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Abstract—The detection and segmentation of stained cells and
nuclei are an essential prerequisite for subsequent quantitative
research for many diseases. Recently, deep learning has shown
strong performance in many computer vision problems, including
solutions for medical image analysis. Furthermore, accurate
stereological quantification of microscopic structures in stained
tissue sections plays a critical role in understanding human
diseases and developing safe and effective treatments. In this
paper, we review the most recent deep learning approaches for
cell (nuclei) detection and segmentation in cancer and Alzheimer
disease with emphasis on deep learning approaches combined
with unbiased stereology. Major challenges include accurate
and reproducible cell detection and segmentation of microscopic
images from stained sections. Finally, we discuss potential im-
provements and future trends in deep learning applied to cell
detection and segmentation.

Index Terms—Nuclei Segmentation, Nuclei Detection, Nuclei,
Cell, Microscopy Image Analysis, unbiased stereology, Deep
Learning, Convolutional Neural Network, Generative Adversarial
Network, Active Learning.

I. INTRODUCTION

HE combination of microscopic imaging, machine learn-

ing and computer-aided diagnosis is emerging as a
powerful tool for quantifying and classifying cell and tis-
sue abnormalities. Accurate detection and segmentation of
individual nuclei and cells could provide rigorous quantita-
tive morphological analysis to guide the diagnostic decisions
of clinicians, drive biomedical research and develop novel
strategies for the therapeutic management of disease [1][2].
Traditional approaches by pathologists and cytopathologists
lack the feasibility for accurate detection and segmentation
of microscopic structures with variable staining and tissue
structures, conjoined and deformed cells, cell densities, etc.
Therefore, a major research concern is the development of an
accurate, reproducible and automatic method for detection and
segmentation of nuclei and cells [3].

The physical appearance of stained cells and nuclei on
microscopic images presents serious challenges for machine
learning algorithms. The performance of conventional ma-
chine learning methods is limited by their dependence on
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Fig. 1: The main tasks of deep learning applied to microscopy
image analysis

extracting engineered features that describe the data, i.e., raw
microscopic images. Designing and engineering representative
features to learn to do cell detection and segmentation of
an image is a daunting process, given the complexity of
biological structures in microscopy images, including cell vari-
ation, complexity of cell texture, and background texture. The
recent emergence of deep learning shows relatively superior
performance on a wide range of diverse tasks in computer
vision [4]][S], speech recognition [6][7], natural language pro-
cessing [8][4], and medical image analysis [9][L10]. LeCun
et al. [11] define deep learning as “representation-learning
methods with multiple levels of representation, obtained by
composing simple but non-linear modules that each transform
the representation at one level (starting with the raw input) into
a representation at a higher, slightly more abstract level”[11]]
(page 1).

In this paper, we review the most recent deep learning ap-
proaches for cell detection and cell segmentation which were
published from 2016 through the end of 2019. A classification
of deep learning applications in microscopy images is shown
in Fig. [I] In this paper, we focus only on cell detection and
segmentation. We defined two types of cell detection: near-
center detection and cell body detection using a bounding-
box approach. For cell segmentation, two types are defined:
semantic segmentation and instance segmentation. A visual
summary of the papers reviewed in this manuscript is shown
in Fig. 2] Additionally, we survey recent work in unbiased
stereology, provide details of challenges and discuss potential
future endeavors. We offer a brief highlight of the basics of
deep learning in Appendix A (Supplementary Material); for
further information on the topic of deep learning, the interested
reader can refer to [4][L1]]. There have been some reviews that
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surveyed earlier work in microscopy image analysis, such as
[12][13] [14], which summarized deep learning approaches
for detection, classification, segmentation, and registration in
microscopy images. To the best of our knowledge, there have
been no reviews of deep learning and applicability to cell
detection and segmentation for unbiased stereology.

II. UNBIASED STEREOLOGY

Unbiased stereology is the field of study concerned with the
accurate quantitative analysis of objects in three-dimensional
(3D) space. The accuracy is achieved through the use of
sampling methods and geometric probes specifically designed
to avoid all known sources of non-random error (bias) when
making estimates of first order stereology parameters [Volume,
Surface Area, Length, Number] and their variation [16]. For
example, making an unbiased estimate of the total number
of objects (e.g., cells, nuclei) requires several steps: define a
reference space; sample the reference space in a systematic-
random manner; count the number of stained objects using
a 3-D virtual probe (disector) using unbiased counting rules;
and scale the resultant count to the entire reference space [17]]
[L8]. Thin focal plane sampling using the disector probe avoids
the Corpuscle problem introduced by sampling and counting
3D objects based on their appearance on 2D planes (i.e.,
profiles) through the reference space [[19]. Unbiased stereology
counting on a stack of images is illustrated in Fig. [3]

With manual stereology to obtain ground truth counts, a
trained technician slowly focuses from the top to the bottom
of each disector stack while counting each object of interest
as it comes into focus. The technician repeats this thin focal
plane scanning process for 200 disector stacks spaced in a
systematic-random manner through the entire reference space.
The six-sided disector probe has three exclusion planes (left,
bottom, first z-plane) and three inclusion planes (right, top,
last z-plane; 2D disector frame is shown in Fig. . It is
worth noting that exclusion lines (planes in 3D) extend past
the upper left, and lower right corners to avoid objects being
counted twice (i.e., edge effects), as depicted in Fig. |4] In the
applications of deep learning to unbiased stereology, stacks
of images through each disector volume (disector stacks)
are captured automatically using standard computer-assisted
stereology equipment (i.e., microscope with motorized three-
axis stage and digital imaging (Stereologer, SRC Biosciences,
Tampa, FL)). Each disector stack consists of multiple z-axis
planes with one micron spacing.

The disector frame shown in Fig. [} determine whether
a cell should be counted or not based on the exclusion line
(red left and bottom lines). If a cell is touching the exclusion
line then it is not counted based on unbiased stereology rules,
otherwise, cells within the disector frame or touching the
inclusion line (green top and right lines) are counted based
on unbiased stereology rules. In-order to automate the process
of unbiased stereology counting, each cell has to be identified
accurately, before applying unbiased stereology counting rules
based on disector frame. Therefore, we reviewed segmentation
and detection methods in this paper, and we discussed the
applicability of these methods to identify cells for unbiased
stereology counting.

III. NUCLEI ANALYSIS APPROACHES USING DEEP
LEARNING

In this section, we summarize deep learning approaches
applied to microscopy images for cell detection and cell
segmentation. We focus on two aspects in this section: 1)
deep neural networks that detect part of a cell, which can be
either near center cell detection (i.e., localization) or entire
cell body detection using a bounding box based detection
approach. 2) deep neural networks for segmentation, which can
be semantic segmentation where objects are segmented from
the background without identifying each object’s mask (pixel-
wise classification), or instance segmentation, where each cell
in a microscopy image is detected then segmented to provide
a mask for each detected cell body.

A. Detection

Detection of a nuclei (cell) using deep learning is an
essential step in computer-assisted microscopy image analysis,
such as cancer tissue grading. Hence, an accurate cell detector
plays a significant role in the diagnosis and study of many
diseases. The diversity of shape, crowdedness (overlap), stain,
and appearance variabilities of nuclei complicate the process
of detection-based analysis. Deep learning has generated much
interest versus conventional computer vision algorithms in
detecting cells in images of stained histopathology sections.
There have been many proposed works of CNN based archi-
tectures to localize nuclei (cell) location (e.g., centroids or an
enclosed bounding box of nuclei). This section discusses cell-
based detection methods in detail. Tables [l and [l summarize
papers reviewed in this section.

1) Nuclei near-center based detection:

a) Stack autoencoder based methods: Sparse autoen-
coder (SAE) is an unsupervised neural network autoencoder
with sparsity penalty [4], which consists of encoding the input
x to latent high level features h, and reconstructing the learned
features (decoder) to the output . In medical image analysis
where labeled data is hard to obtain, an autoencoder plays
a significant role in learning features that can be used for
classification and detection of nuclei.

