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Abstract—Hardware side-channels have been exploited to leak sensitive 
information. With the emergence of deep learning, their hardware 
platforms have also been scrutinized for side-channel information leakage. 
It has been shown that the structure, weights, and input samples of 
deep neural networks (DNN) can all be the victim of reverse engineering 
attacks that rely on side-channel information leakage. In this paper, we 
survey existing work on hardware side-channel-based reverse engineering 
attacks on DNNs as well as the countermeasures. 

Index Terms—Reverse Engineering, Side-Channel Attacks, Deep Neu- 
ral Networks 

 
I. INTRODUCTION 

With the rapid evolution of machine learning, deep neural networks 
(DNN) are increasingly becoming an essential part of many appli- 
cation programs used in our daily lives. Meanwhile, training highly 
accurate DNN models requires expensive hardware, takes a long time, 
and sometimes needs private data. For instance, training the ResNet 
model with the ImageNet dataset takes a few weeks even with state- 
of-the-art GPUs [1]. The high performance of DNNs and their high 
training cost make them a type of valuable intellectual property of 
DNN model owners. 

Unfortunately, it has been shown that information about DNN 
models, including the structure, weights, and input samples can be 
leaked through hardware side-channels. In fact, such leakage has 
been found in both general purpose hardware (CPUs and GPUs) and 
specialized DNN accelerators. In this paper, we survey the existing 
work on side-channel-based reverse engineering attacks on DNNs. 
The exploited hardware side-channels can be broadly categorized 
into three classes: resource sharing due to the architecture, off- 
chip memory traffic, and physical measurement. A more detailed 
classification tree is shown in Figure 1 where it can be also seen 
that countermeasure is still missing for some types of attacks. We 
summarize the work on each of these topics in the rest of this paper. 

 

 
Fig. 1. Summary of Attacks and Countermeasures Discussed in this Paper 

 

 
II. SIDE-CHANNELS ENABLED BY RESOURCE SHARING 

In modern processor architectures, many components are designed 
to be shared by different processes. This potentially allows one 
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process to infer the information about another by monitoring the 
usage of shared resources. As far as DNN reverse engineering is 
concerned, the sharing of cache in CPUs and CUDA cores in NVIDIA 
GPUs has been exploited. We introduce this body of work in this 
section. Notice that this type of sharing only leaks the structure, not 
weights, of DNNs. This is because weights usually do not affect the 
execution of the DNN model and hence will not be reflected in the 
architectural side-channels. 

 
A. Cache Side-Channel based DNN Reverse Engineering 

Due to the set associative nature of cache in most CPUs, multiple 
memory addresses are mapped to the same cache block, which makes 
it possible for a process to infer processes’ cache usage by observing 
its own memory access latency (cache hit or miss). For example, if 
a memory read incurs a cache hit, it means that the cache block has 
not been accessed by any other process. 

Two methods of DNN reverse engineering through monitoring 
the use of DNN library codes, namely Cache Telepathy [2] and 
DeepRecon [3], have been independently proposed by Yan et al. and 
Hong et al. In these attacks, the DNN library codes need to be 
avilable to the adversary. This enables the adversary to identify the 
DNN library function code lines to monitor with cache timing. With 
the series of DNN library function calls discovered through cache 
timing side-channel, the adversary can extract the control flow of the 
DNN. In Cache Telepathy, the adversary first acquires the addresses 
of a few key functions in the Generalized Matrix Multiply (GEMM) 
backend libraries. Then they use Flush+Reload [4] or Prime+Probe 
[5] to monitor the usage traces of these functions. Substantial DNN 
layer structure information can be extracted from these traces and 
usually only a few candidate structures will be identified among 
a virtually infinite search space. DeepRecon uses Flush+Reload to 
monitor the usage of TensorFlow library code. A sequence of layers 
can be obtained this way. Then, the sequence is compared with DNN 
structures that are available in the public domain and the victim DNN 
can be identified if it is among those ones. 

