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Fundamentals of Vehicular Communication
Networks with Vehicle Platoons

Kaushlendra Pandey, Kanaka Raju Perumalla, Abhishek K. Gupta, Harpreet S. Dhillon

Abstract—Vehicular platooning is a promising way to facilitate
efficient movement of vehicles with a shared route. Despite its
relevance, the interplay of platooning and the communication
performance in the resulting vehicular network (VN) is largely
unexplored. Inspired by this, we develop a comprehensive ap-
proach to statistical modeling and system-level analysis of VNs
with platooned traffic. Modeling the network of roads using
the by-now well-accepted Poisson line process (PLP), we place
vehicles on each road according to an independent Matérn cluster
process (MCP) that jointly captures randomness in the locations
of platoons on the roads and vehicles within each platoon.
The resulting triply-stochastic point process is a PLP-driven-Cox
process, which we term the PLP-MCP. We first present this
new point process’s distribution and derive several fundamental
properties essential for the resulting VN’s analysis. Assuming
that the cellular base-stations (BSs) are distributed as a Poisson
point process (PPP), we derive the distribution of the loads
served by the typical BS and the BS associated with the typical
user. In deriving the latter, we also present a new approach to
deriving the length distribution of a tagged chord in a Poisson
Voronoi tessellation. Using the derived results, we present the rate
coverage of the typical user while considering partial loading of
the BSs. We also provide a comparative analysis of VNs with
and without platooning of traffic.

I. INTRODUCTION

Vehicular platooning refers to the cooperative movement of
closely located vehicles having a shared route or a part of
route. As part of intelligent transportation systems, platooning
has enormous potential for collision avoidance among vehi-
cles, optimization of the road capacity and fuel consumption,
and reduction in pollutant gases including CO2 emissions [1],
[2]. Platooning and vehicular communication have a two way
relationship. On one hand, platooning almost always ensures
line-of-sight between two proximate vehicles, thereby improv-
ing the reliability of vehicle-to-vehicle (V2V) communication
between them compared to independently moving vehicles
[3]. Such V2V communications can help in collision and
hazard warning and traffic planning [4]. Further, if one vehicle
in the platoon is able to receive information via vehicle-
to-infrastructure (V2I) communication, V2V communication
can help relay this data to all vehicles in the platoon. On
the other hand, vehicular communication is also essential in
enabling platooning to reduce collision risks due to smaller
intra-vehicular distance. Given the intertwined nature of these
two seemingly disparate ideas, it is essential to understand
their synergism, which we do here by carefully integrating
platooning in the system-level analysis of vehicular networks.
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A. Related work

Recently, there has been a significant interest in studying
different types of vehicular communication including V2V and
V2I. Interested readers are advised to refer to [4], [5], and the
references therein, for a comprehensive survey of this research
direction. In this paper, our specific interest is on the system-
level analysis of vehicular communications networks using
stochastic geometry, which has attracted significant attention
recently, e.g, see [6]–[10]. However, the focus of almost all of
this prior work has been on conventional non-platooning traffic
scenarios (N-PTS), where vehicles do not form platoons and
hence move without any coordination with each other. For
instance, in [6], [7] authors modeled the vehicular traffic on a
fixed road by a 1D Poisson point process (PPP). To incorporate
multiple road vehicular traffic, [8], [9] considered grid type
urban roads (roads are either perpendicular, or parallel to the
x-axis) modeled using the Manhattan Poisson line process
(MPLP). Each road has an independent vehicular traffic dis-
tributed as 1D PPP. The authors analyzed the blockage and
coverage in such networks. To include the irregularity in the
layout of roads, in [10], authors suggested to model roads as
Poisson line process (PLP) and vehicles as 1D PPP on each
road. In this model, the combined vehicular traffic across roads
forms a Cox process that can be termed PLP-PPP (i.e. a PLP
driven PPP). A thorough investigation of various properties
of PLP-PPP and its applications to vehicular communications
was presented in [11].

A vehicular communication network consists of vehicular
traffic overlaid with a cellular network to provide infrastructure
connectivity to vehicular traffic. Such a network with N-PTS
can be modeled using PLP-PPP overlaid with an independent
PPP modeling the locations of BSs, owing to the mathematical
tractability of these processes. In [12]–[14], authors derived the
distribution of signal-to-noise-plus-interference ratio (SINR)
for similar models. In [15]–[17] authors derived the SINR
distribution for vehicle-to-everything (V2X) networks consist-
ing of communications between different types of network
entities, such as between BSs and vehicles, and roadside units
and vehicles. Another important metric dictating the overall
performance of a network is the rate distribution of the typical
user. The achievable rate depends critically on the per-BS load,
i.e. the number of vehicles present in the BS’s serving region.
In [15], authors derived the distribution of the per BS load and
per-user rate for N-PTS. In [18], the area spectral efficiency
for the N-PTS was presented. In [19], authors derived the rate
coverage for cellular vehicle-to-everything (V2X) networks for
N-PTS.

Although past works have analyzed the vehicular com-
munication network with N-PTS, analytical tools have not
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been fully explored yet to study the platooned vehicular
traffic scenario (PTS) and its impact on the performance of
a vehicular communication. Consequently, there is limited
work focusing on the analysis of PTS [20]–[22]. For example,
in [20], authors considered a single road vehicular traffic
consisting of independent vehicles and platoons, both modeled
as points of 1D PPP and derived the probability that vehicles
can communicate with each other. In [21], authors considered
platooned traffic on a single road with BSs deployed on the
side of the road and derived approximate coverage. In [22],
authors considered platooned traffic on a single road with road
side BSs and performed a joint communication and control
analysis to study the stability and delay in the network. One
main limitation of the above works is that they considered
vehicular traffic on a single road. In practice, the “support”
of a vehicular network is a complicated layout of roads that
needs to be accounted for and is one of the key reasons for
the popularity of the PLP-based models. A vehicular traffic on
such a road network is further complicated by the randomness
in the number and locations of platoons and locations of
vehicles in each platoon. As indicated above, the wireless
performance of a vehicular user depends critically on the
per BS load which has not been analyzed in the previous
work for PTS. Overall, the interplay of platooning and the
vehicular network performance is largely unexplored from
the perspective of rigorous system-level analysis. This paper
attempts to bridge this gap. In particular, we try to explore how
we can model a complete vehicular communication network
consisting of a 2D network of BSs and the vehicles moving
in platoons and analyze the performance of this network in
terms of load and rate distribution.

B. Contributions

In this paper, we develop an analytical framework for a
vehicular communication system (in particular, a V2I scenario)
with platooned traffic. We propose a novel point process for
modeling the platoon movement of vehicles. We then examine
the impact of platooning on V2I communication by observing
the load that appears on the infrastructure network. We present
a comparative study of the rate coverage for PTS and N-PTS.
The important contributions of this paper are listed below.

1) We propose a novel point process termed PLP-MCP for
the modeling and analysis of the platooned movement
of the vehicles. It is a Cox process driven by the PLP
that captures three layers of randomness: (i) irregularity
in the road layout, (ii) randomness in the locations of the
platoons, and (iii) randomness in the locations of vehicles
within a platoon. In this sense, this process can be
thought of as a triply-stochastic process that generalizes
doubly-stochastic PLP-PPP used in the literature [11]. We
present its distribution and key properties essential for the
analysis of the vehicular traffic.

2) We then present an analytical framework to characterize
the performance of the typical user in a V2I communi-
cation network consisting of BSs and platooned traffic.

3) We derive the load distribution for the typical and the
tagged BSs along with the means and variances. Here,
tagged BS is the BS that serves the typical user. As a

TABLE I: Notation Table
Parameter Definition
x, |x| A vector x in R with its norm as |x|.
x, ∥x∥ A vector x in R2 with its norm as ∥x∥.
Bn(x, r) nD Ball of radius r centred at location x.
A and |A| Set A with its Lebesgue measure as |A|.
PX(·), E[X]
and Var[X]

The PGF, expected value and variance of RV X .

o The origin (0, 0).

ℓ = L(ρ, ϕ)
A line in R2 in Hesse normal form, i.e. the normal
segment from origin to the line is of length ρ and
makes angle ϕ with respect to the x-axis.

(ρ cosϕ, ρ sinϕ)
Nearest point on the line L(ρ, ϕ) from the
origin termed the base.

A1(a, b, x)
Length of the intersection of two 1D
balls B1(o, a) and B1(x, b).

b(·) Bell’s polynomial [23].

Ψ! and Ψ!0 The Palm and the reduced Palm version of
the point process Ψ.

Ψ(C)
Number of points of point process Ψ
falling inside set C.

β(r, a) 2min(r, a).
(̃·) Approximated variable.

X̂
Denotes the RV X under the reduced
Palm version of the point process.

A
(d)
= B The RV A and RV B have the same distribution.

Ψm and λm PLP-MCP with density λm.
S(r) Number of points of Ψm falling in ball B2(o, r).

Ŝ(r)
Number of points of Ψm falling in ball B2(o, r)
conditioned o ∈ Ψm.

S̃m and M̃m
Approximated load on the typical and tagged cell
respectively in PTS.

S̃p and M̃p
Approximated load on the typical and tagged
cell respectively in ITS.

Theorem 2: LF of PLP-MCP 
under the reduced Palm.

Theorem 4: Number of points መ𝑆 𝑟 , 
of PLP-MCP in a ball conditioned on 

the presence of a point.

Lemma 1: Slivnayak theorem for PLP-MCP.

Lemma 4, Theorem 

5: Length 

distribution of the 

tagged chord.