In [20], a stacked sparse autoencoder (SSAE) was proposed
to detect nuclei in whole slide images of breast cancer tissues
using a sliding window. SSAE was trained to learn the
high-level features, and then a softmax classifier was used
as the output layer to determine if a patch 34*34 contains
cancer nuclei (positive) or not (negative). If a patch contains
nuclei, then the center of the patch is marked as detected.
Additionally, SSAE was compared with a shallow, sparse
autoencoder as well as traditional methods for nuclei
detection such as Expectation-Maximization active contour
[21] and Blue Ratio thresholding [22]]. The results of SSAE
with a softmax layer show superior results of 84.49%
(F-measure) and average precision (AveP) of 78.83% on
an H&E stained breast histopathology images dataset [20].
A similar approach was applied to Pap smear images of
cervical cancer (ISBI14 dataset) to detect and classify image
patches extracted using a sliding window approach with
different sizes [23]. This approach uses SSAE followed by
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Fig. 2: Summary of papers reviewed in this manuscript: (a) number of papers published recently for cell detection and
cell segmentation in microscopy images, (b) number of papers that use transfer learning and tuning versus using random
initialization, (c) number of papers that use near-center based cell detection, bounding box based detection, semantic
segmentation, and instance segmentation. (d) number of papers reviewed in this manuscript per neural network type:
Convolutinoal Neural Network (CNN), Fully Convolutional Neural Network (FCN), Stack Autoencoder (SAE), Recurrent

Neural Network (RNN), and Generative Adversarial Networks.
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Fig. 3: Illustration of the bias associated with profile counting
on tissue sections, where a) shows the true count of cells (total
6 cells) vs. the profile count (total 10). b) Z-axis scanned im-
ages (stacks), where true cell counting in tissue stack (volume)
is shown in yellow arrows using thin focal-plane scanning in
z-axix using the unbiased stereology optical disector probe
with exclusion lines (red left and bottom lines), and inclusion
(green upper and lower lines). Blue arrows indicate cells that
are not counted based on unbiased stereology counting rules.

Six objects

a softmax layer to detect the presence of nuclei in patches
based on features (representations) learned by the autoencoder.

A hybrid deep autoencoder with curvature gaussian was
proposed by Song et al. for detecting cells on bone
marrow histology images. The curvature gaussian model was
used to generate probability maps that were used in addition
to the actual bone marrow histology images to train an
autoencoder. The result of the autoencoder is also a probability
map that is post-processed to obtain the local maxima, which
represent the centroids of the detected cell. The results showed
superior performance with an F1 score of 0.9483 though
with a lower precision compared to the precision performance
achieved by SC-CNN [23]. An extended version of the hybrid
autoencoder [24] for bone marrow images nuclei detection and
segmentation was proposed in [26] to simultaneously detect
and classify the bone marrow nucleus. Another autoencoder
was added to obtain the class-map. Then the class-map and
probability map were combined in the decoding path to obtain
classification and detection of a nucleus. The input to the
autoencoder is a hematoxylin (H) channel patches of size
29%29 obtained using the deconvolution method [27].

The two major advantage of these approaches is they do
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Fig. 4: Examples of the disector frame (2D view) on four
datasets of microscopy images of stained sections of a mice
brain. The green lines of the disector frame are the inclusion
lines, whereas the red lines are the exclusion lines.

not require labeling of data and they can effectively learn
feature representations effectively. The primary disadvantage
is the use of sliding windows to extract overlapping patches
for training stacked autoencoders.

b) CNN based cell detection methods: Convolutional
neural networks (CNN) have attracted increasing interest in
image recognition, object detection, and segmentation for
many reasons, such as shift-invariance, shared weights —
which reduces the learning time cost with many parameters —
and spatial feature learning. CNN is often referred to as the
neural network that has stacks of convolutional layers followed
by fully connected layers at the output layer of the neural
network.

A spatially constrained convolutional neural network (SC-
CNN) was proposed by Sirinukunwattana et al. to detect
and classify nuclei on colorectal adenocarcinoma images.
The proposed method uses a deconvolution of H&E stain
to separate stains [27]. In this approach, hematoxylin stain
intensity of the nucleus is used as input to SC-CNN, where the
ground truth and the output y are represented as probabilities
of a pixel being close to the center of the nucleus in a
given image patch as shown in Equation [l SC-CNN has two
convolutional layers, two max-pooling layers, followed by two
fully connected layers and a parameter estimation layer to
estimate the center of nuclei and the height of the probability
map and spatial constraint layer that gives higher probabilities
to pixels close to the nuclei center. SC-CNN is designed to
detect the centroid of a nuclei and provide a confidence score
of the detection. The best result using SC-CNN shows a higher
F1-score (0.802) compared to other methods for detection of

nuclei [28][291[30][31]]. However, this approach uses sliding
window-based patches extraction of size 27*27, which is time
expensive in large microscopy images, and a single nuclei is
the maximum prediction per patch.

% y . __ ~C <
Y= {1+<|Zj—zsn||§)/2 ifllzs = zlls <d

0 otherwise

where z; and z;, represent y; coordinates and the center
of the nucleus m, where d = 4 is a constant radius.

In high-resolution microscopy images, a sliding window is
used to extract overlapping patches and feed them to a neural
network; however, this approach is time-consuming and
computationally expensive due to the redundancy between
adjacent patches. The K-sparse kernel approach reduces
computation and time costs by inserting zero entries in
the kernel to make them K spatially apart. This approach
was applied to subtype cancer tumor cell detection using
microscopy images by Wang et al. [32]]. This method combines
the detection and classification of lung cancer cell histology
images from TCGA (The Cancer Genome Atlas) [32]. The
neural network is based on LeNet [33] and employed the
K-sparse kernel method that separates neighboring items of
the kernel with zeros [34]. The lung cancer tiles are of size
512*512. The input to LeNet for training is patches of size
40*40 extracted from the original tiles, whereas testing input
image size is 551*551 after padding the original tile images.
This method alleviates the burden of the sliding window
over high-resolution histology images during testing. This
technique achieved superior results compared to previously
proposed approaches [33](36]. In [37] another fast deep
learning-based detection method which uses K-sparse kernel
was proposed (i.e., inserting zero entries in the kernel to
make them K spatially apart). Additionally, a pre-fetching
technique was proposed to alleviate the bottleneck of reading
data from disk. This method was able to detect cells on tile
images of the whole slide images very quickly (approximately
1000 cells per second detection rate) using NLST datase
However, the performance did not improve compared to
previously proposed work [33].

Nuclear shape and morphology variations in microscopy
images present a challenge to accurate detection and segmen-
tation. A shape prior convolutional neural network (SP-CNN)
was proposed by Tofighi et al. [38]. The network aims to use
expert based shapes in detection [39] [40]. The network has
two parts: learnable layers composed of convolutional layers
with ReLU activation, whereas the fixed processing part aims
to apply the prior knowledge in calculating the regularization
of the SP-CNN. The prior shape was applied as follows: 1)
Canny edge detection was applied on the input image, 2) the
activation map that resulted from the learnable part of SP-
CNN was multiplied element-wise with the Canny edges. The
resulting mask is convolved with several prior shape masks .S,
where i = {1,2,...,n}. The results of SP-CNN is the detection

Ihttps://biometry.nci.nih.gov/cdas/studies/nlst/
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of cells that comply with the shape prior provided during
training; this architecture detects the location of the cell, but
not the enclosed detection of the whole cell. The authors
also proposed a tunable SP-CNN approach in [41], where the
prior shape becomes trainable to adapt to the nucleus shape
for different images and to avoid the redundancy of shapes
created by experts. Additionally, an approach to overcome the
variation in shape and crowds of nuclei was proposed in [42].
This probabilistic method uses a neural network and Mixture
Density Networks (MDN) [43], where nuclei detection was
defined as mapping an input patch to a probability density
function (PDF). The Gaussian Mixture Model (GMM) was
used for PDF modeling, where a neural network based on an
18 layer Resnet [44] was employed to learn GMM parameters.
The experimental results on a colorectal cancer dataset (CRC)
[25] of H&E colorectal adenocarcinomas images of size
500*500 obtained at 20x magnification were superior when
compared to [25][20][45].

The advantage of these approaches is that they use prior
shape and alleviate the problem of a sliding window by using
a K-sparse kernel, though they require large labeled sets of
training datasets.

Fully Convolutional Neural Networks (FCN) are neural
networks that do not contain any fully connected layers, but
instead use convolutional layers even at the classification
layer at the output of the neural network such as U-Net
[9]. FCN often contains deconvolution layers to up-sample
the learned latent features. Although, FCN is often used for
segmentation, the approaches reviewed in this subsection
uses FCN in one of the following ways: 1) replacing dense
layers (fully connected layers) with convolutional layer
since convolutional layers have less parameters compared
to dense layers [46]]. This approach mainly classifies pixels
in overlapping patches as part of a cell or not. Then, a
post-processing step to estimate a centroid was done using
moments based on a rough cell shape predicted by the model.
2) transforms weak annotation (clicks near the cell center)
into density maps, then train FCN on microscopy images
with associated ground truth (density maps). The trained
model is used to predict density maps on the test set, which
is post-processed to extract the peaks for each cell [45][47].

