A Probabilistic Reformulation Technique for
Discrete RIS Optimization in Wireless Systems

Anish Pradhan, Graduate Student Member, IEEE, and Harpreet S. Dhillon, Fellow, IEEE

Abstract—The use of reconfigurable intelligent surfaces (RIS)
can improve wireless communication by modifying the wire-
less link to create virtual line-of-sight links, bypass blockages,
suppress interference, and enhance localization. However, en-
abling the RIS to modify the wireless channel requires careful
optimization of the RIS phase-shifts. Although discrete RIS
is more practical given hardware limitations, continuous RIS
phase-shift optimization has attracted significantly more attention
than discrete RIS optimization, which suffers from issues like
quantization error and scalability. To overcome these issues, we
develop a comprehensive probabilistic technique to transform
discrete optimization problems into optimization problems of
continuous domain probability parameters by interpreting the
discrete optimization variable as a categorical random vector
and computing expectations with respect to those parameters.
We rigorously establish that for the unconstrained case, the
optimal points of the reformulation and the original problem
coincide. For the constrained case, we prove that the trans-
formed problem is a relaxation of the original problem. We
apply the proposed technique to two canonical discrete RIS
applications: SINR maximization and overhead-aware rate and
energy efficiency (EE) maximization. The reformulation enables
both stochastic and analytical interpretations of the original
problems, as we demonstrate in our RIS applications. The former
interpretation yields a stochastic sampling technique, whereas
the latter yields an analytical gradient descent (GD) approach
that employs closed-form approximations for the expectation. We
have explicitly derived the worst-case computational complexities
of the proposed algorithms. The numerical results demonstrate
that the proposed technique is applicable to a variety of discrete
RIS optimization problems and outperforms other general ap-
proaches, such as closest point projection (CPP) and semidefinite
relaxation (SDR) methods.

Index Terms—Reconfigurable intelligent surface, discrete op-
timization, categorical random variables.

I. INTRODUCTION

An RIS is a large array composed of low-cost reflecting
elements, each of which can impart controllable phase-shifts
to the incident signal, thereby modifying the propagation
channel. However, because of hardware constraints, the phase-
shift induced by each reflective element is normally limited to
a set of discrete values. When configured appropriately, RISs
can create multiple virtual LoS links [2], improve channel
rank [3], transform a fast-fading channel to a slow-fading one
[4], suppress co-channel interference [5], enhance localization
performance [6]-[8], etc. However, optimizing the RIS phase-
shifts is the first step to reaping these benefits. Despite the
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fact that RIS optimization has been extensively investigated in
the literature, the majority of its attention has been directed
toward the scenario of continuous phase-shifts as this scenario
allows easier insights and upper-bounds on the performance
of a wireless network. As a consequence, the discrete RIS op-
timization techniques often appear as an afterthought and the
existing techniques that deal with discrete RIS optimizations
suffer from various issues, such as scalability and arbitrarily
bad performance due to quantization error.

Motivated by the scarcity of scalable and reliable dis-
crete RIS optimization techniques [9], stochastic interpretation
of semidefinite relaxation technique [10], and recent efforts
to approach binary optimization problems [11] with a lens
of probability, we develop a comprehensive technique to
transform optimization problems of discrete variables into
optimization problems of continuous domain probability pa-
rameters. We also rigorously prove that in terms of optimal
points, the transformed problem is mathematically equivalent
in the unconstrained case and a relaxation with respect to
the original problem in the constrained case. Moreover, we
gain further insights into our reformulation by investigating
the simple two-way partitioning problem and report several
moment and gradient results for quadratic forms in binary op-
timization problems. Ultimately, we apply this reformulation
in two different canonical discrete RIS optimization problems
demonstrating both the stochastic and analytical approaches.
The numerical results confirm that the expectation-based al-
gorithms outperform the conventional approaches. Note that,
even though the proposed reformulation is inspired by discrete
RISs, the scope of the reformulation is more general and could
potentially find applications in other domains as well.

A. Related Work and Motivation

Although the study and design of discrete RIS phase-shifts
have sparked some interest recently, a large portion of the
literature relaxes the discrete constraint to a continuous one,
solves the approximate problem, and then quantizes the solu-
tion to the closest discrete point. This two-fold approximation
is shown to provide arbitrarily bad solutions in the worst-
case scenario [9]. Yet, continuous RIS optimization remains a
big part of the discrete RIS optimization literature. In light
of this, some of the most used optimization strategies for
continuous RIS phase-shits are combinations of a) SDR, b)
minorize-maximization (MM) algorithm, c) penalty methods,
d) manifold optimization, e) alternating direction method of
multipliers (ADMM), and f) treating phase-shifts as optimiza-
tion variables instead of the complex gains they provide.

In [2], [12], the authors jointly optimized the active beam-
forming vector and RIS-based passive beamforming vector in



multiple-antenna systems employing SDR. The authors of [13]
utilized RISs to enhance the physical layer security of a mul-
tiuser multiple-input-single-output (MU-MISO) wireless sys-
tem. In particular, they used a combination of a penalty-based
approach, SDR, and successive convex approximation (SCA)
to address the unit modulus constraint of RIS phase-shifts.
Energy-efficient RIS designs for a MU-MISO wireless system
are developed in [14]. In this paper, the authors developed
two algorithms to maximize energy efficiency of the network.
One of them uses the gradient descent method whereas the
other uses the MM algorithm while considering unit modulus
constraint and a realistic power consumption model. Similarly,
in [15], the authors leveraged the MM algorithm and complex
circle manifold (CCM) method to propose two algorithms
that maximize the weighted sum-rate of a multicell MIMO
network. In an RIS-assisted backscatter system, the RIS is
optimized with a combination of SDR and ADMM technique
in [16]. In [17], the weighted sum-rate is maximized in an
RIS-aided cell-free network through ADMM. The authors of
[18] tackled the resource allocation problem in an RIS-assisted
wireless network. They developed an algorithm that uses the
SCA and penalty method to jointly optimize phase-shifts and
on-off status of RISs to maximize energy efficiency under
a total power constraint. The authors of [19] enhanced the
physical layer security by optimizing RIS phase-shifts with
fractional programming and manifold optimization techniques.
Using a similar technique, the authors of [20] developed an
algorithm combining both SDR and manifold optimization
techniques to optimize an RIS-aided edge caching system.
Recently, the authors of this paper treated the vector of phase-
shifts itself as an optimization variable instead of the vector of
the complex gains they provide and optimized the RIS phase-
shifts with the GD method to maximize the SINR [21] similar
to the methodology used in [22].

In the realm of discrete RIS optimization literature, the
optimization tools often used are exhaustive search, CPP from
a continuous relaxation, and branch-and-bound (BB) methods.
In [23], the authors investigated a practical discrete RIS-
aided wideband orthogonal frequency division multiplexing
(OFDM) system and optimized the discrete RIS element-wise
exhaustive search in an alternating optimization framework.
The authors of [24], [25] optimized the RIS phase-shifts
in a MISO wireless network using BB methods that scale
exponentially with the number of RIS elements. An RIS-aided
MIMO system with low-resolution digital-to-analog converters
(DAC:s) is jointly optimized with particle swarm optimization
(PSO) algorithm in [26]. This algorithm is shown to work with
both continuous and discrete RIS phase-shifts. For maximizing
the achievable rate in a MIMO system, the authors in [27]
relaxed the discrete RIS constraints to continuous ones and
used a projected gradient method (PGM) to solve the problem.
Similar continuous relaxation and CPP method was conducted
in [28]. Specifically, the authors in [28] investigated the spec-
tral efficiency and energy efficiency trade-off in a MU-MIMO
setup. In that paper, the discrete RIS phase-shift constraint
was relaxed to a continuous one and then solved by MM
and accelerated gradient method. The mentioned optimization
problems are either not scalable or suffer from arbitrarily bad

performance due to the mentioned two-fold approximation.
However, there are some recent efforts [9], [29], [30] that
provide scalable optimal discrete RIS beamforming optimiza-
tion for single-input-single-output systems as the resulting
objective function has a low-rank matrix with d < 2 based
on the fixed-rank result of [31]. These strategies suffer from
being too specialized for single-antenna scenarios and do not
work in multi-antenna scenarios that are more practical.