Theorem 6: 
Load on the 
typical BS.

Lemma 3: PGF of number of points of 
1D MCP in a ball.

Theorem 8 and Lemma 5: 
PGF and PMF of 

approximated load on 
the tagged BS.

Corollary 3.1 and 
3.2: PMF, mean and 

variance of 𝑆 𝑟 .

Corollary 4.1, 4.2: 
PMF, mean and 

variance of መ𝑆 𝑟 .

Theorem 7: 
Approximated 

load on the typical 
BS.

Theorem 9: Rate coverage for vehicles.

Corollary 7.1 and 
7.2: Mean load and 

the active probability 
of the typical BS. 

Lemma 2: PGFL of 1D MCP on a random line..        

Corollary 8.1: 
Mean load on the 

typical BS.

Theorem 1: LF of PLP-
MCP.

Theorem 3: PGF for 
number of point 𝑆 𝑟 of 

PLP-MCP in ball.

Corollary 8.1: 
Mean load on the 

typical BS.

Primary results

Intermediate results

Main results

Fig. 1: Illustration showing relationship between the derived results.

key intermediate result, we derive a new expression for
the distribution of the tagged chord in the Voronoi cell
of the tagged BS.

4) Using the derived results, we present the rate coverage
of the typical user while considering the partial loading
of BSs. We perform a comparative analysis of load
distribution and rate coverage of communication systems
with platooned movement with non-platooned movement
to understand the impact of vehicular platooning.

Fig. 1 summarizes the main results of the paper along with
their mutual relationship.

II. MODELING OF PLATOONED VEHICLES USING
PLP-MCP

In vehicular networks, the randomness caused by the orien-
tation of roads and the positions of vehicles can be modeled
using the doubly stochastic process PLP-PPP. However, this
model may not be suitable for modeling the randomness
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introduced by factors such as the location of platoons, the
position of vehicles within a platoon, and the size of platoons.
Therefore, to model such a scenario, a triply stochastic process
is necessary, which can effectively integrate these sources of
randomness while preserving the mathematical tractability of
the PP. In this paper, we introduce a novel point process PLP-
MCP to model platooned vehicles on a network on roads. The
system model is as follows.

A. Road network

The network of roads can be modeled by a PLP ΦL =
{ℓ1, ℓ2, · · · } with density λL where ℓi denotes the ith road
[11]. The line ℓ = L(ρ, ϕ) can also be represented as an
element (ρ, ϕ) of the set C∗ ≡ R × [0, π). We term the
element (ρ, ϕ) as L-atom and C∗ as L-space. Further, The
point (ρ, ϕ) in C∗ is corresponding to (ρ cosϕ, ρ sinϕ) ∈ R2,
where ρ denotes the distance of the point (ρ cosϕ, ρ sinϕ)
from origin and ϕ represents the angle between the positive x-
axis of R2 and the line joining the point with origin o ≡ (0, 0).
Therefore the ith line ℓi ∈ ΦL can be denoted by the L-
atom ai = (ρℓi , ϕℓi) in the L-space C∗. The L-atoms ai’s
form a PPP in C∗ with density λL. This means that the mean
number of lines hitting a convex body K with perimeter L(K)
is λLL(K) [11]. The validity of modeling roads via a PLP
was studied and verified in the past work, e.g. [24]–[26]. The
analysis of this paper can be extended to include scenarios with
different types of roads including the Manhattan line process.

B. Platooned vehicles

For each road ℓi, vehicular platoons can be seen as the
clusters of vehicles in a finite spread. Cluster processes (with
MCP being a special case) offer a natural way of modeling pla-
tooned traffic, wherein vehicles in the same platoon are close
by (hence clustered). The MCP was a natural cluster process
to choose because of its bounded support and tractability. We
model the vehicles on the road ℓi by an independent MCP Ψi

with parent PP density λP, mean number of points per cluster
m and cluster radius a. In particular, the platoon centers are
distributed as the parent PP Ψ

(p)

i . For a platoon centered at
xj,i ∈ Ψ

(p)

i , the constituent vehicles are distributed as the
PPP Ωxj,i

in a−neighborhood of it. Let µm denote the per-
road vehicular density i.e. µm = mλP.

The locations of all vehicles form a new PP, which we term
as PLP-MCP. It can be formally defined as follows.

Definition 1 (PLP-MCP). Let ΦL = {ℓ1, ℓ2, · · · } be a PLP
with density λL with the ith line ℓi = L(ρℓi , ϕℓi). Let {Ψi}
be a set of independent and identically distributed 1D MCP
in R with parameter (m,λP, a) such that

Ψi =
⋃

xj,i∈Ψ
(p)
i

Ωxj,i
,

where Ψ
(p)

i is a PPP with density λP. Ψ(p)

i is called the parent
point process of Ψi as it consists of parent points xj,i ∈ R.
Further, Ωxj,i

denotes the daughter PP of xj,i and is a PPP
with density λd = m/(2a) in B1(xj,i, a). We assign ith MCP
Ψi to the ith line ℓi and transform the points of Ψi to be on
the line to get

Ψℓi =
⋃

xj,i∈Ψ
(p)
i

{zk,j,i = fℓi(zk,j,i) : zk,j,i ∈ Ωxj,i
}

=
⋃

xj,i∈Ψ
(p)
i

Ωxj,i
, (1)

where Ωxj,i
represents Ωxj,i

transformed on line ℓi and fℓ()
denotes the transformation of L(0, 0) to the line ℓ = L(ρℓ, ϕℓ)
given as

fℓ(x) = (ρℓ cosϕℓ + x sinϕℓ, ρℓ sinϕℓ − x cosϕℓ) . (2)

This means that if x is a scalar quantity denoting the location
of a point in the line ℓ relative to its base, its 2D coordinates
(i.e. absolute location in R2) are given as x = fℓ(x). Now, a
PLP-MCP Ψm is defined as the union of all Ψℓi ’s i.e.

Ψm =
⋃

ℓi∈ΦL

Ψℓi , (3)

and includes all the points located on every line of ΦL.

Hence, the platoon vehicular traffic can be modeled using
points of the proposed PLP-MCP Ψm. The absolute location of
k-th vehicles in jth platoon of ith road is given as zk,j,i. As the
suggested PP allows for varying the platoon parameter, and has
the advantage of mathematical tractability, we expect that the
main results presented in the paper will show similar trends
when compared to slightly different variants of this model
(capturing different distributions of the roads and vehicles on
them).

C. Properties of PLP-MCP

We now describe some key properties of the PLP-MCP that
are helpful in the analysis of vehicular communication.

1) Stationarity: The PLP-MCP Ψm is a stationary PP. The
stationarity of Ψm follows from the stationarity of PLP
and 1D MCP.

2) Density: The density λm of Ψm is mλPλL π. The density
of Ψm can be derived by counting the mean number of
points in a unit area using the Campbell’s theorem [27].

3) It is a Cox process driven by a PLP.
For a stationary PP, we can take the typical point at the

origin [27]. Further, if the typical point is located at the origin,
the tagged line ℓo passes through the origin.

III. CHARACTERIZATION OF PLP-MCP

In this section, we will present several key properties of the
proposed PLP-MCP.

A. Extended Slivnyak Theorem

Since PLP-MCP is derived from PLP (which is a PPP
in L-space), Slivnyak theorem can be extended to describe
the conditional distribution of PLP-MCP. Even though this
extension is not overly challenging, we decided to present it
separately upfront so that we can easily refer to it throughout
the paper rather than repeating this same argument everywhere.

Lemma 1. (Extended Slivnyak Theorem.) Conditioned on the
typical point zo, the distribution of the rest of the PLP-MCP
Ψm is equal to the distribution of an independent copy of Ψm

superposed with an independent copy of the MCP Ψℓo on the
tagged line ℓo and an independent copy of the cluster PPP
Ωxo

(which is Ωxo
transformed on ℓo). Here, xo denotes the
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parent point of the typical point and distributed uniformly in
the 1D a−neighborhood of zo = f−1

ℓo
(zo). In other words,

Ψ!
m|(zo ∈ Ψm)

(d)
= Ψm ∪Ψℓo ∪ Ωxo . (4)

Proof. Conditioning on the occurrence of the typical point
fixes the tagged parent point xo and the tagged line ℓo.
Since PLP ΦL is a PPP in L-space, conditioned on ℓo, ΦL

is equivalent to the union of ℓo and an independent copy of
ΦL (which generates an independent copy of Ψm). Now, Ψ(p)

ℓo
is also a PPP containing xo, hence, conditioned on xo, it is
equivalent to the union of xo and an independent copy of Ψ(p)

ℓo
which generates Ψℓo . Again, Ωxo

is a PPP, hence, conditioned
on zo, Ωxo

is equivalent to the union of x0 and an independent
copy of Ωxo

.

B. Laplace functional

Since the distribution of a PP is completely characterized
by its Laplace functional (LF), we now derive the LF for
PLP-MCP. We will first require the PGFL of the MCP Ψℓi

transformed on the line ℓi which is given in Lemma 2. Let
there be a function v : R2 → [0, 1].

Lemma 2. The PGFL of Ψℓ on road ℓ is given as

GΨℓ,ℓ (v) = exp

(
−λP

∫
R
(1−Hx,ℓ(v)) dx

)
, (5)

where Hx,ℓ(v) = exp
(
−λd

∫
B1(o,a)

(1− (v ◦ fℓ) (x+ y)) dy
)
.