One challenging aspect of microscopy images is the
high-resolution of the images which can be alleviated by
using a smaller sliding window over the entire image
during testing, and extracting the patches for training a deep
learning model; however, this approach is time-consuming.
Huang et al. proposed a sparse kernel technique for a deep
convolutional neural network [46] to accelerate the detection
of cells in high-resolution histopathology images. The
proposed convolutional neural network has two convolutional
layers, each followed by a max-pooling layer and 1*1
convolutional layer. The training set contains patches of
tiled whole slide images, and the test set is also extracted
patches from whole slide images. The K-sparse kernel
technique [34] was used during testing for convolutional and
max-pooling layers by inserting zero value entries between

every two adjacent values in a column-wise and row-wise
manner to make them K-pixels apart. Additionally, the
fully connected layers were replaced by a convolutional
layer with a filter size of 1*1. The training of this method
was done on annotated patches (if a patch contains a cell,
then classify each pixel as positive otherwise classify all
pixels of the patch as negative). This method accelerates
the testing phase by testing on bigger patches, to reduce
the time cost and redundancy of the sliding window approach.

A fully convolutional neural network based on deep residual
networks has been used for improving cell detection. For
instance, the proposed work in [48] integrates deep residual
networks and Hough voting for mitotic cell detection. They
have used two branches at the output layer of the network
with different dropout rates, followed by Hough voting to
predict the radius and the angle of a cell location on histology
images. Their work was based on invasive breast carcinoma
histology images from the AMIDI13 challenge dataset [49].
Hough voting and the residual network gave a higher recall of
0.686; while having a lower precision and F1-score compared
to other methods [49][S0]. A deep voting approach was
proposed by Xie et al. [51]] for cell localization using voting
of offsets from local patches of the image, where each voting
provides a confidence score. The weighted votes from all the
testing patches were collected to compute the final voting
density maps similar to the Parzen-window estimation of size
5 x 5 and o was 1. The nucleus position was identified by
the local maxima of the density maps. This method requires
only a weak annotation (click near the nucleus center). This
method had an Fl-score of 0.8152 using 44 Ki67-stained
Neuroendocrine Tumor (NET) microscopy images. In [45], a
deep residual neural network was proposed for cell detection
using a regression approach. This method is inspired by [44]
[9] to output the probability density prediction of the same
size as the input. The residual blocks contain an exponential
rectified unit (ELU) convolutional layer, dropout, and scaling
layer. The experimental results were applied to four datasets:
neuroendocrine tumor (Net) dataset [52f, Hela cervical cancer
[36], breast cancer dataset, and a bone marrow dataset [53].
The proposed method showed a higher F-1 score compared to
[28]][45]]. The results are shown in Table

A CNN based architecture that uses images and correspond-
ing ground truth (density map) as input was proposed by Wang
et al. [47]]. The ground truth (density map) was generated from
weak annotations using Equation [2, where D, is the Euclidean
distance, and «, d,,, constrained the shape of the density maps.

0 otherwise

a(lf) Dcfz)) _ .
d(z) = {e d 1 ifD.(x) <dmn @)

The ground truth is represented by density maps generated
from dot annotations (i.e., weak annotation), where a peak
on a density map corresponds to a cell dot annotation. This
approach uses a network inspired by semantic segmentation
using a Fully Convolutional Network (FCN) [54] with two
modifications: 1) skipping paths were added in a similar
manner to that presented in the U-Net architecture [9] and 2)
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max-pooling layers were eliminated and replaced with convo-
lutional layers with a stride of 2*2. A similar regression-based
approach that uses a density map as ground truth was proposed
by Zhu et al. [S3] to detect and count cells on histology images
using FCN. Their deep learning architecture has three blocks
of convolutional layers, max-pooling pairs; followed by up-
sampling layers. Experiments with four different datasets were
presented: breast cancer stained images dataset, Insect cells
image dataset, Vesicales image dataset, and deep convolutional
adversarial generated network DCGAN images.

Jacobs et al. investigated transfer learning and tuning of
deep learning to detect and classify nuclei on H&E stained
histology images [56]. The initial model was trained on a
colon histology dataset [25[; then tuning the trained model
was done on a prostate histology dataset. The proposed
regression-based neural network detects the presence of a
cell where the ground truth is a density map with peaks
corresponding to cell centers. The results endorse the idea of
transfer learning for nuclei detection.

c) Evaluation study: Although deep learning has had
success in microscopy image analysis for detection, different
parameter settings are essential to get the best performance.
Hofener et al. [S7] presented an evaluation study of essential
parameter settings of a neural network on multiple datasets
for cell detection. The parameter settings evaluated include
augmentation, dropout, post-processing, and FCN decoding
(i.e., up-sampling or dilation). Additionally, a post-processing
method of probability map (Pmap) was presented where a 3*3
median filter was applied followed by Gaussian smoothing
(v = 2). This post-processing method was showing higher
results compared to other post-processing methods.

d) Adversarial Neural Network based methods:
Residual attention generative adversarial network was
proposed by Li et al [S8] to detect cells on microscopy
images. The generator is a combination of U-Net [9] and
Residual Attention Network [S9], where the U-Net segments
the cells on the microscopy images. The attention mechanism
goal is to orient the neural network focus to the important
region of the image (i.e., nuclei). The discriminator is
compromised of eight convolutional layers. Experimental
results on a colorectal adenocarcinomas data set of H&E
microscopy images [25], showed superior results compared
to [25][29], where the F1-score was 0.847.

2) Bounding Box based nuclei detection: Bounding box
cell detection is an approach where the deep learning model
localizes an object in an image by providing an object
bounding box and a confidence score. Deep learning is
used to create a regression model for the bounding box
offsets x,y, width, height, which represents a bounding box
upper-left corner x-axis, y-axis location, and a bounding box
width and height respectively.

Cell proposal is the procedure of generating proposals
that are used later for detection or tracking by choosing
the most optimal set of cell proposals based on confidence

score and other constraints. In the work of Akram et al.
[2] a CNN based method was presented for proposing cells
in the Fluo-N2DL-HeLa dataset [60]. Their deep learning
network was based on Zeiler and Fergus [61] with some
experimental modifications. Additionally, their networks
output the confidence score of the bounding box and the
bounding box starting point and dimensions. This CNN
architecture achieved a high precision of 0.95 and recall of
0.90.

In [62], Fast R-CNN was adopted to detect cells on colon
cancer H&E stained histology images (colorectal adenocar-
cinoma dataset) [25]. A VGG-16 architecture pre-trained on
the ImageNet dataset [63] [64] was used for initialization.
The region proposal network (RPN) was built on top of
VGG-16 to generate bounding box proposals and confidence
scores for Fast R-CNN. The results of Fast R-CNN showed
an improvement in cell detection compared to SC-CNN [25].
Another approach to detect and segment cells in microscopic
images was proposed by [65]]; the approach combines a Single
Shot Detection neural network (SSD) [66]] and ResNet101 as
a backbone network [44]. The model first localizes the cells
(i.e., cell detection) then cropped versions of activation maps
from shallow and deep layers were bi-linearly up-sampled to
get the mask of an instance in the input image. This approach
is referred to as instance segmentation, as discussed in Section
111-B2

A deep learning approach to detect mitotic cells was
proposed by [67]. This multi-stage neural network
approach which consists of deep segmentation network,
deep verification network, and deep detection network. The
deep segmentation network is for generating deep mitosis
segmentation when only a weak label is given (only the
cell center pixels are annotated). Training is done on the
2012 MITOSIS data set challenge which provides pixel-level
ground truth, then testing was done on the 2014 MITOSIS
data set challenge which only provide center pixel annotation
(weak annotation). The 2012 MITOSIS data set has 50
histopathology images of 40X magnification [68]]. The 2014
MITOSIS data set has 1696 histopathology images scanned
at 40X magnification [69]. The deep detection network for
mitotic cells is based on the Faster R-CNN approach which
uses Region Proposal Network (RPN) followed by region-
based-classification [70]. The deep verification network was
a ResNet50 based classification neural network that detected
patches of fixed size from the deep detection network and
classified each patch as mitotic cells or not mitotic cells with
a probability score. This verification network’s goal is to
reduce false-positive detection. The results of this approach
show state-of-the-art performance on the 2012 MITOSIS data
set, where the precision was 0.854, recall was 0.812, and
Fl1-score was 0.832.

3) Shape-fitting based cell detection: Due to the overlap of
nuclei in microscopy images, individual nuclei detection is a
challenging task. A Bayesian object recognition method was
proposed in [71], where an ellipse is fitted to each segmented
mask by a CNN. Cytological H&E images of breast cancer
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were used for the experiment, where color deconvolution [72]]
was applied to extract hematoxylin density. The hematoxylin
patch images of size 43*43 were the input to a CNN with
four convolutional layers with a max-pooling layer after
each consecutive convolutional layer. At the output layer of
the neural network two fully connected layers were applied
to predict the class of each pixel of patch images where
classes are nuclei, cytoplasm, nuclei edge, and background.
The resultant semantic segmentation was turned into nuclei
masks by assigning other classes as background. After that,
an ellipse fitting approach was conducted to fit each binary
mask with an ellipse. This approach yielded better results,
even with clumped cytological nuclei.

