
4528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Security-Aware Resource Binding to
Enhance Logic Obfuscation

Michael Zuzak , Member, IEEE, Yuntao Liu , Member, IEEE, and Ankur Srivastava, Fellow, IEEE

Abstract—Logic obfuscation mitigates the unauthorized use of
design IP by untrusted partners during integrated circuit (IC)
fabrication. To do so, these techniques produce gate-level errors
that derail typical applications run on the IC. Recent research
has derived a link between the error rate and the Boolean
satisfiability (SAT) attack resilience of logic obfuscation. As a
result, it has been shown to be difficult for obfuscation to inject
sufficient gate-level error to derail application-level function
while maintaining resilience to SAT-style attacks. In this work,
we explore use of architectural knowledge during the resource
binding phase of high-level synthesis to automate the design
of locked architectures capable of high-corruption and SAT
resilience simultaneously. To do so, we bifurcate logic obfuscation
schemes into two families based on their error profile: distributed
error locking and critical minterm locking. We then develop
security-focused binding/locking algorithms for each locking fam-
ily and use them to bind/lock 11 MediaBench benchmarks. For
distributed error locking, our proposed security-aware binding
algorithms designed locked circuits capable of corrupting a typ-
ical application for 52% more wrong keys than a circuit bound
with conventional algorithms. For critical minterm locking, our
proposed security-aware binding algorithms designed locked cir-
cuits capable of corrupting a typical application for 100% of
wrong keys while also exhibiting 26× more application errors
than a circuit bound with conventional algorithms. Regardless of
locking family, our security-aware algorithms improved corrup-
tion without degrading SAT resilience or incurring sizable design
overheads to do so. Obfuscation applied post-binding could not
achieve high-corruption and SAT resilience simultaneously in
these benchmarks.

Index Terms—High-level synthesis (HLS), logic locking, logic
obfuscation, resource binding, untrusted foundry.

I. INTRODUCTION

THE COST and complexity of cutting-edge integrated
circuit (IC) fabrication has skyrocketed with shrinking

technology nodes. This has driven IC design companies to
adopt a fabless business model, whereby untrusted third-
parties are used for IC fabrication. During fabrication, fabless
designers must provide these untrusted facilities with a full

Manuscript received 24 August 2022; revised 18 March 2023; accepted
5 July 2023. Date of publication 11 July 2023; date of current version
22 November 2023. This work was supported by the National Science
Foundation under Grant 1953285 and Grant 2245573. This article was
recommended by Associate Editor F. Koushanfar. (Corresponding author:
Michael Zuzak.)

Michael Zuzak is with the Department of Computer Engineering, Rochester
Institute of Technology, Rochester, NY 14623 USA (e-mail: mjzeec@rit.edu).

Yuntao Liu and Ankur Srivastava are with the Department of Electrical and
Computer Engineering, University of Maryland at College Park, College Park,
MD 20742 USA.

Digital Object Identifier 10.1109/TCAD.2023.3294453

layout for the design. This layout contains critical design
details, driving security and privacy concerns, including piracy
and overproduction [1].

Logic locking (also called logic obfuscation) was proposed
to address security concerns during untrusted fabrication by
rendering the functionality of a design dependent on a secret
locking key [2], [3], [4]. Whenever an incorrect locking key is
applied to a design, there exists a deterministic set of input pat-
terns which produce incorrect output, thereby injecting error
in the design. These inputs are called locked inputs. By with-
holding the correct locking key from any untrusted fabrication
partners, an IC designer can prevent unauthorized use of the
design. Fundamentally, the goal of logic locking is to inject
sufficient error for any wrong key to derail any unauthorized
use of the design IP.

In response to logic locking, a Boolean satisfiability (SAT)
attack was developed [5], [6]. This attack has proved be quite
potent. In fact, recent work has shown that logic obfuscation
is often unable to induce enough error to critically impact an
IC while maintaining resilience to SAT-style attacks [7], [8].
This challenge stems from a tradeoff underlying combinational
logic locking, regardless of construction, between the number
of locked inputs per wrong key and SAT attack resilience [9],
[10], [11]. This tradeoff requires that locking protect only
a small number of locked inputs per wrong key to be SAT
resilient. However, because the input space of most modules is
only partially utilized, the probability that an arbitrary locked
input will be applied to a locked module during normal oper-
ation has been shown to be quite low in practice [8]. If no
locked inputs are ever applied, logic locking provides no pro-
tection against the unauthorized use of design IP, mitigating
any security guarantees. This creates a dilemma. High-SAT
resilience requires few locked inputs, however, we must guar-
antee application corruption for wrong keys using this small
set of locked inputs. To overcome this dilemma, we must
consider the architecture of an IC.

This leads to the key theme of the work: using the archi-
tectural plasticity and context available during the resource
binding phase of high-level synthesis (HLS) to enhance logic
locking and secure an IC, as a whole, against an untrusted
foundry. As we show, security-aware binding can enhance the
security of prespecified logic locking configurations, enabling
both corruption and SAT resilience to be achieved.

A. Related Work

Many prior works have explored obfuscation in the con-
text of HLS or higher-level design processes [12], [13], [14],

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0356-9393
https://orcid.org/0000-0001-8213-582X

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4529

[15], [16], [17], [18], [19], [20]. These works can be broadly
divided into two research thrusts. The first thrust we char-
acterize by its reliance on restricted scan-chain access, such
as TAO [17], ASSURE [15], and others [12]. These works
propose methodologies to obfuscate a design during HLS.
However, they assume a restrictive attacker model where
the adversary cannot access a working chip with scan-chain
access. This more restrictive attacker model prevents the use
of SAT-style attacks [5], [6], which would otherwise unlock
the high-error locking used by these schemes [21]. As a result,
these techniques are more limited in utility than alternatives
that promise security against an oracle-equipped attacker [13],
[14], [18], [19]. The work in [16] considers how a scan-chain
could be locked down during normal chip operation to restrict
oracle access, but this requires the chip to be tested using
incorrect dummy keys. Hence, the chip is never validated with
its intended function.

The second research thrust we characterize by its use of
as-is HLS algorithms, such as HLock [14], SFLL-HLS [18],
DECOY [19], and others [13]. While these techniques utilize
HLS in their design process, they do not tailor HLS algo-
rithms toward security-centered design goals. For example, the
work in [13], [14], and [18] proposes algorithms to budget and
configure logic locking prior to or during HLS. While these
approaches occur alongside HLS, they do not directly integrate
with HLS algorithms to inform either the design’s RTL or the
configuration of logic locking to improve security. Rather, this
research supports the criticality of architectural context to the
security of logic obfuscation. DECOY explores tighter inte-
gration with HLS, however, it still does not integrate into any
phase/algorithm of HLS [19]. Instead, DECOY adds a design
optimization during HLS to identify critical and noncritical
IP. Critical IP is redacted and implemented in an eFPGA for
protection. Noncritical IP remains in the ASIC. Thus, DECOY
relies on the strong security protections of the eFPGA to pro-
tect the critical IP. While this yields security, eFPGA redaction
introduces sizable complexity and overhead. Such an approach
is often untenable.

This leads us to the two primary distinctions between this
work and prior art.

1) While the work in [12], [13], [14], [15], [16], [17], [18],
and [19] recognizes the importance of high-level con-
text during HLS and other high-level design processes,
it fails to capitalize on the architectural decisions made
during these processes to enhance security. Instead, con-
ventional HLS algorithms optimizing for goals, such as
switching activity [22] or register reuse [23], are used
as is. This is a missed opportunity. HLS algorithms
can be designed to make RT-level design decisions that
optimize/inform supply-chain security instead, as shown
in this work.

2) These prior works propose end-to-end locking solu-
tions that implement locking techniques in a design
during HLS [12], [13], [14], [15], [16], [17], [18], [19].
The security-aware binding approaches explored in this
work do not configure or specify a locking mechanism
in a design. Instead, our proposed algorithms provide
the designer of the system the flexibility to select the

locking technique they wish to use based on their appli-
cation, security, and overhead goals and then configure
these schemes based on what modules contain high-
value IP. As a result, this work considers a more general
problem (i.e., where the designer can choose the lock-
ing scheme that best fits their goals) with a different
objective (i.e., optimizing the architecture around a fixed
locking configuration).