Under reduced Palm (i.e. conditioned on occurrence of a
point at zo excluding zo), PGFL of Ψℓ on road ℓ is

G!zo

Ψℓ,ℓ
(v) =

GΨℓ,ℓ (v)

2a

∫
B1(f

−1
ℓ (zo),a)

H−xo,ℓ(v)dxo. (6)

Here, xo denotes the untransformed center of the parent
cluster of zo.

The following remark explains how the LF and its Palm
version enable us to examine the platooned vehicular networks
from two different perspectives.

Remark 1. In the uplink analysis of a wireless network, when
the received power attenuates in accordance with the distance-
based path loss model, the LF may be utilized to determine the
LF of total interference from the vehicles seen by any point in
R2 plane.

Moreover, if we want to capture the interference seen by any
vehicle from all the other vehicles in V2V communication,
the Palm version of the LF may be used to get the LF of
interference. We now derive the LF for PLP-MCP which is
given in the following two Theorems. See Appendix A for the
proofs.
Theorem 1. The LF for Ψm is given as

LΨm
(v) = E

[
e−

∑
z∈Ψm

v(z)
]

= exp

(
−λL

∫
R

∫ π

0

(
1− GΨL(ρ,ϕ),L(ρ,ϕ)

(
e−v

))
dρ dϕ

)
, (7)

where GΨℓ,ℓ (v) is given in (5).

Theorem 2. The LF for Ψm under the reduced Palm distri-
bution is

L!o
Ψm

(v) = E!o
[
e−

∑
z∈Ψm

v(z)
]

= LΨm
(v)

∫ π

0

π−1G!o
ΨL(0,ϕ),L(0,ϕ)(e

−v) dϕ. (8)

C. Distribution of number of points (vehicles) of Ψm in a set
The PP Ψm can also be characterized by the distribution

of the number of its points in a set which is crucial in
computing the load distribution in vehicular communication
network which will be discussed in the next section. To derive
this distribution, we will first require the PGF of the number
Nℓ of points of the MCP Ψℓ on the line ℓ which is given in
Lemma 3.
Lemma 3. Let Ψℓ denotes a 1D MCP on line ℓ = L (ρ, ϕ).
The PGF for the number Nℓ of points of Ψℓ falling inside
B2(o, r) is

PNℓ
(s, r) = exp

(
g(s,

√
r2 − ρ2)

)
(9)

where, g(s, t) = 2λP

[
|t− a| eλdβ(t)(s−1) − (t+ a)

+(eλd(s−1)β(t) − 1)/(λd(s− 1))
]
. (10)

Note that ρ = 0 gives the PGF of Nℓ when the line passes
through the origin with an angle of ϕ. The k-th derivative of
g(s, t) with respect to s is given as

g(k)(s, t)=2λP

(λdβ(t))
k|t− a|e(s−1)λdβ(t) +

1

λd

 k∑
j=0(

k

j

)
j!(−1)j

(s− 1)j+1
(λdβ(t))

k−je(s−1)λdβ(t)− k!(−1)k

(s− 1)k+1

)]
.

(11)

To derive the mean and variance, we need lims→1 g
(k)(s, t).

Let lims→1 g
(k)(s, t) = κ(t, k) which is given as

lim
s→1

g(k)(s, t)= κ(t, k) = 2λP (λdβ(t))
k

[
|t− a|+ β(t)

(k + 1)

]
.

(12)

We now present the distribution of the number S(r) of points
of Ψm in a 2D ball of radius r i.e. S(r) = Ψm(B2(o, r)) in
terms of its PGF and PMF along with its mean and variance.
The PGF of S(r) may be used to calculate the distribution of
contact distance, which is defined as the distance between the
closest Ψm point and any randomly chosen point in R2. For
the approximated load distribution study, we will directly use
the formulas stated in Theorem 3 and Corollary 3.1. The mean
and variance of S(r) calculated in Corollary 3.2 may be used
directly to calculate the approximated mean load and variance
of the load distribution on the BS. Note that the PMF, the
mean and the variance of a discrete RV X can be computed
from its PGF using the following relation

pX(k) = P[X = k] =
1

k!

[
P(k)
X (s, r)

]
s=0

∀k (13)

E[X] =
[
P(1)
X (s)

]
s=1

, (14)

Var[X] =
[
P(2)
X (s)

]
s=1

+ E [X]− (E [X])
2
. (15)
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Therefore, we get the following result. See Appendix B for
the proofs of the following results.
Theorem 3. The PGF of the number S(r) of points of Ψm

inside B2(o, r) is

PS(r)(s) = exp

(
−2πλL

(
r −

∫ r

0

exp(g(s, t))t√
r2 − t2

dt

))
, (16)

where g(s, t) is given in (10).

Corollary 3.1. The PMF of S(r) is given by

P[S(r) = n] =
1

n!
PS(r)(0) b

(
f (1)
m (r), · · · , f (n)

m (r)
)
, (17)

with f
(k)
m (r) =

2πλL

∫ r

0

exp (g(0, t))√
r2 − t2

b
(
g(1)(0, t), · · · , g(k)(0, t)

)
tdt, (18)

and g(k)(0, t) can be evaluated from (11).

Corollary 3.2. The mean and variance of S(r) is

E [S(r)] =
[
P(1)
S(r)(s)

]
s=1

= λmπr
2, (19)

Var(S(r))

=



λmπr
2 + 2πλL

[
32
3 (aλPλd)

2
r3

+8λPλ
2
d

(
2
3ar

3 − 1
16πr

4
)]

, a > r

λmπr
2 +

(
8λPλda

3

)2
πλLr

3

+4πλLλPλ
2
d

(
r3

(
8a
3 − πr

4

)
+
√
r2−a2

(
−a3

3 − 13ar2

6

)
+
(
2a2r2 + r4

2

)
× sin−1

(√
r2−a2

r

))
. a < r,

(20)

D. Distribution of number of points of Ψm in a set under Palm
distribution

We also present the distribution of number of points inside
a set under Palm distribution (conditioned on occurrence of a
point at the origin i.e. o ∈ Ψm). Similar to previous section,
we can compute the PMF and the mean of Ŝ(r) from its PGF.
The PGF of Ŝ(r) can be used directly to derive the CDF of
NND which is defined as the distance of the nearest point from
any typical point of Ψm. Further, it is crucial to comprehend
the distribution of vehicles around the typical vehicle in a
platooned vehicular network where the vehicles continuously
broadcast information about their speed and location. Using
Theorem 4, we can easily derive performance metrics such
as the mean number of vehicles falling within the typical
vehicle’s broadcast radius. See Appendix C for the proof of
the following results.

Theorem 4. The PGF of the number Ŝ(r) of points of Ψm \
{o} conditioned on o ∈ Ψm, falling inside B2(o, r) is

PŜ(r)(s) = PS(r)(s)
eg(s,r)

a

∫ a

0

e(s−1)λdA1(r,a,x)dx, (21)

where PS(r)(s) is presented in Theorem 3, g(s, ·) is given in
(10) and A1(a, b, x) is [28]

A1(a, b, x) =

{
2min(a, b), if 0 ≤ x ≤ |a− b|
a+ b− x, if |a−b|<x≤a+b. (22)

Corollary 4.1. The PMF of Ŝ(r) is

P
[
Ŝ(r) = n

]
=

1

n!

∑
k1+k2+k3=n

[(
n

k1, k2, k3

)∏
1≤t≤3

f
(kt)
t (0, r)

]
, (23)

where f
(k)
1 (0, r) = P(k)

S(r)(0)

= PS(r)(0) b
(
f (1)
m (0, r), · · · , f (k)

m (0, r)
)

(24)

f
(k)
2 (0, r) = eg(0,r) b

(
g(1)(0, r)...g(k)(0, r)

)
(25)

f
(k)
3 (0, r) =

∫ a

0

(λdA1(r, a, x))
k
a−1e−λdA1(r,a,x)dx, (26)

with g(·) is given in (10) and f
(k)
m (0, r) in (18).

Corollary 4.2. The expected value of Ŝ(r) is E
[
Ŝ(r)

]
=

λmπr
2 + 2λPmr + λd

(
2r − r2/(2a)

)
.

In this section, we have presented several key properties
of PLP-MCP. These properties are PGFL, density, LF under
the reduced palm distribution, the PGF (and PMF) for the
number of points falling inside ball B2(o, r) both under normal
and Palm distributions. In the next section, we introduce the
vehicular communication network providing connectivity to
the platooned vehicles and present the distribution for the
length of the typical and the tagged chord of the typical
cell, and 0-cell respectively of a homogeneous 2D PPP. These
distributions are essential to derive the load distribution on the
typical and tagged BS.

IV. VEHICULAR COMMUNICATION NETWORK

The complete vehicular communication network consists of
vehicular traffic (as defined in Section II) overlaid with the
BSs forming a cellular network (See Fig. 2). The role of the
cellular BS network is to provide cellular V2I connectivity
to vehicular users. We model the locations of BSs as a 2D
PPP Φb ≡

{
yi, : yi ∈ R2, ∀i ∈ N

}
with density λb [27]. Each

BS transmits with the same power. The user association is
based on the maximum average received power from the BSs
and each user is connected to its nearest BS. Furthermore,
we assume that the BS without any associated user will stay
silent and not create interference. The active BSs point process
Φ

′

b can be approximated as PPP with the active BS density
ponλb where pon is the active probability [29]. Now, in order
to study the average property seen by the points of a stationary
PP, a general methodology is to hold a point of the PP at the
origin and average the property seen from this point over all
realizations. Such a point is termed the typical point of the
PP. It can be intuitively seen as a point selected from the PP
without any selection bias. It captures the ensemble average
in the same way as one would get a spatial average in a large
realization of a PP by observing the quantity of interest at
each point and then averaging over all the points. Here, we
consider the typical vehicle defined as the typical point in Ψm.
We consider the typical vehicle to be at the origin, owing to
the stationarity of Ψm. Now, the signal to interference ratio
(SIR) at the typical vehicle is given by
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(a) (b)
Fig. 2: (a) An illustration showing the complete vehicular network with
platooned vehicles. The vehicles (shown as blue circles) on the road (shown
as dotted line). Each BS (presented by points) has an associated serving area
(bounded by the lines). As shown in the figure, the cluster movement of
vehicles may assist them in connecting with the nearby vehicles for data, and
content sharing. (b) A vehicular communication network with independently
moving vehicles is shown for comparison.

