
Journal of the Mechanics and Physics of Solids 124 (2019) 35–62 

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

A microstructure-based approach to modeling electrostriction 

that accounts for variability in spatial locations of domains 

Anil Erol ∗, Saad Ahmed , Zoubeida Ounaies , Paris von Lockette 

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA 

a r t i c l e i n f o 

Article history: 

Received 22 February 2018 

Revised 1 September 2018 

Accepted 22 September 2018 

Available online 22 September 2018 

a b s t r a c t 

The discovery of polyvinylidene fluoride (PVDF) based family of relaxor ferroelectric (RFE) 

polymers has attracted attention due to their high electrostrictive strain and relatively low 

hysteresis loss. These RFE polymers exhibit complex microstructures containing both crys- 

talline domains and amorphous domains; the interactions of the crystalline domains drive 

the electrostrictive behavior of these EAPs, while the amorphous domains dictate the me- 

chanical behavior of the materials. Furthermore, the crystalline domains are spatially and 

orientationally distributed across the amorphous medium, further complicating the mor- 

phology of RFE polymers. Although a number of studies have focused on experimental and 

computational investigation of the interaction among different crystalline phases of this 

family of RFE, electrostriction models that represent the variabilities in the microstructure 

of biphasic RFE polymers are lacking. The proposed model aims to link the semicrystalline 

microstructure to the observed electromechanical coupling. An energy density function is 

constructed for a representative volume element (RVE) of the EAP, including a term for 

each phase, crystalline and amorphous. The interaction of the crystalline domains is based 

on the Coulomb interaction energy between a pair of dipoles. The responses of the amor- 

phous domains are predicted by a modified hyperelastic stress–stretch eight-chain model. 

The total free energy is then analyzed under constitutive laws for an isothermal electrome- 

chanical deformation to determine the stresses generated in the RVE. The strain versus 

electric field, i.e. the electrostriction, relationship is calculated from a self-equilibrium con- 

dition of the Cauchy stress. The microstructure of the material is taken into account by ap- 

plying the dipolar energy to a semicrystalline network model, in which a dipole that rep- 

resents a crystalline domain is surrounded by an amorphous medium. The semicrystalline 

RVE experiences interactions with neighboring crystallites, which drives the electrostric- 

tion of the material. Two basic cases of the semicrystalline network model are explored to 

study the effects of spatial variation of crystalline domain locations relative to each other. 

Furthermore, higher fidelity descriptions of spatial location are introduced through the ad- 

dition of a probability density function (PDF) of dipoles around a central dipole. Comparing 

the model to experimental results from the literature allows best-fit determination of the 

model parameters describing the PDF, e.g. aspects of microstructure, itself. These results, 
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which agree well with experimental data, imply that the model has an ability to infer key 

information about the microstructure of the material by fitting the distribution of dipoles 

with a single adjustable parameter. The model is unique in that its descriptions of the crys- 

talline domains is amenable to direct measurement by spectroscopic scattering techniques. 

Consequently, adjustable parameters in the model are linked to physical characteristics that 

are quantifiable, such as magnitudes of dipole moments and spatial distribution parame- 

ters.The model may also be used to elucidate aspects of network morphology using best fit 

of these physically meaningful adjustable parameters to experimental data, possibly pro- 

viding a link between processing-structure-property relationships for future researchers. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Microstructure-property relationship in PVDF-based RFE polymers 

Electro-active polymers (EAPs) have gained significant attention over the years for their high electromechanical responses

( Bar-Cohen, 2002; Zhang et. al., 1998 ). Among EAPs, polyvinylidine fluoride, P(VDF), and its copolymer polyvinylidine-

fluoride trifluoroethyline, P(VDF-TrFE), are ferroelectric materials that derive their electromechanical properties from fer- 

roelectric domains ( Dang et. al., 2003; Nalwa, 1995 ). More recently, a bulky third monomer was added to the copolymer to

deliberately generate defects in the microstructure, breaking down crystalline phase into nano-polar domains ( Xu et al.,

20 01; Ang et al. 20 05 ). As a result, new PVDF-based terpolymers with relaxor ferroelectric (RFE) properties were de-

veloped. Two types of PVDF-based terpolymers are poly (vinylidene-fluoride–trifluoroethylene–chlorofluoroethylene), and 

poly (vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene), also known as P(VDF-TrFE-CFE) and P(VDF-TrFE-CTFE), 

respectively ( Bauer et al., 2002; Chu et al., 2006; Xu et al., 2001 ). The terpolymers mainly differ from ferroelectric materials

by exhibiting a slim hysteresis loop in their polarization response, as shown in dashed line in Fig. 1 , ( Klein et al., 2005; Xu

et al., 2001 ), which was ascribed to the semicrystalline structure of PVDF-based RFE polymers containing mobile crystalline

phases within an amorphous phase ( Lu et al., 2008; Xu et al., 2001 ). 

Electrostriction in the PVDF-based polymers is dependent on the presence of both crystalline and amorphous phases.

Greater presence of the amorphous phase yields greater strains by reducing the stiffness of the material ( Lu et al., 2006 ),

while more crystalline phase content increases the polarization response. Thus, researchers studied the tradeoff between

the two phases by varying the chemical composition of PVDF-based terpolymers, aiming to tailor the electromechanical

properties in a precise fashion ( Klein et al., 2005; Lu et al., 2006; Yang et al., 2013 ). Specifically, increasing the percentage of

CTFE expanded the amorphous phase, and reduced the crystal domain sizes ( Xu et al., 2001 ) and their separation distances

( Yang et al., 2013 ), which provided more room between crystalline domains, allowing domains to rotate with less friction.

Moreover, an increase in crystallinity increased the stiffness of the material ( Lu et al., 2006 ). These findings indicate that by

varying just the chemical composition, researchers can affect the microstructure to modify the electrostrictive response of

these PVDF-based RFE polymers. 

Several studies have shown that processing steps significantly affect the microstructure and thereby bulk material prop-

erties of RFE polymers. Studies performed by Sencadas et. al. (2009), Silva et al. (2010) , explored how the crystallinity and

microstructural variations of PVDF, the primary monomer of the RFE polymers, were affected by temperature, processing

methods, and other variables. Bao et al. (2007) observed that for the same composition of PVDF-based terpolymer, different

processing conditions affected the amount of polar nanodomains in the material. Smith et al. (2014) , discovered through

SEM images that thermal treatments with a slow quenching process allowed for larger crystal domain formation during

the crystallization process, with fibrillary shape characteristics, and these changes in the microstructure increased the di-

electric constant of the material. Cho, et al. (2016) confirmed these results by comparing fabrication methods with and

without thermal treatments above the transition temperature of the terpolymer, which results in the dominance of different

types of crystalline phases, such as the α-, β- and γ - phases. The results of Cho, et al. (2016) also showed that thermal

treatments produce largely α-phase dominant microstructures, while room temperature crystallization produces the larger 

β-phase crystallites; the crystallization process is important because the shifting of phases affects the electrostrictive re-

sponse of the material. Ultimately, these findings imply that the shapes, sizes, and phase type of crystalline domains are

all important factors in the overall electromechanical response mechanism of PVDF-based EAPs and, furthermore, may be

controlled, providing an avenue to tailored electromechanical response. 

1.2. Modeling of hyperelasticity and relaxor ferroelectric EAPs 

The first part of this section will consider previous modeling methods for the hyperelastic response of polymers, and the

latter part will survey tools and methods for combining hyperelasticity theory with electrodynamics. Later, approaches to

incorporate orientation and spatial distribution information will be discussed, leading to the focus of this work, which is to

address the orientational polarization of the crystalline domains within a coupled hyperelastic framework. 
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Fig. 1. Polarization curves for a ferroelectric material and a relaxor ferroelectric material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymers can exhibit high strains that reach beyond the limits of classical Hookean mechanics, such that a linear model

employing Young’s modulus as a constant is not sufficient in predicting the elastic response of the material ( Mooney, 1940 ).

However, the only extant model that incorporates both non-polar amorphous and polar crystalline phases is based in lin-

ear elasticity ( Capsal et al., 2012 ). In many works and herein, the mechanical deformation of polymers is assumed to be

governed by a nonlinear model that captures experimentally observed response. 

Invariant-based modeling was a method adopted initially to characterize hyperelastic materials. Rivlin (1948) developed

a generalized infinite series to predict the behavior of elastic materials in the form of 

W = 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

C i j ( I 1 − 3 ) 
i 
( I 2 − 3 ) 

j 
, (1)

in which C ij were constants, and I 1 and I 2 were the principle invariants, defined as functions of the principal invariants of

the right Cauchy Green deformation tensor, 

I 1 = tr 
(
F T F 

)
, (2)

I 2 = 

1 

2 

[ (
tr 

(
F T F 

))2 − tr 

((
F T F 

)2 )] 
(3)

The deformation gradient F is defined in Section 2 . 

The model that Rivlin (1948) proposed was a first order approximation of the infinite series in (1) . This first-order ap-

proximation is commonly known as the Neo–Hookean model, and with the form of 

W = C 10 ( I 1 − 3 ) (4)

To provide a better fit to experimental data, the Mooney–Rivlin model added the i = 0 , j = 1 term of (1) –(4)

Rivlin, 1948 ). Following this trend, later models added terms to ( (4) . More recently, Ogden (1997) developed a constitu-

tive model utilizing an indefinite number of stretch-based terms to obtain a widely adjustable fit to rubber elasticity re-

sponse. However, the primary disadvantage to invariant-based and stretch-based modeling was that the coefficients scaling

each term in the series did not represent physical quantities; attribution to physical quantities only came with additional

assumptions of structure not presented in the original models. We seek a model in which adjustable parameters are tied

directly to physical quantities, allowing the model to aid understanding of the relationship between microstructure and

electrostrictive response. 

In contrast to invariant- and stretch-based hyperelastic modeling, Treloar (1944) began building the framework for phe-

nomenological constitutive modeling by exploring the statistical mechanics of polymer chains for rubber. Treloar (1943) con-

structed a strain energy function for the elastic response of rubber, the form of which is shown in (5) . 

W = 

1 
NkT ( I 1 − 3 ) (5)
2 



38 A. Erol et al. / Journal of the Mechanics and Physics of Solids 124 (2019) 35–62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In (5) , N is the chain-density, k is Boltzmann’s constant, T is absolute temperature, and λi are the principal stretches for

i = 1 , 2 , 3 in a principal coordinate space. This model’s significance was its ability to capture the behavior of rubbers based

on polymer chain mechanics. Furthermore, its form was similar to the Neo–Hookean model and thus offered a physical

meaning to the coefficient C 10 such that C 10 = 
1 
2 NkT was proportional to the initial ‘rubbery’ modulus. Though the model

was based on a statistical description of a physical chain (i.e. Gaussian chains), the model did not account for the locking

stretch, and consequently did not provide a link to material structure. While the formulation in (5) is for a single polymer

chain, the same theoretical methodology has been applied to more complex representations of polymer networks such as the

three-chain network ( Wang and Guth, 1952 ) and the four chains (i.e. tetrahedral) network models ( Flory and Rehner, 1943 ).

