,rl

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51e)

J
θ
[0]
ru ϕrl

=
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
pH
q,rl

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51f)

J
θ
[0]
ru θtu

= −
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
KH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51g)

J
θ
[0]
ru ϕtu

= −
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
PH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
,

(51h)
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J
θ
[0]
ru τ

=
2

σ2

NQ∑
q=1

ℜ
{(

βH[0]a
H[0]
ru K

H[0]
ru AruB

)
⊙

(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL

1

}
,

(51i)

J
θ
[0]
ru βI

+ jJ
θ
[0]
ru βR

= −
2

σ2

NQ∑
q=1

{(
βH[0]a

H[0]
ru K

H[0]
ru Aru

)
⊙

(
kH
q,l

)
⊙

(
1H
M1

Dγ

)
⊙

(
AH

tuFFHa
[0]
tu

)T
⊙RL1

0

}
.

(51j)

Other entries related to ψ/{θ[0]ru } can be obtained similarly by
making appropriate matrix substitutions.

E. Entries of the EFIM of the LOS

Defining RL2
0 as the signal factor considering just the LOS

path; the entries in the FIM JD
ψ ∈ R7×7 are presented below

J
θ
[0]
ru θ

[0]
ru

=
2

σ2
ℜ
{(

T
∣∣∣β[0]

∣∣∣2 aH[0]
ru K

H[0]
ru K

[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

0

}
,

(52a)

J
θ
[0]
ru ϕ

[0]
ru

=
2

σ2
ℜ
{(

T
∣∣∣β[0]

∣∣∣2 aH[0]
ru K

H[0]
ru P

[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

0

}
,

(52b)

J
θ
[0]
ru θ

[0]
tu

= −
2

σ2
ℜ
{(

T
∣∣∣β[0]

∣∣∣2 aH[0]
ru K

H[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

K
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

0

}
,

(52c)

J
θ
[0]
ru ϕ

[0]
tu

= −
2

σ2
ℜ
{(

T
∣∣∣β[0]

∣∣∣2 aH[0]
ru K

H[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

P
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

0

}
,

(52d)

J
θ
[0]
ru τ [0] =

2

σ2
ℜ
{(

T
∣∣∣β[0]

∣∣∣2 aH[0]
ru K

H[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

1

}
,

(52e)

J
θ
[0]
ru β

[0]
I

+jJ
θ
[0]
ru β

[0]
R

= −
2

σ2

{(
TβH[0]a

H[0]
ru K

H[0]
ru a

[0]
ru

)
⊙

(
a
H[0]
tu

FFHa
[0]
tu

)T
⊙RL2

0

}
.

(52f)

The other entries related to ψ/{θ[0]ru } can be obtained sim-
ilarly by making appropriate matrix substitutions. Subse-
quently, the EFIM J̄e

ψ1
can be obtained as J̄e

ψ1
= Jψ1ψ1

−
Jψ1ψ2

J−1
ψ2ψ2

JT
ψ1ψ2

.

F. RIS Related Entries in the Transformation Matrix

The non-zero terms related to the angle of departure at
the BS are derived. The non-zero derivatives of θ

[m]
tu are

∂θ
[m]
tu

∂p[m] =
[p[m]

x g[m]
z ,p[m]

y g[m]
z ,∥g[m]∥2−p[m]

z g[m]
z ]

T

∥g[m]∥2

√
(g

[m]
x )2+(g

[m]
y )2

and the non-zero

derivatives of ϕ
[m]
tu are

∂ϕ
[m]
tu

∂p[m] =
[−g[m]

y ,g[m]
x ,0]

T

(g
[m]
x )2+(g

[m]
y )2

. The non-zero

terms related to the angle of arrival at the RIS, (θ[m]
rl , ϕ

[m]
rl )

are derived next. The non-zero derivatives of θ[m]
rl are

∂θ[m]
rl

∂θ
[m]
0

=

− c
[m]
ỹ√

(c
[m]
x̃ )2+(c

[m]
ỹ )2

,
∂θ[m]

rl

∂ϕ
[m]
0

=
c
[m]
x̃ sin θ

[m]
0√

(c
[m]
x̃ )2+(c

[m]
ỹ )2

, and

∂θ
[m]
rl

∂p[m]
=

1√
(c

[m]
x̃ )2 + (c

[m]
ỹ )2

(
q
[m]
3 − c

[m]
z̃ c[m]

∥c̃[m]∥2

)
.