SIR =
h0R

−α∑
y∈Φ

′
b
hy∥y∥−α

, (27)

where R denotes the distance of the nearest BS, α is
path loss exponent, h0 denotes the fading gain of the typical
receiver link and hy denotes the fading gains of the rest of
the links. Further, we have assumed that the fading coefficients
h(·) are exponentially distributed with unit mean.

Due to the considered association policy, the serv-
ing region of each BS is its Voronoi cell. For a
BS located at y, its Voronoi cell Vy is Vy ={
x ∈ R2 : y = argminyi∈Φb

∥x− yi∥
}

. Let Xb denote the
union of Voronoi edges. The users connected to any BS con-
stitute the load on that BS. The typical BS is the typical point
of the BS PP Φb. The Voronoi cell associated with the typical
BS is known as the typical Voronoi cell denoted as Vt. Its
area |Vt| is empirically distributed as a generalized gamma RV
[30]. The PDF of the generalized Gamma distribution with
parameters a1, b1, c1 is denoted by

g̃X(x; a1, b1, c1) = a1b
c1/a1

1 (Γ (c1/a1))
−1

xc1−1e−b1x
a1
. (28)

For the typical Voronoi cell, the parameters are a1 =
1.07950, b1 = 3.03226 and c1 = 3.31122 [31]. Hence, its
PDF is

g|Vt|(vt) = λbg̃X (λbvt; a1, b1, c1) . (29)

Similarly, the perimeter of Z = L(Vt) has the empirical
distribution [30]

pZ(z)=

√
λb

4
g̃X

(√
λbz

4
; 2.33609, 2.97006, 7.58806

)
. (30)

A line ℓo of ΦL that passes through the typical point of
PP (Ψm) is termed as the tagged line. Here, ℓo = L(0, ϕ)
with ρ = 0 and ϕ is a uniform RV between 0 to π. Now,
let us consider the typical vehicle at the origin. The BS
which is associated with the typical vehicle is termed the
tagged BS. The Voronoi cell of the tagged BS is termed
as the zero cell or the tagged cell [32] given as Vo =

(a)

(b) 0 500 1000 1500 2000 2500

0

2

4

6

8

10
-4

Fig. 3: (a) An illustration showing approach to find the PDF of the tagged
chord length Q1Q2. Here, Pi denotes the BS. (b) The PDF obtained using
the proposed method, along with the length bias result from [15].{
x ∈ R2 : argmin

yi∈Φb

∥x− yi∥ = argmin
yi∈Φb

∥yi∥
}

. Owing to Ext-

Slivnyak theorem (Lemma 1), the load on the tagged BS con-
sists of users of an independent copy of PLP-MCP falling in
the tagged cell, plus a set of additional users falling on a part of
the tagged line inside the tagged cell. As mentioned earlier, the
tagged line or the road is the line on which the typical vehicle
lies. The part of the tagged line falling inside the tagged cell is
termed the tagged chord Co i.e. Co = ℓo∩Vo. The tagged chord
can also be defined as the chord of the tagged cell passing
through the origin. Since the tagged chord’s length Co plays
an important role in the BS’s load distribution, we derive its
distribution f

′

Co
(co) next. While this specific result exists in

[15] within the context of the load distribution in a PLP-PPP,
we derive it using a new approach that yields an easy-to-use
expression that does not involve higher-order derivatives. We
emphasize here that this chord length distribution is not our
main contribution but just an important intermediate result that
will facilitate further analysis.

A. Distribution of tagged chord length in the Voronoi tessel-
lation

We adapt an approach presented in [33] to derive the joint
PDF of the length of the residual chords in both sides of the
origin. Using the joint PDF, we derive the PDF of the length
of the tagged chord. We draw two lines from the origin in two
opposite directions, (can be taken as positive and negative x-
axis without loss of generality). Further, the points Q1 and
Q2 where these two lines intersect Xb, are the two endpoints
of tagged chord (as shown in Fig. 3). Let l1 and l2 be the
distance of Q1 and Q2 from the origin. We first require the
following result.

Lemma 4. The radii r1 and r2 of two circles
B2((0, l1), r1) and B2((0,−l2), r2) such that they



7

intersect at a point y = y∠θ (see Fig. 3) are given
as r1 = r(l1) =

√
l21 + y2 − 2l1y cos θ, r2 = r(l2) =√

l22 + y2 + 2l2y cos θ with angles α1(l1) and α2(l2) as
cosα1(l1) = l1−y cos θ

r(l1)
, cosα2(l2) = l2+y cos θ

r(l2)
. The area of

the union of these two 2D disks is given as

V(l1 + l2, r(l1), r(l2)) = v1(l1) + v2(l2), (31)

where vi(li) = r2(li) (π − αi(li) + 0.5 sin 2α1(l1)). Its par-
tial derivative are

∂V
∂li

= v
(1)
i (li) = 2(li + y cos θ)(π − αi(li)) + 2y sin θ.

Using the above result, we now derive the distribution of the
tagged chord length which is given in the following theorem.
See Appendix D for the proof.

Theorem 5. The joint PDF of the length of the two chord
segments in the Voronoi tessellation is

fL1,L2
(l1, l2) =

8λb
3

∫ π

0

∫ ∞

0

e−λbV(l1+l2,r(l1),r(l2))v
(1)
1 (l1)v

(1)
2 (l2)ydydθ,

(32)

where V(l1+ l2, r(l1), r(l2)) is given in (31). The PDF of the
length of the tagged chord in the Voronoi tessellation is

fCo
(co) =

∫ co

0

fL1,L2
(co, co − l2)dl2. (33)

For completeness, note that we derived an expression for
the tagged chord length in [15] using a length-biased sampling
argument that provided the following expression,

fCo(co) =
cofC(co)

E[C]
=

4
√
λb

π
cofC(co)

=
4
√
λb

π
co

π

2
λb

3
2

∫ π

0

∫ ∞

0

[
λb

(
V(1)(c, y, r(c))

)2

−V(2)(c, y, r(c))
]
e−λbV(c,y,r(c))ydydθ,

which involved higher-order partial derivatives. The expression
given above in Theorem 5 is slightly simpler in that sense.
Further, since this specific proof idea involving the joint
distribution of two chords segments has not appeared in the
literature, we decided to include it here. Another advantage
of the proposed approach is that it can also be extended to
the case where the BS locations are distributed as a non-
homogeneous PPP.

Equipped with the expressions of PDF of the tagged chord
length and the number of vehicles in a set, we now analyze
the vehicular communication networks in terms of the load
per BS.

V. LOAD DISTRIBUTION IN A PLATOONED VEHICULAR
COMMUNICATION NETWORK

In this section, we present the per-BS load distribution. The
per-BS load in a communication system refers to the number
of vehicles served by the BS which is defined as the number of
vehicles falling inside its Voronoi region. The distribution of
per-BS load is an important performance metric as it critically
affects the distribution of SINR, per-user available resources

and finally the rate in the following way. If a particular BS does
not have any user associated with it, it may stay silent which
reduces interference to the users of other BSs, and improves
their SINR distribution. Conversely, as the time-frequency
resources are split across the users associated with the serving
BS, the load on the tagged BS reduces the resources available
to the typical user. As the rate distribution depends on the
per-user resources and the SINR distribution, the load on
both the typical and the tagged BS plays a key role in the
system’s performance. Hence, we will focus on distribution of
the following important metrics:

1) Sm = Ψm(Vt): Load on the typical BS.
2) Mm = Ψm(V0): Load on the tagged BS.

The load distribution may help us decide the size of pla-
toon and/or the number of vehicles in a platoon to improve
performance. It may also provide us insights into the load
distribution across the BSs that may help in optimizing the
resource allocation, bandwidth sharing, and BS association.
This is especially important in the case of PTS that may
exhibit larger disparity in the per-BS load, especially for
smaller values of a. Since vehicles in a platoon drive in close
proximity of each other, it is highly likely that vehicles in
a given platoon are served by the same BS. This may lead
to situations in which one BS serves multiple platoons and
hence a large number of vehicles, whereas another BS does
not serve any platoon and hence no vehicle. Therefore, it is
crucial to understand the nature of load distribution on BSs. As
mentioned already, we will assume that the BS remains silent
(and hence does not create interference) if its load is zero. We
will look at an approximation (S̃m and M̃m respectively) of
these variable. To approximate the load in a Voronoi cell of
area |Vt|, we will replace the cell with a 2D ball of equal area,
i.e. the radius of this ball is

√
|Vt|/π and instead compute the

load in this ball. The PDF of the radius corresponding to the
typical and tagged cell is respectively given as

fRt(rt) = 2πrtg|Vt|(πr
2
t ). (34)

fo
Ro

(ro) = 2πrog|Vo|(πr
2
o) = 2πroλbπr

2
o g|Vt|(πr

2
o). (35)

A. Load distribution on the typical BS
Theorem 6. The PGF of the load Sm on typical Voronoi Vt

is (see Appendix E for proof)

PSm
(s) =

√
λb

4

∫ ∞

z=0

exp
(
−λLz ×(

1−
∫ ∞

0

exp (g (s, .5c))f
′

C(c)dc

))
g|Vt|

(√
λb

4
z

)
dz, (36)

where g(s, ·) is given in (10). The PMF of Sm is

P [Sm = k] =
1

k!