In addition to these models, an eight-chain model was developed by Arruda and Boyce (1993) , apportioning the energy of

the network, still computed through random walk by statistics, to a deforming unit cube geometry under affine deformation

in the principal space. Arruda and Boyce (1993) discovered that the additional chains provided a better fit to experimental

data across multiple deformation states, arguably because the diagonal orientations of the chains provide wider spatial

averaging of polymer network behavior. While the efficacy of wider averaging of the network has been shown for purely

elastic behavior, it will be explored in this work with regards to electromechanical coupling, specifically concurrent averaging

across spatial and orientation distributions of electric dipoles of the crystalline regions of a PVDF-based RFE polymer. 

The electromechanical deformation of dielectric materials has been extensively studied since the 1950s. 

Toupin (1956) first developed the field equations for deformable dielectric materials, where the energy density of the

material, U , was determined to be a function of the relative electric permittivity, εr , and quadratically related to the
electric field E , such that U = ( 1 / 2 ) εr ε0 E 

2 ; others improved on the field equations in the following years ( Eringen, 1963;

Truesdell and Toupin, 1960 ). Recent additions have been made to the list of dielectric and other active material models

that have each added new concepts or mechanisms, such as deformation dependent permittivities ( Zhao and Suo, 2009 ;

and Jimenez and McMeeking, 2013 ); a free energy consisting of multiple components attributed to electrostrictive, elastic,

dielectric, and residual dielectric energies ( Richards et al., 2010 ); viscoelasticity ( Ask et. al., 2015; Hong, 2011 ); hysteresis

of ferroelectrics ( Lallart et al., 2016 ); multiplicative electro-elasticity ( Skatulla et. al., 2012; Zah and Miehe, 2015 ); electro-

plasticity ( Miehe, 1998 ); variational frameworks that model microstructural evolutions of domains in ferroelectric ceramics

( Miehe et. al., 2012 ); multi-scale methods that account for micro-scale dipole rotations ( Cohen, 2014 ); and homogenization

methods that study the effects of particle sizes and distributions on active material properties ( Castaneda et al., 2012;

Zah and Miehe, 2013 ). These models have sought to improve existing electro-elastic theories by adding methods that

address various complexities of EAP modeling, but they have not developed semicrystalline microstructure-based modeling

of electrostriction that address micro-scale spatial orientation, and none have specifically modeled the response of RFE

polymers. 

Recent work has suggested that microscale spatial organization of polycrystalline polarizable regions within a PVDF-based

RFE polymer affects its macroscale electromechanical coupling. Guan et al. (2010) discussed the importance of interactions

between ferroelectric domains within an amorphous matrix for PVDF-based polymers, and developed a rudimentary model

to predict the depolarization fields for this type of microstructure. The authors pointed out that there was anisotropy in the

interactions of polar domains, based on dipole-dipole interactions, and concluded that the relative locations of domains were

an important factor in the polarization of semicrystalline EAPs. However, Guan et al. (2010) did not analyze the electrome-

chanical coupling of their semicrystalline model. The framework proposed herein will account for the anisotropic behavior

of dipole-dipole interactions and their spatial organization when computing electrostriction. 

Only recently did models emerge in the field of EAPs that have incorporated physical elements of the microstructure of

the material to the deformations observed in experiments, although note these works focused on dielectric elastomers, not

RFE polymers ( Cohen, 2014; Cohen and deBotton, 2015 ). Cohen and Dayal 2016 introduced a method in which the polymer

network is defined as a segment of a circular chain composed of rigid rods (unit elements) that represent dipoles—which

is an interpretation of the microstructure of dielectric elastomers. The alignment of those dipoles under an electric field

subsequently generates a deformation in the chain. This model shows promise due to its ability to consider various modes

of deformation of individual unit elements within a network model that ties the mechanics of polymer chains to the elec-

trostriction of the material, thus enabling the model to address information within the microstructure in an electrostriction

modeling framework. However, since the model represents dielectric polymers with a single phase, it is not applicable to

semicrystalline RFE polymers. 

Zah and Miehe (2015) proposed a model (for graft elastomers) with a semicrystalline physical basis. Their model assumed

that graft elastomers generated electromechanical strain through the rotations of crystals that pull together neighboring

chains via crosslinks. This mechanism, however, is less relevant for PVDF-based RFE polymers, which do not have crosslinks

in their microstructure. Instead, dipole-dipole interactions will drive the electromechanical mechanism for RFE polymers, as

discussed by Guan et al. (2010) . 

Capsal et al. (2012) developed a model that accounted for the biphasic constitution of RFE polymers by splitting the bulk

polarization response of the material into separate contributions from the amorphous and crystalline phases. In addition,

their model incorporated an averaging method for the orientational distribution of dipoles. However, the model did not ad-

dress the spatial locations of the crystalline domains, a primary characteristic in determining their interaction. Further, the

model calculated electromechanical strain using a linear elasticity. While we similarly propose the use of a biphasic model,

our microstructural representation of dipole arrangements will account for spatial location and orientation; we further as-

sume a hyperelastic material response. 
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Fig. 2. Two-dimensional schematic of a biphasic body (i.e., a body with inclusions) undergoing deformation. The left body is in the undeformed configu- 

ration and the body on the right is in the deformed configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, PVDF-based polymers are semicrystalline polymers, requiring models that describe their biphasic, crystalline

and amorphous, constitution. The spatial and orientation distributions of these polarizable crystalline regions, which may

be controlled through composition and processing, affect electromechanical coupling and hence are important quantities to

any modeling attempt. The spatial organization of the crystalline regions formed in these relaxor ferroelectric (RFE) poly-

mers during processing varies, requiring the development of a model capable of capturing what is known about terpolymer

morphology. Thus, the main goal of this study is to construct an appropriate network model for a P(VDF)-based relaxor RFE

polymer that ties microstructure to electromechanical coupling by incorporating chain mechanics for polymeric response;

spatial and orientation averaging methods of polarizable domains’ relative locations and orientations; and a representation

of the material’s semicrystallinity, i.e. its biphasic constitution. A secondary purpose of this model is to guide future re-

searchers in choosing a target design for the microstructure of a dipole-based material in terms of domain arrangements in

order to achieve their desired material properties. Thus, the model will build a foundation for more complex analyses on

understanding the relationship between specific parameters within the microstructure and bulk properties of the material. 

2. Modeling framework 

In this section, mechanics of the problem are briefly summarized. These equations will be later implemented to solve for

electromechanical relations for the framework provided in Section 3 . 

2.1. Kinematics of a semicrystalline, electrostrictive body 

The discussion begins by defining a body � consisting of two phases (see Fig. 2 ). It is assumed that there are distinct

boundaries at the interfaces between the two phases, such that the two phases are contained in separate domains. An

amorphous phase is contained in the nominally contiguous subspace, �0 , and the crystalline phases are a collection of

discrete domains within the subspaces, �i (for i = 1 , 2 , . . . N c ). The subspaces are defined such that 

� = �0 ∪ �C 1 ∪ �C 2 ∪ . . . ∪ �N c (6)

Fig. 2 illustrates the deformation of �, which can be represented by the linear mapping χ between the undeformed body,

and the deformed body. The position vectors in the undeformed and the deformed configurations are X and x , respectively.

The deformation χ can be written as a function of the position vectors in the reference configuration, X , as well as other

parameters that affect the deformation, such that χ = χ( X, E, O ) , where E is the applied electric field and O = { O A , O C }
contains sets of parameters relating to the properties of the amorphous and crystalline phases of the material. For simplicity,

the bases in both configurations are prescribed as the orthonormal set, { ̂ e 1 , ̂  e 2 , ̂  e 3 } . The components of the deformation

gradient of � are defined in the reference configuration by 

F = 

∂χ( X , O ) 

∂X 

= ∇ X x (7)

In (7) , F is the deformation gradient, which is a second-order tensor, and ∇ is the gradient operator in a three-

dimensional point space. The left and right Cauchy–Green deformation tensors are defined in terms of the deformation
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Fig. 3. The representative volume element contains a spherical crystalline domain, surrounded by a concentric amorphous domain that is initially spherical 

and deforms into an ellipsoidal shape after deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gradient by the relations, respectively, 

B = F F T , (8) 

C = F T F (9) 

Expressing any vector R between any two crystalline domains �i and �j in the undeformed configuration in terms of

the basis vectors yields 

R = R 1 ̂  e 1 + R 2 ̂  e 2 + R 3 ̂  e 3 . (10) 

where R k represents the component of R in ˆ e k for k = 1 , 2 , 3 . After deformation χ, 

r = F R. (11) 

The magnitude of r can be expressed as 

r 2 = F R · F R (12) 

We assume � undergoes affine deformation, and further that crystalline domains �i are free to rotate. The relatively

large stiffness of the crystalline phase with respect to the amorphous phase strongly apportions stretch to the amorphous

phase. Consequently, crystalline regions are assumed to be rigid. Additionally, the rotations of the crystalline regions will

have no impact on the elastic or dielectric response of the material. These assumptions follow findings of Yang et al (2013) .

For the purpose of this study, we choose a representative volume element (RVE) composed of a single spherical crystalline

region surrounded by a spherical amorphous region, as shown in Fig. 3 . 

Given the assumptions made on the crystalline regions (rigidity and ability to freely rotate), any polarization vector p i of

any domain �i is a function of E and O . This implies that p i may be assumed to be uninfluenced by mechanical deformation.

The field-dependent form of p i will be later defined by electrodynamics. 

Based on the symmetry of the RVE, a differential element can be drawn similar to the proto-type semicrystalline chain

developed by Nateghi et al. (2018) . In this prior work, the crystalline region is represented as a straight, rigid line segment

while the amorphous region continues from the end of the crystalline segment along a representative random walk. Con-

sidering this type of element will allow us to write the kinematics of the semicrystalline RVE in terms of the micro-stretch,

and relate it to the macro-stretch. The newly defined semicrystalline element in Fig. 4 occupies an infinitesimal region in

space, which is divided among the two phases. In our work, the crystalline region is indicated by ordered, rectilinear chain

paths, while the amorphous region contains less ordered paths resembling a random walk. In Fig. 4 , the left element is

in the undeformed configuration, and the right element is in the deformed configuration; the configurations are annotated

with their respective notations, and each adopt an appropriate spherical coordinate system, as depicted in Fig. 4 . 

The element contains a rigid crystalline region of length r c ≡R c , and a deforming amorphous region of length r A (see

Fig. 4 ). The total length of the semicrystalline element in the undeformed state is R sc = R c + R A , and in the deformed state,

r sc = r c + r A , which can be related to the macroscopic deformation by the relations in (11) and (12) . A spherical coordi-

nate system is adopted for the undeformed and deformed configurations, as depicted in Fig. 4 . The subscript “sc” denotes

parameters used for the semicrystalline differential element. 

Following Nateghi et al. (2018) , although the crystalline region is assumed rigid (relatively), the amorphous region may

stretch, yielding the relationship r A = λA R A , where λA is the stretch of the amorphous region. The stretch along r of the

two-segment element, λ, can be defined as, 

λ = 

λA R A + R C 
R + R 

(13) 

A C 
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Fig. 4. The deformation of a segmented element consisting of crystalline and amorphous phases is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length of the crystalline segment can be determined if the material’s percent crystallinity X c is known, and defined

as 

V c = v c V (14)

where V c is the volume occupied by the crystalline phase, and V is the total volume of the RVE. These volumes are spherical,

which yields 

V = 

4 π

3 
R 3 (15)

V c = 

4 π

3 
R c 

3 (16)

Eqs. (14) –(16) can be combined to determine the initial lengths of the crystalline and amorphous regions, 

R c = v c 
1 
3 R 

R A = 

(
1 − v c 

1 
3 

)
R (17)

which can be substituted into (13) to yield 

λ = λA 

(
1 − v c 

1 
3 

)
+ v c 

1 
3 (18)

Eq. (18) relates the semicrystalline element’s stretch to the crystallinity of the material and the stretch of the amorphous

segment. If the material contains 0% crystalline phase, then v c = 0 , yielding λ = λA . Conversely, if the material is 100%

crystalline, then v c = 1 , and λ = 1 (completely rigid). This equation is thus a good start for the relation between the total

chain stretch and the amorphous segment stretch, but must still be related to macroscopic deformation. 