Both Cache Telepathy and DeepRecon require that the library 
function used by the victim DNN be shared for all the processes 
running on the same processor. Hence, these attacks will not be 
possible if the libraries are not shared. Liu et al. proposed GANRED 
[6] where the adversary only examines the overall cache timing side- 
channel signature left by the victim DNN (VDNN). Meanwhile, the 
adversary also builds their own DNN (ADNN) with the goal of 
producing the same cache side-channel signature as the VDNN. A 
Generative Adversarial Net (GAN) style framework is set up with the 
ground truth being the VDNN’s cache trace, the constructor being 
the ADNN, and the discriminator being the root-mean-square error 
between the ADNN’s cache trace and the ground truth. The authors 
showed that the GANRED framework was able to reconstruct the 
precise structure of AlexNet [7] and VGG-11, 16, and 19 DNNs [8]. 

 
B. Mitigating Cache Side-Channel-based DNN Reverse Engineering 

While cache side-channel analysis is not unique to DNN reverse- 
engineering, such attacks have become an important application. As 
a result, pathways to mitigate these attacks against DNNs have been 
developed. For example, Telepathic Headache [9] was proposed to 
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thwart the Cache Telepathy attack introduced in [2]. In order to do so, 
Chabanne et al. modify the Generalized Matrix Multiply (GEMM) 
algorithm that is exploited by the Cache Telepathy attack to add 
randomness to the order with which the computation is executed. 
Doing so exponentially increases the search space that must be 
considered by the resulting algorithm, protecting the DNN hyper- 
parameters against a Cache-Telepathy-style attacker. However, such 
a defense mechanism is unique to side-channel attacks exploiting 
the GEMM algorithm. As such, other side-channel attacks, such as 
GANRED [6], cannot be mitigated through such an approach. 

In addition to mitigation schemes that are unique to prevent cache 
side-channel attacks against DNNs, there is also a large body of work 
exploring the mitigation of cache side-channels in cryptographic, 
data center, and more generalized applications [10], [11]. Many of 
these mitigation schemes close the cache side-channel in a way that 
prevents DNN reverse engineering as well, making them directly 
applicable against DNN-focused attacks. As such, we will briefly 
summarize several families of mitigation strategies for cache side- 
channel attacks that can be extended to protect DNNs as well. We 
refer to these families as detection, resource isolation, and restricting 
fine-grain timing. We summarize each below. 

Detection: These techniques aim to identify if/when a cache side- 
channel attack is being launched. Upon detection, action can be taken 
to prevent further leakage, such as locking the system, flushing the 
caches, or evicting processes. There is a huge number of techniques 
in this family, however, they all generally follow the same model. 
Namely, they aggregate some collection of processor state informa- 
tion such as the currently loaded libraries, the cache hit/miss ratio, the 
branch misprediction count, or the presence of co-located processes. 
Based on this state information, an algorithm is deployed to identify 
when a side-channel is being analyzed. For example, Kulah et al. 
[12] proposed SpyDetector, an anomaly-based detection approach that 
quantifies contention in shared resources per process using hardware 
performance counters. When sufficient contention occurs to exceed 
a k-means-clustering-determined threshold, an attack is detected and 
a warning is issued. In a slightly different approach, Briongos et 
al. [13] proposed the CacheShield tool to detect cache side-channel 
attacks. CacheShield protects a victim process by tracking hardware 
performance counters, particularly cache misses and CPU cycles. A 
detection rule is defined to calculate a value based on these parameters 
(along with the prior detection rule values). Whenever this calculated 
detection rule value exceeds a defined threshold a side-channel attack 
is detected, an alarm is raised, and some countermeasure is taken. 
This family of detection-style mitigation strategies includes a wide 
array of additional works as well, such as [14]–[16] 

Resource Isolation: These techniques aim to partition or isolate 
shared cache resources between processes. There are several ap- 
proaches in this family including cache partitioning [17]–[19] and 
sharing prevention [20]. Page [17] proposes a novel partitioned cache 
architecture that can be dynamically reconfigured. In this model, 
the cache is dynamically split to provide a protected cache region 
uniquely defined per application, thereby reducing cache interference. 
Another partitioning-style approach involves locking specific cache 
lines to their respective processes [18], [19]. These cache lines cannot 
be evicted by cache accesses from different processes, closing the 
side-channel. The sharing prevention approach in [20] closes the 
cache side-channel through restricting any sharing of last-level cache 
lines between processes in separate security domains. 