[
P(k)
Sm

(0)
]

=

√
λb

4

1

k!

∫ ∞

z=0

P(k)
Sm|Z=z(0)g|Vt|

(√
λb

4
z

)
dz,

=

√
λb

4

1

k!

∫ ∞

0

PSm|Z=z(0)

× b
(
g(1)m (0), . . . , g(k)m (0)

)
g|Vt|

(√
λb/4z

)
dz,
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where PSm|Z=z(0)

= exp

(
−λLz

(
1−

∫ ∞

0

exp (g (0, c/2))f
′

C(c)dc

))
g(k)m (0) = λLz

∫ ∞

0

exp (g (0, c/2))

× b
(
g(1) (0, c/2) , . . . , g(k) (0, c/2)

)
f

′

C(c)dc,

where g(s, ·) is given in (10). Further, g(k)(s, ·) provided in
(11) can be evaluated at s = 0.

Note that the mean load is equal to vehicular density times
the mean size of the typical cell. Since the mean area of typical
cell is 1/λb, we get

E [Sm] = λm/λb.

We can approximate Sm by S̃m = Ψm(B2(o, Rt)). Note that
conditioned on Rt, PS̃m(Rt)|Rt=rt

(s) = PS(rt)(s). Decondi-
tioning using the distribution of fRt

(rt), we get the following
result.

Theorem 7. The approximate PGF and PMF of the typical
BS load are

PS̃m
(s) =

∫ ∞

rt=0

PS(rt)(s) fRt
(rt)drt

= 2π

∫ ∞

rt=0

PS(rt)(s) rtg|Vt|(πr
2
t )drt. (37)

P[S̃m = k] = 2π

∫ ∞

rt=0

P [S(rt) = k] rtg|Vt|(πr
2
t )drt, (38)

where PS(·)(·), and P [S(rt) = k] are given in Theorem 3 and
(17), respectively. The PDF g|Vt|(·) is given in (29).

Corollary 7.1. The mean of S̃m is E[S̃m] = λmπE
[
r2t
]
=

λm/λb, where E
[
r2t
]
= 1

πλb
. Similarly, to find the variance

of S̃m, we need the second derivative of PGF conditioned on
s = 1 which is given as

lim
s→1

P(2)

S̃m
(s) =

∫ ∞

r=0

(
(F 1

m(r))
2 + F 2

m(r)
)
fRt

(r)dr

F 1
m(r) = 2πλL

∫ r

t=0

κ(t, 1)tdt√
r2 − t2

,

F 2
m(r) = 2πλL

∫ r

t=0

(
κ2(t, 1) + κ(t, 2)

)
tdt

√
r2 − t2

,

where κ(t, k) is given in (12). Using the second derivative,
mean and variance equation present in (15), we get the
variance of S̃m.

Corollary 7.2. The active probability (or the on probability)
of the typical BS is given as

pon = 1− P [Sm = 0]

= 1− 2π

∫ ∞

rt=0

P [S(rt) = 0] rtg|Vt|(πr
2
t )drt

with

P [S(rt) = 0] = exp

(
−2πλL

(
r −

∫ r

0

exp (g (0, t)) t√
r2 − t2

dt

))
.

The off probability poff = 1− pon.

B. Load distribution on the tagged BS
In this section, we derive the approximate additional load

M̃m on the tagged cell. Unlike Theorem 6, we will directly
present the approximate load for the tagged cell. Here, the
load M̃m is equal to the sum of the number of vehicles on
the tagged chord (of length Co) and the number of vehicles
falling inside a ball of radius Ro. From Lemma 1,

M̃m
(d)
= Ψ′

m(B2(o, Ro)) + Ψ′
ℓo(Co) + Ω′

xo
(Co)

where ·′ denotes the independent unconditional instances of
the processes. Note that the total load counting the typical
vehicle on tagged cell is M̃m + 1.

Theorem 8. The PGF P
M̃m

(s) for the M̃m excluding the
typical vehicle is

P
M̃m

(s) =

∫ ∞

co=0

∫ ∞

ro=0

P
M̃m|Ro,Co

(s, ro, co)×

fo
Ro

(ro)f
′

Co
(co)drodco, (39)

where,
P
M̃m|Ro,Co

(s, ro, co) = PNℓo

(
s,

co
2

)
PS(ro)(s)∫ a

xo=−a

∫ co
2

xc=− co
2

e(s−1)λdA1( co
2 ,a,|xc−xo|)

co2a
dxcdxo,

where, PNℓo

(
s, co

2

)
and PS(·)(s) is provided in (9) and (16).

Proof. See Appendix F.

Lemma 5. The PMF of M̃m is given as P
[
M̃m = n

]
=

1

n!

∫ ∞

co=0

∫ ∞

ro=0

∑
k1+k2+k3=n

( n

k1, k2, k3

) ∏
1≤t≤3

h
(kt)
t (0)


fo
Ro

(ro)f
′

Co
(co)drodco

]
,

where h
(k)
1 (0, ro) = P(k)

S (0, ro) is obtained in (24) and

h
(k)
2 (0, co/2)=eg(0,co/2)b

(
g(1) (0, co/2) , . . . , g

(k) (0, co/2)
)
,

h
(k)
3 (0, co/2)=

1

aco

∫ a

xo=0

∫ co
2

xc=− co
2

(λdA1 (co/2, a, |xc − xo|))k

e(s−1)λdA1(co/2,a,|xc−xo|)dxcdxo,

and g(0, ·) is given in (10), g(k)(0, ·) is given in (11).

As the conditional PGF P
M̃m|Ro,Co

(s, ro, co) is a product

of three PGFs, the mean and variance of M̃m can be written
as summation of the mean and variance of the three individual
RVs.

Corollary 8.1. The mean of M̃m conditioned on Co is

E
[
M̃m|Co = co

]
= 1.28λm/λb +mλPco

+
1

2aco

∫ a

xo=−a

∫ co
2

xc=− co
2

λdA1

(co
2
, a, |xc − xo|

)
dxcdxo.

We can further decondition using the PDF of Co as given in
(33). Similar to the variance of S̃m, we first find the second
derivative of the PGF of M̃m and then using the variance
equation present in (15), we find the variance of M̃m.
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C. Load Distribution for the vehicular traffic under N-PTS

Since this paper also provides a comparative analysis of PTS
with N-PTS, we also provide the load distribution for a ve-
hicular communication network with N-PTS for completeness.
We use the PGFs for load on the typical and the tagged cell
presented in [34] to derive the mean and the variance of load.
Here, the vehicles on each road form an independent 1D PPP
with density λ. Hence, the overall vehicular traffic Ψp formed
by taking the union of all the vehicles on all roads is a PLP-
PPP, as discussed earlier already. Its density is λi = πλLλ.
Let µp denote the per-road vehicular density i.e. µp = λ.
The mean approximate load on the typical and tagged BS in
vehicular traffic under N-PTS is given as follows.

Corollary 8.2. The mean and variance of the approximate
load S̃p on the typical BS is

E
[
S̃p

]
= λiπE

[
r2t
]
=

λi

λb
,

Var
[
S̃p

]
=(λiπ)

2 E
[
r4t
]
+

16

3
πλLλ

2E
[
r3t
]
+

λi

λb
−
(
λi

λb

)2

,

whereλi = πλLλ, E
[
r2t
]
=

1

πλb
,

and E
[
r3t
]
=

∫ ∞

0

r3t fRt
(rt)drt =

Γ ((c1 + 1)/a1)

b
3

2a1
1 (πλb)3/2Γ (c1/a1)

.

Corollary 8.3. The mean of the approximate load M̃p on the
tagged BS is given as

E
[
M̃p

]
= E

[
E
[
M̃p|Co = co

]]
= λiπE

[
r2o
]
+ λE [Co] .

Similarly, we can find the variance of M̃p.

VI. RATE COVERAGE IN A PLATOONED VEHICULAR
COMMUNICATION NETWORK

The rate coverage is defined as the probability that the rate
achievable by the typical user is greater than a certain threshold
i.e. rc(τ) = P(R > τ). Assuming that the available bandwidth
B is equally shared by all user associated with the tagged BS,
the achievable rate of typical receiver is given by

R = B/(1 + M̃m) log2 (1 + SIR) ,

where M̃(·) is the load on the tagged BS. Also note that the SIR
depends on the active BS density which is further dependent
on the load distribution on the typical cell. Hence, it is evident
that the rate coverage depends on the distributions of the user
load on both the typical and the tagged BS. Hence, the rate
coverage is

rc(τ) = P
(
B/(1 + M̃m) log2 (1 + SIR) > τ

)
=

∞∑
k=0

P(M̃m = k)P
(
SIR > 2

(k+1)τ
B − 1

)
. (40)

Here, P (SIR > τ) is the coverage probability of the typical
user of a cellular network. For the channel and SIR model
considered in (27), the coverage is given as [27], [29],

P(SIR > τ)

= 2πλb

∫ ∞

0

r exp

(
−λbπr

2−pon

∫ ∞

r

2πλbτydy

τ + ( yr )
α

)
dr

=

∫ ∞

0

exp

(
−v−pon

∫ ∞

v

du

1 + (uv )
α
2 τ−1

)
dv

=

∫ ∞

0

exp

(
−v

(
1 + pon

∫ ∞

1

dt

1 + tα/2τ−1

))
dv

=
1

1 + pon
∫∞
1

dt
1+tα/2τ−1

,

where the first two steps are due to the substitutions πλby
2 =

u and u = vt. Using (40), we get the following result.