The semicrystalline element’s stretch can be related to the macroscopic stretches by writing r sc in terms of its compo-

nents r 1 , r 2 , and r 3 , 

r 2 = r 1 
2 + r 2 

2 + r 3 
2 , (19)

where r i = r · ˆ e i for i = 1,2,3. Relating each component to the undeformed total length and macroscopic stretches, 

( λR ) 
2 = ( λ1 R 1 ) 

2 + ( λ2 R 2 ) 
2 + ( λ3 R 3 ) 

2 
(20)

By following a procedure similar to Wu and van der Giessen (1993) , we relate the components of the semicrystalline

element’s length to the element’s orientation in the undeformed configuration, 

R 1 = Rsin 
cos �, 

R 2 = Rsin 
sin �, 

R 3 = Rcos 
, 

(21)

which yields 

λ = 

√ 

( sin 
cos �λ1 ) 
2 + ( sin 
sin �λ2 ) 

2 + ( cos 
λ3 ) 
2 

(22)
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The relation in (22) can be combined with (18) to write λA in terms of the principal stretches, 

λA = 

1 

( 1 − v c ) 

√ 

( sin 
cos �λ1 ) 
2 + ( sin 
sin �λ2 ) 

2 + ( cos 
λ3 ) 
2 − v c 

( 1 − v c ) 
(23) 

Similarly, λA may be written in an Eulerian description as λA (), 

λA = 

1 

( 1 − v c ) 
[
( sinφcosθ ) 

2 λ2 
−2 + ( sinφsinθ ) 

2 λ2 
−2 + ( cosφ) 

2 λ3 
−2 

]−1 / 2 − v c 
( 1 − v c ) 

(24) 

The derivation of λ( φ, θ ) can be found in Wu and van der Giessen (1993) . 

For later calculations, it will also be convenient to express the principal stretches of only the amorphous region, which

are denoted by λA 
i . The relations between the components of r, r c , and r A can be established as 

r i = r c i + r A i (25) 

where r c i = r c · ˆ e i and r A i = r A · ˆ e i (superscripts not to be confused with contravariant components). Similar to the procedure

used to obtain (20) , we can write 

λi R = R c + λA 
i R A (26) 

and with the help of (17) , substitutions for R c and R A can be made. After rearranging (25) , λA 
i can be determined, 

λA 
i = 

λi − v c 
1 
3 

1 − v c 
1 
3 

(27) 

2.2. Traction-free equilibrium 

The electrostrictive material is assumed to have an electromechanical strain energy-density, W. The Cauchy stress, T , can

be written as a function of W by a constitutive law between W and T derived for an isothermal, electromechanical process

(developed by Richards, et al. (2010) via the Clausius–Duhem inequality). Thus, the expression for T is given by 

T = 

2 

J 

∂W 

∂B 

B + q I, (28) 

where q is a Lagrange multiplier enforcing the incompressibility constraint, and I is the second order identity tensor. In

describing the behavior of a small section of this electrostrictive material, it is assumed the body is traction-free and its

boundary ∂� is not subjected to any constraints on deformation. These assumptions represent traction free self-equilibrium

(free deformation), T = 0 . 

From (28) , the forms of each stress are 

T 11 = λ1 
∂W 

∂ λ1 

+ q, T 22 = λ2 
∂W 

∂ λ2 

+ q, T 33 = λ1 
∂W 

∂ λ3 

+ q. (29) 

The purpose of this model is to determine the electromechanical response of the material operating in a planar elec-

trostriction mode, which is often measured in terms of strain in the 3-direction versus electric field. Thus, the principal

stress difference between is considered, 

T 33 − T 11 = λ3 
∂W 

∂ λ3 

− λ1 
∂W 

∂ λ1 

, (30) 

Eliminating the unknown hydrostatic stress. 

Eqs. (5) –(14) form the kinematic basis for the model developed in this work. In the next section, the Helmholtz free en-

ergy relating elastic to electric energy densities within the EAP is derived such that the Cauchy stresses may be determined.

3. Electromechanical response of a hyperelastic biphasic body with dipole-dipole interactions 

This section outlines the methodologies for including microstructure as defined by averages of crystalline domains’ rel-

ative spatial locations and orientations in to the electrostriction model. The biphasic aspect of the microstructure of PVDF-

based RFE polymers is also considered through free energy contributions of each phase. It is assumed that the amorphous

phase provides a hyperelastic and linear dielectric response while the crystalline phases contribute to the free energy solely

through their electrostatic interactions. 

3.1. Free energy formulation of a biphasic body 

The strain energy density of a body composed of a crystalline and an amorphous phase is postulated as 

W = W A,El + W A,LD + W C , (31) 
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where W A, El and W A, LD are the elastic and electrostatic (linear dielectric) responses of the amorphous phase, respectively,

while W C is the dipolar response of the crystalline phase. This decomposition of the energy density function into the con-

tributions from the amorphous phase and the crystalline phase is similar to the models developed by Richards (2010) and

Zah (2014) , which implemented multiple contributions into their material energy densities. The following subsections ex-

plore the separate contributions of each phase’s response to the total energy density, W . 

3.2. Hyperelastic response of the amorphous phase 

The relaxational behavior of semicrystalline RFE polymers is due to the behavior of the amorphous phase ( Ang et al.,

20 05; Lu, et al., 20 06; Lu, et al., 2008 ). We assume that the amorphous phase has a hyperelastic response, which can be

described by an energy density function W A, El . Furthermore, the problem is simplified by assuming that the ellipsoidal

amorphous phase of the material exhibits affine deformation, with stretch apportioning following (23) , and its elastic re-

sponse is governed by the eight-chain hyperelastic model by Arruda and Boyce (1993) , due to its efficacy modeling poly-

meric materials in multiple deformation states and physical network basis. The eight-chain model, after approximation, has

the form 

W 8 ch ( I 1 , λm , C 1 ) ≈ C 1 

[
1 

2 
( I 1 − 3 ) + 

1 

20 λm 

2 

(
I 1 

2 − 9 
)

+ 

11 

1050 λm 

4 

(
I 1 

3 − 27 
)

+ 

19 

70 0 0 λm 

6 

(
I 1 

4 − 81 
)

+ 

519 

673750 λm 

8 

(
I 1 

5 − 243 
)]

, (32)

where I 1 is the first principal invariant as defined in (2) ; C 1 and λm are experimentally determined constants; The constant

λm also has a physical interpretation: it is the number of rigid links in a polymer chain. 

The elastic energy must be written for only the amorphous segment of the semicrystalline element (see Fig. 4 ), which

demands the modification of I 1 such that it represents the stretch of only the amorphous phase: I A 1 = I 1 ( λA ) . As a result,

we obtain W 8 ch ( I 
A 
1 
, λm , C 1 ) for the elastic energy of the amorphous phase. 

Additionally, the elastic energy density must be scaled by the volume fraction occupied by the amorphous phase, which

is proportional to ( 1 − v C ) , 

W A,El = ( 1 − v c ) W 8 ch 

(
I A 1 , λm , C 1 

)
. (33)

Since the elastic energy describes the energy of our chosen differential element, we must average the energy over the

entire range of orientations based on a probability density function, f sc ( φ, θ ). The average energy 〈 W A, El 〉 is defined by the
integral 

〈 W A,El 〉 = 

( 1 − v c ) 
A el 

∫ π

0 

∫ 2 π
0 

f sc ( φ, θ ) W 8 ch 

(
I A 1 ( φ, θ ) , λm , C 1 

)
sinφd θdφ (34)

The constant A el is a normalizer, determined by 

A el = 

∫ π

0 

∫ 2 π
0 

f sc ( φ, θ ) sinφd θdφ. (35)

In the Lagrangian description, 〈 W A, EL 〉 can also be written as ( Wu and van der Giessen, 1993 ) 

〈 W A,El 〉 = 

(
1 − v c 1 / 3 

)
A el 

∫ π

0 

∫ 2 π
0 

f sc ( 
, �) W 8 ch 

(
I A 1 ( 
, �) , λm , C 1 

)
sin 
J −1 d�d
. (36)

We assume that the chain’s orientation distribution is initially uniformly distributed, since the amorphous region exists

in the same amount in every direction around the crystalline domain inside the RVE (see Fig. 3 ), resulting in A el = 1 / 4 π .

Furthermore, the Lagrangian description of 〈 W A, EL 〉 will be of more use to us since the initial distribution f sc ( 
, �) is known.

However, due to the difficulty in obtaining an analytical solution to (36) , we consider a discretized approach to calculating

the integral in (36) numerically, 

〈 W A,El 〉 = n 
(
1 − v c 1 / 3 

) N �∑ 

i 

N 
∑ 

j 

f sc 
(

 j , �i 

)
W 8 ch 

(
I A 1 

(

 j , �i 

)
, λm , C 1 

)
sin 
J −1 ���
, (37)

where �� and �
 are step sizes for the angles, and N � and N 
 are the total number of steps, which are related to the

step sizes by N ��� = 2 π and N ��
 = π . 

3.3. Linear dielectric response of the amorphous phase 

Following Capsal et al. (2012) , the amorphous phase comprises chain structures that generate a linear dielectric response.

Its saturation field is very high, but its dielectric constant (approx. 1–5) is significantly lower than the effective dielectric

constant produced by the crystalline phases (approx. 50 or greater), as discussed in Capsal et al. (2012) . 
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Fig. 5. Variables defining the orientations and separation of two dipole moments with respect to the basis vector ˆ e 3 . The angles calculated in Eq. (68) are 

visually depicted at relevant locations; α1 is drawn separately for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

The linear dielectric energy density of the amorphous phase can be written as 

W A,LD = ( 1 − v c ) 
J 

2 
εr ε0 ( E · E ) , (38) 

where εr is the relative electric permittivity of the amorphous phase, ε0 is the electric permittivity of free space, and E is

the applied field. The form of (37) is a common representation of a linear dielectric material response, scaled by the volume

fraction of the amorphous phase, ( 1 − v c ) . 

3.4. Dipole-dipole interactions of crystalline phases 

As noted in Section 1.2 , relative spatial and orientation characteristics of dipolar domains are important to their energetic

contributions and subsequent electro-mechanical coupling. Consequently, the work herein seeks to develop a model frame-

work that incorporates those dependencies. The model framework begins with a statement of the interaction energy ( Duan

et al., 2004 ) between two crystalline domains, treated as nominally point dipoles of dipole moments p 1 and p 2 , as shown

in Fig. 5 . The energy is in the form of 

U d = 

1 

4 πε

[ 
p 1 · p 2 
r 3 

− 3 ( p 1 · r ) ( p 2 · r ) 
r 5 

] 
. (39) 

where r is the dipole-dipole separation vector with a magnitude of r , and ε is the electric permittivity of the medium that

contains the dipoles. This permittivity, ε, should not be confused with the overall permittivity of the polymer; it is strictly

the permittivity of the space—or medium—between the dipoles. 