B. Contributions

We propose security-aware resource binding to enhance
logic locking. To do so, we bifurcate logic locking into
two families with distinct security goals during HLS, called
Distributed Error Locking and Critical Minterm Locking. We
then propose two problem formulations, one for each lock-
ing family, and formalize security-aware resource binding
algorithms to provably maximize the efficacy of locking.
Note that all combinational logic locking techniques can be
placed in one of these locking families, hence, by formalizing
security-aware resource binding for each family, we formal-
ize security-aware resource binding for combinational logic
locking as a whole. Our contributions for each locking family
are:

Distributed Error Locking:
1) A cost function to guide resource binding that maxi-

mizes the number of wrong keys that produce applica-
tion errors for a specified locking configuration.

2) A binding algorithm based on graph theory that maps
operations to locked modules to maximize the num-
ber of wrong keys resulting in application corruption.
An optimal algorithm as well as a P-time heuristic is
developed.

Critical Minterm Locking:
1) Critical minterm locking is a special case of distributed

error locking that allows broader design goals to be
pursued. To utilize this expanded scope, we define a
novel cost function that binds a circuit to a) ensure all
wrong keys produce application error and b) maximize
this error.

2) A graph-theoretic binding algorithm that optimally maps
operations to locked resources to provably maximize
security through our derived cost function in P-time.

To evaluate our security-aware binding algorithms, we
applied them to 11 MediaBench benchmarks [24]. For dis-
tributed error locking, our security-aware binding algorithms
produced locked circuits that corrupted a characteristic appli-
cation for 52% more wrong keys than the same circuit
bound with conventional binding algorithms. For critical
minterm locking, our security-aware binding algorithms pro-
duced locked circuits that corrupted a characteristic application
for 100% of wrong keys. Moreover, these locking configura-
tions exhibited 26× more application errors than the same
circuit bound with conventional binding algorithms. For each
binding/locking solution, SAT resilience was maintained and
minimal overhead was incurred compared to conventional
binding schemes. Locking applied post-binding could not
achieve both application corruption and SAT resilience. In this

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

way, combinational locking, regardless of construction, can be
enhanced via security-aware resource binding during HLS.

II. PRELIMINARIES

A. Logic Locking

There are two primary security metrics for logic locking:
1) corruption and 2) attack resilience. Corruption is the abil-
ity to cause failures for wrong keys. This can be quantified by
the number of locked inputs (i.e., error-causing inputs). Attack
resilience is the ability to resist attempts to bypass obfusca-
tion. This can be quantified by the complexity of specific attack
strategies. For a prevalent attack against logic locking, known
as the SAT attack [5], [6], a relationship between corruption
and attack resilience (i.e., SAT query count) has been identi-
fied [9], [10], [11]. While the exact nature of this relationship
is currently unknown [11], there have been upper-bounds
derived [10], [11] as well as probabilistic explorations [9].

These results show that for a fixed circuit and locking
configuration, there is some tradeoff between the number of
locked inputs (corruptibility) and the SAT query count to
unlock a circuit. Because the SAT attack assumes access to
an IC’s scan-chain (i.e., its intermediate registers), SAT attack
resilience is calculated independently on a per-module basis.
Based on this relationship, research has shown that obfuscation
often cannot lock enough inputs to reliably derail unauthorized
use while maintaining SAT resilience [7], [8]. Thus, locking
is stuck in a dilemma between security goals.

A number of combinational logic locking schemes have
been proposed. While these schemes vary in construction,
they all achieve security by causing output corruption for a
set of inputs determined by the wrong key. We refer to these
output-corruption-inducing inputs as locked inputs. We refer
to the relationship between the set of locked inputs and the
wrong key as the error profile of a locking scheme. In this
work, we differentiate combinational locking schemes by the
presence of critical minterms, namely, inputs that produce out-
put corruption for a large subset of wrong keys. We denote
locking techniques that lack critical minterms as distributed
error locking. This includes CAS-Lock [25], Lopher [26],
InterLock [27], and others [28], [29], [30], [31], [32], [33].
Conversely, we denote locking techniques that use critical
minterms as critical minterm locking. This includes stripped
functionality logic locking (SFLL) [34], [35], [36] and strong
Anti-SAT [37]. These two families form a tautology, ensur-
ing that all combinational locking can be characterized in this
way. We note that this categorization of logic locking differs
from the commonly used low/high-error classification cate-
gories. However, we classify techniques in this way because
it enables the derivation of a provably optimal, P-time solu-
tion to the security-aware biding problem for critical minterm
locking techniques (Section V), a significant contribution of
the work.

B. Approximate Attacks on Logic Locking

Approximate SAT attacks were developed to exploit the fact
that only a small set of inputs can be locked by SAT resilient
locking [38], [39], [40]. These attacks define early termination

conditions for SAT attacks that aim to locate a key that is good
enough to use a locked IP. Ideally, a key returned by such an
attack would produce output corruption only for inputs that
are never/rarely used, ensuring that locking-induced-corruption
does not occur during normal operation. Doing so bypasses
the security of logic locking. To resist approximate attacks, a
designer must ensure that locking injects error during normal
operation for the overwhelming majority of wrong keys.

C. High-Level Synthesis

HLS transforms a behavioral description of functional-
ity, such as a high-level language, into an RT-level design.
There are generally three design optimizations during HLS:
1) resource allocation; 2) scheduling; and 3) resource bind-
ing. Resource allocation determines the quantity and type of
hardware resources available to implement the design. Upon
termination, a set of allocated functional units (FUs) (e.g.,
multipliers, dividers, etc.) is produced. Scheduling imposes
clock-cycle boundaries on the target behavioral code to resolve
data dependencies. This produces a scheduled data flow
graph (DFG), whereby vertices are operations and edges are
dependencies between operations. Binding maps (“binds”)
operations to allocated FUs. Common binding schemes aim to
1) minimize area (i.e., registers/muxes) [23] and 2) minimize
switching power [22], [41]. During binding, the expected input
space for a circuit is generally known [22], [41]. This enables
switching power estimation to inform power-aware binding
decisions.

D. Considered Logic Locking Techniques

This work considers how an architecture can be built
around a designer-specified locking configuration. As such,
our algorithms are intentionally technique-agnostic, requiring
no specific locking mechanism to be used or modules to be
locked. This has two advantages.

1) It allows us to rely on the strength of existing locking
techniques, each with their own use-case, and instead
focus on how to optimally bind the system around these
techniques to improve security.

2) It allows the designer to select the locking technique
from the literature based on their application, security,
and overhead goals and then configure these techniques
in their design based on what modules contain IP they
wish to protect. Hence, a designer can lock their system
to reflect their unique security goals while using our
resource binding algorithms.

E. Attacker Model

Each proposed logic locking technique claims security
under its own attacker model. In some cases, the attacker’s
capabilities differ substantially (e.g., with/without scan-
chain access). Because the security-aware binding algorithms
proposed in this work are generic to the locking mechanism
used (see Section II-D), we inherit the attacker model of the
selected locking scheme. We assume that the designer-chosen
locking technique is implemented per the author’s specifica-
tions in designer-specified locked modules to defend against

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4531

their own attacker model. We then focus on the resource bind-
ing for each locked module, rather than locking these modules,
to enhance security. Stated formally, we target the attacker
model of the locking scheme chosen by the designer.

The way logic locking is configured within a system (e.g.,
what modules are locked) has a substantial impact on security.
In particular, removal [42], structural reverse engineering [43],
and de-synthesis [44] attacks are particularly relevant. These
attacks perform structural/logical analysis that allow a netlist-
equipped adversary to identify locking logic and then either
remove it or infer the correct key. Given the architectural scope
of the security-aware resource binding techniques we propose,
it is vital that the designer carefully consider the resilience of
their locking configuration to these attacks by avoiding locking
easily reverse-engineered or identifiable modules in the IC.