Going beyond the RIS literature, there have been some in-
teresting approaches to binary quadratic optimization problems
[10], [11], [32]-[34]. The authors of [10] show that SDR
formulation is actually a stochastic version of the original
non-convex quadratic program. Even when the non-convexity
originates from binary variables, the stochastic interpretation
still works. The authors of [32], [33] approach binary quadratic
programs with a probabilistic data association (PDA) algo-
rithm that treats the optimization variable as a binary random
variable and iteratively updates the probabilities with Gaussian
noise approximation. This is shown to achieve near-optimal
results. Recently, the authors of [11] provide a stochastic
gradient descent framework for binary optimization problems
by similarly treating the optimization variable as a random
variable and then taking expectation on it. Inspired by these
probabilistic optimization techniques along with the lack of
novel generalized discrete RIS optimization techniques, we
develop a comprehensive probabilistic technique to transform
discrete optimization problems that opens up new avenues
to approach these problems in the continuous probability
parameter domain. This technique is then used in discrete RIS
cases to showcase its general nature and effectiveness.

B. Contributions

We approach the general discrete optimization problems
with a different perspective of probability. This results in a
comprehensive probabilistic reformulation technique with a
wide applicability, including to the discrete RIS problems,
which was our original inspiration behind this work. Our key
contributions in this paper are listed next.

1) A comprehensive probabilistic technique for general
discrete optimization problems: We develop a comprehensive
probabilistic technique to reformulate general discrete opti-
mization problems (that are not limited to binary programs)
into continuous domain problems. In particular, we re-imagine
the entries of the optimization variable as independently but
not identically distributed (i.n.i.d) categorical random variables
and replace the objective function and constraints, if any, with
their expectations. We rigorously establish the equivalence be-
tween a general unconstrained problem with a unique optimal
solution and the reformulated problem in terms of the optimal
point. Additionally, when the original problem is constrained,
we prove that the primal solution of the transformed problem is
bounded between the dual and primal solution of the original
problem. We also show that when strong duality holds, the
transformed problem has the same optimal objective value
as the original problem. Utilizing this technique, random
sampling from a non-degenerate probability parameter solution
can provide a better solution with the number of samples
similar to Gaussian randomization in SDR.



2) Derivation of various analytical moments and their gra-
dients associated with the quadratic form and binary random
vectors: As discrete RIS problems often deal with binary
phase-shifts, using our reformulation technique naturally gives
rise to expectations associated with the quadratic form and the
binary random vectors. For example, both the denominator and
numerator of the SINR or secrecy rate often contain quadratic
forms [22]. The quadratic form is a canonical construct that
appears in the wireless literature frequently. For a gradient-
based optimization approach, the gradients of these expecta-
tions will also be required. For this reason, we also derive the
first and second moments of the said quadratic forms along
with their gradients. These key intermediate results are later
used in one of our algorithms demonstrating their importance.

3) GD algorithm for the SINR maximization: As the first
canonical case study, we apply this technique to an SINR
maximization problem and propose a stochastic GD and an
analytical GD approach to solve the reformulated problem.
We derive and use the first and second-order Taylor approx-
imations of the expectation of the SINR in the analytical
GD algorithm while an estimator of the gradient is used
in the stochastic approach. The expectation-based algorithms
are shown to perform better than the conventional practical
approaches evaluated.

4) Stochastic sampling approach for ternary random vec-
tors for EE and rate maximization: We also apply this tech-
nique to our second case study, an overhead-aware rate and EE
maximization problem which leads to expectations associated
with a ternary random vector. As deriving the analytical
expectation was challenging for this specific case study, we
develop a stochastic sampling approach for such a ternary
random vector where the gradient is estimated with Monte
Carlo (MC) samples, thereby demonstrating the versatility of
the proposed approach. We demonstrate that this framework
is well-suited for non-smooth objective forms and performs
well in both interference-free and interference-rich scenarios.
Moreover, the developed stochastic approach is demonstrated
to work with different objective functions like rate and EE
without the need for changing the algorithm.

5) Computational complexity discussion: We have also
derived worst-case computational complexities with big-O
notation for all the proposed algorithms.

Notations: The distribution of a standard complex normal
random variable is denoted by CA/(0, 1). The matrix, scalar,
and vector entities are denoted by X, x, and x, respectively.
All the vectors are column vectors unless defined explicitly.
For a vector x, diag (x) denotes a diagonal matrix with the
entries of x as its diagonal elements. For a matrix X, XH XT,
Re (X), Tr (X), diag(X), and X > 0 denote its conjugate
transpose, transpose, real part, trace, diagonal elements as a
vector, and positive semidefiniteness, respectively. Addition-
ally, X, = X — diag(X). The expectation operation is
denoted by E[], var(-) denotes a total variance operator which
evaluates the trace of the variance-covariance matrix of the
random vector argument, and the operator ® denotes element-
wise multiplication between two matrices. The LO and L2
norm are denoted by || - ||o and ||- |2, respectively. The identity
matrix and all-one column vector of dimension N are denoted

by In and 1y, respectively.

II. PROBABILISTIC REFORMULATION FOR DISCRETE
OPTIMIZATION

A. The Case of Unconstrained Discrete Optimization Problem

We begin with a general unconstrained discrete optimization
problem where we make no assumptions about the objective
function’s convexity. The optimization variable is a vector of
length n and each of the entries can take a discrete value
among the set C = {cy,c¢a,...,¢p}-

min

o O M

Our main goal is to reformulate the problem in a form that
does not deal with the discrete domain and shares the optimal
solution with the original problem. To that end, we propose to
re-imagine entries of x as i.n.i.d categorical random variables
with the following joint probability density function (PDF):

b
P(x|P) HZ(S —¢j)pigpig € 0,1, pij =1, (2)
i=1j5=1 j=1
where the (7,7)-th entry of the matrix P is denoted by p; ;,
the i-th entry of x is denoted by x;, and J(-) is the Dirac
delta function. We then reformulate the original problem into
a stochastic optimization problem:
min §(P) = Exvpxp) [f(%)]
pij €F e | | )
where F is the set of possible p; ;’s defined by (2). The
connection between (1) and (3) and their solution sets are
summarised in the following lemma.

Lemma 1. The solution sets of the problems (1) and (3) are
denoted by Q. and Qp and,

Qx C Op.

Moreover if the unique optimal solution of (1) is Xqpt, then
Pt = Degen(xopt) is the unique optimal solution of (3),
where the P = Degen(x) operation implies that the (i,j)-th
entry of P is defined as p; j = 1 only when x; = c; while all
the other entries are zero.

Proof: We observe that ), has b" elements and each
of them corresponds to one of the possible b combinations
that x can take. In (3), the same objective values can be
attained by the corresponding P = Degen(x) which is the
parameter matrix of n degenerate categorical distributions. Let
us illustrate this with an example. Suppose we have a vector

= [~1,1,—1]. Each element of x can adopt either ¢; = 1
or cg = —1. By referring to the definition of the Degen(-)
function given in Lemma 1, the resulting parameter matrix
for this vector is:

0 1
10

0 1
The interpretation of this matrix is as follows: the first element
of x is —1 with a probability of 1, the second element is 1
with a probability of 1, and so forth. The parameter matrix

Degen(x) =P =



thereby represents the degenerate distributions of the elements
of x if it was reimagined as a random vector. Importantly,
this parameter matrix can be translated back into the original
x vector. Consequently, for every possible permutation of
x (as given in equation (1)), there exists a corresponding
parameter matrix in equation (3) that provides the same
objective value. Upon reflecting on this, it becomes evident
that the set {2, must be included in Qp. In mathematical terms,
this relationship can be represented as {2x C Qp.