B. Segmentation

Segmentation of nuclei in microscopy images plays a signif-
icant role in medical diagnosis and computer-aided-diagnoses
(CAD) [79]. Additionally, segmentation provides a basis for
other quantification of cells in microscopy images such as
counting, and shape analysis. Nuclei segmentation plays an
important role in cancer grading by utilizing the nucleus shape
[8Q]. It is also used as an indicator of prognosis [81]. Mi-
croscopy image cell segmentation is a challenging task due to
the variability of cell shapes, orientations, staining, scanners,
and acquisition. Therefore, the ordinary image segmentation
algorithm’s performance is limited. Deep learning showed
success in medical image segmentation, including microscopy
images cell segmentation, which enables the model to learn
discriminative features that allow the model to perform better
than ordinary algorithms. A summary of segmentation based
methods reviewed in this subsection is shown in Tables[V] [VI]
and [VIIl

1) Semantic segmentation: Semantic segmentation refers
to classifying each pixel p of an image x to a particular
class ¢ where ¢ € {c,ca,....,c,} for n classes [82][83].
In the following subsections, we discuss neural networks
contributions to address microscopy image cell segmentation
challenges.

a) Superpixel and resolution reduction based
methods: High resolution microscopy images require
a large memory and significant computation resources.
Therefore, preprocessing steps such as patch extraction are
mostly applied to reduce input image size and thus reduce the
memory and computation time, one such technique is the use
of superpixels [84]. A Deep learning model with superpixels
was proposed in [85] to learn localized features efficiently and
to reduce input image sizes. The approach involves extracting
superpixel information using the Simple Linear Iterative
Clustering algorithm (SLIC) [84]]. Images were converted to
the HSV color domain where the V color component was
used as an input to deep learning. A modified version of
LeNet [33] was used to train and test disjoint subsets of
cervical cancer images. Tareef el at. [86] proposed a similar
method to segment cells based on extracted superpixel patches
segmentation by CNN followed by dynamic shape modeling.
The superpixel patches were created using SLIC [84], then

classification was done for each patch, where a patch could
belong to either nuceli, background, or cytoplasm. After
that, Voronoi segmentation and dynamic shape level set were
performed to segment the nucleus and cytoplasm using the
Overlapping Cervical Cytology Image Segmentation challenge
dataset from ISBI2014. However, these two approaches used
small patches of size 50*50 and 16*16 respectively from
superpixel images with a single cell per patch which is time
consuming. Janowczyk et al. proposed a resolution adaptive
deep hierarchical (RADHical) learning approach for nuclei
segmentation [87]]. The authors trained M AlexNets [88] each
with a different resolution. The resolution of the input images
was reduced with factors f € {1,0.5,0.25,0.1}, where factor
f = 1 represents the original image. The final output is the
maximum of probabilities starting with the lowest resolution,
and only uses a higher resolution if the objects within the
patch need further accurate segmentation. This approach
was compared to the same neural network that uses the
original image (40x magnification), where the RADHical
approach showed slightly lower F-score compared to its
counterpart. However, the computation time was reduced by
about 85%. Therefore, there is a trade-off between efficiency
and speed when training deep neural networks for whole-slide
pathological images.

b) Methods for cell, stain, and shape variance: The
variability of images in intensity, size, shape, and orientation
of cells in fluorescence microscopy images pose a severe
challenge to learning algorithms including deep learning. In
[89], a method was proposed to deal with images and cells
variability by adding extra connections to bypass pooling
layers. This method is known as MIMO-Net (Multi-input
Multi-Output neural network) which uses an encoder-decoder
approach similar to U-Net [9]. However, they generate aux-
iliary branches to make multiple outputs that are combined
for the final output. The inputs to the neural network are
two-channel images corresponding to two main components
of the images Ecad (membranes marker) and DAPI (nuclear
marker). The results were superior to previously proposed
methods such as [54][90][9]. Another approach to deal with
the variation of cell shapes and appearance was proposed
in [91]. This deep learning method uses a sliding window
approach to extract patches for training a neural network,
where shape selection from a dictionary is performed during
training, and outputs probability maps. The neural network
consists of two convolutional layers each followed by a max-
pooling layer. At the output layer of the neural network, two
fully connected layers were used where the last layer is used to
make predictions by applying the softmax activation. Training
images are YUV color space image patches with a fixed size.
For testing, a sliding window approach was utilized to extract
patches of specific sizes. For accurate segmentation of over-
lapping cells, the authors proposed an iterative region merging
algorithm that works as follows: 1) calculating distance map
[92] using the probability maps, 2) H-minima transform [93]
was applied to the inverse of the distance map to get the initial
markers, 3) an iterative process to expand the markers based
on the distance map until the iteration before two markers
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TABLE I: Summary of the datasets, results, and cell detection methods, where precision, recall, Fl-score, and accuracy are
denoted by PR,F1, and Acc respectively.

References | Datasets and source code Task Results Summary
Datasets: 1) Bone Marrow dataset (BM) [53]: 1) Bone Marrow dataset (BM):
contains 11 st'amed images of size 1200%1200 from P =09138 Regression based detection of cell centroids.
1 8 healthy subjects . R = 0.8985 X )
1471 . . 1 Detection The annotation of the datasets are dot based
2) Histopathology images of breast cancer [73], F1 = 0.90602 annotation of cell centroids
which consists of twenty stained images of size 100*100 Breast cancer dataset:
Source code: not available F1= 0.8810
Training set: - . .
Dataset: Ten micrographs of gastric cancer Acc 96.88% C!assmcatpn bas;d detection and counting .
- . B . of Tumor-infiltrating lymphocytes (TILs) using
174] tissue scanned at 40x jprisma dataset Detection | Test set results . > .
b . . a simple CNN. Uses sliding window approach
Source code: not available not provided in the duri .
. uring testing
author manuscript
1) Breast Cancer dataset:
R = 0.900
P = 0.909
F1 = 0.904
2) Insect cell dataset:
Dataset: 1) Camlyon 17: Breast cancer pathology R =0.902
H&E stained 1magves P =0944 FCN applied to the datasets, followed by
" 2) Insect cell dataset . F1 =0.923 . X
155] . . X Detection . . . post-processing The detection uses the
3) Vesicles image dataset 3) Vesicles image dataset: maxima of intensity map to detect a certain cell
4) DCGAN generated images R =0917 sity map
Source code: not available P = 0.902
F1 = 0.909
4) DCGAN generated images:
R =0.826
P =0.910
F1 = 0.866
Dataset: 1) H&E colorectal adenocarcinoma:
Total 100 images of resolution 500*500 An evaluation study of different parameter
1 associated with dot annotation [25] . _ tuning and settings of FCN, such as augmentation,
o4 2) Ki-67 stained breast tumor tissue section Detection | F1 = 0.827 dropout, post-processing, upsampling method.
images of resolution 450*450 [75] Detection goal is the centroid of the cells
Source code: not available
Dataset: Histopathology images from National Lung K-sparse kernel based acceleration of testing
R . 3 o phase of detection on WSI. The method uses
- Screening Trial (NLST) dataset. Total tiles are . . . .
[46] 215 . 3 Detection | F1 = 0.786 patches centroid on nuclei to train CNN.
of resolution 512*512 [76 SN
. The detected cell centroid is calculated
Source code: not available based on raw image moment postprocessing
Hybrid Autoencoder and Curvature Gaussian
P =0.9273 . "
- Dataset: Bone Marrow Dataset . model proposed to detect cells intensity map.
124] . Detection | R =0.9702 X .
Source code: not available A post-processing to extract local minima of
F1 =0.9483
cell was used
Dataset: 1) prostate H&E stained images.
Magmf}callon = 20x,AT0tal :A400 1mages, Transfer learning and fine-tuning of a pre-trained
resolution 250%250 pixels with weak P = 0.846 . .
- .o . . regression based CNN on prostate H&E stained
156 annotation for training Detection | R = 0.882 . .
. . . . images into another dataset of Colon H&E dataset.
2) Colon H&E stained images dataset. F1 = 0.864 . . . .
. L Detection goal is the centroid of the nuclei
Magnification =20x
Source code: not available
Dataset:. Colorectal cqr}cer'hlstology dataset P =0.788 ResNet [44] deep learning network
5 of H&E images. Magnification = 20x. Total . X . .
142] . $ . R - Detection | R = 0.882 with Mixture density network (MDN) to learn from
100 images. Resolution 500*500 pixels [25] . ; Lo
. F1 = 0.832 different cell Gaussian distribution
Source code: not available
Deconvolution method was applied to H&E stained
Dataset: Breast Cancer microscopy images. images to extract the hematoxylin stain
25 malignant and 25 benign Total images: (represents nuclei) [72].
1711 train = 20 images, test = 20 images. Detection | Acc = 91.33% Then Extracted patches of size 43*43 were used
Resolution = 500*500 pixels to train a CNN. To create a rough localization
Source code: not available of nuclei. Then, Ellipse fitting was applied to
detect and separate touching nucleus structures
Dataset: Cervical Cancer dataset (ISBI2014): Sparse Stack autoencoder was used to train and
23] T'ota]vlmages. 16 pap smear of resolution 1024*1024 Detection | Acc = 87.6% lefirn ldtenF fedt'ures, .thenv a sliding window was
pixels used to test on a testing set followed
Source code: not available by softmax layer
Dataset: Invasive breast carcinoma histology P =0.547 Deep residual network with two top branches
48] images from AMID13 challenge dataset [49] Detection | R = 0.686 followed by deep voting based on hough
Source code: not available F1 = 0.609 transform and bilinear interpolation
Dataset: Fluo-N2DL-HeLa dataset [60],
i contains 92 frames from 2 time lapse sequences of Detecti P =0.963 Cell proposal network to detect and localize,
- fluorescent HeLa cells images ctection | R = 0.996 cells by providing a bounding box of each cell
Source code: available here
Dataset: Total of 100 H&E sta ined histology Deconvolution of H&E stain to separate
images of colorectal adenocarcinomas. P =0.758 stains [27] was applied
23] Resolution 500%500 pixels extracted Detection | R = 0.827 then remossion bgfe d detection of center of
from 10 WSI of 9 patients. Magnification = 20x Fl = 0.791 regres )
N . nuclei using CNN
Source code: available here
Dataset: Bone marrow hematopoietic stem P =09129 Stained separated H&E images based on [27]
126] cells dataset Detection | R =0.9641 used in two Autoencoders rufor class map and
Source code: not available F1 = 0.9378 erythroid and myeloid cells detection
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TABLE II: Summary of the datasets, results, and cell detection methods, where precision, recall, F1-score, and average precision
are denoted by PR,F1, and AP respectively. (continuation of Table