III. MOTIVATION FOR SECURITY-AWARE BINDING

Based on the prior work outlined in Section I-A, there is
a need to think beyond the locked module when obfuscat-
ing an IC. If we follow conventional wisdom and consider
only module-level context while locking, we necessarily fall
into a tradeoff between corruption and SAT resilience. Both
design goals are necessary for security. Therefore, in this
work, we explore how “smart” security-aware binding deci-
sions can be harnessed to enhance logic locking and achieve
both competing goals.

We begin by formalizing the security ramifications of
resource binding decisions. The foundation of this relation-
ship stems from the fact that resource binding selects the
operations executed on locked FUs, thereby determining the
input minterms (i.e., values) typically processed on locked
FUs. Because locking corrupts output for only specific locked
inputs for a given wrong key, binding decisions greatly impact
security. We demonstrate this below.

A. Motivational Example: Overview

In order to explore the security impact of binding deci-
sions on logic locking, let us consider the scheduled DFG in
Fig. 1(a). This DFG is created from the behavioral description
provided as input to HLS, usually as a high-level program-
ming language. Vertices in the graph are operations. Edges are
data dependencies between operations. The DFG in Fig. 1(a)
is scheduled over two cycles. During the first cycle, OPA and
OPB occur. During the second cycle, OPC and OPD occur. For
simplicity, assume each operation in the DFG is an add. There
are two adder FUs allocated to bind the DFG.

The resource binding phase of HLS maps the 4 add opera-
tions onto the two allocated adder FUs. Fig. 1(b) depicts two
candidate bindings for our sample DFG. The green-shaded
region encloses operations bound to FU1. The red-shaded
region encloses operations bound to FU2. Let us assume that
we have knowledge of the input distribution for each operation,
a common assumption for HLS [22], [41]. This allows us to
estimate how often various input values (minterms) occur for
each operation during typical workloads. We have aggregated
these estimates for four arbitrary input minterms, denoted
{w, x, y, z}, during a typical workload below Fig. 1(a).

Fig. 1. Sample scheduled DFG and binding solutions. (a) Scheduled DFG.
(b) Bound DFG.

By using the expected occurrence of input minterms, we
can estimate how often each input is applied to each adder.
We have compiled these estimates for each FU/binding below
Fig. 1(b). Let us consider how security-informed decisions can
be made during resource binding to impact security for the two
combinational logic locking families, defined in Section II-A.
We emphasize that these families form a tautology. By explor-
ing both families our analysis considers all combinational
locking.

B. Security-Aware Binding for Distributed Error Locking

Distributed error locking schemes are characterized by a
lack of critical minterms in their error profile (see Section II-A
for definitions). This means that error is distributed throughout
the input space without any one input minterm producing out-
put error (i.e., being locked) for a large subset of wrong keys.
The advantage of schemes in this locking family is their ability
to produce strong and nonprobabilistic SAT resilience guaran-
tees [9], [10], [11]. A key limitation of these locking schemes
is their susceptibility to approximate attacks (Section II-B).
This limitation arises from the tradeoff between the number
of locked inputs per wrong key and SAT attack resilience
underlying logic locking [9], [10], [11]. To be SAT resilient,
distributed error locking must lock only a few inputs per wrong
key. These locked inputs are distributed throughout the entire
input space of the locked module, with no one input producing
output error for the majority of wrong keys (i.e., no critical
minterms). However, because many commonly locked mod-
ules only utilize a small fraction of their input space during
normal operation [8], there is a high probability that any given
wrong key will only produce corruption for inputs that are not
used during normal operation [7], [8]. If no locked inputs are
used for a given wrong key, no locking-induced corruption will
occur, mitigating the security of locking. Thus, there exists a
large subset of wrong keys that produce functionality good
enough to enable unauthorized use and IP piracy. These good
enough keys can be identified by an approximate-style attacker
and be used to bypass the security of locking [38], [39], [40].
Hence, to secure against an untrusted foundry with distributed
error locking, we must maximize the number of wrong keys
that produce error during normal operation.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4532 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

TABLE I
ERROR PROFILE FOR LOCKED FU1 THAT SHOWS WHICH INPUTS

PRODUCE AN INCORRECT OUTPUT FOR EACH KEY. AN ✗ AT AN

INPUT/KEY INTERSECTION INDICATES THAT THE LOCKED FU PRODUCES

INCORRECT OUTPUT WHEN THAT INPUT/KEY COMBINATION IS

APPLIED. A � INDICATES THAT THE CIRCUIT PRODUCES CORRECT

OUTPUT WHEN THAT INPUT/KEY COMBINATION IS APPLIED. NOTE

THAT “WK” IDENTIFIES WRONG KEY VALUES AND “CK” IDENTIFIES A

CORRECT KEY (I.E., A KEY WHERE ALL INPUTS

PRODUCE CORRECT OUTPUT

With this in mind, we return to our example in Fig. 1.
Assume that a designer used a conventional, security-agnostic
binding algorithm, which has generated binding 1 for the
circuit. The designer then decides to secure design IP by
locking FU 1 with a distributed error locking technique fol-
lowing binding. To maximize IP security (i.e., corruption),
the designer would lock the majority of input minterms. This
ensures high-application corruption regardless of wrong key.
However, SAT resilience is inversely related to the number of
locked inputs, hence, such an approach would result in mini-
mal SAT resilience. To meet SAT resilience constraints, let us
assume only a single input minterm can be locked for each
wrong key. Consider the following locking scenario. Assume
that FU 1, which has a 3-bit input (i.e., eight total input
values), has been locked using SARLock [30], a prominent
distributed error logic locking technique. The resulting error
profile for locked FU 1 is in Table I. We note that a simi-
lar error profile could be produced by many other distributed
error locking techniques, such as Anti-SAT [32]. This error
profile shows which input minterms (rows of the table) pro-
duce corrupt output for a given wrong key (columns of the
table). To do so, Table I contains an ✗ at the intersection of a
wrong key/input when that input produces output corruption
for a wrong key (e.g., wk0 locks input w).

Because we know the expected occurrence of various inputs
for each operation and the error profile of the locking configu-
ration, we can estimate how many wrong keys for this locked
FU will corrupt a typical application. Notice that FU 1 in
binding 1 executes OPA, which operates on inputs x, y, and
OPC, which operates on inputs x, y. Based on the error profile
in Table I, this means that the bound/locked circuit produces
output corruption for two wrong keys (wk1, wk2) during typ-
ical workloads. Let us consider how security-aware binding
can increase the number of wrong keys producing corruption.

1) Security-Aware Binding: Consider the case where a
locking configuration has been specified prior to resource bind-
ing. Following our prior example, this means FU 1 will be
locked by distributed error locking with the error profile in
Table I. However, instead of binding in a security-oblivious
fashion, let us bind the DFG in Fig. 1(a) to maximize the

wrong keys that lock an input applied to the locked FU
(FU 1). In this case, binding 2 would be selected, resulting
in 4 wrong keys (wk0 − wk3) injecting error. The advantage
of this approach is that the number of wrong keys that pro-
duce corruption is doubled (4 versus 2) compared to our prior
security-oblivious binding approach that selected binding 1.
Because the error profile of the locking technique is static, this
results in an increase in the number of wrong keys that derail
unauthorized IP use without compromising SAT resilience.
Remember, wrong keys must actually inject error within the
circuit to derail unauthorized use, hence, by ensuring that more
wrong keys inject error during normal operation, we maximize
the security of locking. Thus, by binding to maximize error-
producing wrong keys, a designer can create a locked circuit
substantially more likely to derail unauthorized use.