For any feasible P, it can be shown that,

Zf x{k})P

InlIlf (x=x{k}|P) < max f(x),

“)
where x{k} denotes the k-th combination out of possible
b" combinations of x. This stems from the observations that
the expectation is nothing but a convex combination of all
the possible values of f(x). This is possible because the
probability terms, which are always nonnegative, sum up to
one, enabling the expression of the expectation as this sum.
Such a convex combination of scalar values essentially repre-
sents a probability-weighted average. Each scalar is weighed
by its corresponding probability or chance of occurrence.
These probabilities fundamentally dictate the placement of
the weighted average on the line between the minimum and
maximum scalar values. Due to the constraint of the prob-
abilities adding up to one, this average cannot exist outside
this range. For instance, when the probabilities tend to favor
larger scalar values, the resulting combination leans closer
toward the maximum and vice versa. It is crucial to clarify
that equating the expectation to a convex combination does
not imply that the expectation is a convex function. We are
not discussing the convexity of the expectation itself. Yet, due
to the inherent properties of convex combinations, inequality
(4) consistently holds, as indicated in [35]. Additionally,
Carathéodory’s theorem offers further proof of this fact [11],
[35].

Now assume that X, is the unique optimal solution of (1).
It follows that, Py = Degen(xopt) is an optimal solution
of (3). Consider that 3Py # Py, such that, {(Py) =
&(Popt) = f(Xopt). The parameter matrix P cannot denote
n degenerate categorical distributions as the corresponding

= Degenfl(PO) would violate the uniqueness assumption
on Xgpi. We then consider the non-degenerate distribution
case. As the optimal value p* is shown to be the same for

both of these problems, we can assume that p* = f(x{ko})
without any loss of generality. Then,
pn
§(Po)=)_f(x{kDP(x = x{k}[Po) = f(x{ko}) = p" (5)
k=1
-
= D (f(x{k}) = f(x{ko})) P(x = x{k}[Po) = 0. (6)

k=1,k+#ko

As for some k, the value f(x{k}) needs to be equal to
f(x{ko}) for (6) to be true, this would also violate the
uniqueness assumption on k. ]

B. The Case of Constrained Discrete Optimization Problem

Next, we explore whether such a coincident optimal solution
through such a reformulation is valid for constrained problems
as well. To that end, we write a general optimization problem
with constraints without assuming convexity below:

fo(x),

s.t. filx) <0 Vi=1,2,...,m,
hj(x)=0 Vj=1,2,...,r,
where the optimal value and solution set of this problem

are denoted by p}, and W, respectively. The transformed
formulation is expressed as:

min
C’ﬂ

)

min
Pij €
s.t. Ex~]P’(x|P)[fi(X)] <0 Vi= 17 27 ERER LT
EwaP’(x\P) [hj (X)] =0 V] == 1, 2, N

with optimal value p}, and solution set Up.

EXNIP’(x\P) [fO (X)] ’
®)

Lemma 2. The original problem (7) and the transformed
problem (8) share the same dual problem with the dual
solution d*. Moreover,

€))

Proof: Similar to the proof of Lemma 1, it can be readily
seen that for every feasible x in (7), there is a corresponding
feasible parameter matrix P = Degen(x) in (8). It directly
follows from this observation with similar reasoning in the
previous proof that the solution set Wy is a subset of Up.
Consequently, the transformed optimization problem can be
seen as a relaxation of the original constrained problem (7)
and provides a better optimal value. Thus it can be established
that p¢ < p7.

Next, we investigate the dual function of the original prob-
lem by expressing it as the infimum of the Lagrangian [36],
[371]:

ge(A,v) = inf L(xA,v)

d* <pl <p:.

= inf
x€{c1,c2,..,C 17

(10)

where \; is the i-th entry of A and v; is the j-th entry of v.
The vectors discussed here are the dual variables related to
our problem. We can think of the dual function as a softened
form of equation (7), which consists of more stringent or
hard constraints [36]. Crucially, for all non-negative vectors
A, the dual function serves as a consistent lower bound for the
optimal value of the primal problem, denoted p;. For a more
in-depth treatment of this well-known result, readers can refer
to [36]. Next, using Lemma 1, we can reformulate the above
dual function into the following expression'

30\ ) = T, B (0] 3 MBnecae )+
< =1
Z“ﬁEmwxwﬂhj(X)], (11)
j=1



where the optimal dual solution after maximizing the concave
dual function is denoted by d*. We note that the dual function
of (8) is equivalent to (11). Given the lower bound character-
istic of the dual function, it is logical to conclude d* < pi.
Moreover, strong duality ensures equality. Compiling these
inequalities, we deduce d* < pi < p?, which consequently
proves the Lemma. It further implies that the relaxation (8) is
non-trivial and it is bounded by d*, given that the dual solution
is bounded. [ |

C. Discussion on the Two-way Partitioning Example

In this subsection, we will focus on the simple two-way par-
titioning problem to demonstrate the technique. We focus on
this foundational example to facilitate a more comprehensive
understanding and to draw parallels with other probabilistic
methods more effortlessly. While the selected problem covers a
wide array of applications, such as binary phase beamforming
in an RIS-aided network [9], we delve into two more complex
applications in Section III. We begin with the description of
the two-way partitioning problem below:
xTWx,

max
xe{-1,1}"
where W € R™*" is a symmetric matrix. Next, we derive our
reformulation of (12) based on Lemma 1 below starting with
the following result:

(12)

n n
Ex~p(x|p.) zix; Wi
j=1i=1
=3 (ei = 1)(2pry — VWi + > Wi,  (13)
j=1i=1 j=1
i

where p is the vector of parameters with p,; = Plz; = 1]
denoting the i-th entry, x; denotes the i-th entry of x, and
W;; denotes the 4, j-th entry of W. This result directly follows
from the facts that E[z;] = 2p, ;—1, E[z?] = 1, and the entries
are i.n.i.d.

Remark 1. Note that, if all the entries of y are either +1 or
—1, y = Degen™*(py). In other words, in that case, y is a
feasible x and vice versa.

With this result, the transformed problem is as follows:

max yTWde5

ye [*1’ l]n
where y = 2p, — 1, and W4 is the matrix W with
its diagonal elements set to zero. Note that, we effectively
converted a binary quadratic program (BQP) to a non-convex
box-constrained quadratic program (BoxQP) emphasizing the
ability of our reformulation to change the structure of a
problem while being equivalent in terms of optimal point.
However, this is a known result in the optimization community
[38], [39] and our reformulation provides a probabilistic proof.
Other than this structural change, we can obtain more insights
about our reformulation by focusing on the SDR of the original
problem which can be derived by considering the following

(14)

stochastic program by taking expectation on the objective
value and the domain of (12) [10]:

Ec-niox) [¢TWC] .

E¢oniox) [ ©¢] = 1,,

where X is an arbitrary symmetric positive semidefinite
matrix, and ¢ is a random vector drawn from a normal
distribution with zero mean and covariance X. Through the

simple observation E¢.xr(0,x) {CCT} = X, this is equivalent
to the classic SDR problem described below:
max Tr(WX)
X

max

X=0
s.t.

(15)

st. X=0, (16)

Xii =1,
In the above formulation, the addition of the rank-one con-
straint rank(X) = 1 would make the problem equivalent
to (12). However, this relaxed formulation is solvable in
polynomial time unlike (12). SDR can also be seen as a
relaxation of the original problem when we allow z; to be a
multidimensional vector with a unit norm. These vectors can
be found from The Cholesky decomposition of the solution of
SDR. If the angle between two such vectors is really small,
that implies that those two entries of x are more likely to be in
the same group [40]. In other words, the SDR provides us with
pairwise correlation information. In contrast, a relaxed version
of our reformulation (14) will provide us the probabilities with
which each entry of the original vector x will be +1 or —1.
The findings of this subsection reveal that our proposed
reformulation has the potential to alter the structure of op-
timization problems. Even if the change is trivial in the case
of simple objective forms, it is expected that more complex
objective forms will yield non-trivial changes, which can have
a significant impact on the efficiency and effectiveness of
the optimization process. We will demonstrate these non-
trivial structural changes in canonical case studies related to
discrete RIS optimization in Section III. Furthermore, the
results indicate that although our reformulation differs from
SDR in terms of the information it provides, they share
similarities in the formulation from a stochastic standpoint.
These results encourage further exploration of our approach
in more complex objective forms.

i=1,2,...,n.