References | Datasets and source code Task Results Summary
Net dataset:
Dataset: 1) Neuroendocrine tumor (Net) §:_ %99‘;
dataset [52]: Total 59 cropped Ki-67 bright field stained Fl_— (')93
images, resolution 400*400*3, magnification 20x. Hel; d:;taset'
2) Hela cervical cancer [36]: P =008 .
Total 22 phase contrast microscopy images. R — 0' 08
3) Breasl cancer d‘“‘?set from . F1 =098 Unet based ResNet for cell detection.
[45 National Cancer Institute, Detection X . .
2013.): total 70 images Breast Cancer dataset: | The detected part of the cells are centroids
4) Bone marrow dataset [53]: §=_ %z?
total 11 H&E stained bright-field microscopy Fl_— (')90
images. Resolution = 1200%1200 - :
pixel from 8 patients Bone marrow dataset:
C P=0.86
Source code: not available R = 0.94
F1 =0.90
Dataset: Here is the dataset of extracted tiles P =083
137] from WSI. Resolution: 512*512 pixels Detection R =0.84 CNN with K-sparse kernel to speed the detection
Source code: | available here F1 =0.83
Dataset: Colorectal adenocarcinomas dataset
. of 100 H&E stained microscopy images . .
1621 of size 500%500 [25] Detection F1 =0.714 VGGI16 faster R-CNN to detect cells location
Source code: not available
Dataset: H&E stained microscopy images _ L . Lo
. containing seven different tissue samples: Breast, Detection P ~ 0.799 A pipeline to segment nuc} el using Unet a nd‘
1771 . . . R =0.955 post-processing using erosion. The detection is
Bladder, Colon, Liver, Kidney, Prostate, and Stomach & Segmentation . A .
- F1 = 0.860 based on centroids of the segmented nuclei
Source code: available here
Dataset: Lung cancer cells histology images from TCGA
(The Cancer Genome Atlas). Total : 300 512 *512 P =0.8029 Neural network architecture based on LeNet [33]
132] lung cancer histology images. 270 for training Detection R = 0.8683 and uses K-sparse kernel to reduce sliding
and 30 for testing F1 = 0.8215 windows cost during testing
Source code: not available
Detect and Segment cells using a combined
@3] Dataset: CNS stem cells population dataset [78] Detection AP = 0.8739 Single Shot Detection neural network [66]
Source code: not available & Segmentation o and ResNet101 as a backbone network
approach [44]
Dataset: Coloregtal ad§noca.rc1ngmas dataset P =0.803 Detection of the location of the cells by including
. of 100 H&E stained microscopy images . . N
1381* of size 500%500 [25] Detection R =0.843 a prior shapes created by experts for neural network
Soﬁrce code: availagle here Fl=0823 training.
A multi-stage neural network approach which
Dataset: 1) 2012 ICPR MITOSIS dataset of 50 consists of deep segmentation network, deep
hisopathology images scanned at 40X verification network, and deep detection network.
magnification, and associate pixel level is The deep segmentation network is for generating
provided (masks) [68]. 2) 2014 ICPR MTOSIS P =0.854 segmentation of mitosis region when only a weak
671 dataset of 1696 micrscopy images Detection R =0.812 label is given (only the cell center pixels are
scanned at 40X magnification. F1 =0.832 annotated), where training is done on 2012 MITOSIS
The annotation is a single click data set challenge which provide pixel-level ground
on cell centroid [69]. truth, then testing was done on 2014 MITOSIS
Source code: available here data set challenge which only provide center
pixel annotation (weak annotation).
Dataset: Colorectal adenocarcinomas dataset P = 0.859 The generator is a combination of U-Net
58] of 100 H&E stained microscopy images Detection R — 0-836 [9] and Residual Attention Network [59],
= of size 500*500 [25]. ctectio - where the U-Net segment the cells on the
Source code: not available F1 =03847 microscopy images
Dataset: Total of 537 H&E stained .
histopathological images digitized Stack S.p‘?ne tautoencoder trained to .
H . " learn distinguishable features of nuclei,
at 40x magnification, where size P =0.888 where the images are paiches extracted
[29] of each image is 2200x2200. Images Detection R = 0.828 jere (e 1mages are patehes extrac
e . using sliding window. Then a classifier
was randomly split for training, Fl = 0.844 X . .
L . was applied to identify each patch
validation, and testing.
Source code: not available as nuclear or non-nuclear.

merge, and 4) a morphology smoothing operation was applied
to the segmentation mask. The dice coefficients on a brain
tumor, neuroendocrine tumor (Net) dataset, and a breast cancer
datasets are 0.85, 0.92, and 0.80 respectively.

Variation of stain and stain absorption presents a challenge
for accurate segmentation. Therefore, preprocessing steps such
as stain normalization are often applied to microscopy images.
A stain-aware multi-scale network (Sams-Net) was proposed
to segment cells on H&E stained images by accounting for
the variability of stains inside the cell, and the clumping
of cells challenges [94]. A stain normalization method [95]]
was applied to neural network input images to avoid data

preparation artifacts and account for stain variations. Sams-Net
uses a predefined weights map that penalizes the loss function
(pixel-wise cross-entropy) to achieve better cell segmentation.
The predefined weights were calculated based on 1) giving
more chance for the nuclei to be segmented correctly when
class imbalance occurred, and 2) providing more opportunities
for the boundary to separate touching cells, and to a nuclei
which absorbed less stain. SamsNet is based on FCN [54]
and uses residual blocks, where three residual blocks are
on the downsampling and two are on the upsampling. The
input images are in three sizes to prevent the loss of spatial
information during downsampling: first residual block takes
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H&E image of size 100%100%3; second residual block takes
H&E image of size 50*50%*3, and the third residual block takes
H&E image of size 25%25%3. The segmentation result using
Sams-Net showed slightly higher results compared to U-Net
[9]] using the CPM dataset [96].