C. Security-Aware Binding for Critical Minterm Locking

Critical minterm locking schemes are characterized by the
presence of critical minterms in their error profile. This means
that a small set of locked inputs produce output corruption
for a large subset of (if not all) wrong keys. Logic locking
achieves security through the injection of locking-induced cor-
ruption within the locked IC. Hence, a designer can enhance
the security of critical minterm locking by maximizing the
occurrence of critical minterms in locked modules during typ-
ical workloads. By doing so, a designer both: 1) guarantees
that a large subset (if not all) wrong keys inject output cor-
ruption and 2) maximizes the number of errors injected. In
this way, critical minterm locking serves as a special case of
distributed error locking, whereby the security goal of maxi-
mizing the wrong keys that produce corruption can be achieved
by ensuring that critical minterms occur during typical work-
loads. Therefore, to secure against an untrusted foundry with
critical minterm locking, we aim to maximize the occurrence
of critical minterms during normal operation.

Let us return to our example in Fig. 1. Assume that a
designer used a conventional, security-agnostic binding algo-
rithm, which has generated binding 2 for the circuit. The
designer then decides to secure design IP by locking FU 1
with critical minterm locking that locks a single critical input,
randomly selected to be x. Whenever x is applied as input to
FU 1, regardless of the wrong key, output corruption will be
produced. Based on our estimates for the occurrence of input
x during a typical workload, we can estimate the occurrence of
critical inputs for our locked adder (FU 1). This corresponds
to the number of locking-induced application errors. Notice
that FU 1 in binding 2 executes OPA, which we estimate will
process input x 6 times, and OPD, which we estimate will
process input x 0 times. Thus, we expect 6 + 0 = 6 error
injections to be caused by locking during a typical workload.
Let us consider how security-aware binding can improve this.

1) Security-Aware Binding: Consider the case where the
locking configuration is specified prior to resource binding.
Thus, while binding the circuit, the designer has determined
that FU 1 protects critical input x. Because the locking con-
figuration is known, let us consider binding with locking in
mind. Specifically, consider binding the DFG in Fig. 1(a) to

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4533

maximize how often the locked input (x) will be applied to the
locked FU (FU 1). This leads to choosing binding 1, which
produces 6 + 10 = 16 errors during a typical workload. This
approach to binding has three merits.

1) Because the input x is typically applied to our locked
FU, we ensure that every wrong key will inject error.

2) The errors injected by obfuscation are more than dou-
bled (16 versus 6) compared to a conventional binding
approach. Because the locked input count is fixed,
such an approach increases the corruptibility of locking
without degrading SAT resilience to do so.

3) Errors are injected during both cycles of the schedule
(clk 1 and 2) instead of only one (clk 1). Consecutive
errors increase the probability of critically impacting the
application. By binding to maximize critical minterm
occurrence, we have designed a circuit with both more
and higher-quality application errors.

D. Security-Aware Binding to Enhance Logic Locking

For both locking families, we were able to use binding
decisions to leverage architectural context to enhance secu-
rity. For distributed error locking, we doubled the wrong keys
that produced corruption during typical workloads. For criti-
cal minterm locking, we ensured that all wrong keys produced
corruption while also causing ∼2x more error injections. In
either case, the locked input count could be reduced while
simultaneously increasing the corruption of the locking con-
struction through making security-centered decisions during
binding. Essentially, security-aware binding decisions occur
outside of the tradeoff between corruption and SAT resilience,
allowing them to enhance the security of logic locking.

IV. SECURITY-AWARE BINDING FOR DISTRIBUTED

ERROR LOCKING

Let us formalize an algorithm to solve the security-aware
binding problem for distributed error locking, outlined in
Section III-B. The security-aware binding problem requires
a scheduled DFG and a set of allocated resources, some of
which are locked, as input. For each locked FU, we assume
an SAT-resilient locking configuration (i.e., a sufficiently small
number of inputs are locked per wrong key) has been specified.
For locking techniques in the distributed error family, let us
assume that this locking specification includes: 1) the number
of FUs locked and 2) the error profile for the locking scheme
used. Now, given a list of FUs, a scheduled DFG, and lock-
ing details, we must bind operations to FUs to maximize the
wrong keys producing application error. Doing so maximizes
the corruption of the locking configuration, namely, its ability
to restrict unauthorized use, while maintaining SAT resilience
(because the locking was configured to be SAT resilient a pri-
ori). We begin by defining a cost function that quantifies the
number of error-producing wrong keys for a given binding.
We use this as a security metric to inform binding decisions.

A. Objective Cost Function for Distributed Error Locking

Suppose that we have scheduled and bound a DFG onto
FUs, some of which have been locked using distributed error

locking. We aim to quantify the impact of these locked FUs
on the number of wrong keys producing error in the DFG. We
capture this by counting the number of wrong keys that lock
inputs evaluated by a locked FU during the DFG’s execution.
The objective is to maximize these wrong keys which inject
error through appropriate binding decisions. Let us define the
set Xn to represent the set of inputs applied to operation n.
Thus, operation n operates on input x during normal opera-
tion if x ∈ Xn. X can be calculated for a DFG by simulating
characteristic input traces or applications, which are typically
available during HLS [22], [41]. Given an input trace for the
DFG, we can perform time simulation to generate a set of
input minterms applied to each operation.

We now formalize a cost function to inform binding deci-
sions that quantifies the number of wrong keys that produce
application error for a given locking configuration in a bound
DFG. To do so, assume that L is the set of obfuscated FUs.
Each locked FU, l ∈ L, has a locking configuration with an
error profile El(x). For an input minterm x ∈ Xn, El(x) returns
the set of wrong keys that corrupt x for the locking configu-
ration. We define the set of wrong keys corrupted by binding
operation n to locked FU l to be

Kl,n =
⋃

x∈Xn

El(x). (1)

If each l ∈ L binds a set of operations Nl, then the total number
of wrong keys that produce error for the binding is

Kerr. =
∑

l∈L

∣∣∣∣
⋃

n∈Nl

Kl,n

∣∣∣∣. (2)

B. Optimal Security-Aware Binding Algorithm

Let us develop a binding algorithm to map operations to
resources such that the wrong keys producing error (i.e., keys
that lock inputs applied to locked FUs), as quantified by (2),
is maximized. Consider the scheduled DFG, S, with a depth
of s cycles. The set R contains the resources allocated to bind
the DFG. In order to solve this problem, we do not make
any assumption regarding the type (e.g., addition) of resources
and operations being bound. However, we do assume that all
resources and operations are of the same type. This allows any
resource in R to bind any operation in the DFG. We can make
this assumption without any loss of generality by handling
all resource/operation types independently. Of the R allocated
resources, a subset, L, are obfuscated (L ⊆ R). Each l ∈ L
has a locking configuration with an error profile El(x). This
error profile is determined by the locking configuration used.
As such, it is specified by the user prior to binding.

During each cycle t (t ≤ s), a set of concurrent operations
Nt ⊂ S are scheduled. Binding maps each operation in Nt

to one of the allocated FUs (|R| ≥ |Nt|). We can trivially
determine the best security-aware binding solution according
to (2) by enumerating and evaluating every possible binding
solution. Unfortunately, this problem is not separable in any
way. This is because any choice to bind an operation to a
locked FU alters the cost calculated by (2) when considering
binding another operation to that same FU. Thus, there is no

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

way to separate the binding problem into smaller, independent
subproblems enabling more efficient execution.

C. Heuristic Security-Aware Binding Algorithm

While a brute-force approach necessarily produces an
optimal binding solution, it is not efficient. In this exhaustive
approach, bindings unlikely to produce an optimal solution are
still evaluated, inflating runtime. Consider the case where two
operations, OPA and OPB, with input distributions, XA and XB.
If XA shares many members with XB then it is unlikely that
OPA and OPB would ever be bound to the same FU because
doing so would be redundant and provide little increase in the
cost calculated by (2). A good heuristic only considers bind-
ings capable of substantially increasing the number of wrong
keys producing error. To do this, we propose a greedy agglom-
erative clustering heuristic that binds the operation producing
the greatest increase in error-producing wrong keys at a given
time. Let us define this heuristic.