D. Some Useful Results for Quadratic Expressions for Binary
Random Vectors

As most discrete RIS applications deal with binary phase-
shift RIS {—1,+1} due to its simplicity in operation and
implementation, it is only appropriate to derive the analytical
moments and their gradients associated with the binary random
vectors defined in (14). They can be used in different opti-
mization contexts with such expectation-based formulations.
The higher moment results are motivated by the previous
subsection and will be heavily used in the next section. We
begin with the covariance matrix next.

Remark 2. For a random vector x € {—1,+1}" with i.n.i.d



entries and expectation E[x| =y, the covariance matrix is
ElxxT] = (yy") © En + Ly, (17)

where E,,, is the all-one matrix with a hollow diagonal and
P is defined similarly to (29).

Now, we state the first moment and its gradient in Lemma
3 without proof due to its trivial nature and partial proof in
(13).

Lemma 3. For a random vector x € {—1,+1}" with i.n.i.d
entries and expectation E[x] =y, the expectation and the
gradient of a sum between a quadratic form and a linear form
are

s (G, z,y)=Ex’ Gx+z"x]=y" Gyay + Tr(G) + 2"y,

(18)

9y7(G,2,y) =VyEx'Gx] = (Gya + GL,)y +2z.  (19)
where G is a real symmetric matrix.

Next, we derive an expectation that is very important for

covariance calculations between a quadratic form and a linear
form in the next theorem.

Theorem 1. For a random vector x € {—1,+1}" with i.n.i.d
entries and expectation E[x] =y, the expectation of a product
between a quadratic form and a linear form is

pa(G,z,y) = E[XTGXZTX] =2y TGz + ZTy’I‘r(G)+

1" {(GuaYuwa) © Yud}(y ©2), (20)
where G is a real symmetric matrix and Y = y17.
Proof: See Appendix A. [ |

We just state the gradient of the above expectation without
proof in Corollary 1.

Corollary 1. The gradient of the derived expectation in
Theorem 1 can be calculated as:

Yq(G,2,y) = 2Gyaz + 2Tr(G) + (GL O E,)y) ®z+
diag(Grdiag(y © 2)Ep) + (Gr © E,,)(y © z), 1)
where G = GqTo, and Ty = diag(y)E,.

Next, we focus on the second moment of a quadratic form
in Theorem 2.

Theorem 2. For a random vector x € {—1,+1}" with i.n.i.d
entries and expectation E[X] =y, the second moment of a
quadratic form is

11gs(G,y) =E[(x"Gx)?’] = y" (G, —F(y)) y+Tr(G)*+

2Tr(Z) + (y' Gy)*—d"'G,d, (22)
where G is a real symmetric matrix, d = y 0y, Gg =
2Tr(G)Gyd + 4Zya, Z = GuwGL, Fly) = (y ©

y)Tdiag(G)(G+ Gypa) +4U e, U = [Iy@(yoy)T|B, and
Gy =2Gyq © Gyqg. The matrix B is defined through blocks
as

bi1,...,b1 N
B=| coyoee,on, |
bN,17~~-abN,N-

(23)

where the i-th element of by, ; is b?w’ = Gwdm Gwd,,;-

Proof: See Appendix B. [ ]
Now, we derive the gradient of the second moment in the
Corollary 2.

Corollary 2. The gradient of the derived expectation in
Theorem 2 can be calculated as:

04s(G,y) = (G4 + G])y +2y" Gy(G + GT)y—

2y" (G + Gya)y(diag(G) © y) —d” diag(G)(G+Gua)y
— diag(G)"d(G + Gua)"y —2((Gy + G])d) 0 y—

8y ©bs = 4(Uya + Upy)y, (24)

where d = y®y, and i-th entry of b is yT By [i]ly —Tr(By[i]).
The matrix Bi[i| can be derived by multiplicating the i-th
column of G,q with the i-th row of Gyq.

Proof: See Appendix C. [ ]

III. APPLICATIONS OF THE PROPOSED REFORMULATION

In a MIMO communication scenario, optimizing RIS phase
shifts can be a challenging task, particularly when dealing
with discrete RISs. Discrete RIS problems are generally more
difficult to solve, making it necessary to split the original prob-
lem into smaller sub-problems that can be handled separately.
Therefore, we focus on the canonical forms of discrete RIS
sub-problems that frequently appear in the literature. For a
unified treatment, we have chosen a signal model capable of
representing a range of RIS-aided scenarios and sub-problems,
including a device-to-device communication link, a cellular
network where each antenna serves a different user through
antenna selection, and a wireless communication link with
interferers while the receive beamformer vector remains fixed
[21]. This signal model can be expressed in the following
point-to-point representation:

Y = (ha, + hil diag(0)fy)zs 0+

Np

Z(hdi +h{diag(0)f)z: + w,

i=1
where y,. is the received signal from the Tx of interest (denoted
by i = 0), hg, denotes the direct channel between the ¢-th
Tx and Rx, h; is the Tx-RIS channel, f; denotes the RIS-Rx
channel, z, ; is the data for the i-th Tx, E[:cgz] = ;, 0 is the
N-element discrete RIS phase configuration vector, N7 is the
number of interferers, and w is the additive noise. Note that
the users and interferers always transmit at their maximum
power p. For a general MIMO communication scenario, these
channels can be seen as the actual channels pre-multiplied
and post-multiplied by precoding and receiver beamformer
vectors, respectively. With such a versatile signal model, two
use cases for RIS-assisted wireless communication systems
are explored, namely, SINR maximization and overhead-aware
RIS optimization. Note that, in both cases, RISs are assumed
to be controlled by the receiver through an RIS controller [41].

(25)

A. SINR Maximization with RIS Optimization

1) System model: We consider a generic system model
dictated by the signal model (25). We consider that the RIS
phase vector @ = [, 0y...0,...0n5]7 and 0,, € {—1,+1}.



For ease of notation, we also define h,, = (h” diag(fi))H
With this discrete RIS, the SINR can be expressed as,

ﬂ0|hdo +h 0|2 B fs(e) B 0TR00+C§0
% Bilha, + hH )2 + o2 f1(0)  67K6 +sTo
i=1 ' Ci w
(26)

2 Ny
where R; = §Re (hcihg + %IN), K=Y R;+%Iy,
i=1

0120 is the variance of the additive Gaussian noise, ¢; =
Ny
2B;Re(conj(hg,he,)), and s = > c;.

i=1

Algorithm 1: E-GD

Input: B”h Ci, 0,E, €th, Binitv G Vi

Output: 6,
(t)

Initialize t = 1, dgp = 1, and ys’ = Yinit.
while dqp < e,
do
Initialize 6(1) = Binit,dy = —1.
Calculate Vy, Ji(y'") from (32) or (33).
while d; < 0
do
Ynew = y( ) ﬂ(t)v ( ))
Find yy.o; by clipping the vector y e, in
dy =
_jl( ) Eﬂ(t)nvyéjl( )||2+~7I(YWOJ)-
5(0 — Qﬁ( t)
v =y - g0vy gy ){
vite i vy - yihy
€[—1,+1]¥
t=1t+ 1.
dap = Ivi™ —yI5.
41
Ps = L 2+ .

Based on this probability parameter vector p, sample
G RIS phase-shift vectors.

Choose the best RIS phase-shift vector 8p.s; among
them based on the resulting SINR.