The free energy of the crystalline domains is assumed comprised wholly of the potential between dipoles. Consequently,

the energy density of the crystalline domain W C can be written as 

W C = 

1 

V c 
U d . (40) 

where the volume of the crystalline phase is V c = v c V tot . Specifically, (40) characterizes the attractive or repulsive potentials
between a pair of crystalline domains, associated with �C i 

. This dipole energy will be coupled to the elastic energy, which

characterizes the elastic potential of the amorphous domains, �A , in a representative volume element to derive the total

free energy density. 
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For a convenient assessment of the electromechanical strains, the dipolar energy density can be written in terms of F

by substituting the kinematic relationships in (11) and (12) and the definition of the interaction energy in (39) , into (40) ,

yielding 

˜ W C = 

1 

4 πX c V tot ε

[
p 1 · p 2 

[ F R · F R ] 
3 / 2 

− 3 ( p 1 · F R ) ( p 2 · F R ) 

[ F R · F R ] 
5 / 2 

]
. (41)

Finally, the total energy density of the material is rewritten by combining (37) and (41) , 

˜ W = 

(
1 − X C 

1 / 3 
)

A el 

N �∑ 

i 

N 
∑ 

j 

f sc 
(

 j , �i 

)
W 8 ch 

(
I A 1 

(

 j , �i 

)
, λm , C 1 

)
sin 
J −1 ���
 + ( 1 − X C ) 

J 

2 
εr ε0 ( E · E ) 

+ 

1 

4 πX c V tot ε

[
p 1 · p 2 

[ F R · F R ] 
3 / 2 

− 3 ( p 1 · F R ) ( p 2 · F R ) 

[ F R · F R ] 
5 / 2 

]
. (42)

4. Orientation dependence of polarization of crystalline domains 

4.1. Determining magnitude of the average dipole moment 

When subject to an external field, the crystalline domains, �i , comprise collinear electric dipoles resulting in a net dipole

moment p per crystalline domain. We assume that each crystalline domain exhibits an average dipole moment strength, p .

It is convenient to write the dipole moment of a crystalline domain as 

p = p ̂  p (43)

where the dipole moment vector is split into its magnitude p and the orientation component, ˆ p , which is the unit vector

defined as 

ˆ p = cos θp sin φp ̂  e 1 + sin θp sin φp ̂  e 2 + cos φp ̂  e 3 (44)

where θp and φp are new polar and azimuthal angles defined for the dipole moment vector with respect to the orthonormal

basis vectors, as shown in Fig. 5 . 

When considering the alignment of dipoles, the angle φp is of interest, as it defines the alignment of the dipole with

respect to the direction of the applied field, prescribed as ˆ e 3 . This angle can be better visualized in Fig. 5 , which depicts two

dipoles separated by some vector r , each assigned φp i . 

The average dipole moment magnitude p can be determined by assessing the polarization of a representative volume

element (RVE) under the saturation condition, E → ∞ , which implies lim 

E→∞ 

P → P sat , where P sat is the saturated electric polar-

ization density. Assuming that all crystalline domains will perfectly align at some saturation field strength, at saturation the

dipole moment magnitude p can be nominally expressed as 

p = 

V tot P sat 

N 

, (45)

in which N is the number of dipoles (i.e., crystalline domains) within the RVE of volume V tot . Note that P sat is a directly

measurable quantity. 

Substitution of (44) and (45) in (43) yields, 

p = 

V tot P sat 

N 

(
cos θp sin φp ̂  e 1 + sin θp sin φp ̂  e 2 + cos φp ̂  e 3 

)
. (46)

4.2. Dipole moment orientations based on a probability distribution function 

This subsection introduces the concept of polar domain orientations as a function of electric field. This relationship is

characterized by a von Mises distribution function incorporating previous descriptions of the average orientation of dipoles

to derive an expression for a probability distribution function (PDF) of polar domain orientations that is a function of the

applied electric field, E . 

The dipole-dipole energy in (39) is influenced by crystalline domains alignments with respect to the field, and with

respect to each other. The alignment of a set of crystalline domains can be described by a distribution function, denoted

by f φp 
, through which we can determine the relationship between the applied electric field and the average alignment of

crystalline domains. The alignment is quantified by ω, as defined in Fig. 5 , which assumes rotational symmetry about ˆ e 3 (an

artifact of assuming in-plane isotropy). The angle is defined in this manner for convenience in later calculations. 

We consider the collection of crystalline domains with net dipoles p , of uniform strength, p , with varying orientations

about the axis ˆ e 3 , defined by φp in (44) (see Figs. 2 and 5 ). For the set of dipoles, the average dipole moment can be

expressed as 

〈 p 〉 = 

〈
p ̂  p 

〉
(47)
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Fig. 6. Relationship between φp and E as calculated by (51) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In (47) , the brackets 〈 · 〉 denote the average over all dipoles. 
The average orientation of the dipoles with respect to ˆ e 3 based on a probability distribution function is adopted as 

〈 cos φp 〉 = 

1 

A φp 

∫ π

−π
f φp 

(
φp 

∣∣ μ, b φp 

)
cos φp d φp , (48) 

where f φp 
( φp | μ, b φp 

) denotes a von Mises (wrapped normal) distribution, with the form 

f φp 

(
φp 

∣∣ μ, b φp 

)
= 

e b φp 
cos ( φp −μφp ) 

2 π I 0 
(
b φp 

) , (49) 

in which φp ∈ [ −π, + π ] , while μφp 
is the mean of the distribution, I 0 is the modified Bessel function of the first kind

with order 0, and b φp 
is the concentration parameter that determines the width of the distribution of dipole orienta-

tions about the mean μφp 
. The term A φp 

normalizes the distribution and can be computed by equating the integral of

f φp 
( φp | μ, b φp 

) d φp over the domain of interest to unity. In this context, we emphasize that this distribution of dipole ori-

entations refers to the distribution of dipole orientations of the crystalline domains, �i . Each crystalline domain is treated as

a single dipole. With this distinction in mind, the dipoles—or crystal domains—are assumed to perfectly align with the field

along ˆ e 3 (given E = E ̂  e 3 ) as E → ∞ , so the mean of the distribution in (49) is set to μφp 
= 0 . It is possible that variable

processing or loading conditions may in the future warrant μφp 
� = 0 . 

The utility of the distribution function lies in its statistical representation of a set of domains that gradually align with

an external field. The distribution’s concentration, b φp 
, couples the effect of the external field to the change in alignment

of the crystalline domains. Without influence of an electric field, it is assumed that crystalline domains exist in a ran-

domly oriented state characterized by b φp 
= 0 . A uniform distribution of dipole orientations falls in a full circular range,

such that there is an equal probability of a dipole within the collection to be at any orientation between φp = −π and

φp = + π . By contrast, a higher value such as b φp 
= 5 means there is a much greater probability of dipole orientations near

the mean alignment μφp 
. To determine the relationship between electric field and the concentration parameter, we con-

sider the averaging method for dipole orientations found in the appendix of Capsal et al (2012) , in which the average dipole

orientation 〈 cos φp 〉 is expressed as 

〈 cos φp 〉 = coth 

[ 
E 

E s 

] 
− E s 

E 
. (50) 

Thus, combining (48) –(50) yields 

coth 

[ 
E 

E s 

] 
− E S 

E 
= 

1 

A f 

∫ π

0 

e b φp 
cos ( φp −μφp ) 

2 π I 0 
(
b φp 

) cos φp d φp , (51) 

which can be used to evaluate b φp 
as a function of the experimentally applied electric field strength E by seeking successive

[ E, b φp 
] pairs that satisfy (51) , to within a given tolerance, for an experimentally determined constant, E s . (Note: E s is not the

field at which saturation occurs, but the field when the polarization response breaks from a linear regime. Consequently, a

typical RFE polymer will not saturate until far beyond E s . This notation is adopted to stay consistent with Capsal et al., 2012 .)

The correlation between E and b φp 
is shown in Fig. 6 . 

Fig. 7 illustrates the relationship between E and b φp 
with a plot of the distribution in (49) at varying electric field

strengths. As E increases, the probability of alignment increases near φp = 0 , the direction of E . 
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Fig. 7. A von Mises distribution function is chosen as the PDF of the electric dipoles. With the implementation of b φp 
= b φp 

(E) solved in (51) , the model 

represents a set of dipoles progressively aligning with the field direction ( φp = 0 ) as E is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The purpose of deriving the [ E, b φp 
] pairs is to utilize them in assessing the average of the dot products, 〈 p 1 ·p 2 〉 , in the

interaction energy, (41) . One approach to calculating 〈 p 1 ·p 2 〉 is by determining the average angle of the dipoles 〈 φp 〉 with

respect to the field such that the average dipole moment unit vector 〈 ̂  p 〉 is written as 〈
ˆ p 
〉
= cos θp sin φp ̂  e 1 + sin θp sin φp ̂  e 2 + cos φp ̂  e 3 , (52)

where 〈 θp 〉 is the average angle based on a uniform distribution f θp ( θp | μθp = 0 , b θp = 0 ) , and 〈 φp 〉 is calculated by applying
the [ E, b φp 

] pairs determined by (51) into 

〈 φp 〉 = 

1 

A φp 

∫ π

0 

f φp 

(
φp 

∣∣ μφp 
, b φp 

( E ) 
)
φp d φp , (53)

and similarly 

〈 θp 〉 = 

1 

A θp 

∫ π

0 

f θp 

(
θp 

∣∣ μθp 
= 0 , b θp 

= 0 
)
θp d θp , (54)

in which A φp 
and A θp normalize the integrals over the domain. 