To bind the operations in an arbitrary DFG, we construct a
weighted bipartite graph B = (R ∪ N, E). Each vertex ri ∈ R
is an FU. Each vertex nj is an operation from the set of all
operations N (i.e., nj ∈ N). If ri can bind nj (i.e., the FU ri is
available and can run operation nj), an edge of weight wi,j is
added between these vertices. Initially, this should be the case
for all ri-nj pairs in the graph. If Ki,j is the set of wrong keys
corrupted during normal operation when operation j is bound
to for FU i, then the weight, wi,j, is

wi,j = |Ki,j|. (3)

To bind, we select the maximum weight edge in the graph and
merge the node for this operation, nj, into the corresponding
resource node, ri. This produces a super-node, containing both
resource ri and operation nj, which represents binding nj to ri.
The weighted bipartite graph is now reconstructed with this
new super-node, which we call r′

i, replacing ri.
To bind a new operation j, edge weights between nonbound

operations and the super-node r′
i must be recalculated with

w′
i,j =

∣∣∣∣Ki,j −
⋃

n∈Ni

Ki,n

∣∣∣∣ (4)

where Ni is the set of operations currently bound to FU i.
Thus, w′

i,j quantifies the increase in the number of wrong keys
causing error if operation j is bound to resource i that already
has operations in the set Ni bound to it. Note that the edge
weights connected to nonlocked FUs are always 0. Similarly,
any edges to operations that occur during the same cycle as an
operation in super-node r′

i must not be included, as they are
not valid bindings. Greedy clustering proceeds in this fashion
until no operations (i.e., nodes) remain in N for the graph. The
final binding solution is constructed by binding each operation
to the resource present in its super-node.

To demonstrate the heuristic, consider the binding problem
from Section III-B. There are two FUs, R = {FU1, FU2},
allocated to bind the DFG in Fig. 1(a). FU1 is locked with the
error profile in Table I. To bind this DFG, we initially produce
the bipartite graph in Fig. 2(a). An edge weight of 2 exists
between each operation and FU1 because binding any of these

Fig. 2. Example of the security-aware binding heuristic for distributed error
locking binding the DFG in Fig. 1(a). (a) Iteration 1. (b) Iteration 2.

operations to FU1 increases the number of error-producing
wrong keys by 2. Thus, any operation can be merged with
FU1 during iteration 1. We arbitrarily select OPA and create
a super-node containing FU1 and OPA. Our bipartite graph
is reconstructed with this super-node, depicted in Fig. 2(b).
At this point, only the edge between the super-node and OPD

has nonzero weight because only OPD produces corruption
for new keys (i.e., wk0, wk3). Thus, iteration 2 merges OPD

with the super-node containing {FU1, OPA}, making a new
super-node of {FU1, OPA, OPD}. The bipartite graph is again
regenerated and the algorithm proceeds until no edges remain.
This yields binding 2 from Fig. 1(b), which indeed maximizes
the error-producing wrong keys.

D. Analysis of Proposed Security-Aware Binding Algorithms

Note the following three properties of the proposed
algorithms.

1) Runtime Complexity: The optimal security-aware bind-
ing algorithm assesses every possible binding configuration
for all locked FUs. If there are |R| FUs, |L| of which are
locked (|R| ≥ |L|), there is at most |R| operations bound dur-
ing each cycle of the schedule. If we assume the schedule is of
length s, then there exists at most

(|R|
|L|

)s
binding solutions for

the locked FUs. This yields a super-polynomial complexity.
However, consider the greedy heuristic, which maps the oper-
ation causing the biggest increase in error-producing wrong
keys to a locked FU for each iteration. In this case, edge
weight must be calculated between each unbound operation
in the DFG and locked resource. There are |N| total opera-
tions in the DFG, hence, edge weight must be calculated for
at most |N||L| operation/FU combinations. If we assume that
the wrong keys corrupting an input trace for an operation is
stored in a sorted list K, the edge weight (4) can be calculated
in O(|K|). This graph is constructed at most |N| times to map
every operation to an FU, resulting in a time complexity of
O(|N|2|L||K|) for the heuristic, a P-time solution.

2) Validity and Completeness of Binding Solution:
Theorem 1: The security-aware binding heuristic will pro-

duce a valid and complete binding solution, if it exists.
We omit a detailed proof, however, this follows from two

aspects of the heuristic.
1) Bipartite edges are only added between FUs and opera-

tions capable of being bound together. As a result, FUs
that already have operations from a given cycle bound

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4535

to them will not have edges to other operations in that
same cycle. This guarantees a valid solution.

2) The algorithm terminates when no edges remain. This
can only occur when all operations have been bound to
an FU, a complete binding solution, or when there are
not enough resources available to bind operations in a
cycle (i.e., |Ni| > |R| for cycle i), in which case there
is no valid binding. Thus, a valid and complete binding
solution is produced, if it exists.

3) Security Impact: The security-aware binding algorithms
we have proposed bind a circuit to maximize the wrong keys
causing error for a fixed locking configuration. Remember,
the locking configuration dictates the SAT resilience of the
design. Therefore, because the locking configuration is not
altered during binding, our algorithms enhance the security of
logic locking without reducing SAT resilience to do so.

V. SECURITY-AWARE BINDING FOR CRITICAL

MINTERM LOCKING

Now, let us consider the security-aware binding problem
in the context of critical minterm locking. As we noted in
Section III-C, critical minterm locking serves as a special
case of distributed error locking, whereby our security goal
of maximizing the number of wrong keys producing error can
be trivially achieved by maximizing the occurrence of crit-
ical minterms on locked FUs. Doing so also has the added
impact of maximizing locking-induced errors. As we show,
this allows the security-aware binding problem to be solved
more efficiently for critical minterm locking. To begin, we
define an objective cost function for critical minterm lock-
ing to quantify locking-induced application errors for a fixed
binding.

A. Objective Cost Function for Critical Minterm Locking

Suppose that we have scheduled and bound a DFG onto FUs
locked using critical minterm locking. We aim to quantify the
impact of these locked FUs on error in the DFG. We capture
this error by counting the number of times a locked input is
evaluated by a locked FU during the DFG’s execution. The
objective is to maximize these error injecting events through
smart binding decisions. Let us define matrix µ to represent
the occurrence of each locked input for each operation. The
number of times the locked input m is applied for operation n
is µm,n. µ is calculated using the “typical” input traces that are
available during HLS [22], [41]. Given an input trace for the
DFG, we can perform time simulation to calculate the number
of times a given locked input is applied to each operation.

Based on µ, we define an objective cost function to inform
binding that quantifies the expected number of application
errors for a given locking configuration in a bound DFG. To
do so, assume that each locked FU, l ∈ L, locks a set of inputs
Ml and binds a set of operations Nl. The expected number of
application errors caused by this locking configuration is

Err. =
∑

l∈L

∑

m∈Ml

∑

n∈Nl

µm,n. (5)

Fig. 3. Security-aware binding algorithm for clock 1 (t=1). (a) Scheduled
DFG. (b) Locking config. (c) Bipartite binding (Clk 1, T=1).

B. Security-Aware Binding Algorithm

Using the cost function in (5), we develop a binding
algorithm that maps operations to FUs such that the appli-
cation errors (i.e., when locked inputs are applied to locked
FUs) are maximized. Consider a scheduled DFG, S, spanning
s cycles. A set of resources, R, has been allocated to bind the
DFG. Of these R resources, L have been locked (L ⊆ R). Each
l ∈ L locks a set of critical inputs Ml, which are predetermined.

During each cycle t (t ≤ s), a set of concurrent opera-
tions Nt ∈ S are scheduled. Binding requires us to map each
operation in Nt to one of the allocated FUs (i.e., |R| ≥ |Nt|).
Consider the first cycle of the DFG, t = 1. To bind the oper-
ations at t = 1 (N1), we build a weighted bipartite graph,
B1 = (R ∪ N1, E1). Each vertex ri ∈ R is an FU. Each vertex
nj ∈ N1 is an operation. If ri can bind nj (i.e., the FU ri is
available and can run operation nj), an edge of weight wi,j is
added. This should be the case for all ri-nj pairs, so a complete
bipartite graph is produced. The weight, wi,j, is

wi,j =
∑

m∈Mi

µm,j (6)

where Mi is the set of locked inputs for FU i and µm,j is the
expected occurrences of locked input m ∈ Mi for operation j.
Thus, wi,j is the number of times locked inputs will be applied
to resource i if operation j is bound to it. Note that the edge
weights connected to nonlocked FUs will be 0. We solve the
max weight bipartite matching problem for B1, which can be
solved optimally in P-time. The resulting match maps (binds)
each operation during clock t = 1 to an available FU.