The non-zero derivatives of ϕ
[m]
rl are

∂ϕ[m]
rl

∂θ
[m]
0

=

− c
[m]
x̃ c

[m]
z̃

(c
[m]
x̃ )2+(c

[m]
ỹ )2

,
∂ϕ[m]

rl

∂p[m] = − (q
[m]
2 q

[m]
1

T
−q

[m]
1 q

[m]
2

T
)c[m]

(c
[m]
x̃ )2+(c

[m]
ỹ )2

,

and

∂ϕ
[m]
rl

∂ϕ
[m]
0

=
−(c

[m]
x̃ )2 cos θ

[m]
0 +

(
c
[m]
x sinϕ

[m]
0 − c

[m]
y cosϕ

[m]
0

)
(c

[m]
ỹ )

(c
[m]
x̃ )2 + (c

[m]
ỹ )2

.

Except, the non-zero derivatives of θ
[m]
tl

and
ϕ
[m]
tl

related to the UE position which are given

by
∂θ

[m]
tl

∂p = − 1√
(v

[m]
x̃ )2+(v

[m]
ỹ )2

(
q
[m]
3 − v

[m]
z̃ v[m]

∥ṽ[m]∥2

)
,

∂ϕ
[m]
tl

∂p =
(q

[m]
2 q

[m]
1

T
−q

[m]
1 q

[m]
2

T
)v[m]

(v
[m]
x̃ )2+(v

[m]
ỹ )2

, all other non-zero

derivatives can be obtained by replacing c in the derivatives
for θ[m]

rl and ϕ
[m]
rl with v. The non-zero derivatives of θ[m]

ru are
∂θ[m]

ru

∂θ0
= − e

[m]
ỹ√

(e
[m]
x̃ )2+(e

[m]
ỹ )2

,
∂θ[m]

ru

∂ϕ0
=

e
[m]
x̃ sin θ0√

(e
[m]
x̃ )2+(e

[m]
ỹ )2

,

∂θ[m]
ru

∂p[m] = − 1√
(e

[m]
x̃ )2+(e

[m]
ỹ )2

(
q
[m]
3 − e

[m]
z̃ e[m]

∥ẽ[m]∥2

)
, and

∂θ[m]
ru

∂p = 1√
(e

[m]
x̃ )2+(e

[m]
ỹ )2

(
q
[m]
3 − e

[m]
z̃ e[m]

∥ẽ[m]∥2

)
.

The non-zero derivatives of ϕ
[m]
ru are

∂ϕ[m]
ru

∂θ0
=

− e
[m]
x̃ e

[m]
z̃

(e
[m]
x̃ )2+(e

[m]
ỹ )2

,
∂ϕ[m]

ru

∂p[m] =
(q

[m]
2 q

[m]
1

T
−q

[m]
1 q

[m]
2

T
)e[m]

(e
[m]
x̃ )2+(e

[m]
ỹ )2

,

∂ϕ[m]
ru

∂p = − (q
[m]
2 q

[m]
1

T
−q

[m]
1 q

[m]
2

T
)e[m]

(e
[m]
x̃ )2+(e

[m]
ỹ )2

, and

∂ϕ
[m]
ru

∂ϕ0

=
−(e

[m]
x̃ )2 cos θ0 +

(
e
[m]
x sinϕ

[m]
0 − e

[m]
y cosϕ

[m]
0

)
(e

[m]
ỹ )

(e
[m]
x̃ )2 + (e

[m]
ỹ )2

.

The delay related derivatives are
∂τ [m]

∂p[m]
=

p[m] − pBS

c∥p[m] − pBS∥
−

p− p[m]

c∥p− p[m]∥
and ∂τ

∂p
= p−p[m]

c∥p−p[m]∥
.

G. LOS related Entries in the Transformation Matrix

The non-zero terms related to the LOS angles of depar-
ture and LOS angles of arrival can be obtained by making
appropriate substitutions in the derivatives of (θ

[m]
tu , ϕ

[m]
tu )

and derivatives of (θ[m]
ru , ϕ

[m]
ru ) respectively. The delay related

derivatives are ∂τ [0]

∂p = p−pBS

c∥p−pBS∥ .
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