Restricting Fine-Grain Timing: These techniques attempt to 
restrict any fine-grain timing measurements available to the attacker 
[21]–[23]. This can be done either through limiting the frequency of 
allowed time-stamp requests [21] or coarsening the resulting timing 
measurements [22], [23]. Essentially, these techniques attempt to 
deny the attacker timing data with sufficient granularity to provide 
side-channel leakage. 

C. GPU Context Switching Side-Channel 

Another side-channel attack, called MoSConS, has been proposed 
and relies on the adversary sharing a GPU with the victim [24]. 
Having the victim’s kernel and attacker’s kernel use the same GPU 
core causes context switching. Additionally, using multiple adversary 
kernels and a scheduler guarantees that the adversary will get an 
equal amount of the execution time. This allows the adversary to 
more consistently sample the victim’s data, such as resource usage. 
Then, using customized inference models, based on the long short- 
term memory (LSTM) model, multiple passes are run to identify 
the structure of the victim’s DNN. Different customized models are 
able to iteratively and individually identify layer composition and 
hyper-parameters. Multiple iteration training creates better structure 
predictions as any errors have the opportunity to be corrected. The 
DNN model syntax is also used to correct errors yielding more 
accurate predictions. MoSConS was evaluated on the Nvidia GeForce 
GTX 1080 TI GPU and was able to discover model secrets with a 
high accuracy. The attack was tested on various models belonging to 
different families all resulting in highly accurate results. 

 
III. MEMORY ACCESS PATTERN SIDE-CHANNEL 

Many DNN architectures use weights and intermediate feature 
maps that cannot fit entirely within a chip’s caches, so some kind 
of off-chip DRAM is used. This is most problematic with DNN 
accelerators because such devices often use direct memory access. 
While the DNN accelerator itself may be hardened against tampering 
and probing attacks, off-chip DRAM may be susceptible. Data sent 
to and read from DRAM can be encrypted, but physical memory 
addresses and access types (read/write) can be observed through 
physical probing. 

 

 
A. DNN Reverse Engineering through Memory Access Patterns 

In [25] the authors observed that the off-chip memory access 
pattern of an inference accelerator is governed by the read and 
write memory dependencies during inference, and can be used to 
infer a set of DNN network architectures. Memory addresses which 
are only read and never written to can be marked as weights, and 
addresses which are written to can be marked as feature maps. To 
distinguish between an input and ouput feature map, note that an 
input feature map for one layer is the output feature map of the 
previous layer. Therefore a read on a previously written to address 
represents the input feature map of the current layer. Since feature 
maps and weights are stored in contiguous arrays, the sizes of 
filters and feature maps can be extracted. The stride and width 
of convolutional and pooling layers cannot be exactly determined, 
but the execution time is directly proportional to the number of 
MAC operations performed. Any candidate network structures with a 
different number of MAC operations can be eliminated from the set 
of possible network structures. Each candidate network can then be 
trained for a few epochs to quickly prune away networks with low 
accuracy. 

The authors of [25] also found that dynamic zero pruning can also 
leak information about weight values. The commonly used ReLU 
activation function tends to result in feature maps with high sparsity, 
i.e a large number of zeroes. By pruning these zero values, only 
non-zero values need to be saved to memory (if using a run-length 
encoding), reducing overhead. However, this also leaks the number 
of zeroes present in feature maps to an attacker. An attacker can use 
this information to express weights as a function of the bias value by 
iteratively constructing network inputs that only activate certain parts 
of the network and observing the number of nonzero outputs. While 
the exact weight and bias values are unknown, this greatly reduces 
the search space. 
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B. Memory Access Patter Obfuscation for DNNs 