To demonstrate this algorithm, consider the DFG in
Fig. 3(a), which spans two clocks. There are three FUs,
R = {FU1, FU2, FU3} shown in Fig. 3(b), allocated to bind
this DFG. Of these FUs, two are locked, L = {FU1, FU2}, with
locked inputs MFU1 = {x} and MFU2 = {y}. For this DFG’s
typical input trace, the number of times each locked input
(x and y) was applied to each operation is below Fig. 3(a).
For t = 1, the proposed algorithm produces the bipartite graph
in Fig. 3(c). A max weight matching of this graph selects the
red and green colored edges, mapping OPA to FU2, with edge
weight 9, and OPB to FU1, with edge weight 4. FU3 is unused
during this clock because only two operations are executed.
This produces a binding for clock 1 that injects 9 + 4 = 13
errors for the typical input trace.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

The described approach produces a binding for clock t = 1.
This algorithm must be repeated for the remaining s−1 clocks
to produce a complete binding solution. Thus, we must gener-
ate and match a bipartite graph, Bt, for the remaining t = 2. . . s
clocks in the schedule. Notice that the considered operations
change for each cycle (t), but the FUs in R do not. Also, the
bipartite graph for each cycle (Bt) has no dependence on other
cycles. Thus, binding decisions made in one cycle do not con-
flict with another cycle, allowing each clock cycle to be bound
independently and in any order (separability).

By matching each set of concurrent operations to allocated
resources, we bind each operation to maximize the number
of locked inputs applied to locked FUs during the typical
input trace/application. This maximizes the application errors
caused by locking for the characteristic workload (proved in
Theorem 3).

C. Analysis of Proposed Security-Aware Binding Algorithm

Note the following three properties of the proposed
algorithm.

1) Runtime Complexity: To bind an arbitrary scheduled
DFG with s cycles, the proposed algorithm must generate and
match s complete weighted bipartite graphs. Each graph has
|Nt| operations (sources) that must be matched to one of the |R|
resources (destinations) with a maximum weight. A minimum
weighted full match of an m-source and n-destination bipartite
graph can be performed in O(mnlog(n)) [45]. By negating each
edge weight (wi,j) and assuming that |Nm| is the maximum
number of concurrent operations in the DFG, security-aware
binding can be completed in O(s|Nm||R|log(|R|)). Thus, the
algorithm runs in P-time.

2) Validity and Completeness of Binding Solution:
Theorem 2: The security-aware binding algorithm will pro-

duce a valid and complete binding solution, if it exists.
We omit a proof, however, during each clock cycle bipartite

matching ensures a valid match between operations and FUs.
This means that all operations in all clocks are bound to only
one FU, with no more than one operation in a cycle bound to
a given FU. Hence, the final solution is valid and complete.

3) Optimality of Binding Solution:
Theorem 3: The security-aware binding algorithm yields

the maximum application errors for a locking configuration.
Proof: To bind a DFG, a bipartite graph must be generated

and fully matched for each cycle in the schedule (t = 1 . . . s).
Each graph has a source node for every operation n ∈ Nt

and a destination node for each resource in R. Every source-
destination pair is connected by an edge of weight wi,j, which
is equal to the number of occurrences of each locked input
for FU j during operation i. A bipartite graph defined in this
way for cycle t (1 ≤ t ≤ s) is necessarily independent of the
bipartite graph for all other cycles. Hence, the full matching
produced for each bipartite graph is independent. This means
the binding for each cycle in the schedule is separable.

Now, consider that each edge weight in the bipartite graph is
equal to the number of occurrences of each locked input for
FU j during operation i (i.e., expected error injections). By
definition, a maximum weight full matching of this bipartite

Fig. 4. Process to generate benchmark circuits.

graph corresponds to the operation-FU mapping (binding) that
causes the most error injections. Hence, the full matching for
each bipartite graph is optimal for a given cycle in the DFG.
Because each bipartite matching produces the maximum error
injections for that cycle and the bipartite graph for each cycle
is separable, the total binding solution yields the maximum
expected error injections for the locking scheme.

Thus, the proposed algorithm binds the circuit to opti-
mally generate application corruption for a fixed locking
scheme. Remember that this locking configuration was speci-
fied prior to binding to lock few enough inputs to resist SAT-
style attacks. Therefore, the proposed security-aware binding
algorithm guarantees the maximum achievable corruption is
achieved without degrading SAT resilience to do so.

VI. EVALUATION OF SECURITY-AWARE BINDING

To evaluate our security-aware binding algorithms, we
applied them to bind adder and multiplier FUs in 11 bench-
mark DFGs. These benchmarks were created by isolating 11
C functions from eight MediaBench benchmarks [24] and
extracting their DFG with SUIF. A path-based scheduler [46]
was used to schedule each extracted DFG such that no more
than 3 FUs of any type were needed to bind it. The result-
ing benchmarks had 18.6 add and 10.6 multiply operations
over 13.5 cycles on average. For each benchmark, we used the
MediaBench sample workloads to generate our typical appli-
cation (i.e., characteristic input trace). To do so, a trace driven
simulator calculated the occurrence of input minterms for each
operation in the DFG. The typical application and scheduled
DFG were the inputs for each security-aware algorithm. The
benchmark generation flow is shown in Fig. 4.

To empirically assess the proposed security-aware bind-
ing algorithms, we compared them to alternative binding
algorithms run on circuits with identical logic obfusca-
tion configurations. For this comparison, we used an area-
aware approach [23], which minimizes register count, and
a power-aware approach [22], which minimizes switching
frequency. For each benchmark, we enumerated combinations
of {1, 2, 3} locked FUs with varied locking configura-
tions. For each enumerated locked FU/locking configuration,
we created a bound/locked circuit using: 1) our proposed
security-aware; 2) area-aware; and 3) power-aware binding
algorithms. We then calculated the ratio of the effectiveness
of our proposed security-aware approach compared to each
area/power-aware approach with the same locking configu-
ration. In this way, we compared each circuit created with
a security-aware algorithm to the same circuit incorporating
an identical locking configuration created with an area/power-
aware algorithm. This isolates security-improvements caused
by security-aware binding across numerous circuits and
obfuscation configurations.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4537

Fig. 5. Efficacy of security-aware binding for distributed error locking. Bars normalized to area [23]/power [22] aware binding.

Fig. 6. Efficacy of security-aware binding for critical minterm locking. Bars normalized to area [23]/power [22] aware binding. No multipliers are in ecb_enc4,
hence, these bars are not present.

A. Experimental Analysis: Distributed Error Locking

To evaluate security-aware binding for distributed error
locking, we used 4 locking configurations with different
error profiles in {1, 2, 3} locked FUs. These configurations
were selected to provide a reasonable cross section of the
error profiles used by distributed error locking schemes. The
first configuration we considered was from a 256-bit imple-
mentation of CASLock (P = 1) [25]. An identical error
profile could be produced by many other techniques, including
Anti-SAT [32] and SARLock [30]. The other three configu-
rations we considered randomly locked {0.01%, 0.001%, and
0.0001%}1 of the input space for each wrong key. These con-
figurations simulate the error profile produced by techniques,
such as LUT-Lock [28], InterLock [27], and others [29], [31].
For all 12 locking configurations (i.e., four error profiles,
{1, 2, 3} locked FUs), we created a bound/locked circuit for
each benchmark. We then calculated the ratio between the
number of wrong keys corrupting the characteristic applica-
tion after our security-aware binding approach compared to
an area/power-aware approach with the same locking config-
uration. The results were averaged over every benchmark for
Fig. 5.