The form of 〈 ̂  p 〉 incorporated into the first term of (41) reduces to 〈 ̂  p 〉 · 〈 ̂  p 〉 = 1 , which may not always be true, be-

cause crystalline domains are not assumed collinear with each other. Alternatively, we can determine the average dot prod-

uct 〈 ̂  p · ˆ p 〉 , by discretely sampling two sets of angles, { φp 1 , θp 1 } and { φp 2 , θp 2 }, based on the distributions (53) and (54) ,

utilizing a von Mises distribution function in (49) , and evaluating at [ E, b θp ] pairs. The sets of angles yields two sets of

dipole moment directions, { ̂  p 1 } and { ̂  p 2 } , such that the average dot product 〈 ̂  p · ˆ p 〉 can be evaluated by 
〈
ˆ p 1 · ˆ p 2 

〉
= 

1 

N p 

N p ∑ 

k =1 

{
ˆ p 1 

}
k 
·
{
ˆ p 2 

}
k 
. (55)

Similarly, the average dot products 〈 ̂  p 1 · ˆ r 〉 and 〈 ̂  p 2 · ˆ r 〉 can be calculated by 
〈
ˆ p 1 · ˆ r 

〉
= 

1 

N p 

N p ∑ 

k =1 

{
ˆ p 1 

}
k 
· ˆ r , (56)

〈
ˆ p 2 · ˆ r 

〉
= 

1 

N p 

N p ∑ 

k =1 

{
ˆ p 2 

}
k 
· ˆ r (57)

The sample size N p is studied more in the next section. It is noted that the expressions (55) –(57) provide a means of

estimating the required dot products and carry the assumption that the magnitudes of crystalline domains, p , are uniform

across all crystallites, which places variance of (47) into ˆ p , where p = 〈 p ̂  p 〉 . As a result, 

W C = 

p 2 [〈
ˆ p 1 · ˆ p 2 

〉
− 3 

〈
ˆ p 1 · ˆ r 

〉〈
ˆ p 2 · ˆ r 

〉]
. (58)
4 πX c V tot εr 3 



48 A. Erol et al. / Journal of the Mechanics and Physics of Solids 124 (2019) 35–62 

Fig. 8. The RVE is represented by a sphere annotated with quantities with a subscript of 1, while a neighboring RVE is indicated by the second sphere 

annotated with quantities with subscript 2. Depiction of spheres in (a) represent the undeformed shapes of the RVE and neighboring body with no field 

present, at an initial relative orientation of crystallites defined, and (b) illustrates the deformed shapes of the RVE and neighboring body under an applied 

field along ˆ e 3 , creating nominal ˆ e 3 -alignment and dipole-dipole forces, and subsequent uniaxial compression of the RVE. Please note that the neighboring 

RVE display does not represent a spherical contact problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Formulation of electrostrictive model for different network models 

5.1. Derivation of the discrete network model response under a principle deformation mode 

In this subsection, we consider the interaction of the RVE with neighboring crystalline domains to study the coupling of

the dipole-dipole forces between crystalline domains with the hyperelasticity of the amorphous phase within the RVE. Con-

sider the chosen single-crystallite RVE (see Fig. 3 ), which represents any chosen semicrystalline region in the material. The

crystalline domain in this RVE, which we assume behaves as a rigid polarizable region (whose dipole moment is treated as

a point dipole located at its center), experiences interactions with neighboring dipoles. To represent the dipole-dipole inter-

action effect of the nearest neighbor crystalline domains on the RVE, we draw a second body containing another crystalline

domain at an arbitrary orientation 
r from the RVE’s center point, as shown in Fig. 8 . The second body is shown more

transparent because we are only considering its interaction effects on the main RVE. It should be noted that the ellipsoidal

volumes are meant to give geometric definition to the regions of influence of any given crystallite dipole. Consequently, the

deformation of these volumes is imposed with respect to the macroscopic deformation gradient, and not, as the figure might

suggest, spherical contact mechanics. The interaction energy of the dipoles induces deformation over the affected volumes

that produces strain energy within their amorphous phases in balance with the dipole energy. Additionally, it should be

noted that the bodies are cut to better show the angles associated with the dipole moments of each crystalline domain. We

further assume that all crystalline domains are separated by the same distance R = 2 R RV E , which allows us to conveniently

adopt (41) without any changes in notation. The initial case we study is a fixed 
r ( 
r = const. ), referred to as the discrete

network model, which will allow us to determine the effects of relative spatial locations of the nearest crystalline domains

on the RVE. Later adaptations of this framework will provide means of more complex network averaging schemes over a

range of 
r . 

The representative volume element (RVE) is assumed spherical, initially, and incompressible, such that the nominally

constant volume can be written as 

V RV E = 

4 

3 J 
π( R RV E ) 

3 
, (59) 

where the Jacobian J is defined in (62) . 

Given the analysis of this paper focuses on electrostriction, the semicrystalline body is assumed to undergo affine defor-

mation in the principle space, for which the deformation gradient holds the form 

F = 

( 

λ1 0 0 
0 λ2 0 
0 0 λ3 

) 

, (60) 

As shown in Fig. 8 , the network model is defined within a Cartesian coordinate system with basis vectors { ̂  e 1 , ̂  e 2 , ̂  e 3 } and
two spherical coordinate systems with coordinates { R , �, 
} and { r, θ , φ} in the undeformed and deformed configurations,

respectively. These coordinates allow for more convenient derivations of the energy of the network model. 
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Maintaining the assumption of uniaxial deformation, the magnitude of the vector r between the two dipoles in Fig. 8 can

be written in terms of the spherical coordinate system as 

r = R 
(
λ1 cos �r sin 
r ̂  e 1 + λ2 sin �r sin 
r ̂  e 2 + λ3 cos 
r ̂  e 3 

)
(61)

where the principle stretch terms λi correspond to each principle direction. The common incompressibility assumption is

made, so that J = 1 , where J is the Jacobian defined as 

J = detF . (62)

Consequently, 

J = λ1 λ2 λ3 = 1 . (63)

Typically, electrostriction is measured in terms of the applied field versus strain in the direction of the field, which is

conventionally the 3-direction. To comply with existing measures, we set E = E ̂  e 3 , and put focus on λ3 . We assume that the

directions transverse to the direction of polarization will experience equivalent electromechanical strain, i.e., the principal

electrostriction in-plane is isotropic. The resulting stretch dependences can be written as 

λ1 = λ2 = λ3 
− 1 

2 . (64)

Substitution of (64) into (61) yields a stretch dependent expression for the deformed radius magnitude, r , namely 

r = R 
√ 

λ3 
−1 

sin 
2 
r + λ3 

2 
cos 2 
r . (65)

We can also consider rewriting λA for the electrostriction case, utilizing (64) , which reduces (8) to 

λA = 

1 

( 1 − v c ) 

√ (
si n 2 


)
λ3 

−1 + 

(
co s 2 


)
λ3 

2 − v c 
( 1 − v c ) 

(66)

Additionally, the constitutive relation in (30) can be written in terms of λ3 by substitution of (64) . This form is amenable

to the determination of electrostrictive response, E vs. λ3 and given by 

∂W 

∂ λ3 

= 0 . (67)

The substitution of R = 2 R RV E , dipole moment magnitude (45) , N = 1 (for one crystalline domain in RVE), and the radius

(65) into the energy in (58) , yields 

W C = 

P sat 
2 

3 v c ε
(
λ3 

−1 
sin 

2 
r + λ3 
2 
cos 2 
r 

)3 / 2 [〈 ˆ p 1 · ˆ p 2 
〉
− 3 

〈
ˆ p 1 · ˆ r 

〉〈
ˆ p 2 · ˆ r 

〉]
. (68)

For simplicity, we will drop the subscript on λ3 such that λ3 = λ. The dot products in (68) are averages determined

by the sampling from the von Mises distribution ( N ω = 10 5 ) in (49) –(51) , and the orientation 
r . Upon substitutions made

into (68) , and the resulting simplifications, W C becomes independent of R and R RVE , allowing us to isolate the influences of

only orientation components of the dipole positions when calculating electrostriction. Consequently, this RVE structure will

suffice for the purpose of this study. 

The elastic energy can also be simplified for the electrostriction case. The local invariant, in its general form I A 
1 

= ( λA 
1 
) 2 +

( λA 
2 
) 2 + ( λA 

3 
) 2 , can be written as I A 

1 
= ( 2 λA 

3 
) −1 + ( λA 

3 
) 2 , in which λA 

i 
are the principal stretches of just the amorphous region,

as defined in (27) . With the substitution for I A 1 , the total energy can be written, 

˜ W = 

( 1 − v c ) 
A el 

N �∑ 

i 

N 
∑ 

j 

f sc 
(

 j , �i 

)
W 8 ch 

(
I A 1 

(
λ, 
 j , �i 

)
, λm , C 1 

)
sin 
���
 + ( 1 − v c ) 

λ−2 

2 
εr ε0 ( E · E ) 

+ 

P sat 
2 

3 v c ε
(
λ−1 sin 

2 
r + λ2 cos 2 
r 

)3 / 2 [〈 ˆ p 1 · ˆ p 2 
〉
− 3 

〈
ˆ p 1 · ˆ r 

〉〈
ˆ p 2 · ˆ r 

〉]
(69)

5.2. Analysis of the response of two cases of the discrete network model 

Two limiting cases emerge from the arbitrarily oriented discrete network model shown in Fig. 8 : the parallel, ‖ , and per-
pendicular, ⊥ , discrete neighboring crystallite locations. These cases derive their names from the neighboring RVE’s orien-

tation with respect to the applied field. Hence, the parallel discrete network model consists of crystalline domains oriented

parallel to E , and the perpendicular case assumes neighboring crystalline domains to exist perpendicular with respect to E .

These two specific cases of the discrete network model are illustrated in Fig. 9 . 

The significance of the two specific discrete network cases is apparent from the behavior of W C , which is based on

dipole-dipole interactions. The energy (68) is a function of the direction of r , and the orientations of p 1 and p 2 . The energy

can be reduced in each special case as E → ∞ , yielding 

lim 

E→∞ 

W̄ C, ‖ = −
(

2 P s 
2 

3 v c ε

)
λ−3 , (70)
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Fig. 9. The discrete network model is shown for two specific cases. The parallel case is shown in (a), where the vector to nearest neighboring crystalline 

domain, r , is parallel to the external field, while in the perpendicular case in (b) r is perpendicular to the external field. 

 

 

 

 

 

 

And 

lim 

E→∞ 

W̄ C, ⊥ = 

(
P s 

2 

3 v c ε

)
λ3 / 2 . (71) 

To gain a better understanding of the geometry-dependent qualitative differences between the two limiting cases of the

discrete network model, we non-dimensionalize each subcase’s energy function by the constant P 2 s / ( 3 X C ε) leaving 

W 
∗
C = W C 

(
P s 

2 

3 v c ε

)−1 

(72) 

In (72) , the asterisk on W C denotes its non-dimensionalized property. The limit of the parallel and perpendicular single

chain network models as E → ∞ are expressed below in (73) and (74) , respectively. 

lim 

E→∞ 

W̄ 
∗
C, ‖ = −2 λ−3 (73) 

lim 

E→∞ 

W̄ 
∗
C, ⊥ = λ3 / 2 (74) 

These energies are compared in Fig. 10 a as functions of λ, both exhibiting an increase in energy as λ increases. Due to the

coefficients in (73) and (74) , the parallel case is greater in magnitude by a factor of 2 than the energy of the perpendicular

case at λ = 1 (as shown in Fig. 10 a), and the rate of change of the parallel case is higher below λ = 1 due to the higher

order exponential on λ in (73) compared to (74) . Furthermore, the signs of (73) and (74) are opposite, which implies that in

the transition between the two extreme cases, there is a state of orientation that generates zero interaction energy. 

The stress generated by the interaction energy of the dipoles can be determined by 

T ∗C = 

∂ W 
∗
C 

∂λ
. (75) 

With (75) , the forces corresponding to the two cases of the single chain network model are shown in (76) and (77) , 

lim 

E→∞ 

T ∗C, ‖ = 6 λ−4 (76) 
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Fig. 10. The non-dimensionalized energies (a) and the corresponding forces (b) of the two cases of the single chain network model, parallel and perpendic- 

ular, are plotted versus the stretch in the direction of the applied electric field. The comparisons highlight key differences in the strengths of the interactive 

energies/forces between the parallel and perpendicular cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim 

E→∞ 

T ∗C, ⊥ = 

3 

2 
λ1 / 2 . (77)

These dipolar stresses are plotted in Fig. 10 b. There are significant differences between (76) and (77) : firstly, the parallel

case, (76) , has a coefficient of 6, while the perpendicular case, (77) , has a coefficient of 3/2. Thus, when λ = 1 and E → ∞ ,

the ratio of T ∗
C, ‖ : T ∗C, ⊥ , is 4:1. In addition, the fourth-order exponent on λ in (76) results in a quartic increase as λ→ 0, while

the exponent in (77) is 1/2. Consequently, as λ→ 0, the ratio of the forces, T ∗
C, ‖ : T ∗C, ⊥ diverges towards ∞ . 