There are countermeasures available to prevent the structure and 
weights of the DNN from being leaked by the processor’s memory 
access pattern. The authors of [26] note that the oblivious RAM 
(ORAM) technique is already in use to hide memory access in 
more general situations, but recommend more efficient obfuscation 
techniques which are effective at concealing the DNN structure while 
making far fewer memory accesses. There are three techniques which, 
together, provide desirable memory access pattern obfuscation. One 
technique is the oblivious shuffle, where the data related to each DNN 
layer is reordered in memory before being accessed for computation. 
The attacker viewing the memory access pattern can see which 
addresses the process has accessed during the shuffle but cannot 
determine which order they were accessed in for computation. In 
addition, if not all addresses in the shuffled address region are used in 
computation, then the attacker also cannot tell which addresses are not 
actually used in computation. The two other techniques are namely 
dummy memory accesses and address space layout randomization, 
which are shown to increase the number of possible DNN structures 
exponentially and hence rendering the reverse engineering attack 
infeasible. 

The secure DNN architecture NPUFort makes the assumption of 
an even stronger attacker, who is able to view the contents of the 
memory accesses for both data and instruction reads and writes 
[27]. To counter this, two additional hardware units are proposed, 
termed the instruction security unit and the data security unit. These 
units use an AES-CTR algorithm to encrypt buses to the CPU and 
memory respectively. However, encryption of all data on the bus 
adds significant overhead, so only certain critical feature maps are 
encrypted, chosen based on the sum of the weights, the percent of 
zero weights, and energy consumption. With these units, NPUFort 
can prevent the attacker from learning DNN weights or structures 
even if they have access to the instruction file. 

 
IV. REVERSE ENGINEERING USING PHYSICAL SIDE-CHANNELS 

In addition to cache side-channel, power, electromagnetic (EM), 
and timing side-channels have also been exploited to reverse engineer 
neural models as well. In this section, we introduce such attack and 
their defense techniques. 

 
A. Power Side-Channel-based Attacks 

In [28], power consumption data was used to recover the input 
to a convolutional neural network (CNN) without any knowledge of 
the model parameters or output. However, the attacker is assumed to 
have knowledge about the structure of the neural network and the 
size of the input. Usually power consumption measurements from 
side channels are not very accurate as they contain a substantial 
amount of noise from the surrounding circuit and the measurement 
tools themselves. However, this particular attack offers a method to 
remove noise by first applying a low-pass filter, then finding the 
DC power component, and finally performing power alignment and 
curve fitting. The more precise power consumption measurements 
lead to better reverse engineering. The authors of [28] provide 
separate data processing algorithms for adversaries that solely have 
the power side channel measurements and the adversaries that have 
additional information on the relationship between power and image 
pixels. Testing for this attack was conducted by synthesizing a CNN 
accelerator design on an FPGA. Using hand-written digits from the 
MNIST dataset as input, the attack was able to recognize the image 
with high accuracy. 

Dubey et al. have successfully demonstrated that power side 
channel leakage can be used to determine secret weights via a 
correlation in the Binarized Neural Network (BNN) and have formu- 
lated countermeasures [29]. The attack primarily targets the hardware 
implementation of neural networks and assumes that the adversary 
has a grey-box access of the device. Adversaries are able to target 

registers, because registers used in pipelined adders have a higher 
power consumption than the combinational logic and there exists a 
direct correlation of register values with secret model weights. This 
attack model can be launched on any stage of an adder tree. 

 
B. Electromagnetic Side-Channel-based Attacks 

As mentioned previously, electromagnetic side-channels can also 
be exploited to reverse engineer neural networks. Specifically, an 
attack can be orchestrated by passively observing an electromagnetic 
side-channel. A passive observation of an electromagnetic side- 
channel requires physical access to the system, which is a restraint 
on the attacker, but no other major limitations for the attacker exist. 
In fact, this electromagnetic side-channel observation exploit does 
not even require access to training data, which gives even more 
flexibility and freedom to the attacker. Given these constraints and 
freedoms mentioned, an attacker can clearly distinguish the activation 
function from the electromagnetic trace and easily measure the timing 
execution. This would mean that it is more than possible to use 
these newfound values to reverse engineer the relevant parameters 
and hyperparameters of the neural networks. An example of this 
type of side-channel exploitation can be found in [30] where a 
framework was developed that considers each part of the neural 
network separately and then, by combining the information, manages 
to reverse engineer all relevant hyperparameters and parameters. 