Fig. 5 shows that optimal security-aware binding increased
the wrong keys corrupting the characteristic application by
an average of 52%, 30%, and 13% for 1, 2, and 3 locked
FUs when compared to area/power-aware binding. Our P-time
heuristic degraded the solution only slightly, producing a
50%, 27%, and 11% increase in application-corrupting wrong
keys. This supports the utility of the security-aware bind-
ing heuristic. Because the performance degradation is small,
we use this heuristic for the remaining evaluation. Based
on these results, security-aware binding improved the secu-
rity of distributed error locking (i.e., wrong keys producing
corruption), regardless of configuration, without sacrificing
SAT resilience.

We make two more observations from Fig. 5. First, there
was a ∼3% degradation in the performance of our binding
algorithms compared to area/power binding for every order-
of-magnitude increase in the locked inputs per wrong key.
This is intuitive. As more wrong keys lock each input, the

1Remember, locked inputs per key must be kept low to resist SAT [9], [10].

difference in input distribution between operations will result
in a less disjoint set of wrong keys corrupted. Moreover, as
wrong keys begin to lock sizable portions of the input space,
the majority of wrong keys would produce error, regardless
of binding decisions, reducing the security impact of bind-
ing. However, locked inputs per wrong key must be kept very
small to ensure SAT resilience, reducing the impact of this
trend. Second, the security improvement provided by security-
aware binding decreased as more FUs were locked in the
benchmark. Again, this makes sense. As more FUs are locked
in a design, more operations (and their corresponding input
minterms) are bound to locked FUs. Thus, it becomes more
likely that advantageous operations are bound to locked FUs
given that there are simply more locked FUs in the system.
This lessens the security impact of binding decisions. We note
that most research tightly limits allowable logic locking over-
head making it unlikely that the majority of FUs in a design
would be locked due to overhead constraints [2].

B. Experimental Analysis: Critical Minterm Locking

To evaluate critical minterm locking in each benchmark, we
enumerated all combinations of {1, 2, 3} locked FUs locking
{1, 2, 3} critical inputs each. Based on our trace-based sim-
ulation of the DFG for each benchmark, we determined the
10 most common input values as candidate critical minterms.
For the nine candidate locking configurations (i.e., {1, 2, 3}
locked FUs locking {1, 2, 3} critical inputs), we created a
bound/locked circuit securing each combination of the ten
candidate inputs for each locked FU. We then normalized
the application errors produced by the security-aware circuit
to those produced by an area/power-aware binding with the
same locking configuration. These results, averaged over every
locked FU count, critical minterm count, and locked input
combination, are in Fig. 6.

Based on Fig. 6, all benchmarks had an occurrence of a
critical input (i.e., locking-induced error). Thus, in all cases,
100% of wrong keys produced corruption in the character-
istic application. Moreover, security-aware binding increased
the application errors caused by the locking construction by
22× and 29× compared to area and power aware binding.
Thus, our security-aware algorithms caused sizable increases
in application errors, without sacrificing SAT resilience.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Fig. 7. Impact of critical minterm locking configuration on error from
security-aware binding. Results normalized to error caused by identical
locking applied after area/power binding.

Fig. 8. Area/power overhead of security-aware binding compared to
area [23]/power [22] aware binding. (a) Overhead versus area-aware binding.
b) Overhead versus power-aware binding.

We have aggregated the impact of locking configuration on
the efficacy of each binding algorithm for critical minterm
locking in Fig. 7. To generate Fig. 7, we fixed a single lock-
ing parameter, listed on the x-axis, and averaged our results
over all other locking parameters (e.g., the “1 FU” bars aver-
age over locking with {1, 2, 3} critical inputs). In this way,
we isolated the impact of each parameter on the performance
of our security-aware algorithm. Based on Fig. 7, increases
in error were consistent in all cases. Remember, all increases
were normalized to the error caused by area/power binding for
the same locking configuration (i.e., locked FU count, critical
input count, and critical input identity). Thus, Fig. 7 sug-
gests that security-aware binding yields a consistent increase
in error, no matter the underlying locking construction.

C. Security-Aware Binding Design Overhead

Each security-aware binding algorithm makes binding deci-
sions to enhance logic locking. These security-aware decisions
are made at the expense of alternative design goals. To assess
the impact of security-aware binding on these other goals,
we compare circuits produced by binding the same DFG
with: 1) security-aware binding; 2) area-aware binding [23],
which minimizes register count; and 3) power-aware bind-
ing [22], which minimizes switching frequency. The results
of this comparison aggregated over all 11 benchmarks are in
Figs. 8 or 9.

Security-aware binding used 4.8 more registers than area-
aware binding, regardless of locking configuration (Fig. 8).
Another side-effect of area-aware binding is the maximization
of register reuse. This minimizes the size of the multiplex-
ers on the input of each FU. Because larger multiplexers have
worse timing, this approach also helps reduce timing. We have
aggregated the average increase in the inputs to the largest
multiplexer in the design and the average timing overhead
of security-aware compared to area-aware binding using the
Cadence Encounter RTL Compiler with the Synopsys 90-nm

Fig. 9. Timing overhead of security-aware binding algorithms compared to
area-aware [23] binding algorithm.

SAED library in Fig. 9. On average, security-aware binding
required a largest multiplexer with 2.2 more inputs causing a
timing overhead of 1.7% over area-aware binding.

With respect to power-aware binding, our proposed algo-
rithms for distributed error locking exhibited a 0.05 higher-
switching rate, compared to a 0.03 higher-switching rate for
critical minterm locking (Fig. 8). This difference between
locking families makes sense. The cost function for dis-
tributed error locking (i.e., maximizing error-causing wrong
keys) favors binding operations with diverse inputs together.
Such binding decisions increase the probability of bit-flips
between inputs, increasing switching rate. Alternatively, the
cost function for critical minterm locking does not favor bind-
ing operations with disparate inputs together, instead favoring
binding operations with a high occurrence of a few criti-
cal minterms to locked FUs. This results in reduced power
overhead.

VII. CONCLUSION

We explored security-aware binding during HLS to enhance
logic locking. To do so, we bifurcated logic locking schemes
into two families: 1) distributed error and 2) critical minterm.
We developed security-aware resource binding algorithms to
enhance locking from both families without sacrificing SAT
resilience. To evaluate these algorithms, we applied them to
11 MediaBench benchmarks and their typical applications.
For distributed error locking, our security-aware binding algo-
rithms designed locked circuits corrupting a typical application
for 52% more wrong keys than a circuit bound with con-
ventional schemes. For critical minterm locking, our security-
aware binding algorithms designed locked circuits corrupting
typical applications for 100% of wrong keys while also
exhibiting 26× more errors in those applications than a circuit
bound with conventional schemes. Regardless of locking fam-
ily, our binding/locking solutions maintained SAT resilience
while incurring minimal design overhead. Thus, security-
aware binding enhances logic locking without sacrificing SAT
resilience.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[2] A. Chakraborty et al., “Keynote: A disquisition on logic locking,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 1952–1972, Oct. 2020.

[3] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor,
“Advances in logic locking: Past, present, and prospects,” IACR Cryptol.
ePrint Arch., Bellevue, WA, USA, Rep. 2022/260, 2022.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

ZUZAK et al.: SECURITY-AWARE RESOURCE BINDING TO ENHANCE LOGIC OBFUSCATION 4539

[4] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, “IP
protection and supply chain security through logic obfuscation: A sys-
tematic overview,” ACM Trans. Des. Autom. Electron. Syst., vol. 24,
no. 6, pp. 1–36, 2019.

[5] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. Int. Symp. Hardw. Orient. Secur. Trust
(HOST), 2015, pp. 137–143.

[6] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT attack:
Next generation attack on obfuscated circuits with capabilities and
performance beyond the SAT attacks,” Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2019, no. 1, pp. 97–122, 2019.

[7] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in Proc. Int. Symp. Hardw.
Orient. Secur. Trust, 2019, pp. 161–170.

[8] M. Zuzak and A. Srivastava, “ObfusGEM: Enhancing processor design
obfuscation through security-aware on-chip memory and data path
design,” in Proc. Int. Symp. Memory Syst., 2020, pp. 260–271.