In comparison, the dielectric energy of the amorphous phase, under the incompressibility assumption and E = E ̂  e 3 , can

be simplified to 

W A,DE = ( 1 − v c ) 
λ3 

−2 

2 
εr ε0 E 3 

2 (78)

The stress generated by the amorphous phase’s dielectric response can also be defined, 

T A,DE = 

∂ W A,DE 

∂ λ3 

= λ3 
−3 εr ε0 E 3 

2 (79)

Recall that the dielectric constant of the amorphous phase εr is relatively low: approximately between 1 and 5

( Capsal et al., 2012 ). At low fields, when E 3 ∼10 6 V / m , the order of magnitude of the amorphous phase’s dielectric con-

tribution is σ A, DE ∼10. At high fields, when E 3 ∼10 8 V / m, σ A, DE ∼10 4 . 

In contrast, the crystalline phase’s dielectric response is driven by dipole-dipole interactions. The parallel and perpendic-

ular spatial alignment cases are considered for the dipole-based energy, which yield the stresses, 

T C, ‖ = 

P s 
2 λ−4 

v c εr ε0 
F ( E ) , 

T C, ⊥ = 

P s 
2 λ3 / 2 

2 v c εr ε0 
F ( E ) , (80)

The function F ( E ) contains the Langevin orientation model (found in second term of Eq. 33 ) and determines the dot prod-

ucts of the dipole moment, and separation vectors. The output of F ( E ) varies between 0 and 1 for the perpendicular case,

and 0 and 2 for the parallel case; furthermore, due to a relatively low field saturation of the crystalline phase, the contribu-

tions of the crystalline regions will quickly reach their maximum values within the typical range of applied field in experi-

ments, which is between 0 and 150 MV/m. Consequently, the magnitudes of the crystalline phase’s forces (at non-extreme

λ values; i.e, λ∼1) are largely determined by the order of magnitude of P s 
2 
/ ( v c εr ε0 ) , which is 10 9 if P s 

2 ∼ 10 −2 C/ m 
2 ,

εr ε0 ∼ 10 −12 F /m , and v c ∼ 10 −1 . Thus, dipolar stresses generated by the crystalline phase will achieve stress on the order

of 10 9 Pa near saturation (i.e., 150 MV / m ). 

Due to its relatively small stress generation with respect to the crystalline phases, the dielectric contribution of the

amorphous phase can be ignored within the ranges that will be analyzed in this study. 

Consequently, the non-dimensionalization of the coupled response can be calculated by the traction-free equilibrium

of only the crystalline phase’s dipolar response and the amorphous phase’s elastic response. Enforcing equilibrium 

dW 
∗
C 

∂λ
+

dW 
∗
A,El 

∂λ
= 0 , results in 

∂W 
∗
A,El 

∂ λ3 

= −H 

(
∂W 

∗
C 

∂ λ3 

)
. (81)
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where the parameter H is a combination of model parameters defined as H = P sat 
2 
/ ( 3 C 1 v c ε) , and the energy W 

∗
A,El 

is a result

of non-dimensionalization, W 
∗
A,El 

= W A,El / C 1 . Accordingly, the forms of both sides of (81) may be determined by substituting

the dipolar energy, (68) , and the elastic energy in (37) , into (81) , yielding 

( 1 − v c ) 
A el 

N �∑ 

i 

N 
∑ 

j 

f sc 
(

 j , �i 

)
W 

∗
8 ch 

(
I A 1 

(
λ, 
 j , �i 

)
, λm 

)
sin 
���


= −H 

∂ 

∂ λ3 

[ (
λ−1 sin 

2 
 + λ2 cos 2 

)− 3 

2 

] (〈
ˆ p 1 · ˆ p 2 

〉
− 3 

〈
ˆ p 1 · ˆ r 

〉〈
ˆ p 2 · ˆ r 

〉)
(82) 

The right hand side of (82) is the product of H and the dimensionless stress corresponding to the dipole energy. This

dipolar stress will vary for the two extreme cases because the dot products 〈 ̂  p 1 · ˆ r 〉 and 〈 ̂  p 2 · ˆ r 〉 depend on placement of

neighboring crystalline domains, which affects ˆ r . In the parallel case ( R = R ̂  e 3 ), an increase of field will yield 〈 ̂  p 1 · ˆ r 〉 →
1 , and 〈 ̂  p 2 · ˆ r 〉 → 1 . In contrast, as the field increases in the perpendicular case ( R = R ̂  e 1 ), the dot products will approach

towards 〈 ̂  p 1 · ˆ r 〉 → 0 , and 〈 ̂  p 2 · ˆ r 〉 → 0 . The assessments of 〈 ̂  p 1 · ˆ r 〉 and 〈 ̂  p 2 · ˆ r 〉 are performed by sampling a set of dipole

moments from the von Mises distribution. The electric field dependence of these dot products causes the dipolar stress to

be driven by the electric field, for which we choose a dimensionless parameter, E ∗ = E/ E s , implemented into (51) to obtain

the orientation distribution parameter b 
p 
used to calculate dipole moment angles. 

To visually illustrate equilibrium, the two sides of (82) , representing the elastic and dipolar stresses, are plotted versus λ
in Fig. 11 . The parameter H is set to 1 (one). The intersection between the elastic and the dipolar stress differences indicates

the equilibrium stretch-state for the traction-free body. Fig. 11 a plots the stress differences for the parallel case, and Fig. 11 b

for the perpendicular case. Initially in each figure, at E ∗ = 0 the dipole energy is identically zero and the elastic energy

crosses the y -axis at λ = 1 signaling the undeformed state as expected. As E ∗ increases, the dipolar stress difference curve

amplifies, shifting the equilibrium towards the left, meaning a contraction in the ˆ e 3 direction (i.e., electrostriction response).

However, while the perpendicular case in Fig. 11 b depicts intersection over the full range of E ∗ shown, the parallel case

in Fig. 11 a becomes tangent to the dipole stress near E ∗ = 7 . Consequently, beyond λ = 7 there is no solution to (82) . This

phenomenon can be physically interpreted as the field strength at which the dipolar stresses overcome the elastic stresses

of the material, resulting in a phenomenon similar to the pull-in instability, as defined in Zhao and Wang (2014) . 

This type of mechanical failure has been studied for dielectric materials (i.e., pull-in instability), but it has not been

studied for RFE polymers in the same manner ( Plante and Dubowsky, 2007; Zhao and Suo, 2009; Dorfmann and Ogden,

2017; Zhao and Wang, 2014 ). Pull-in instability in dielectric elastomers is typically studied via the energy for an ideal linear

dielectric material with a Neo-Hookean elastic model, as developed in Zhao and Wang (2014) , in the form of 

W LD = C 10 
(
λ2 − 2 λ−2 − 3 

)
+ 

λ2 D 
2 

2 ε 
, (83) 

where C 10 = 
1 
2 NkT , ɛ is the dielectric constant, and D is the electric displacement in the ˆ e 3 direction. The nominal stress

calculated by Zhao and Wang (2014) is 

s 3 = C 10 
(
λ − λ−2 

)
+ 

λD 
2 

ε 
, (84) 

and D is related to E by the relation, 

E = 

Y 

h 
= 

λ2 D 
2 

ε 
, (85) 

in which Y is the voltage and h is the distance between two compliant electrodes attached to the dielectric elastomer. 

Substituting (85) into (84) and setting s 3 = 0 for traction free equilibrium yields √ 

ε 

C 10 

Y 

h 
= 

√ (
λ − λ4 

)
. (86) 

Multiple similarities can be drawn between (86) and (82) . Namely, the left- and right-hand sides of both equa-

tions represent stresses related to either the elastic or the dipolar energies, with a coefficient H = 

√ 

ε/ C 10 in (86) and

H = P sat 
2 
/ ( 3 C 1 v c ε) in (82) . In our model, ε represents the electric permittivity of the medium between the dipoles, whereas

in the linear dielectric model, ɛ represents the average permittivity (or dielectric constant) of the entire material. Mean-

while, the differences between the two approaches are evident when considering the physical representations of the models.

While the energies explored in our proposed model can be attributed to the interactions between domains and the amor-

phous phase’s elastic response, the dielectric and elastic energy components in (83) are not based on any microstructure

characteristics, and instead rely on phenomenological modeling. 

The electrostrictive response of a material can be calculated by solving the nonlinear Eq. (82) for pairs of [ E, λ]. The
percent strain S 33 (%) commonly reported in experimental results can be related to λ by 

S 33 = 100 ∗ ln λ, (87) 

yielding pairs of [ E, S 33 ]. These pairs, when plotted over a range of E , define electrostriction; hence, the relationship between

E and S will be referred to as electrostriction in subsequent discussions. 
33 
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Fig. 11. The left- and right-hand sides of (82) are plotted versus λ for the extreme cases, (a) parallel single chain, and (b) perpendicular single chain. The 

blue line is the stress difference associated with the dipolar energy. The intersections of the curves indicate the equilibrium locations. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

5.3. Derivation of the PDF-based network model 

In this section, we consider averaging techniques for the spatial orientation aspect of the dipole-dipole interaction en-

ergy function, e.g. r . This is not to be confused with the von Mises probability density function applied to the distribution

of dipole moment vector orientations. A probability distribution function will enable exploring the effect of intermediate

orientations between the parallel and perpendicular cases on the electrostrictive response. 

Consider a single (central) dipole residing in the RVE surrounded by a probability density of neighboring dipoles at some

distance r from the central dipole and some azimuthal angle 
r . The total interaction energy of the system is the volume

average scaled by the corresponding probability density, given by 

〈 W C 〉 = 

1 

A f 

∫ + π

−π
f 
r ( 
r ) W d ( 
r ) sin 
r d 
r , (88)

where f 
r 
( 
r ) is a distribution function for the spatial orientations of dipoles. However, W C must be calculated discretely to

assess the dipole-dipole interactions under realist conditions; thus, an analytical solution is not obtainable to the continuous
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Fig. 12. The discretized distribution function in (89) is evaluated at W C ( 
r i ) = 1 for varying values of N 
r 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

integral in (88) . As a result, the PDF-based average of W C is calculated discretely below, in (89) . 

〈 〈 W C 〉 〉 = 

1 

A f 

N 
r ∑ 

i 

f 
r ( 
r i ) W d ( 
r i ) �
r . (89) 

where the double bracket 〈〈 · 〉〉 denotes the discrete average. Given a small arc length, �
r , discretization offers a viable

option to solve the integral in (88) . Furthermore, �
r is directly related to N 
r 
by 

�
r = 

2 π

N 
r 

. (90) 

A convergence study on the averaged energy in (89) evaluated at W C ( 
r i ) = 1 is plotted in Fig. 12 , revealing that

N 
r 
= 500 is sufficiently large to yield an approximation with less than 0.1% error compared to the integral in (88) with

W C ( 
r i ) = 1 . 