0i+1 = ebest-

2) RIS optimization: In this subsection, our objective is
to maximize the SINR given in (26) while the RIS elements
are discrete in nature. The optimization problem is described
below:
win _ fs(0)

0c{-1,+1}% f1(0)
As the domain of this problem is discrete and the problem is
a fractional quadratic program, a common way to solve this
problem is to relax the discrete domain and then project the
solution to the closest discrete point. The relaxed version is
solved through GD in [21]. Note that, we also consider SDR
in the simulation results. We approach this problem with our
reformulation (3) and transform this problem into a continuous

27

domain problem. The reformulated problem is as follows:

_ EGNPB(B\PS) [ﬁigﬂ '

where y; = 2ps — 1 and 0 is assumed to be distributed with
the joint PDF

0|ps :H

where ps ., € [0, 1] is the n-th entry of pg and 6,, € {—1,+1}.
We propose two approaches to solve (28): a) stochastic
sampling approach (SSA), and b) analytical gradient descent
approach. The former approach generally does not require an
explicit expression of the gradient whereas the latter does. In
SSA, a typical gradient estimator, which is based on the log-
derivative trick and Monte Carlo sampling as described in [42],
is often used in the GD algorithm. Following that, we have
formulated an approach, SSA-B, which is a special case of
SSA for binary variables using the same log-derivative trick
and Monte Carlo sampling. We have omitted the details of
SSA-B here, as this variant of SSA for binary variables has
already appeared in a different context - the Bayesian optimal
design of experiments, in [11]. For a detailed understanding
of SSA-B, readers can refer to [11, Algorithm 3.1]. Next, we
detail the analytical optimization approach for this case study.
We explicitly develop the SSA for a non-binary random vector
in the next case study, which is a direct result of the general
probabilistic reformulation technique that we rigorously de-
vised in Section II.

min

28
ys€[711+1]N ( )

=

9 _1psn+6(9 +1)( psm))a (29)

In the analytical gradient descent approach, calculating the
direct expectation of a ratio of correlated random variables is
difficult. So, we consider the Taylor series approximations of
such an expectation [43]. Both the first-order approximation
Ji(ys) and second-order approximation J»(ys) are stated
below:

_ E[fS(a)} . ,Uqf(Ro,Co,ys)
TV BRG] e (Kos.y) |

o EULO)6)] | B O)EL©)
e 1T I T

(30)

The second-order approximation requires two additional ex-
pectations that are derived along with their gradients in (31).
Using the definitions in (31), we can express the gradients of
the Taylor series approximations as follows:

ﬂqf(R07C0ayS) jl(Ys)ﬂqf(Kﬁ,}’s)

Vy.Ji , (32)

Y 1( ) M(]f(K7svys)

Vew

Vy. J2(y¥s) = Vy  T1(¥s) = 57—+

Yy 2<y ) Ys 1(y ) ugf(K’sny)

s 3u(ys)Vqr(K,s,¥s)
Ry, co,¥s - +

‘u(If( 0 0 ) (:u’gf(K7s7yS) M;f(K7sayS)
QCU(YS)ﬁqf(Kvsv}’s) U(Ys>'l9qf(R07C0aYS). (33)

1y (K,s,ys) 1 (K,s,y5)
Note that, they are stated without proof as they can be
derived trivially with the basic chain rule. Armed with these
gradients, we can develop simple update rules of a projected



co(ys) =Elf:(0) fr(0)] = 22

(RO + Kvys)_:u‘qs(RO + K7ys)

4
- ﬁqs(RO + K, YS)
4

Bos(Ro + K, v
'19cv:v)rSC'u(YS): q( 0+ y)

Co O] (Em(s O] YS))v

+/'qu (R()v S7 yS)+Mql (K7 C07 },S)—’—Cg1 ((ysyz) @ Em+IN) S7

+ ﬁql(ROa S, ys) + ﬁql(Ka Co, YS) +sO© (Em(CO © ys))+
v(ys) = E[f?(@)] = NqS(KvYS) +s” ((YSY;F) OE;, + IN) s+ QFqu(K»SvYS)»

Uy = Vy, 0(ys) = Vgs(K,ys) + 25 O (Ep (s O ys)) + 204(K, s,ys). 31
GD algorithm next: overhead below:
YD _y® _ 3Oy 7(y®), G4 RO) = <1 _ Tx([0]lo) ; TF(||9||0)> y
yie min v, -y P 69)
vy e[~ L+ - ,
where y) = 2p{") — 1 is the transformed probability vector Blogy |14 Bolha, 1 hy diag(6)h| , (37)

at the t-th iteration, 3(*) is the step-size and Vy.J;(y ") is
the gradient of the [-th order Taylor approximation of the true
expectation where [ € {1,2}. The steps (34) and the (35) are
considered gradient step and projection step, respectively. For
our box conlstraints, the projection turns out to be clipping the
vector y£t+§) to —1 and +1. We also use Armijo-Goldstein
(AG) line search [44] to find a good step-size while avoiding
saddle points due to its diminishing nature [45]. Complete
details of the GD approach are shown in Algorithm 1. Note
that, according to the Remark 1, a feasible discrete 6 is also
a feasible x and corresponds to the degenerate PDF itself that
generates 0. So, we find the vector that aligns the phases of
the reflected signals with the phase of the direct signal:

pinit = ¢~i(ars(heg)n—ars(hag)) - yp =12, N, (36)

where (h,,), denotes the n-th element of h., and project it
to {—1,+1} for a feasible yinit. After the projected gradient
descent, we sample G feasible solutions and choose the best
one. The complete procedure is described in Algorithm 1. Note
that the numerical results associated with the case studies will
be discussed in the next section.

B. Overhead-aware Rate and EE maximization in an RIS-
aided system

In order to tackle another canonical setting, we now focus on
the RIS sub-problems where configuring the RIS to optimize
the chosen performance metric requires finding the optimal
number of reflecting elements N,y first. However, this is
only possible for simpler objective forms [46]. To address this
limitation, we introduce a comprehensive stochastic sampling
approach that optimizes more complex objective forms, in-
cluding rate and EE while taking interference into account,
circumventing the explicit calculation of Nyp;.

1) System Model: Our system model is solely dictated by
the signal model in (25). Along with that, we include the
overhead and power consumption models developed in [46],
[47]. We also assume that each RIS element has the ability
to turn off or @ € {—1,0,+1}". Note that, this allows us
to avoid explicit derivation of N,p;. We also assume that the
estimated channels are reliable. Now, we define the rate of
the system considering interference and channel estimation

Bilha, +h{ diag(0)f;|? + o,

i=1

where the bandwidth is denoted by B, the noise variance is
02 = BNy, Ny is the noise power spectral density, total
duration of the time slot is denoted by T', Tx(||€]|o) denotes
the time taken to estimate the channels, and T (]|0]o) is
the feedback duration of the RIS configuration. The channel
estimation time and feedback duration time are dependent on

the number of RIS elements ||@||o and are expressed next,
Te(110ll0) = To(ll6ll0 + 1),

Tr([|0lo) = 10]|0br
Brlog (1 +pr |hF|2 / (NOBF))

where Ty is the duration of each pilot tone, and bp = 2 is
the number of bits used to represent the states of each RIS
element. Additionally, Br, pr, and hp refer to the com-
munication bandwidth, transmit power, and effective channel,
respectively, in the feedback phase. Subsequently, the total
power consumption can be expressed as

Pror(16110) = Pe(6]l0) + (1 _ TE<||9|I>> -

T
Tr([l6]lo)
T

where Pg(]|0])0) is the power consumption
in the channel estimation phase, P, denotes the power of
each pilot tone, p is the maximum transmit power in the data
transmission phase, P, ,, is the power required to operate each
RIS element and P g is the static hardware power for the
remaining system components. Additionally, i and ;%F denote
the transmit amplifier efficiency in the data transmission and
feedback phase, respectively. Finally, the EE of the system is
defined by,

(38)

(urpr—pp) + 0|0 Pe,n + P, (39)

_ DPoTe(|6]lo)
= T

_ k(o)

Prot([|6]l0)
In this system model, the number of RIS elements is chosen to
be N = min(Npqz, No), where Ny, q, is a parameter and Ny
is the maximum integer for which Tx(Ng) + Tr(No) < T.
This condition assures that the rate is realistic.