c) Methods to address touching and overlapping cells
problem: Touching and overlapping cells in dense regions
in microscopy images are challenging for segmentation
algorithms. To address this issue, Kumar et al. proposed
a technique for nuclear segmentation in histopathology
images of various human tissues and organs [97]]. This
technique predicts ternary probability maps instead of binary
probability maps. The ternary probability maps correspond
to the background, nucleus, and boundary of a nucleus.
This method ensures that overlapping and touching cells are
segmented correctly instead of segmented jointly or relying
on postprocessing scheme such as watershed to separate
touching nuclei. The convolutional neural network proposed
is simple yet powerful. It consists of three convolutional and
pooling layer pairs, followed by two fully connected layers
and the output layer. However, this approach uses small
patches for training and testing which is time expensive.
Contours of cells are essential to overcome the problem
of touching cells; therefore, a deep contour-aware network
(DCAN) approach was proposed by Chen et al. for the
detection and segmentation of cells and their contours [98].
DCAN is an end-to-end fully convolutional network that has
one downsampling path for learning deterministic features
followed by two branches of upsampling for nuclei and
contour segmentation individually. This network is trained as
a single neural network where weights on the downsampling
path were initialized with a DeepLab model [99] trained on
PASCAL VOC 2012 dataset [100]. In contrast, upsampling
paths weights were initialized randomly from a Gaussian
distribution. The results of this network show superior results
on the 2015 MICCAI gland segmentation challenge dataset.
Another Boundary-Enhanced Segmentation network (BESNet)
was proposed by Oda et al. to improve the segmentation
of nuclei in ganglion H&E stained histopathology images
[101]. BESNet is similar to U-Net [9]]; however, it has two
decoding paths, one for the nuclei segmentation, and the
other for boundary segmentation. Additionally, a boundary-
enhanced loss function was proposed to penalize when the
output differs from the ground truth. The results of BESNet
showed superior performance over the U-Net approach
[9] in dice coefficient. A method for nuclei segmentation
on H&E stained histopathology images using regression
was proposed by Naylor et al [102]]. This regression based
method generated a distance map to overcome the issue
of touching and overlapping nuclei in a clumped area of
cells in histopathology images. This method provides an
alternative approach to predicting the object (nuclei) and
its contour [97][103]]. The regression based deep neural
networks used to create the distance map were a pre-trained
FCN on ImageNet[54][64]], U-Net [9]], and pre-trained Mask
R-CNN with ResNet 101 backbone [44] on COCO dataset
[104], where pre-trained networks were fine-tuned using two
datasets [97][10S]. The regression-based distance map was

post-processed using morphology dynamics [106] to obtain
the right nuclei.

Preprocessing of microscopy images and postprocessing
of the deep learning models results (i.e., probability maps)
are often applied to get an accurate segmentation and to
overcome the overlapping and touching cells. Pan el at. [[107]]
proposed a segmentation method of nuclei in H&E stained
breast cancer histopathology images dataset || using sparse
reconstruction and deep learning. This approach consists
of three steps: 1) applying sparse reconstruction to remove
the background and emphasize the nuclei in the stained
images which work as follows: i) converting RGB images
to grayscale, then ii) applying a smoothing filter called
anisotropic diffusion filter (ADF), after that, iii) applying
the K-SVD algorithm on gray level images, followed by
iv) Batch-OMP for orthogonal matching pursuit to get a
denoised image as input for a CNN 2) CNN training and
testing, 3) post-processing operations using morphology
operations such as opening operations. Another approach is
a FCN that has encoder-decoder paths similar to U-Net [9]]
as proposed in [108]. The method segments a nuclei and
boundary simultaneously. The inputs to the model are random
patches of H&E stain normalized images using sparse non-
negative matrix factorization (SNMF) [109]. The authors tried
deconvolution of H&E, where the hematoxylin channel is
used as input to deep neural network and concluded that stain
normalization is better than stain deconvolution to train deep
neural networks. In the testing phase, overlapped patches are
used to test and train the model, and the results of testing on
patches are assembled. The architecture outputs probabilities
of background, boundary, and nuclei. A postprocessing step
was applied to the prediction to get optimal results.

Due to the overlapping of nuclei in histopathology images,
a deep learning method that uses two U-Net architectures
to segment the cells and create a regression-based distance
map was proposed by Mahbod et al. [110] to enhance the
separation of the cells in segmented masks. The method
uses stain normalized H&E images using [111] to train a
U-Net for segmentation. Another U-Net was trained to create
the distance map. The distance map was smoothed using a
Gaussian, then maxima per nuclei were extracted to seed
the watershed algorithm. Then a postprocessing step was
applied to fill holes and remove small objects. A method
for segmenting cells in H&E stained tissue was proposed
in [77]. This method uses overlapping patches to train and
test a U-Net deep learning architecture [9)]. To maximize the
separation of touching cells, a loss function that combines
edges and cell body loss was used during training of the
model. The segmented cells were smoothed and eroded
to separate touching cells; then, a geometric centroid was
calculated to count the number of cells in an image.

In [112], a deep learning architecture similar to U-Net [9]]
was proposed to segment cells and cytoplasm on fluorescence

Zhttp://medicine.yale.edu
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images. The input images are preprocessed using a top-hat
filtering kernel to suppress background illumination followed
by down-sampling the image to be 10x magnification. After
that, a patch of size 176*%176 with 16 pixels overlap was
extracted to train a deep learning model. The results from the
deep learning model were a probability map that was used for
postprocessing. The postprocessing of the probability maps
involves applying a Laplacian of Gaussian (LoG) blob detector
[113] multiple times to improve blobs on a probability map.
Then, Otsu thresholding was applied to extract a nuclei binary
mask [114]. To address the touching cells issue, an inverse
distance transform was applied, then an H-minima transform
was applied at a certain prefixed level h [115]. The value of
h was used as a seed for the watershed algorithm to separate
touching cells. The results of inference on test set patches
of the same image are stitched together to form a single image.

d) Cascaded deep learning approach: A cascaded deep
learning approach was proposed by Wang et al. to segment
nuclei in histology images of brain tissues [116[]. This method
trained two CNNs, where the probability maps from the
first neural network were fed to the second neural network
in order to learn high-level contextual information from the
probability map and information from the original image
patches to improve segmentation quality. The results of this
method show superior results over a non-cascaded CNN.

e) Evaluation studies: A study of spatial information
effect using three deep learning architectures was conducted
by Hatipoglu [117]. This study used a CNN, a deep
belief network (DBN), and SAE to segment cellular and
extracellular objects in histopathology images. For instance,
patches of histopathology images were extracted using
windowing methods of different sizes. The findings of this
study show that a CNN has the dominant performance with
high spatial information (i.e., the largest patch size 13*13)
using the breast cancer dataset [118] and kidney renal clear
cell carcinoma dataset [119]. In [105], an experimental
study of nuclei segmentation in histopathological images
was done using three different neural networks: a shallow
neural network called PangNet [120], a fully convolutional
neural network for semantic segmentation (FCN) [54], and
DeconvNet [121]. Additionally, an ensemble of FCN and
DeconvNet was created for this approach [121]. The posterior
probability maps were post-processed based on morphological
dynamics [[106]. The result of training the aforementioned
neural networks on a breast cancer dataset [105] shows
relatively higher performance for the ensemble and FCN
compared to the other two neural networks. In a study by
Baltissen et al., a comparison between multiple supervised
and unsupervised methods for Glioblastoma cell segmentation
in microscopy images was performed [122]. These methods
include global thresholding; local thresholding; fast marching
level set method [123]; regions competition [124]; K-means
clustering; random forests; and deep learning. The deep
learning architecture was based on U-Net [9] with atrous
spatial pyramid pooling (ASPP) [99]. The best performance
was obtained using deep learning which outperformed other

supervised and unsupervised methods by a great margin.

f) Transfer learning: A transfer learning approach
was proposed to handle the difference of channels between
the datasets the model was trained on, and the dataset a
model will be tuned [125]. This method used the U-Net
architecture [9] with residual connections [44] and ASPP
[99]. This network was trained on a DAPI single channel
Glioblastoma dataset and transferred to a stained (four
channels) Glioblastoma dataset for fine-tuning. The transfer
learning approach proposed was of two types: 1) copying the
transferred weights of a single channel to all channels of the
target dataset, and 2) weights from single channel images
trained model transferred to only one channel of the transfer
model, whereas, the remaining channels were initialized
using MSRA initialization [126]. The second transfer learning
approach showed superior results over prior approaches.

g) Recurrent Neural Network based segmentation:
Her2Net: a deep learning architecture for segmenting and
classifying cells and cell membranes on human epidermal
growth factor receptor-2 (HER2) stained images of breast
cancer was proposed in [127]]. Her2Net is an encoder-decoder
architecture that involves 16 convolutional layers, two max-
pooling layers, two spatial pyramid pooling layers, and a
TLSTM (trapezoidal long-short-term memory). TLSTM is
basically a combination of four LSTM’s to prevent cellular
structures from distortion on a pixel basis. This neural
network achieved higher results compared to SegNet [128]],
Bayesian SegNet [[129], and U-Net [9] using the Her2 dataset
[130].

h) Adversarial Neural Network based approach: An
approach to segment cells using an adversarial neural network
was proposed in [[131]. This approach was inspired by gener-
ative adversarial networks (GAN) [[132]], however it does not
generate images from a random noise vector, but instead it
estimates the segmentation of cells in an image. The proposed
method consists of estimator and discriminator networks,
where the estimator learns to generate a cell segmentation,
while the discriminator learns to discriminate between the
generated mask and the manual ground truth mask (manual
mask). The estimator has five convolutional layers, where
each layer is followed by batch normalization and activation,
the output is a probability map of three classes (background,
foreground, and cell boundary). To enable discriminator to dis-
tinguish between the probability map and the manual ground
truth, a Rib Cage blocks was designed. Rib Cage blocks
has three inputs: estimator output, manual ground truth, and
combination of both. The performance of this approach was
demonstrated on H1299 data set [133]], where the best Jaccard
measure was 0.806.