To determine the spatial distribution function f 
r 
( 
r ) , we consider the location of any dipole, earlier defined as r ij ,

which lies on the surface ∂V of a sphere. Assuming axisymmetry, the spatial distribution can be defined as a 1D von Mises

distribution on 
r ∈ [0, π ], 

f 
r ( 
| μ
r 
, b 
r ) = 

e b 
r cos ( 
r −μ
r ) 

2 π I 0 ( b 
r ) 
, (91) 

where μ
r 
is the mean, and b 
r 

is the concentration of the distribution of azimuthal angles 
r . As depicted in (82) , the

dipolar energy is not dependent on �, and consequently, the probability density is not affected by �, again a consequence

of assuming isotropy in-plane. Moreover, the only adjustable parameters in this model is b 
r 
because the mean is assumed

collinear with the applied field direction ˆ e 3 ; hence μ
r 
= 0 . 

The averaged dipolar energy can be written by substituting (68) and (91) into (89) , yielding 

〈〈
W̄ C 

〉〉
= 

N 
r ∑ 

i =1 

[
e b 
r cos ( 
r −μ
r ) 

2 π I 0 ( b 
r ) 

][ 

P sat 
2 
[〈
ˆ p 1 · ˆ p 2 

〉
− 3 

〈
ˆ p 1 · ˆ r 

〉〈
ˆ p 2 · ˆ r 

〉]
3 N 
r 

v c ε
(
λ−1 sin 

2 
r + λ2 cos 2 
r 

)3 / 2 
] 

. (92) 

The distribution parameter is defined as b 
r 
∈ [ 0 , ∞ ) . Due to its undefined maximum, b 
r 

is difficult to relate to a

physical structure. For performing a microstructure-based analysis, the model will be evaluated with respect to κ ∈ [0, 1/3],

which, given the von Mises distribution, has been used to discuss various physical structures in literature ( Gasser et. al.,

2006 ). It is evaluated as 

κ = 

1 

4 

∫ π

0 

f 
r ( 
| μ
r 
, b 
r ) si n 

3 
r d 
r , (93) 

and as a result, (91) can be plotted as a function of κ . The significance of κ is that it is a more physically relatable term;

κ = 0 implies a singular orientation with unit probability, while κ = 1 / 3 implies a uniform distribution. Since κ ∈ [0, 1/3] is

a clearly defined parameter, it will be used in the remaining calculations and analyses. 
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Fig. 13. The von Mises PDF is graphically represented by a scatter plot of randomly generated points based on the distribution evaluated at varying values 

of κ . The PDF is centered either at μ
r 
= 0 and μ
r 

= π/ 2 as shown, where these distributions move toward approximating the parallel and perpendicular 

discrete single chain models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various configurations of the distribution in (91) can be conceived by modifying μ
r 
and κ , as an alternative to the

single chain network models. The distributions can be visualized by scatter plot of randomly generated points based on

the distribution, as in Fig. 13 . The examples shown in Fig. 13 are in the reference configuration, representing the spatial

distribution of dipoles over an initially spherical, undeformed state of the RVE. Each point indicates a dipole that interacts

with the central dipole. The spatial distribution is plotted for two cases, μ
r 
= 0 and μ
r 

= π/ 2 (representing nominally

parallel and perpendicular single chain RVEs), at κ = 1 / 3 , 1 / 4 , 1 / 10 , 1 / 20 , 1 / 80 . The distribution at κ = 0 . 333 is a uniform

distribution, and thus it is the same for any μ
r 
. As κ is gradually decreased, the points begin coalescing towards their

respective centers; eventually, as κ → 0, all points will reside at a single location. 

5.4. Analysis of the response of the PDF-based single chain network model 

This subsection evaluates the total energy density substituted into (82) at varying electric field strengths to simulate the

electromechanical response of the material. To study the effects of the distribution function introduced in Section 5.3 , the

averaged dipolar energy in (92) replaces the second term in (75) , yielding 

〈
W̄ 

〉
= 

( 1 − v c ) 
A el 

N �∑ 

i 

N 
∑ 

j 

f sc 
(

 j , �i 

)
W 8 ch 

(
I A 1 

(
λ, 
 j , �i 

)
, λm , C 1 

)
sin 
���


+ 

(
P sat 

2 F ( E ) 

3 N 
r 
v c ε

) N 
r ∑ 

i =1 

[
e b 
r cos ( 
r −μ
r ) 

2 π I 0 ( b 
r ) 

][ 

1 (
λ−1 sin 

2 
r i + λ2 cos 2 
r i 

)3 / 2 
] 

. (94)

The stress differences based on this energy can be calculated in the same manner as in (81) and (82) by non-

dimensionalizing via H = P sat 
2 
/ ( C 1 ε) . 

To highlight the dependence of 〈 W̄ 〉 on E , we use F(E) = 〈 ̂  p 1 · ˆ p 2 〉 − 3 〈 ̂  p 1 · ˆ r 〉〈 ̂  p 2 · ˆ r 〉 , which combines the terms indirectly

related to E via the orientation distribution function in Section 4.2 . The value of N 
 is set to 50, determined from the conver-

gence study in Section 5.3 . The variable λ is solved for by substituting (94) into (67) and solving for pairs of [ E, λ3 ], which

are transformed via (87) into [ E, S 33 ]. Recall that this relationship between E and S 33 was defined earlier as electrostriction.

Based on fitting of the eight-chain hyperelastic model in (32) to experimental data performed later in this paper, we chose

λm = 2 . 5 for the following model calculations. Consequently, the model will be capable of plotting electrostriction with only

a few adjustable parameters, μ
r 
, and κ . 

The electrostriction model can be analyzed by varying the two adjustable parameters in the context of the earlier de-

fined parallel and perpendicular cases. We consider two cases for μ
r 
that approximate the parallel and perpendicular

models: μ
r 
= 0 and μ
r 

= π/ 2 , respectively. For these two cases, the model calculates the electrostrictive response of

(94) at varying dispersion factors, κ , as plotted in Fig. 14 . Note that the electrostriction is plotted in terms of a normalized

strain, S ∗
33 

= S 33 / S max , where S max is the maximum obtained strain in all of the electrostriction calculations, and a normal-

ized electric field E ∗ = E/ E sat . As κ → 1/3, the distribution functions for both cases, μ
r 
= 0 and μ
r 

= π/ 2 , are identically

uniform, and thus, the electrostrictive responses of both cases converge at a value as shown in Fig. 14 a, indicating internal

consistency of the model. In contrast, as κ → 0, the distributions rapidly diverge, and their electrostrictive responses diverge

toward separate asymptotes at Fig. 14 point c and Fig. 14 point e. Specifically, as κ → 0 for μ
r 
= 0 , the electrostriction sig-

nificantly increases as the distribution function approaches a singular point, as shown in Fig. 14 point c. However, as κ → 0
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Fig. 14. Comparison of the two extreme cases with PDFs in prediction of electrostriction. As κ → 1/3, both PDF-based responses converge toward the 

discrete network responses, which is why the discrete network models are placed at the low end of the κ range. Due to theoretical material failure, 

electrostriction could not be determined at field strengths above E ∗ = 15 for μ
r 
= 0 as κ → 0; as a result, saturation is not observed at (c). 

Table 1 

Terpolymers are listed with chemical composition and processing details. The chemical compositions may differ 

from the literature because they have been normalized here to add up to 100%. 

Polymer Percent composition Additional processing 

P(VDF-TrFE-CTFE) 61.8/30.4/7.8% Annealed at 120 °C for 9 h 
P(VDF-TrFE-CTFE) ( Xu et al., 2001 ) 59.1/31.8/9.1% Annealed at 100–120 °C for 6 h 
P(VDF-TrFE-CFE) (Cheng et al., 200X) 59.6/36.5/3.8% Annealed at 110 °C for an unspecified period 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for μ
r 
= π/ 2 , the electrostriction observes a small decrease, shown in Fig. 14 point e. These results imply that the forces

generated by dipoles whose relative positions are parallel to the field-direction dominate the electrostriction response of a

material, and to maximize the electrostrictive response of a material, the target microstructure should contain crystalline

domains that are aligned parallel to the direction of the field (often the direction of the thickness). However, it should be

noted that the model failed to compute pairs of [ E, S 33 ] for μ
r 
= 0 below κ∼= 0.0 0 05, shown in Fig. 14 point c, due to the

material failure phenomenon discussed in Section 5.2 . Thus, spatially aligning domains to a very high order of κ < 0.001

may be counterproductive as it may trigger material failure at high field strengths. As a result, perfectly (spatially) aligned

domains may not be desired, especially at field strengths above E ∗ = 15 . 

An anomaly in the energy functions is revealed near Fig. 14 point d, where the electrostriction for μ
r 
= π/ 2 observes a

dip near κ∼= 0.05. This behavior reflects the phenomenon introduced earlier in Section 5.2 , where the possibility of a state of

orientation between 0 < 
r < π /2 yielding zero interaction energy was mentioned. Furthermore, due to the relatively weak

energy at 
r = π/ 2 , the zero-energy orientation affects the averaging of the energy more significantly for μ
r 
= π/ 2 , thus

causing the drop in electrostriction at Fig. 14 point d. Considering this phenomenon, alignments in the diagonals may not

be ideal for achieving a high electrostrictive response. 

5.5. Comparisons of network model responses to experimental data 

This subsection studies the effectiveness of the model in terms of predicting the behavior of EAPs, as well as its ability

to address variability of relative spatial locations of crystalline domains. The electrostriction model will be compared to

multiple data sets by first determining material constants from experiments, then fitting the PDF-based network model via

adjustment of κ . 
Three materials have been chosen in this study. One of the materials was fabricated and tested by us, while the remaining

two material data sets were borrowed from literature. All three materials are P(VDF)-based terpolymers; their processing

methods are listed along with their chemical compositions in Table 1 . 

All three terpolymers were synthesized by bulk polymerization. The material fabricated for this study is polyvinylidene-

trifluoroethylene-chlorotrifluoroethylene, also known as P(VDF-TrFE-CTFE) 61.8/30.4/7.8%. 

The polarization model in Capsal et al. (2012) , which is based on (50) , was used to determine the saturation polarization

of the material by least squares fitting the polarization model to experimental data from our laboratory and borrowed

from literature. Fig. 15 shows the fitted models to each set of measured data. Results are tabulated in Table 2 and used to

determine electrostriction in Eqs. (67) and ( 94 ). 
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Fig. 15. The single-phase polarization model is fitted to the polarization responses of three data sets. The fitted parameters P s and E s (in legend) are also 

listed in Table 2 . 

Fig. 16. Tensile test data for the CTFE 7.8% terpolymer, and two best-fit models: modified 8-chain hyperelastic model W 8 ch ( I 
A 
1 ) with crystallinity v c = 0 and 

v c = 0 . 36 . 
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The elastic properties of P(VDF-TrFE-CTFE) 7.8% are determined by fitting the modified eight chain hyperelastic model

 8 ch ( I 
A 
1 ) to experimental tensile data conducted in our laboratory (not shown). The energy is fitted for v c = 0 . 36 (actual

crystallinity) and also v c = 0 to study the effects of crystallinity. The energy with zero crystallinity will provide us a measure

of an average C 1 , while the corrected energy apportioned to only the amorphous phase will provide us a C 1 value for

only the amorphous phase. As shown in Fig. 16 , the best fit for the average and amorphous C 1 constants are 170 MPa and

14.1 MPa, respectively. The amorphous phase’s C 1 is more than an order of magnitude lower than the average, which is

expected, as the rigidity of the crystallites will significantly increase the average elastic response of the material. Note that

the models are fitted to experiments within a small range of λ, because electrostriction often does not exceed 10% strain. 
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Table 2 

Parameters used for the simulations in Fig. 15 . 

v c (%) C 1 (MPa) λm Y(GPa) εr P s ( 
C 
m 2 

) E s (MV/m) 

P(VDF-TrFE-CTFE) 61.8/31.4/7.8% 36 14.1 2.5 – 9.4 0.0722 38.7 

P(VDF-TrFE-CFE) 59.6/36.5/3.8% 43 – – 1.1 3.0 0.113 59.1 

P(VDF-TrFE-CTFE) 59.1/31.8/9.1% 56 – – 0.4 4.6 0.0961 33.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the other terpolymers, the reported Young’s modulus is used and as a result, we employ a simple Neo–Hookean

model to model the hyperelastic response of the material. Results are tabulated in Table 2 and used to predict electrostric-

tion in Eqs. (67) and ( 94 ). 