Theorem 9. The rate coverage of the typical vehicular user in
a vehicular communication network with platooned vehicles is

rc(τ)=
∞∑
k=0

P
[
M̃m = k

](
1 + pon

∫ ∞

1

dt

1 + tα/2γ−1
k

)−1

, (41)

where γk =
(
2

(k+1)τ
B − 1

)
and pon is given in Corollary 7.2.

Note that the rate coverage for a typical user in N-PTS can
also be computed using (41) by replacing M̃m and S̃m with
M̃p and S̃p, respectively.

VII. NUMERICAL RESULTS

In this section, we first present numerical results using the
derived expressions. We will first verify the accuracy of the
PMFs of S̃m and M̃m by comparing them with the exact
simulation results. We also discuss the impact of various
parameters on the load distribution. After that, we will present
a comparative analysis between PTS and N-PTS in terms of
the energy efficiency, load imbalance and their impact on the
rate coverage. Since the locations of vehicles are independent
of each other because of the underlying PPP model, it is
possible that the two proximate vehicles might come arbitrarily
close to each other. Hence it is desirable to have a guard
distance between the vehicles to improve traffic safety. One
way to implement this restriction in the model is to remove
those vehicles in PLP-MCP that are closer than guard distance
from their neighboring vehicles. Unfortunately, the resulting
process will become intractable but can be approximated
using a PLP-MCP process with reduced vehicular density to
compensate for the removed vehicles. Another way is to spread
the closely located vehicles over multiple lanes. In that case,
PLP-MCP models the projection of all vehicles onto a single
line. Since lanes are close to each other, it does not affect
the load or rate distribution. In all our numerical results, we
use the following parameters unless stated otherwise. The road
density λL = 5/π km−1, λP = 1 platoons/km a = 250 m.
For fair comparison we have taken λ in N-PTS such that the
total vehicular density λi in N-PTS is equal to λm.

A. Validation

To test the accuracy of the derived distributions of the
approximate load S̃m and M̃m, we evaluate the Bhattacharyya
coefficient (BC) [35] between the PMFs of the approximate
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Fig. 4: The BC for (a) the typical DBC(Sm, S̃m) and (b) the tagged load
DBC(Mm, M̃m) for various values of m and λb. Here, λL = 5/π km−1

, λP = 1 platoons/km a = 250 m. A value close to 1 implies that the
approximation is accurate.

load and the respective exact PMFs obtained using simulations.
Note that for any two PMFs p(ω) and q(ω), the BC is
defined as DBC(p, q) =

∑√
p(x)q(x). The BC DBC(p, q),

lies between 0 to 1, and a value close to 1 indicates good
approximation. Fig. 4 presents the BC for the load on the typ-
ical

(
DBC(Sm, S̃m)

)
and the tagged cell

(
DBC(Mm, M̃m)

)
.

From this result, we notice that the approximation is remark-
ably close to the true result. The approximation improves
further with decrease in platoon size m and increase in the
BS density.

B. Mean and variance of the load on the typical cell

Fig. 5(a) shows the mean and variance for the approximate
load on the typical cell with respect to per-road vehicular
density µm = mλP for different values of the platoon radius a.
From Corollary 7.1, the mean load on the typical cell depends
linearly on density λm = µmλLπ but does not depend on
a. This is also evident from the numerical results. It can be
observed further that the variance grows quadratically with
µm which is consistent with (20). For small a, vehicles are
concentrated close to the platoon centers because of which all
the vehicles of a given platoon will very likely contribute to
the load of a single BS. However, as we increase a, vehicles
are more spread out, which decreases the variance of load on
the typical BS. We also present the respective metrics for N-
PTS. Here, we keep µp = µm such that the mean load will
be the same for N-PTS and PTS. Further, the variance for
the PTS case is higher than N-PTS, and it becomes equal to
N-PTS for very large a. This convergence is due to the fact
that the MCP(λP,m, a) converges to PPP (mλP), as a → ∞
[36].

C. Mean and variance of the load on the tagged cell

Fig. 5(b) presents the mean and variance for the approximate
load on the tagged cell with respect to per-road vehicular
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Fig. 5: The mean and variance of the load on (a) typical (S̃m, S̃p) and (b)
tagged (M̃m, M̃p) cell with varying per-road vehicular density µm = µp =
µ. Here, for N-PTS, λ is varied as λ = µ per km, while for PTS, m is
varied as m = µ/λP, while keeping λP = 1 platoon/km. Here, λb = 5
BS/km2, λL = 5 /km, and a is in meters. As a increases, the variance of
S̃m and M̃m converges to variance of S̃p and M̃p, respectively.

density µm = mλP for different values of the platoon radius
a. Here, mean and variance of M̃m are higher than those of
M̃p. In PTS, the occurrence of the typical point adds points
of the associated platoon in the load. Therefore, the mean and
the variance of the load is higher in PTS compared to N-PTS.
Further, as a → ∞, the two scenarios become equivalent and
the effect of the additional factor vanishes.

D. Impact of platooning on the energy efficiency of the typical
cell

To further understand the typical BS load, we will evaluate
two additional metrics savg and pu. Here, savg is defined as
the mean load of the typical BS when it is active, i.e.

savg = E
[
S̃·|S̃· > 0

]
= E [S·] /pon.

The second metric pu denotes the probability that the load on
the typical active BS is less than the savg i.e.

pu = P
[
S̃· ≤ savg|S̃· > 0

]
.

Note that pu represents the fraction of time the system is
in a very safe operational regime. Fig 6(a) presents the off
probability poff of the typical BS (which also represents the
fraction of BSs staying silent) in PTS and N-PTS scenario
with respect to per-road vehicular density µ = µm = µp. We
further observe that the off probability values poff obtained
using the analytical expression and simulation are close. The
gap occurs due to approximation of the typical cell by a disk
with an equal area.
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Fig. 6: (a) The variation of poff with respect to per-road vehicular density
µm = µp = µ for PTS and N-PTS. Here, for N-PTS λ is varied as λ = µ,
and for PTS, m is varied as m = µ/λP while keeping λP = 1 platoon/km.
The fraction of BSs being switched off is higher in PTS as compared to N-
PTS, indicating a better energy efficiency. (b) Variation of pu with savg.
Here, µ = 15 vehicles/km. N-PTS has better underload probability. Here,
a = 250 m in PTS and λb is in per km2.

We observe that poff is higher in PTS as compared to the
N-PTS indicating that the energy consumption in PTS is less
than N-PTS. Fig. 6(b) shows the variation of pu with active
load savg by varying λb from 2− 30 BS/km2 while keeping
the rest of the parameters fixed. As expected, the load savg
on active BSs decreases with λb. Further, savg is high in PTS
due to a lower fraction of BSs staying active as compared to
N-PTS. Due to relatively higher load in PTS, safe-operating
probability pu gets lower in PTS.

Fig. 7(a)-(c) presents variation of pu with respect to BS
density, active BS density and off probability for N-PTS and
PTS. Here, pu decreases with the densification of BSs which
is intuitive. Small increments found in pu at some densities are
due to the discrete nature of summation in the definition of pu.
Elaborating further, first note that the S̃ can take only integer
values. When savg decreases, the number of individual PMF
terms may not decrease if the change in savg is fractional.
However due to a decrease in the mean, the individual PMF
terms increase, resulting in a net increase in pu. In Fig. 7(c),
we compare pu between PTS and N-PTS by equating the
off probability. We can see that for the same level of off
probability, pu is almost the same in both the cases. In Fig.
7(c), we compare pu between PTS and N-PTS by equating the
active BS density. Since the active probability is significantly
lower in PTS, we can observe that at the same value of
λfl = λb, pu in N-PTS is lower.

E. Load balance in the tagged cell

Note that the mean load is not the only criteria for compar-
ing two systems. For instance, it may not be optimal from
the energy utilization perspective to activate a BS to just
serve a single vehicle. In order to understand the effect of
load distribution, we define the following metrics: single user
probability p1, the average load on tagged cell mavg, and
tagged safe-operating probability ps, as follows

p1 = P
[
M̃· = 1

]
, mavg = E

[
M̃·

]
, ps = P[M̃· ≤ mavg].