[9] M. Zuzak, Y. Liu, and A. Srivastava, “Trace logic locking: Improving the
parametric space of logic locking,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 40, no. 8, pp. 1531–1544, Aug. 2021.

[10] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the trilemma in logic
encryption,” in Proc. Int. Conf. Comput.-Aided Des. (ICCAD), 2019,
pp. 1–8.

[11] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approxi-
mation resiliency of logic locking and IC camouflaging schemes,” IEEE
Trans. Inf. Forensics Security, vol. 14, pp. 347–359, 2019.

[12] C. Pilato, L. Collini, L. Cassano, D. Sciuto, S. Garg, and R. Karri,
“Optimizing the use of behavioral locking for high-level synthesis,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 2,
pp. 462–472, Feb. 2023.

[13] S. A. Islam, L. K. Sah, and S. Katkoori, “High-level synthesis of key-
obfuscated RTL IP with design lockout and camouflaging,” ACM Trans.
Des. Automat. Electron. Syst., vol. 26, no. 1, pp. 1–35, 2020.

[14] M. R. Muttaki, R. Mohammadivojdan, M. Tehranipoor, and
F. Farahmandi, “HLock: Locking IPs at the high-level language,”
in Proc. ACM/IEEE Des. Automat. Conf. (DAC), 2021, pp. 79–84.

[15] C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg, and R. Karri, “ASSURE:
RTL locking against an untrusted foundry,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 29, no. 7, pp. 1306–1318, Jul. 2021.

[16] N. Limaye et al., “Fortifying RTL locking against oracle-less (untrusted
foundry) and oracle-guided attacks,” in Proc. ACM/IEEE Des. Automat.
Conf. (DAC), 2021, pp. 91–96.

[17] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for
algorithm-level obfuscation during high-level synthesis,” in Proc. Des.
Autom. Conf., 2018, pp. 1–6.

[18] M. Yasin, C. Zhao, and J. J. Rajendran, “SFLL-HLS: Stripped-
functionality logic locking meets high-level synthesis,” in Proc. Int.
Conf. Comput.-Aided Des., 2019, pp. 1–4.

[19] J. Chen, M. Zaman, Y. Makris, R. D. S. Blanton, S. Mitra, and
B. C. Schafer, “DECOY: DEflection-driven HLS-based computation
partitioning for obfuscating intellectual PropertY,” in Proc. ACM/IEEE
Design Automat. Conf. (DAC), 2020, pp. 1–6.

[20] M. Zuzak, Y. Liu, and A. Srivastava, “A resource binding approach
to logic obfuscation,” in Proc. ACM/IEEE Des. Automat. Conf. (DAC),
2021, pp. 235–240.

[21] C. Karfa, R. Chouksey, C. Pilato, S. Garg, and R. Karri, “Is register
transfer level locking secure?” in Proc. Des. Automat. Test Europe Conf.
Exhibit. (DATE), 2020, pp. 550–555.

[22] J.-M. Chang and M. Pedram, “Register allocation and binding for
low power,” in Proc. ACM/IEEE Des. Automat. Conf. (DAC), 1995,
pp. 29–35.

[23] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu, “Data path allocation
based on bipartite weighted matching,” in Proc. Des. Automat. Conf.,
1991, pp. 499–504.

[24] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. Int. Symp. Microarchit., 1997, pp. 330–335.

[25] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-lock: A security-
corruptibility trade-off resilient logic locking scheme,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020, no. 1, pp. 175–202,
2020.

[26] A. Saha, S. Saha, S. Chowdhury, D. Mukhopadhyay, and
B. B. Bhattacharya, “LoPher: SAT-hardened logic embedding on
block ciphers,” in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2020,
pp. 1–6.

[27] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “InterLock:
An intercorrelated logic and routing locking,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des. (ICCAD), 2020, pp. 1–9.

[28] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-
lock: A novel LUT-based logic obfuscation for FPGA-bitstream and
ASIC-hardware protection,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, 2018, pp. 405–410.

[29] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of SAT instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proc. Des. Automat. Conf.
(DAC), 2019, pp. 1–6.

[30] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” in Proc. IEEE Int. Symp. Hardw.
Orient. Secur. Trust (HOST), 2016, pp. 236–241.

[31] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 9, pp. 1411–1424, Sep. 2016.

[32] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 2, pp. 199–207, Feb. 2019.

[33] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-
level interconnect locking using cross-bar architectures,” in Proc. Great
Lakes Symp. VLSI, 2018, pp. 147–152.

[34] M. Yasin, J. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran,
and O. Sinanoglu, “Provably-secure logic locking: From theory
to practice,” in Proc. Conf. Comput. Commun. Secur., 2017,
pp. 1601–1618.

[35] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based
cost-effective, secure logic locking,” in Proc. IEEE 36th VLSI Test Symp.
(VTS), 2018, pp. 1–6.

[36] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly stripping functionality for logic locking: A fault-based perspec-
tive,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 12, pp. 4439–4452, Dec. 2020.

[37] Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, and A. Srivastava,
“Robust and attack resilient logic locking with a high application-
level impact,” ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 3,
pp. 1–22, 2021.

[38] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Orient. Secur. Trust, 2017, pp. 95–100.

[39] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic
encryption algorithms,” in Proc. Great Lakes Symp. VLSI, 2017,
pp. 179–184.

[40] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” in Proc. Asia South Pac.
Des. Automat. Conf., 2018, pp. 271–276.

[41] A. Stammermann, D. Helms, M. Schulte, A. Schulz, and W. Nebel,
“Binding allocation and floorplanning in low power high-
level synthesis,” in Proc. Int. Conf. Comput.-Aided Des., 2003,
pp. 544–550.

[42] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE
Trans. Emerg. Topics Comput., vol. 8, no. 2, pp. 517–532,
Apr.–Jun. 2020.

[43] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 2514–2527,
2020.

[44] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic locking
for secure outsourced chip fabrication: A new attack and provably secure
defense mechanism,” 2017, arXiv:1703.10187.

[45] R. M. Karp, “An algorithm to solve the m × n assignment problem
in expected time O(mn log n),” Networks, vol. 10, no. 2, pp. 143–152,
1980.

[46] S. O. Memik, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, “A
super-scheduler for embedded reconfigurable systems,” in Proc. Int.
Conf. Comput.-Aided Des., 2001, pp. 391–394.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

4540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Michael Zuzak (Member, IEEE) received the Ph.D.
degree in electrical engineering from the University
of Maryland, College Park, MD, USA, in 2022.

He is an Assistant Professor with the Department
of Computer Engineering, Rochester Institute of
Technology, Rochester, NY, USA. His current
research interests include hardware security, com-
puter architecture, and electronic design automation.

Yuntao Liu (Member, IEEE) received the Ph.D.
degree in electrical engineering from the University
of Maryland, College Park, MD, USA, in 2021.

He is an Assistant Research Scientist with the
University of Maryland. His research focus is
hardware security, including physical unclonable
functions, security in emerging fabrication technolo-
gies, logic locking, and the security of machine
learning hardware.

Ankur Srivastava (Fellow, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Delhi, New Delhi,
India, in 1998 and the Ph.D. degree in computer sci-
ence from the University of California, Los Angeles,
Los Angeles, CA, USA, in 2002.

He has been a part of the Technical Program and
organizing committees of several conferences, such
as ICCAD, DAC, ISPD, ICC[]D, GLSVLSI, HOST,
and others. His primary research interests lie in the
field of high-performance, low-power, and secure

electronic systems and applications, such as computer vision, data and stor-
age centers, and sensor networks. He has published numerous papers on these
topics at prestigious venues.

Dr. Srivastava was awarded the Prestigious Outstanding Dissertation Award
from the CS Department of UCLA in 2002. His research and teaching
contributions have also been recognized through various awards. He has
served as the Associate Editor for IEEE TRANSACTIONS ON VLSI, IEEE
TRANSACTIONS ON CAD AND INTEGRATION: VLSI JOURNAL.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 06,2023 at 23:49:56 UTC from IEEE Xplore. Restrictions apply.