An approach to train a neural network with millions of
parameters with less annotated data was proposed by Majurski
et al. [134]. The approach uses generative adversarial networks
(GAN) to learn weight parameters [132], then the weights
from the discriminator are transferred to the encoder part of
U-Net architecture [9]. The U-Net architecture was further
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(a) Near Cell Center Detection [24]

(c) Segmentation

(b) Bounding Box detection [2]

Fig. 5: Examples of a) Near-cell center detection based approach [24], where the green dots represents the true position
detection, yellow dots represents the false positive detection, and the red dots represents the false negatives. b) Bounding
box based cell detection approach [2]] where the green bounding boxes are the ground truth and the red bounding boxes are
detected by deep learning. ¢) Segmentation of cells approach [94], where the contours of the masks are overlaid on top of the

microscopy image

trained with small manually annotated microscopy images to
segment contours of cells. The authors also, tried transfer
learning using a model trained on the annotate Common
Objects in Context (COCO) data set [104]. Furthermore, the
authors also tried augmentations of the small manually anno-
tated microscopy images data set for training U-Net. The best
performing approach was transfer learning from GAN (i.e.,
transfer the weights from the discriminator to U-Net encoder
with further training and augmentation), where the contour
dice coefficient was 0.637 using absorbance microscopy im-
ages of human iRPE cells [133].

2) Instance segmentation: Instance segmentation refers to
the process of identifying each object, which is achieved by
localizing the objects followed by segmenting each localized
object (i.e., detection followed by segmentation) [83]].

a) Bounding Box localization based instance
segmentation: A detection based segmentation of neural
cells using deep learning was proposed in [136]. This method
uses a VGG-16 based Single Shot Detector (SSD) to find
the offset of instances on an image. Then, an upsampling
approach similar to [9] was utilized to preserve spatial
information and to get masks of a size similar to the input
image size. This approach outperformed multi-task network
cascades (MNC) [137], and fully convolutional instance
aware semantic segmentation (FCIS) [138]. A cell proposal
based-segmentation method was introduced in [2], where
two neural networks were trained. The first neural network
proposed K cells, each with a score S. This neural network
was based on [2]. Then the second neural network used
ROI-pooling to extract a fixed-sized features map of size
25*%25 from the first neural network. The extracted feature
maps were concatenated with other coarse feature maps
from lower convolutional layers to localize cells better. The
output of the second neural network (segmentation neural
network) was 25%25 probability maps, which were resized
using bicubic interpolation to the actual size of the bounding
box provided by the first neural network. A significant

advantage of using the first neural network is that it uses a
Whole Slide Image (WSI) rather than using a sliding window.
This method was tested on three datasets: PhC-HeLa [36],
Fluo-N2DL-HeLa [60], and Hist-BM and compared to
other cell detection methods. The results showed the superior
performance of the two-stage cell proposal and segmentation
deep learning compared to MSER [36]][97]].

A detection and segmentation approach was proposed in
[63]]; the approach combines a Single Shot Detection neural
network (SSD) [66] and ResNet101 as a backbone network
[44]. The SSD localizes the cell on the image, then cropped
versions of activation maps from shallow and deep layers
were bi-linearly up-sampled and utilized to get the mask of a
cropped instance of the input image.

A composite deep learning method followed by post-
processing using the local fully connected conditional random
field (LFCCRF) was proposed by Liu et al. for automatic
segmentation of cervical nuclei [139]. This method uses
Mask R-CNN deep learning to provide detection-based
instance segmentation. The segmentation masks were refined
using LFCCRF because Mask R-CNN uses more semantic
features of low resolution, which cause some boundary loss
on the predicted mask. Therefore, the refinement of the nuclei
boundary is needed for accurate segmentation. This method
used the Herlev dataset for experimentation [141].

b) Centroid based instance segmentation: While deep
learning has shown tremendous improvement in medical imag-
ing research with superior results over its counterpart (classical
image processing techniques), annotation of data is tedious,
error-prone, and time-consuming, which imposes an obstacle
for the further success of deep learning. A method that requires
the minimum annotation (i.e., centroid marks) was proposed
by Thierbach et al. to segment nuclei in histopathology images
[142]. This method is based on Mixed-scale Dense (MS-D)
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architecture [143] that enables learning effectively with dif-
ferent cell sizes. Light sheet microscopy fluorescence images
were used to train a MS-D network where the annotated cells
were convolved with a spherical kernel of radius = 3. The
predicted centroids on the test set were used as initialization
for a Multi-object Geometric Deformable Model (MGDM) to
localize cell centers and segment them correctly [144]. This
approach showed a higher precision (0.895), recall (0.942),
and Fl-score (0.918) compared to [1435].

IV. EVALUATION METRICS AND STATE-OF-THE-ARTS
METHODS

A summarized description of the evaluation metrics used
in the reviewed papers is shown in Table In Table
we provide a summary of the methods that used the
same training-testing split of a dataset, and we note the
state-of-the-art methods. Although, others methods shared
the same dataset, training-testing splits were done randomly
[470145][1460[2][42][162][105]], therefore, it was difficult to
conclude which is the true state-of-the-art method for some
datasets.

V. DEEP LEARNING APPLICATION TO UNBIASED
STEREOLOGY

The current gold standard method for quantifying cell
number in tissue sections is unbiased stereology, where a
trained user focuses through a stack of images (z-axis) of a
section and performs counting based on the disector principle
[155]. A study by Groot et al. [156] found that counting
neurons by a trained bio-scientist is 33% lower than the
actual neuron count due to human recognition limitation with
respect to small changes in object quantities [157]. Therefore,
an automatic unbiased stereology approach that solves
the human limitation in cell countings such as counting
subjectivity, recognition bias and time-consumption will
offer great advantages over the current unbiased stereology
practices.

Deep learning provides an objective approach to classify,
segment, and detect cells in microscopy images, where
training the deep learning model requires a large number
of microscopy images to learn discriminative features. In
unbiased stereology, stacks of microscopy images (3D) are
obtained by focusing through the section (z-axis). A cell
is counted when it appears in-focus and complies with
the unabised stereology rules. For more about unbiased
stereology, refer to Section

Semantic segmentation of objects using deep learning
architectures such as U-Net [9]] classifies each object in an
image to a particular class y, where y € {y1,y2, ..., Yn}-
For instance in binary classification, y can be either
foreground (i.e., part of the cell) or background. Alahmari
et al. proposed an automatic algorithm that uses a U-Net
semantic segmentation deep learning architecture to perform
the segmentation of cells on microscopy images. The
deep learning input images are inspired by the Adaptive

Dataset

Accepted
EDF/masks

Accept

Stacks EDF masks ‘
EDF Trages ASA -

Reject

Fig. 6: Data preparation process and ground truth generation
using ASA

Segmentation Algorithm (ASA) [158], that makes an
Extended Depth of Field image (EDF) from 3D stacks
[159]. The ground truth of each EDF image was initially
created by the ASA [158] followed by a human checking
to verify the correctness of the ASA generated masks. Fig.
[6] shows the process of data and ground truth preparation.
After training and testing the deep learning model, a
post-processing technique was applied to perform unbiased
stereology counting rules in microscopy images of the mice
brain neocortex [160]. Although this approach alleviated
a considerable burden of manually labeling (i.e., creating
pixel-wise masks) for cells on EDF images by using an
unsupervised learning algorithm (i.e., ASA) to generate
masks followed by human verification, the performance of the
deep learning model trained using the accepted images from
initial masks generation step is limited due to the simplicity
of the accepted images/masks generated by ASA. Therefore,
leveraging the remaining unlabeled images (i.e., rejected by
a user in the verification step) is critical for increasing the
number of training examples for a better performing deep
learning model.