In addition to the saturation polarization, the permittivity of the amorphous phase ɛ a is also required for calculating the
dipole-dipole interaction energy. Thus, we utilize the biphasic model derived by Capsal et al. (2012) , defined in (95) . This

model is fitted to each experimental data (both from our laboratory and borrowed from other studies) to obtain average

values of the bulk permittivity ɛ r, total . The biphasic model assumes that the crystalline phase dominates the material’s po-

larization response at low field strengths of about 0–150 MV/m, and eventually the amorphous phase begins to dominate

the material’s response, behaving similar to a linear dielectric. Thus, we make the assumption that the amorphous phase

has a constant permittivity of ɛ a , to reduce the number of unknown variables. 

ε r,total = 

1 

ε 0 
3 E s ( ε c − ε 0 ) 

[ 

− 1 

sin h 2 
(

E 
E s 

) + 

E s 
2 

E 2 

] 

+ ε a (95) 

All literature data is analyzed by Web Plot Digitizer, which is an online tool that aids in extracting data points on an

image. The images are analyzed by a step size of 1 pixel. The relative electric permittivity of a dielectric material is defined

as 

ε r = 

1 

ε 0 

dP 

dE 
+ 1 , (96) 

in which ɛ r is the relative electric permittivity, P is the polarization, and E is the electric field. We must determine the

permittivity by approximating the derivative of the polarization with respect to the electric field, which can be determine

from a set of data as 

dP 

dE 

∣∣∣∣
i 

≈ P ( i + 1 ) − P ( i + 1 ) 

E ( i + 1 ) − E ( i − 1 ) 
( f or i = 1 , 2 , . . . n P ) . (97) 

Once we obtain a set of permittivity data, we fit the model to the data by a least squares method to determine εr . Given
known variance in the polarization data for P(VDF-TrFE-CTFE) 7.8%, we fit the model to one standard deviation below, one

standard deviation above, and exactly at the average measured values. As a result, we obtain a range of permittivity for the

amorphous phase for this material, from 4.0 to 14, with an average of 9.4. Variance in the other materials are studied by

exploring the effects of adding weights to the least squares fitting method to prioritize the polarization responses at higher

field strengths, which will better reflect the amorphous phase’s permittivity. Due to the complexity of extracting the exact

value of εr from experiments, we focused on using approximate (averaged) values of εr instead of analyzing a spectrum
of εr per materail (such an analysis is beyond the scope of this paper). The approximate results are listed in Table 2 . The

relatively low permittivities for the amorphous phase are consistent with the theory that the amorphous phase should have

a low dielectric response compared to the crystalline phase. 

The parameters listed in Table 2 are used in the electrostriction model for each material at varying values of κ at μ
r 
= 0

and μ
r 
= π/ 2 . Fig. 17 shows the model evaluated at 0.025 ≤κ ≤0.333 for μ
r 

= 0 and at 0.05 ≤κ ≤0.333 for μ
r 
= π/ 2

compared to data for P(VDF-TrFE-CTFE) 7.8%. The best-fit curve to experiments (by least square errors) is signaled by a

dashed line, with the fitted values μ
r 
= 0 and κ = 0 . 111 . A distribution of f 
r 

( 
r ;μ
r 
= 0 , κ = 0 . 111 ) leans towards a

narrow distribution of neighboring RVE locations around the 
r = 0 (parallel) position. Furthermore, the fitted distribution

may be interpreted as spatial distributions of crystalline domains, and consequently, the distribution represents an implied

microstructure characteristic. The implied microstructure the fitted model for CTFE 7.8% RFE polymer contains crystalline

domains with relative locations that are to varying degrees parallel with respect to the field, as depicted in Fig. 13 . 

A similar fitting procedure is performed for the CTFE 9.1% RFE polymer, and the model is plotted over the same range

of distributions in Fig. 19 . For this material, the best-fit distribution is f 
r 
( 
r ;μ
r 

= 0 , κ = 0 . 145 ) , indicating a very similar

distribution to the best-fit model for the CTFE 7.8% polymer. Similarly, the best-fit model implies that neighboring crystalline

domains would be at varying degrees of alignment to the applied-field direction, with most concentrated at the parallel

orientation. 

It is important to note that the comparisons in Figs. 17 and 19 reveal a best-fit model with a distribution center of

μ
r 
= 0 and a moderate degree of spatial alignment. Despite their moderately narrow distributions, the best-fit models for

the CTFE RFE polymers still show considerable probabilities of spatial arrangements of neighboring crystallites far beyond


r = 0 (see Fig. 13 ). Conversely, the model comparisons for P(VDF-TrFE-CFE) 9.1% result in a very narrow distribution of
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Fig. 17. Comparison of the electrostriction model evaluated at varying distribution parameters with experiments for P(VDF-TrFE-CTFE) 7.8%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f 
r 
( 
r ;μ
r 

= 0 , κ = 0 . 034 ) , which is between the visual depictions of κ = 1 / 80 and κ = 1 / 20 in Fig. 13 . Such a distribution

implies very little variation beyond the parallel arrangement. 

Beyond fitting the electrostriction model to experiments, the model may be used predictively to determine microstruc-

tures required for desired properties. It is apparent from the model-experiment comparisons (as well as preliminary com-

parisons of nondimensionalized energies) that spatial distributions centered parallel to the field with very narrow widths

generate the largest electrostrictive responses. Consequently, we would prefer to fabricate materials with similar microstruc-

tural arrangements. For example, Fig. 17 implies that, if the predicted microstructure for the tested P(VDF-TrFE-CTFE) 7.8%

terpolymer is correct, it is possible to increase the material’s electrostrictive response by more than a factor of 2 if we

reduce the distribution width to κ = 0 . 025 through material processing techniques during fabrication, which would the-

oretically yield greater than 10% electrostrictive strain at 150 MV/m. Using this method, the model may assist materials

scientists to assess the performance envelope of a given set of fabrication methods, or achieve target materials properties

through tailored processing. However, it is important to note that due to a lack of availability of experimental data on spatial

arrangements of crystallites within RFE polymer microstructures, it is currently not feasible to validate the model’s predictive

capabilities. Furthermore, a validation procedure is necessary before the model can be used for targeting desired material

properties. Nonetheless, the model’s significance remains from its ability to address the microstructural characteristics that

would be necessary to predict structure-property relationships. 

Although the model fits the experimental data well, especially at high field strengths (above 100 MV/m), some char-

acteristics of the curves are not captured entirely at lower field strengths. For example, there is a relatively high error in

fitting the model to CTFE 7.8% at approximately 40 MV/m in Fig. 17 . This is due to a spike in electrostriction observed in

experiments; it is hypothesized that these spikes may result from two separate crystalline phases. Based on in situ X-ray

diffraction (XRD) data on CTFE 7.8% terpolymer, β-phase has a coercive field around 40–50 MV/m, which may explain the

electrostrictive spike. Additionally, a similar spike is observed for CTFE 9.1% at 50 MV/m in Fig. 18 . The relatively low initial

electrostrictive response in the experimental data for CTFE 7.8% ( Fig. 17 ) may also be due to the resolution of the experi-

mental measurements, which could amplify the spike at 40 MV/m. These spikes are not as clearly observed in the other data

sets. Additionally, predicting low-field responses may be improved by adding the effects of dipole-induced fields. However,

including dipole-induced fields in a local field calculation would create new computational challenges beyond the scope of

this study. 

6. Concluding remarks 

The spatial and orientation distributions of polarizable crystalline regions within RFE polymers, which may be controlled

through composition and processing, affect the electromechanical coupling and consequently are important quantities to

any modeling attempt. The spatial organization of the crystalline regions formed in these RFE polymers during processing

varies, requiring the development of a model capable of capturing what is known about their morphology. The present

model addresses such information in the morphology by applying distributions of orientations and spatial arrangements into

the mechanics of a semicrystalline (biphasic) RVE. The driving mechanism of the RVE’s deformation is the domain-domain

interactions between the RVE crystalline domain and a neighboring RVE’s crystalline domain. The dipole-dipole interaction

energy of the two crystallites competes with the elastic energy of the chain, which results in a change in the equilibrium
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Fig. 18. Comparison of the electrostriction model evaluated at 0 < κ < 1/3 for μ
 = 0 and 0 . 05 < κ < 0 . ̄3 for μ
 = π/ 2 with experiments for P(VDF-TrFE- 

CTFE) 9.1%. 

Fig. 19. Comparison of the electrostriction model evaluated at varying distribution parameters with experiments for P(VDF-TrFE-CFE) 3.8%. 

 

 

 

 

 

 

 

 

 

 

 

of the system (i.e., strain). Since the domain-domain interactions are dependent on both the orientations of the crystalline

domains and their relative spatial placements, von Mises distributions were applied to each to evaluate the dependence of

the response on those distributions. 

The model is effective at relatively high field strengths (i.e., near saturation), but with one date set, there are nonlinear-

ities that are not fully captured at low-field strengths (i.e., typically within 0–50 MV/m). The low-field errors in this data

set are attributed to the existence of multiple crystalline phases in the microstructure, where weaker phases align before

shifting into larger and more polar phases. To account for the multiple crystalline phases, additional orientation distributions

may be added into the calculation of the domain-domain interaction, and each distribution may be triggered at different

field strengths to represent phase shifts. In addition, boundaries between domains may be described smoothly by distri-

bution functions of their own, and dipole-induced fields may be included in local field derivations that would drive the

polarization orientations of domains. 

The modeling results also highlight that the relative positions of crystalline domains parallel to the external field have

a greater influence on the electrostrictive response over positions perpendicular to the external field direction. An under-
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standing of which relative position are more dominant in electrostriction may aid in the development of better performing

electrostrictive materials. The model may also be used to predict pull-in instabilities, which are strongly affected by the spa-

tial distributions, that cause material failure. Accounting for variance in spatial locations within a biphasic network models

is a significant improvement over previous modeling techniques, which have ignored these distributions in a semicrystalline

framework. 

The model framework allows for extension to higher fidelity with respect to microstructure. The model may be studied

with different distribution centers in directions other than the discrete principle axes, such as multiple orientations used in

3-, 4- and 8-chain network models of hyperelasticity. An additional distribution may be added in the R-direction to study the

effects of variance in distance between dipole centers. Finally, the present modeling framework may offer versatility in pre-

dicting electromagnetic field-dependent response of other dipole-based material groups, such as Magneto-Active Elastomers

(MAEs) ( Bustamante, 2010; von Lockette and Sheridan, 2013 ). 
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