2) RIS optimization: The general optimization problem can
be expressed as,

EE(9) (40)

min J(0),

6 c{-1,0,+1}V 4D



Algorithm 2: Stochastic sampling approach to opti-
mize r € {p, q} for the sub-problems in Algorithm 3.

Input: System parameters and channels, ripit, tmazs
€t, BS’ Ne’ bm
Output: r*
Initialize t = 1, dsap = 1, and r® = 1y
Defines = ¢ P F~ 4
q, r=p
while 5SGD § €t and t § tmazx
do
Calculate b from Lemma 5.
Calculate gr from (45).
(t+ ) = I‘ 6egr
r(*+D ¢ min ve—r (t+3)]|5 such that
v,-€[0,
r < ]-N — S.
t=t+1.
6sgp =[xt —r®]2.
r* = p(t+1)

Algorithm 3: SSA-T (Based on the BCD framework)
Input: System parameters and channels, €, G
Output: 6*

Initialize q* with a random vector, ¢ = 0, vy = 0,
A = ¢+ 1, and 6, with all zeros.

while A > ¢ do
Obtain p* from Algorithm 2 with fixed q*.

Obtain q* from Algorithm 2 with fixed p*.
Generate G samples of 8 from the obtained p*
and q*.

Z J(6{g}) and 6,1 = 6{g"},

where g* is theglndex of the random sample that
provides the best objective value.

if v;11 < then 0,1, = 0; ;

Evaluate A = |y;41 — Vil /7i-

1=1+ 1.

6" =0,_,.

Set yi41 =

where J(0) can be —R(6) or —EFE(0). As the objective
function is non-smooth and non-convex due to the presence
of the interference term and LO norm, we resort to the Lemma
1 and reformulate the problem below:

min N EQNPE(B\p,q) [«7(0)] )
p,q <€ (0,1) (42)
s.t. p+q<1y.

We assume that the n-th element of 6 or 6, is an independent
categorical random variable and can take the value +1 with
probability ¢, that denotes the n-th entry of q and —1 with
probability p,, that denotes the n-th entry of p. The joint PDF
for the ternary random vector can be expressed as:

N
On(0n—=1) On(On+1)
2

11 P ® an

n=1

Pp(8|p,q) = )1-on,

(1 —Pn —4n
(43)

The presence of coupled optimization variables in (42) com-
plicates the problem. To circumvent this, we implement the

block coordinate descent (BCD) framework. This method
decouples the problem with two coupled variable sets into
two tractable sub-problems, each addressing a single set of
variables while considering the other fixed. Not only does
this approach simplify the problems, but it is also inspired
by the ties between Dykstra’s algorithm for projections onto
intersections of convex sets and BCD [48]. Ultimately, the
SSA is used to resolve the sub-problems emerging from the
BCD structure, as illustrated in the previous case study.

We start by taking the gradient of the objective function in
(41) assuming q is fixed. Note that, all the following deriva-
tions can easily be derived when p is fixed by substituting
Vp with V4 and are not derived explicitly. However, we will
provide those results in the appropriate lemmas.

3N
0)] Y 7 (0{k})VoPr(0{k}|p.q)

gp=VpE[J(
k=1
3N
S (F(0{k}) Vp log Pr(81K}Ip, @) P (0{k}p, a)
k=1

YE[7(0)Vp logPr(6]p, a)], (44)
where (a) comes from the definition of expectation, 6{k}
denotes the k-th possible combination out of the possible 3~
in an arbitrary indexing order, (b) comes from the identity
VplogPr(0lp,a) = srampg VePr(6|P,q), and (c) con-
verts the summation into expectation. The MC approximation
of this gradient for a stochastic optimization approach is:

1 &
& = - > T4} VplogPe(6{j}p,q),  (45)

where N, is the number of samples used. For completeness
and to reduce the variance of this estimator without increasing
N, drastically, we introduce a baseline b, in the objective
function. Such an estimator has the following form,

pNz

=g —b pdp,

(6{j}) — bp) VplogPr(0{;j}|p,q)

(46)

where d, = N E VplogPr(0{j}|p,q). Note that E[d,]| =

0 as the followmg results stands:

———V,Pr(0|p,q
£(0lp,a) * POlp. )

3N

UV, S Pe(0{k)p.a) =0, ©7)
where (a) comes from writing out the expectation in a
summation. Using this result, we can also show that both
estimators are also unbiased and E[g,] = E[gp] = gp. In
the next lemma, we include the key gradient results for the
ternary random vector that is instrumental in the stochastic
sampling approach.

Lemma 4. The gradient of the log of joint PDF with respect



to p and q are:

Vp logPr(0{;}[p. q)

> (0ad53(0n{i} = 1)
B Z ( 2pn
VqlogPg(0{j}|p,a)

N . .
_ Z (en{J}(en{J} +1) +

2qn

L (0ad3)? = 1)) . (48)

17pn7Qn

n=1

(Onfs}* —1)

1—pn—an

) en, (49)

n=1

where e,, is the n-th unit vector of length N.
Proof: We start by substituting the joint PDF:
Vp logPu(6{j}Ip, a)
5 Ou i} Ot} = 1)

n=1

Vp logpn

N . . .
O O -1 0,112 -1

B YA A ET RS E] G T DS
n=1 2pn 1- Pn — Qn

Similarly, the gradient VqlogPg(0{j}|p,q) can be derived

with ease. ]

With these important gradients available, we find the op-
timal baseline for the estimator defined in (46) in the next
lemma.

Lemma 5. The optimal baselines when with respect to p and
q are

* N ~
bp = N ¢ E[ggdp]v
1 1
ngl pin + 1—pn—qn
X N, .
ba =7 E[gqdal, (51)
1 1
Z q771 + 1—=pn—qn

Il
—

where §q and dg can be found by replacing the V q in place
of Vp in (45) and (46), respectively.

Proof: See Appendix D. ]

Remark 3. We can also approximate E[gg dp] by taking by,
batches of N. data points and average them to get b, to use
in the algorithm.

Now we have all the information to develop the stochastic
sampling approach for ternary random variables. The algo-
rithm to solve the sub-problems is demonstrated in Algorithm
2 and the BCD architecture is illustrated in Algorithm 3. In
the Algorithm 2, the entries of r;,;; are independent and iden-
tically distributed (i.i.d) with uniform distribution U (0, 74z ),
where 0 < 7,4, < 1. By choosing a small r,,,,, we control
the initial sparsity of the solution.

C. Worst-case computational complexity discussion

In this subsection, we derive the worst-case computational
complexities for the proposed algorithms in terms of big-O
notation. However, we would like to note that the complexity
of gradient descent-based algorithms cannot be trivially ex-
pressed in the big-O notation, as the number of iterations for

convergence heavily depends on the initial point and cannot
be precisely determined [49]. In the literature, the number
of iterations is regarded as a parameter, and subsequently,
the complexity is represented using big-O notation [50],
[51]. In this subsection, we follow the same approach, while
also preserving more terms in the big-O expression for a
better comparison among the proposed algorithms. Building
upon the previous discussion, The algorithms are based on
five fundamental operations: gradient calculation, descent-
projection, inner looping, outer looping, and sampling. The
descent-projection operation has a complexity of O(NN) across
all algorithms. Regarding the inner looping operation, we
need Ig,,Ig,, 11, and Iy iterations for the gradient descent
algorithms to converge for E-GD using first and second-
order Taylor approximations, and for the stochastic sampling
approaches with binary and ternary variables respectively.
There is typically no need for outer looping iterations except
for the ternary variable stochastic sampling method due to the
BCD framework. In this case, we assume that /g~ p iterations
are needed to achieve convergence.