Note that, a high p1 represents that many BSs in the system
are severely underloaded. From Fig 8(a), we can observe that
p1 in lower in PTS. This indicates that it is more likely in PTS
that a BS is not wasting its power to just serve a single user.
Fig 8(b) shows the variation of mean load in the tagged cell
which decreases with λb. Unlike the typical cell, the mean
load on the tagged cell differs in PTS and N-PTS. Fig. 8(c)
shows ps with respect to mavg using the data obtained from
Fig. 8(b). We can observe that ps is higher in N-PTS for the
same value of mavg. Together with Fig. 5(b), which shows
that the variance of the load on the tagged cell is higher in
PTS, we can see that the spread of load distribution is higher
in PTS. This means that the tagged BS may have to support
a higher number of users in PTS compared to N-PTS.
F. Rate coverage analysis

From the results thus far, we have observed that while the
PTS has a higher off probability, it also has a higher per-BS
load. Hence, if the system bandwidth is enough to support
the load, the PTS is expected to perform better than N-PTS
in terms of rate coverage. Fig. 9(a) shows the variation of
rate coverage with respect to BS density for PTS and N-
PTS with equal vehicular density (λm = λi). As expected,
the rate coverage increases with the BS density. However,
at any BS density, the rate coverage in PTS and N-PTS is
almost equal, which may appear counter-intuitive. However,
it must be noted that the active probability is significantly
lower in PTS, which means that PTS can achieve almost the
same rate coverage but at a much lower active BS density.
This effect can be observed in Fig. 9(b) which shows the
variation of the rate coverage with respect to the active BS
density for PTS and N-PTS. Here, we can observe that PTS
can achieve significantly higher coverage than N-PTS. Further,
the densification of BSs in PTS does not impact the power
budget, but still results in an improvement in the rate coverage.
To quantitatively characterize the proximity of vehicles in
platooned and non-platooned vehicles, we can utilize neighbor
distance (NND) of MCP and PPP given in [36] and [27]. Note
that the NND of a process is defined as the distance of the
closest point from the typical point of the process. Comparing
the two, we can see that platooning reduces the NND and
hence increases the proximity of vehicles which is useful for
two important reasons. First, it improves the road capacity by
accommodating more vehicles in the same spread of a road.
Second, a close proximity makes V2V communication among
them more efficient and reliable. For example, in vehicular
applications, like sending safety messages, the SINR/SNR
distributions are crucial as the goal is to quickly establish a
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Fig. 7: Variation of pu with respect to BS density, active BS density and off probability for N-PTS and PTS. Here, for N-PTS λ is varied as λ = µ, and for
PTS, m is varied as m = µ/λP while keeping λP = 1 platoon/km and µ = 15 vehicles/km.
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Fig. 8: (a) The variation of p1 with respect to per-road vehicular density µ = µm = µp, (b) mean load mavg on the tagged cell with λb, and (c) safe-operating
probability ps with respect to mavg. In (a), λL = 2km−1, for (b), and (c) the parameters are λL = 5/π km−1, λ = mλP = 15 vehicles/km.
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Fig. 9: Impact of the BS density and active BS density on the rate coverage and the active probability for two different values of threshold τ in PTS and
N-PTS. Here, α = 3.5, B = 20 MHz, and the per-road vehicular density λ = mλP = 15 vehicles/km. Hence, the mean typical load (i.e. B/(mean-load
on typical cell)) varies between .5 MHz/users to 8 MHz/users. (c) shows the rate coverage for similar vehicular density on the road. We obverse that the
rate coverage decreases with increase in the impact of clustering. For PTS λP = 1 platoon/km, a = 250 m, µm = µp = µ, B = 20 MHz and λb = 5
BS/km2.

connection to transmit a short message. Due to smaller inter-
vehicle distance, it can be shown that PTS is more efficient
than an NPTS. To examine the effect of clustering, we plot
the rate coverage as a function of vehicular density µ while
maintaining the platoon density and radius fixed as presented
in Fig. 9(c). Now, for low values of µ, the clustering is
minimal. Hence, the rate coverage is almost the same in
PTS and N-PTS. For high values of µ, platooning causes
more vehicles to be associated with the tagged BS, thereby
increasing load and decreasing the rate coverage. We have
shown in Fig. 9(a) that the number of active BSs in PTS is less
as compared to N-PTS, which decreases interference. Hence,
with less number of active BSs, we may serve each vehicle in
a platoon with a rate coverage almost similar to N-PTS.

VIII. CONCLUSION AND FUTURE SCOPE

In this paper, we have developed a comprehensive approach
to the modeling and analysis of platooned vehicular traffic.
The approach relies on a novel point process that captures
vehicular platooning by explicitly capturing three layers of
randomness: (i) irregular layout of the roads by modeling them
as a PLP, (ii) randomness in the placement of the platoons on
each road by modeling them as a PPP, and (iii) randomness

in the location of each vehicle in a platoon by modeling them
collectively as an MCP. After deriving several foundational
results for this triply stochastic process, which we called
PLP-MCP, we focused explicitly on the V2I communication
network for platooned traffic consisting of BSs that serve
the platooned traffic. For this setting, we present several key
results related to the load distributions on the typical and the
tagged BSs. Using these results, we derived the per-user rate
coverage of this network and provided a detailed comparative
analysis of the PTS and N-PTS cases to understand the effect
of vehicular platooning on the performance of the resulting
vehicular network. While the rate coverage of these two cases
appear similar at the first glance, we defined and studied
specific distributional properties of the underlying setup to
expose subtle performance trends. Our results collectively
demonstrated that the rate coverage of PTS is actually higher
when we account for the active BS density. Since this paper
presents the very first comprehensive analytical approach to
the study of platooned vehicular traffic, there are naturally
many extensions possible. Most importantly, it will be interest-
ing to consider an additional tier of roadside units, which are
an important component of the emerging vehicular networks.
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This will require an almost new analysis starting from the
distributional results for the load on the typical and the tagged
cells. It will also be useful to extend this framework to consider
realistic scheduling algorithms.

APPENDIX

A. Proof of LF of Ψm: Unconditioned and under Palm
The LF of Ψm is

LΨm(v) = EΨm

[
e

(
−

∑
zk,j,i∈Ψm

v(zk,j,i)

)]
(a)
= EΦL

[∏
ℓi∈ΦL

EΨℓi
,ℓi

[∏
zk,j∈Ψℓi

,ℓi
e−v(zk,j)

]]
(b)
= EΦL

[∏
ℓi∈ΦL

GΨL(ρℓi
,ϕℓi

),L(ρℓi ,ϕℓi
)(e

−v)

]
,

where (a) is conditioned on ΦL, and (b) is obtained by
applying the PGFL of 1D MCP located on a line ℓi. Finally,
applying the PGFL of the PLP, we get the LF of Ψm. For LF
under Palm, we assume that the typical point of Ψm is located
at the origin without loss of generality. The LF under Palm
consists of the product of two terms - the LF of an independent
and “unconditioned copy” of Ψm, and the LF of the MCP on
the tagged line ℓo = L (0, ϕ). Hence,

L!o
Ψm

(v) = E!o

[
exp

(
−
∑

zk,j,i∈Ψm\{o}
v(zk,j,i)

)]
= EΨm

[
exp

(
−
∑

zk,j,i∈Ψm

v(zk,j,i)

)]
Eo!
Ψℓ,ℓ [exp (−v(zk,j,0))]

(a)
= LΨm(v)Eo!

Ψℓ,ℓ

[∏
zk,j,0∈Ψℓ\{o}

exp (−v(zk,j,0))

]
(b)
= LΨm(v)EΦ

[
Eo!
Ψℓ,ℓ|ϕ

[∏
zk,j,0∈Ψℓ\{o}

exp (−v(zk,j,0))

]]
(c)
= LΨm(v)π−1

∫ π

0

G!o
Ψℓ,ℓ(exp(−v))dϕ.

Here, (a) is obtained by applying the PGFL for Ψm, (b) is due
to conditioning on the orientation of tagged line L (0, ϕ), and
(c) is obtained by applying the PGFL of 1D MCP followed
by deconditioning over the RV ϕ, and G!o

Ψℓ,ℓ
(·) is given in (6).

B. Distribution of S(r)

Proof of Theorem 3: The number of vehicles S(r) inside
ball B2(o, r) is

S(r) =
∑

ℓi∈ΦL,ρℓi
∈[−r,r]

Nℓi .

Recall that Nℓi = Ψℓi (B2(o, r)) denotes the number of
vehicles on ℓi = L (ρℓi , ϕℓi) falling inside B2(o, r). The
condition indicates that the distance of the line from the origin
(ρℓi ) needs to be inside the range [−r, r] for that line to have at
least one point inside B2(o, r) [32]. Now, RVs {Nℓ1 , Nℓ2 , . . .}
are independent and identically distributed (iid), hence PGF of
S(r) is

PS(r)(s) = E
[∏

ℓi∈ΦL,ρℓi
∈[−r,r]

PNℓi
(s, r)

]
= E

[∏
ℓi∈ΦL,ρℓi

∈[−r,r]
exp

(
g
(
s,
√

r2 − ρ2ℓi

))]
,

where the PGF of Nℓi is given by (9). Since ρℓi , ϕℓi are points
of a PPP in C∗, using PGFL of PPP [27], we get the desired
result.

To get probability P[S(r) = k], we require the k-th
derivative of PGF. If we define

fm(s, r) = 2πλL

∫ r

0

(
exp(g(s,

√
r2 − ρ2))− 1

)
dρ,

PGF PS(r)(s) takes the form of exp(fm(s, r)). Hence, we
use the Faà di Bruno’s formula [37] to get (17). To get k-th
derivative f

(k)
m (r) of fm(s, r) at s = 0, we need to apply the

Faà di Bruno’s formula one more time to get (18).
Proof of Corollary 3.2: The first derivative of PS(r)(s) is

P(1)

S(r)(s)= 2πλLPS(r)(s)
d

ds

∫ r

0

exp
(
g(s,

√
r2 − ρ2)

)
dρ. (42)

Replacing s = 1 in (42) and solving further, we get the mean
of S(r). Similarly, the second derivative P(2)

S(r)(s) of PS(r)(s)
is

= PS(r)(s)

(
d

ds

∫ r

0

2πλL

(
exp

(
g(s,

√
r2 − ρ2)

))
dρ

)2

+ PS(r)(s)
d2

ds2

∫ r

0

2πλL

(
exp

(
g(s,

√
r2 − ρ2)

))
dρ

= (E [S(r)])2 + 2πλL

∫ r

0

[(
g(1)(1,

√
r2 − ρ2)

)2

+g(2)(1,
√

r2 − ρ2)
]
dρ.