Similar to the electromagnetic side-channels, timing side-channels 
can also be used to gain classified knowledge, because the total 
execution time of neural networks depend on the sequential com- 
putation along the number of layers or depth. To set up for a timing 
side-channel attack, a few prerequisites must be met, and unlike 
the electromagnetic side-channel attack, training data is required. To 
retrieve said training data, the attacker must measure the execution 
time of multiple models with different hyperparameters, and then 
reconstruct the data from there. Once the data is reconstructed, the 
attacker is free to send queries to the target model and compute the 
overall execution time averaged across all the queries. This allows the 
attacker to reduce the entropy of the black box model of the neural 
networks, and slowly get closer to reverse engineering the original 
neural networks. A good example of this phenomenon is shown 
in [31] where a Recurrent Neural Network (RNN) based controller 
predicts the hyperparameters of each layer in the original Neural 
Network, and then a substitute neural network model is used where 
it learns to mimic the predictions of the original model. 

 
C. Mitigating Physical Side-Channel Leakage of DNNs 

As a countermeasure to the power and EM side channel attacks, a 
hybrid of Boolean masking and hiding technique has been proposed 
[29]. The Boolean masking works by secret sharing – removing 
the dependence of secret key on all immediate computations. the 
inputs are split into two randomized shares which are independently 
processed and are never reconstructed to ensure the side-channel 
leakages do not share any information about the model primitives. 
Each part of the inference engine, namely adder tree, activation 
function, Boolean to arithmetic share conversion and output layer are 
masked to reduce the information leak to the sign bits. In order to 
decrease power and area overheads in masking the sign bits, hiding 
techniques have been implemented for only the sign bit. Near to 
constant power consumption was achieved using Wave Differential 
Dynamic Logic (WDDL) technique. 

Since hiding techniques are less efficient than boolean masking 
to mitigate the leaks, Dubey et al have gone on to extend their 
research to implement a fully masked BNN [32]. The AND gates of 
adder are replaced with Trichina’s AND gates to linearize the AND 
operation with relatively simple and efficient implementation and to 
automatically masks the sign bits without needing extra masking 
or hiding efforts. A look up table based approach is implemented 
to design masked multiplexers and the masked comparison based 
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output layer has been transformed to masked subtraction to exploit the 
existing masked adders bypassing the requirements of extra hardware 
overhead. Operations are scheduled at expense of additional flop-flops 
to remove glitches. 

In both the aforementioned works, leakage assessment has been 
done using non-specific fixed vs randomized t-test [33] and have 
ensured the security up to 2M traces as opposed to 45K traces in the 
earlier work. Both the works have initialized the momentum in works 
related to defenses against power side channel based attacks to neural 
networks, but the scopes have been limited to BNNs. Athanasiou et al 
have proposed implementation of arbitrarily masked neural networks 
[34]. A library of secured masked operators capable of composing full 
Multi Layer Perception and Convolutional Neural Network inference 
models has been created and have demonstrated security under the 
notion of 1-strong-non-interference. 

 
V. CONCLUSION 

DNNs present an important attack surface for side-channel-based 
attackers due to their unique properties that make them particularly 
relevant targets. These properties include their 1) extremely regular 
memory access patterns, 2) common execution in the cloud, 3) high- 
value architecture, and 4) high-value data. As a result, there has been 
a variety of work exploring side-channel attacks on DNNs. In this 
work, we surveyed this research, highlighting prominent works both 
exploiting as well as mitigating 1) architectural resource sharing, 
2) memory access pattern, and 3) physical side-channels. Based on 
the scale and scope of existing research as well as the increasing 
popularity of DNNs, side-channel-based attacks on DNNs promise 
to remain an important direction driving current and future research. 
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