1) E-GD with first-order Taylor series approximation:
For this algorithm, the gradient calculation step is primarily
dictated by the matrix multiplications inherent in the quadratic
forms of (32), with a complexity of O(N?). The sampling
step adds an O(GN?) complexity due to G evaluations of the
objective function, making the total complexity O(Ig, (N? +
N) + GN?).

2) E-GD with second-order Taylor series approximation:
For this variant of the algorithm, the gradient calculation step
is primarily affected by the matrix multiplications required
for computing the matrix U as per Theorem 2, and has a
complexity of O(N*). The other steps share the same com-
plexities as the first-order version, yielding a total complexity
of O(Ig,(N*+ N) + GN?).

3) Stochastic sampling for binary variables: The first step
of this algorithm, the gradient estimator calculation, is dom-
inated by the N,,s objective evaluations resulting in a com-
plexity of O(Ne,sN?). The sampling step carries a complexity
of O(G4N?) due to G, objective function evaluations, which
makes the overall complexity O(I1(Neps N2+ N) + G,N?).

4) Stochastic sampling for ternary variables: The main
differences between this algorithm and the binary variant lie
in the objective function evaluation, which has a complexity
of O(N?+ N due to the additional LO norm calculation. This
yields a total complexity of O(Ipcpla(Nens(N?+N)+N)+
GsN?).

IV. SIMULATION RESULTS

For our simulation results, we focus on a canonical (and
perhaps most practically relevant) RIS scenario where RIS
can significantly enhance performance: the creation of virtual
line-of-sight (LoS) links when direct paths are obstructed, as
highlighted in [14], [21], [52]. We maintain this assumption
throughout our simulation. We also consider that we operate
in a high interference regime where one interferer exists
with average power similar to our user. This also highlights
the ability of our developed algorithms to cope with high



interference. The common simulation parameters used in both
the cases are 5; = pdpy, p is the transmit power, 6p;, = —110
dB, B = 5 MHz, and Ny = —174 dBm/Hz [46]. Additionally,
all the channels are Rician distributed with the Rician factor
of 4 while all the results in this section are averaged over 1000
independent channel realizations.

A. SINR maximization with RIS optimization

In this application, we compare the achievable capacity
Ceap = logy(1 + 7) of our developed algorithms with the
popular SDR method and the CPP methods. The transmit
power p is considered to be 0 dBm. The algorithm parameters
are 0 = 0.5,, ¢ = 0.0005, ¢, = 1072, By = 0.01,
and G = 100. Our proposed first-order and second-order
analytical GD algorithms are denoted by E-GD-1 and E-GD-2,
respectively while our proposed stochastic sampling approach
is denoted by SSA-B. The solution of the GD algorithm
developed in [21] for continuous phase shifts projected to the
discrete phase-shifts also acts like a baseline and is denoted by
CPP-1. The CPP of the solution of (27) when the constraint
is relaxed to be continuous is denoted by CPP-2. Note that,
the only difference between E-GD-1 and CPP-2 is the final
sampling step as the former treats the solution as a probability
vector, and the latter projects it to {—1, 41} for a solution. The
CPP of the simple signal alignment scheme in (36) is denoted
by SA. CPP methods are considered comparison baselines as
they are more practical in terms of speed and are often used
in the literature over the traditional branch-and-bound methods
that do not scale well with the number of elements.

In Fig. la, we can observe that all the expectation-based
algorithms perform better than the CPP algorithms, for all [V,
and the SDR for N > 20. Along with that, SSA-B outshines
the expectation-based EGD algorithms that utilize approxima-
tions for expectation computation. The edge of SSA-B lies
in its robust gradient estimates, derived without reliance on
Taylor series approximations, hence providing more precise
results. Moreover, the accuracy of SSA-B’s gradient estimates
can be enhanced by increasing the sample size, although this
incurs a higher computational cost. Moreover, the scheme
CPP-1 performs worse compared to CPP-2 due to its design
for continuous RIS phase-shifts with unit-modulus constraints,
which means its RIS optimization variable domain spans all
angles from 0 to 27 corresponding to the set of all unit-
modulus complex gains. In contrast, the domain of CPP-2
ranges from —1 to 1, making it closer to the original domain of
{—1, +1}. This difference gets more prominent as the number
of RIS elements grows and CPP-2 provides a sharper increase
in achievable capacity than CPP-1.

In Fig. 1b, we plot the run-time for a single iteration of
all the algorithms with varying numbers of RIS elements.
These results are taken from the simulations needed to create
Fig. 1a on a 3.6GHz Intel Core i7-4790 8-CPU system with
16GB RAM. From this plot, we note that the runtime of SSA-
B is between the E-GD-1 and E-GD-2 methods while SDR
is prohibitively slow. The runtime of our proposed E-GD-
2 method is better than SDR but still slower than its first-
order counterpart due to the complex gradient calculation.

The overall performance of our analytical GD algorithms is
dependent on the trade-off between the complexity of the
gradient and the accuracy of the approximation for the ex-
pectation. These simulation results demonstrate the superiority
of the expectation-based algorithms in discrete optimization
problems providing important insights into such analytical
expectation derivation.

B. Overhead-aware rate and EE maximization in an RIS-aided
system

In this application, we maximize the rate and the EE of the
system with our stochastic sampling approach. As a baseline,
we compare it with the solution in [46] without interference
projected to the discrete RIS phase-shifts. It should be noted
that when interference exists, this baseline is no longer relevant
because the unimodality required to compute the optimal
number of RIS elements is dependent on the simple objective
structure without interference. The simulation parameters are
set according to [46]: B = 1 MHz, P., = 45 dBm,
Pc,n = 1OdBm,u:uF = 1,T0:1ms,pF = 30
dBm, Py = 10 dBm, T = 100 ms, and N,,,; = 300. The
optimization algorithm parameters are, € = 1075, N, = 200,
by = 10, Tmaz = 0.1, tmaez = 300, G5 = 10000, ¢; = 1078,
Bs = 0.5 for EE and S5 = 0.01 for rate optimization. In
the simulation figures, the upper bound is calculated with the
optimum continuous phase shifts without interference through
the unimodal approach (UA) devised in [46]. The CPP of this
approach also acts as a baseline and is denoted by UA while
our algorithm is denoted by SSA-T or stochastic sampling
approach for the ternary variable.

In Fig. 2a, we plot the average EE achieved with the transmit
power when interference is not present. For Ty = 1 ms, our
algorithm performs very similarly to the unimodal approach.
However, for Ty = 0.2 ms, our algorithm achieves an EE
that is 0.18 Mbit/J less at p = 30 dBm than the UA. While
the UA method offers optimal results in the continuous RIS
case where no interference is present - a scenario that can be
viewed as a special instance of the general formulation with
zero interference - it naturally extends well to the discrete case
as well. In contrast, our proposed algorithm has a broader
scope, demonstrating its capability to handle any form of
objective function. Despite this versatility, the trade-off is
a guarantee of optimality, hence the observed performance
is completely expected. Our algorithm uniquely excels in
managing interference and can adapt to any general objective
form, an area where the UA method notably underperforms.
Therefore, the superior performance of the UA approach in
this specific case is anticipated, as it was designed precisely for
such interference-free scenarios. This distinction underscores
the unique use case of the stochastic sampling approach: when
a reliable solution for the continuous problem exists, discrete
projection may be sufficient. However, when the objective
function becomes complex, even in its continuous form, our
proposed algorithm shines, providing high-quality solutions
where other methods might fall short. We can also observe
that at the high transmit power region, the EE drops as power
consumption dominates and our algorithm approaches the
unimodal approach and the upper bound.
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0dBm | 10dBm | 20 dBm | 30 dBm | 40 dBm | 50 dBm
UA (To = 0.2ms) 70.8 59.7 51.7 46.4 49.2 94.5
UA (1Tp = 1ms) 21.1 17.3 14.64 13 13.4 23.6
SSA-T (Tp = 0.2ms) 52.7 47.4 46 46.1 47.9 40.7
SSA-T (1Tp = 1ms) 17.4 14.6 13.5 13.4 13.2 14.7

TABLE I: Average number of RIS elements to maximize EE in presence of interference with varying p.