Using the second derivative of PGF of S(r), we derive the
variance Var(S(r)) of S(r) as

Var(S(r)) = P(2)

S(r)(s) + E [S(r)]− (E [S(r)])2

= 2πλL

∫ r

0

[(
g(1)(1,

√
r2− ρ2)

)2

+g(2)(1,
√

r2− ρ2)

]
dρ+ λmπr2.

(43)

From (11), g(1)(1,
√
r2 − ρ2) and g(2)(1,

√
r2 − ρ2) is

g(1)(1,
√

r2 − ρ2) = 2λP

[
λdβ(

√
r2 − ρ2)× |

√
r2 − ρ2 − a|

+
λd

2

(
β(

√
r2 − ρ2)

)2
]
, (44)

g(2)(1,
√

r2 − ρ2) = 2λP

[(
λdβ(

√
r2 − ρ2)

)2

|
√

r2 − ρ2 − a|

+
λ2
d

3

(
β(

√
r2 − ρ2)

)3
]
. (45)

We can simplify the integrals presented in (43) based on the
value of a as follows.

Case I: If a > r, β(
√

r2 − ρ2) = 2
√
r2 − ρ2. Hence,∫ r

0

(
g(1)(1,

√
r2−ρ2)

)2

dρ=
32

3
(aλPλd)

2r3
∫ r

0

g(2)(1,
√

r2−ρ2)dρ

= 8λPλ
2
d

(
2

3
ar3 − 1

16
πr4

)
.

Substituting the above values in (43), we get the variance of
S(r) for a > r.

Case II: If a < r, for 0 < ρ <
√
r2 − a2, β(

√
r2 − ρ2) =

2a, and when
√
r2 − a2 < ρ < r, β(

√
r2 − ρ2) =

2
√

r2 − ρ2. Hence,∫ r

0

(
g(1)(1,

√
r2 − ρ2)

)2

dρ =
8a2r3

3
,∫ r

0

g(2)(1,
√

r2 − ρ2)dρ =

∫ √
r2−a2

0

(
g(2)(1,

√
r2 − ρ2)

)
dρ

+

∫ r

√
r2−a2

(
g(2)(1,

√
r2 − ρ2)

)
dρ.
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On substituting β(
√
r2 − a2)’s value and further manipula-

tions, we get the desired result.

C. Distribution of Ŝ(r)

Proof of Theorem 4: From Theorem 1, we get

Ŝ(r) = Ψ!
m(B2(o, r))|o ∈ Ψm

(d)
= Ψm(B2(o, r)) + Ψℓo(B2(o, r)) + Ωxo

(B2(o, r)), (46)

where the three RVs in RHS are independent. Hence, the
PGF of Ŝ(r) is the product of 3 PGFs: the PGF of S(r)
f1(s) = PS(r)(s), the PGF of Ψℓo(B2(o, r)) which is
f2(s) = exp (g(s, r)) and the PGF of Ωxo

(B2(o, r)) which
is f3(s) = a−1

∫ a

0
e(s−1)λdA1(r,a,x)dx i.e.

PŜ(r)(s) = f1(s, r)f2(s, r)f3(s, r). (47)

Proof of Corollary 4.1: Applying generalized Leibniz rule
[38] to compute the k-th derivative of (47) and then from (13),
we get (23). The derivative of f

(k)
2 (s, r) can be computed

using Faà di Bruno’s formula. Further,

f3(s, r) =

∫ a

0

a−1e(s−1)λdA1(r,a,x)dx, and

f
(k)
3 (s, r) =

∫ a

0

(λdA1(r, a, x))
k a−1e(s−1)λdA1(r,a,x)dx.

D. Proof of Theorem 5: Distribution of the tagged chord
length

The joint CCDF of the lengths L1 = oQ1 and L2 = oQ2
can be written as

FL1,L2(l1, l2) = P(L1 > l1, L2 > l2) = P[A],

where event A = 1 (Q1,Q2 and o belong to the same cell).
If we let Ai be the event that Q1, Q2, and the origin o, all
three locations lie in a single cell Vyi

of point Pi located at
yi, then

1 (A) =
∑

yi∈Φb

1 (Ai) .

Now,
Ai = 1

(
B2(o, yi),B2(Q1, |PiQ1|) and B2(Q2, |PiQ2|) have no

other point except Pi

)
= 1 (B2(Q1, r(l1)) and B2(Q2, r(l2)) have no point except Pi) .

Hence,

FL1,L2(l1, l2) = P [A] = E
[∑

yi∈Φb

1 (Ai)

]
(a)
= λb

∫
R2

P (Φb has no point in B2(Q1, r(l1)) ∪ B2(Q2, r(l2))) dy

(b)
= λb

∫ 2π

0

∫ ∞

0

exp (−λbV(l1 + l2, r(l1), r(l2))) ydydθ,

where (a) is due to the Campbell-Mecke theorem [27] and
(b) is due to conversion in polar coordinates. Now, we can
compute the joint PDF fL1,L2

(l1, l2) from the joint CDF as

f
′′
L1,L2

(l1, l2) =
∂2FL1,L2(l1, l2)

∂l1∂l2
,

which gives (32). Now, Since Co = L1 + L2, the PDF of Co

can be derived by integrating the joint PDF over the line.

E. Proof of Theorem 6: Distribution of load on the typical cell
The number of points falling in the typical cell is Sm =∑
ℓi∈Φ Ψℓi (Vt). Let N be the number of chords intersecting

with the typical cell Vt. Here, N is a Poisson RV with mean
λLZ, where Z is also a RV denoting the perimeter of the
typical cell. Since the number of points on each chord is iid,
the PGF of Sm conditioned on N is

PSm|N=n(s) = EΨm

[
sSm |N = n

]
=

[∫ ∞

0

eg(s,c/2)f
′
C(c)dc

]n

.

Deconditioning over n, we get

PSm|Z=z(s) = e
−λLz

(
1−

∫∞
0 exp (g(s, c2 ))f

′
C(c)dc

)
. (48)

Now, deconditioning over the distribution of Z (using the PDF
of Z given in (30)), we obtain the PGF. From (13), we can
compute P[Sm = k] from the k-th derivative of PGF PSm

(s).
The k-th derivative of PSm|Z(s) is

P(k)

Sm|Z(s) =
dk

dsk
(exp(gm(s))) , (49)

where gm(s) =
(
−λLz

(
1−

∫∞
0

exp
(
g
(
s, c

2

))
f

′

C(c)dc
))

.
As it is in the form of f(h(s)), we use the
Faà di Bruno’s formula [37] to get P(k)

Sm|Z(s) =

exp (gm(s)) b
(
g
(1)
m (s), . . . , g

(k)
m (s)

)
. To find the k-th

derivative of gm(s), we apply the Faà di Bruno’s formula
again and substitute s = 0 to get the value of g

(k)
m (s). Now,

deconditioning over Z gives the desired result.

F. Proof of Theorem 8: Approximate tagged load distribution

Note that M̃m = Ψ′
m(B2(o, Ro)) + Ψ′

ℓo
(Co) + Ω′

xo
(Co),

where Co = ℓo ∩ Vo = is the tagged chord and xo is the
parent point associated with the typical point. Further note that
if the tagged chord has length co, its center xco is distributed
uniformly in [−co/2, co/2]. We also note that xo is uniformly
distributed in [−a, a] [36]. We already know the distribution
of the first term. From (16), the PGF for Ψm (B2(o, Ro)) is

PΨm(B2(o,Ro))(s) = PS(Ro)(s). (50)

For the second term, note that Co = ℓo ∩ Vo =
B1(xco , co/2). Due to stationarity of Ψ′

ℓo
relative to the line

ℓo, Ψ′
ℓo
(B1(xco , co/2)) = Ψ′

ℓo
(B1(o, co/2)). The PGF of RV

Ψlo (B1 (o, co/2)) is

PΨlo (B1(o,.5co))(s) = PNℓo
(s, co/2) , (51)

where PNℓo
(s, co/2) is provided in (9). For the third term, we

note that Ω′
xo

can have points only in B1(xo, a/2). Hence,
Ω′

xo
(Co) (i.e. the number of points on the tagged chord due

to the tagged platoon) varies depending on xo and xco . It can
be shown that conditioned on xco and xo, Ω′

xo
is a PPP in the

region B1(xo, a) ∩ B1(xco , co/2) with density λd. The mean
number of points in this PPP is λdA1 (co/2, a, |xco − xo|).
Hence, its PGF is exp ((s− 1)λdA1(co/2, a, |xco − xo|)).
Using the law of total probability, deconditioning over xco ,
and xo, the PGF of the third term is given as, PΩ′

xo
(Co)(s|Co =

co) =∫ a

xo=−a

∫ co/2

xc=−co/2

e(s−1)λdA1(co/2,a,|xc−xo|)

2aco
dxcdxo. (52)

Conditioned on Ro and Co, the three terms are independent.
Therefore, the PGF of M̃m is the product of the PGFs of these
terms, namely (50), (51) and (52). Deconditioning over Ro and
Co, we get the PGF of M̃m.
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