In Fig. 2b, we plot the average EE achieved with the trans-
mit power when interference is present. In situations where
interference is present, as noted in Section III, the transmit
power displayed on the x-axis represents the maximum trans-
mit powers of both the user and the interferer. This mimics a
non-cooperative scenario where each entity maximizes its own
performance by transmitting at peak power simultaneously. We
observe that our algorithms continue to perform close to the
upper bound whereas the unimodal approach fails as expected.
We can also observe the general trend of better performance
with decreasing Tj. The reasoning is two-fold: a) we have
more time to transmit data due to lower channel estimation
time, and b) more overhead for RIS elements can be supported,
resulting in the utilization of more RIS elements. This can
be verified in Table I where we report the average number
of RIS elements to maximize EE in presence of interference
varying with the transmit power. We can also observe the
effect of G in this figure. With a lower G5 = 100, the EE
achieved is around 0.62 Mbit/] less than the default parameter
Gs = 10000 case at p = 30 dBm. Finally, in Fig. 2c, we
observe that in the rate maximization problem, the proposed
algorithm performs closer to the upper bound than the UA
approach, irrespective of interference. Without interference,

the performance of SSA-T marginally exceeds that of UA.
However, in the presence of interference, the advantage of
SSA-T over UA becomes substantial. Furthermore, as we in-
crease the maximum transmit power, it becomes clear that the
achievable rate via our proposed approach reaches a saturation
limit. This limit is imposed by the proportional increase in
interference power which is not completely suppressed by the
discrete RIS along with user transmit power.

V. CONCLUSION

In this paper, we developed a novel probabilistic reformu-
lation technique for general discrete optimization problems.
In particular, we interpret the discrete optimization variable
as a categorical random vector and take expectations on the
objective function along with any constraints present. We
provide rigorous mathematical justification that the corre-
sponding degenerate PDF of the unique optimal solution of an
unconstrained problem is the unique optimal solution of the
transformed problem and for a constrained problem, the primal
solution of the transformed problem is bounded between the
dual and primal solutions of the original problem implying
that it is a relaxation of the original problem. However, if
strong duality holds, the transformed problem provides the



same objective value as the original constrained problem. We
also explored a simple two-way partitioning problem to gain
more insights into our reformulation such as its similarity
to SDR, and capability to change the problem structure. We
ultimately used this technique to tackle two canonical discrete
RIS applications: a) SINR maximization, and b) overhead-
aware rate and EE maximization. As demonstrated in our
RIS applications, the reformulation allows for both stochastic
and analytical interpretations of the original problems. For
the SINR maximization problem, an analytical GD technique
based on closed-form approximations for the expectation is
proposed, while a stochastic sampling approach is proposed
for both applications. The numerical results reveal that there
is a fundamental trade-off between the complexity of the gra-
dient and the accuracy of the approximation in our proposed
analytical GD methods, and the expectation-based algorithms
outperform the other algorithms evaluated. The simulation
results also demonstrate that our proposed framework is very
general and performs well for both rate and EE maximization
problems without much change in the algorithm. In particular,
we show that it performs at par with the algorithm specifically
developed for the interference-free case when interference is
not present and keeps performing well even when interference
exists. We also explicitly calculate the worst-case computa-
tional complexities for our proposed algorithms. As the scope
of this technique is very general, utilizing this technique
to develop a more sophisticated projected gradient descent
framework and a general methodology to deal with constrained
problems are left as future work.

APPENDIX
A. Proof of Theorem 1

The expectation can be calculated by converting the matrix
expressions into series sums as shown below,

ExTGxz"x] = 2 Z Z Elz;|Gijzi+
i=1,i£j j=1,k=j

E szxk Zx?G“ +E Z szil’jIkGijzk

k=1 i=1,i=j i#j#k,k=1j=1 i=1

W 2y TGz + 2y Te(G)+ > D> viiunGijzk
i#j#kk=1j=1 i=1
(52)
In step (a), we use the fact that G is real symmetric, 27 =
1, and E[x;] = y,;. The third term can be expressed in the
following form:

T
Y121 y Gy
Y222 vy ' Goy

n n n
Z Z Z YiY; Yk Gij2r =

i#j£k k=1 j=1 i=1

,» (53)
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where G; denotes the matrix G with the i-th row and
column set to zeros. In matrix form, this can be expressed
as 17{(GpaYwd) © Yyua}(y © z), where Y = y17. This
completes the proof.

B. Proof of Theorem 2

We start this proof by expanding a generic quadratic term
in (54). In (54), the matrix U = [Iy ® (y ©® y)T|B, and the
matrix B is defined through blocks as

bii,...,b1 N
B=| -, -, |,
bN,17-~ -be,N~

(55)

where the i-th element of by, ; is b}w- = Gud,; Guwdy,-

Considering that the d-th term in the final expression
without the numeric coefficient is denoted by S;4(x), the above
expression can be expressed as

gs(x) = S1(x) + Sa(x) + 255(x) + 454(x) + S5(x). (56)

Considering 22 = 1, the second moment of a quadratic form
can be expressed as,

E[¢s(x)] = Tr(G)(y' Guay + Tr(G)) 4+ Tr(G)y ' Guay+
N N N N
2TR(Z) + 4y  Zway + D>, D> > vitiuknnGi; G,

I=1,i#j#k#l k=1 j=1 i=1
(57)

where Z = G,qGZL,. This is readily found by taking
expectation on (54). Note that the final term or S5(y) can
be found from the following observation:

S5(y) = qs(y) — (S1(y) + Sa2(y) +2S53(y) + 454(y)) .
(58)

The theorem is proved by combining the final two expressions.

C. Proof of Corollary 2

As the gradient of most of the terms can be trivially
calculated [53], [54], we focus on the nontrivial gradient
calculations here. In particular, the gradient of y” U4y with
respect to y is derived next. We can write the following
expression due to the chain rule:

_Zk:zyjyka% (Uwa)jr)
; Z yjyk#‘al2 ((de)jk)

Vy (v Uyay) =

Xk: 2 yjyka%v (Uwa)jr)

(Uwa+ULy)y. (59)

where (Uyaq)jk is (j, k)-th element of the matrix U,q and
the matrix U can be expressed as

yoy)™bis,....,(y0y)'bin

U= e
(y ©¥) b, (y ©y) by

With this formulation, the inner derivative is % (Uwa)jr) =
2y;(bjk): Vj # k, where (bj 1), is the i-th element of the
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vector b; ;.. Finally, the gradient can be written as,

> 2 yiye(bjx)

k#j J
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> Y yivkse— (bjk)N
=7 ay”
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where (a) is obtained by some matrix manipulations and the
definition of b ;. vectors.

D. Proof of Lemma 5

We begin by calculating the total variance of the estimator
gp below.

Var(gp) = E[gggp] - E[gp]TE[gp]
(@) AT A ~ - N

E[gggp] E[gp]TE[gp] - prE[ggdp] + biE[dgdp}
Ovar(gp) — 2bpE[g7dp] + b2var(dy), 61)

where var(dp) = Rz i var (Vp log Pr(0{j}|p,q)) and as
2 4

the variance does not depend on the j-th index, we can
calculate the variance of the inner quantity next ignoring the
index.

var (Vp log P (6|p, q))
~ E[(VplogP5(0lp. )" (VplogPu(6]p.q))
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Using (62) in (61), we can write that,
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where (a) is a result of the following observations: E[§2%0] =
¢n +pn and E[02Fo+1] = ¢, — p,,, where kj is a non-negative
integer. Note that this is a convex quadratic expression in
bp and we can find the minimum by equating the deriva-
tive of this variance equal to zero. The optimal baseline is
by = Ne E[gldp] and the lemma is proved.
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