To leverage the unlabeled data, Alahmari et al. proposed an
algorithm called Iterative Deep Learning (IDL) [161]. The IDL
extends a previously proposed algorithm [160], where a trained
model f on a training dataset .S is used to create masks for an
unlabeled pool of microscopy images U. After that, a human
verifies all masks generated by a deep learning model f(U).
The human verification basically makes a binary decision
either accept or reject, where the accept decision is made in the
case that a mask of each cell in an EDF image corresponds
to an annotated cell in the manually annotated images (i.e.,
images with clicks for counted cells as shown in Fig. [7)),
otherwise, reject. The accepted images and masks are added
to train set S for the next deep learning model training. This
approach shows a performance boost compared to the baseline
[160]; however, this approach is time-consuming because a
user verifies all masks generated by a deep learning model for
all unlabeled pool images U, especially if U is large. IDL is
described in Algorithm

An Active Deep Learning (ADL) approach was proposed
by Alahmari et al. to reduce the number of masks verified by
a human during the IDL process [[162]]. This ADL approach
uses snapshot saving to save multiple models while training
a single deep learning model. The snapshot models capture
variation in the deep learning training where each model is
saved at a different time during gradient convergence [163].
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TABLE III: A summarized description and equations of the evaluation metrics that were used in the reviewed papers

Evaluation Metric Formula Description
.. TP Where true positive and false positive are
Precision (P) ~ TP+FP represented by TP and FP respectively.
TP Where true positive and false negatives are
Recall (R) R= TP+FN represented by TP and FN respectively.
_ 2XPxR Where Precision and Recall are denoted
Fl-score (F1) F1=37R by P and R respectively
Where true positive, true negative, false
_ TP+TN e :
Accuracy (Acc) Acc = TPTFPITNTIEN Egs&fgeﬁl\?d Ff;ls:ﬂgegﬁl::gsz tEl;:enl(})/ted
The AP summarizes the shape of the
interpolated precision/recall curve,
Average Precision (AP) AP = 1—11 D e £0,0.1,....,1} Pinterp(T) a:ld is tdetl‘cine;d as the nhean prec(ilsion "
at a set of eleven equally spaced reca
levels [[100]
Is a measurement of semantic segmentation
Dice Coefficient (DC) DC = % overlap with the ground truth, where A is
the ground truth and B is the predicted mask.
Is a measurement of detection and segmentation
(Intersection over Union (IoU) TolU — 1ANBI overlap with the ground truth, where A is the
Also known as Jaccard index (J) oY = JAUB ground truth and b is the predicted mask or
bounding box.
Where k is the weight factor. The first term
SM(R,T) = k(% N | max M) compute average maximum overlap between
Similarity Metric (SM) [112] LT Iril+[t;] 7 | each label in the ground truth r; € R, while
+(1 - k)(|2]\!'i7T]\4||) the second term compute the ratio of true positive
labels to all labels.

-

—

(a) Manual annotation

(b) mask

Fig. 7: An example of a) manual annotation (counted neurons
have blue X’s), b) cell mask.

The ADL approach creates masks for images in unlabeled
pool U using the snapshot models, followed by a confidence
measure based on majority voting as shown in Algorithm
The ADL approach reduces the time of human verification by
~ 25% compared to IDL, because a human looks at images
with high confidence rather than looking at all the images.
ADL is described in Algorithm

VI. DISCUSSION

Deep Learning performance in microscopy image cell
segmentation and detection based unbiased stereology
quantification is significantly better than the traditional
machine learning and image processing techniques [160].
However, there are some prerequisites for a more accurate
unbiased stereology counting method, such as post-

ALGORITHM 1 : Iterative Deep Learning

Input: 1) Initial training dataset S° which consists of EDF
images and corresponding masks SS9, S .. 2) Unlabeled
pool of EDF images U°.

Output: An extended training set S?, training model M? on
the updated training set S*.

St + S°, where S represents initial training set generated
using ASA, M 0 is the baseline model, ¢ = 0 is the baseline.

fort=1,2,3,.. do
/*Test on Ut using M*~! and verify by user */
1) R" « M= (U'1)
2) Human verify ALL masks € R'
/* Update S* and U? and train M*
1) St SLUR

accepted

2) Ut « Ut_l \szccepted
/* Train a new model */
3) Mt « MH(S?)

end for

processing and obtaining large labeled datasets. Deep
learning segmentation and detection of cells for unbiased
stereology quantification in microscopy images requires a
post-processing step for several reasons: 1) to apply the
unbiased stereology counting rules by removing cells that
intersect with exclusion lines of the disector as shown in
Fig. ] The removed cells are not counted based on unbiased
stereology counting rules see Section 2) to separate
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TABLE IV: Summary of methods that share same dataset, and the training-testing split was the same as specified by the dataset

publisher. Results for the state-of-the-art methods are in bold.

Dataset

Methods State-of-the-art

H&E colorectal adenocarcinoma [25].
Total of 100 images of resolution 500*500
associated with dot annotation. The images
were extracted from 10 WSI of 9 patients.
The images were digitized at 20X
magnification.

1) [25] CNN regression based approach to
detect the center of nuclei in H&E microscopy
images. Training and testing were done using
on two 50-50 split of the data.

2) [38] Prior shape incorporated to detect

cell location using neural network. 50-50 split
of training using [25] code.

3) [58] Generator Adversarial Network (GAN)
based approach, where the generator is

a combination of U-Net and Residual Attention
Network for segmenting cells on microscopy
images. 50-50 split of dataset for training and
testing using evaluation code provided in [25] .

F1-score for:

1) [25] is 0.802
2) [38] is 0.823
3) [58] is 0.847

and testing.

H&E stained tissue images from TCGA
of different tissues such as liver, breast, kidney,
prostate, colon, bladder, and stomach [97].

1) [97] CNN based approach with ternary probability
maps corresponding to the background, nucleus,

and boundary of nucleus. Split provided by dataset
provider for same organ and different organ training

2) [102] Regression based approach of distance map

based segmentation to overcome the issue of touching
nucleus. Split the dataset two training validation and
testing, the testing set is the same as the test set for [97].
3) [108] U-Net based approach to segment cells in images
using sparse non-negative matrix factorization (SNMF).
Using same data splitting provided by [97], where training
was done on 16 images, and testing was done on 14 images
(8 same tissue images, and 6 different tissue images). Same
tissue images are from Breast, Liver, Kidney, Prostate.
Different tissue images are from Bladder, colon, stomach.

F1-score for:

1) [97] is 0.826
2) [102] is 0.786
3) [108] is 0.854

ALGORITHM 2 : Active Deep Learning

ALGORITHM 3 : Query

Input: 1) Initial training dataset S° which consists of EDF
images and corresponding masks S, -, S .. 2) Unlabeled
pool of EDF images U°.

Output: An extended training set S?, training model M on
updated training set S°.

Input: 1) Set of Snapshot models Mgy,apshot =
{M{g', M5, ..., M{3s'}, 2) Unlabeled pool of EDF
images U, and 3) Confidence score threshold K

Output: A set of most images/masks F' with high confidence
score > K.

St « SY, where S° represents initial training set generated
using ASA, M 0 is the baseline model, ¢ = 0 is the baseline.

fort =1,2,3,.. do
[¥Test on U'! wusing M!™' where s €
{10, 15,20, ...,100} and calculate confidence based
on ensemble followed by verification by a user */
1) Rt — Query({Msnapshot} y Utila K)
2) Human verify masks € R?
/* Update S* and U? and train M*
1) St — St_l U Rtaccepted
2) Ut A Ut_l \Rflccepted
/* Train a new model */
3) Mt «— M(S?)
end for

touching cells or remove small noise in the background
[160][161][162].

FEoym = 0 /* Zeros entries matrix */

for M ¢ Mg,apshot do
/*Test on Ut~1 using M, and calculate confidence based
on ensemble*/
1) Ry < M(U'"1') /*test on unlabeled set*/
2) Vp(i,j)E€Rs, do: if (p(i,7) > 0.5) = 1, else p(i,5) = 0,
3) Esum Y (Esuym, Rs) I* pixel-wise sum*/

end for

1) Eensembie < Esum/T , where T = total number of
Msnapshot

i) f < >0 Eensemple/(n + 1), where n = number of
non zeros pixels of Eepsembie, M, n are the dimensions of
Eensemble

iii) F' <= Rpign where Rp;qn C R, of images with f > K
/* get masks where of high confidence above or equal K */
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TABLE V: Summary of the datasets, results, and cell segmentation methods, where precision, recall, F1-score, average precision,
dice coefficient and Intersection over Union are denoted by P,R,F1,AP,DC,and IoU respectively.

References | Datasets and source code Task Results Summary
. L . . P =0.9762 Extracted patch of nuclei based on Superpixel
1851 ];sl:?:zt.cggs' (ﬂftltlai?l:ﬁ:ﬂogy tmages Segmentation | R = 0.9843 clustering, to train CNN based on LeNet to
: F1 = 0.9802 detect cells in image patches
Dataset: Here is the H&E stained tissue The CNN proposed has ternary probability maps
images from TCGA, from different tissues DC = 0.7623 corresponding to the background, nucleus,
[971 such as liver, breast, kidney prostate, Segmentation Fl __0 é267 and boundary of nucleus. Small patches
colon,bladder, and stomach. - of size 51*51 pixels were used in
Source code: available here training/testing the proposed CNN
DC = 0.824
Dataset: A multi-channel fluorescence images glbz 0']731.8 trg1tr:1g,'gffmult1—}nput and lm l.lltl_(t).utps t
acquired images of tissue from mouse . ject Dice with 1 e.ren.t input reso 1_1t10n or better
1891 Segmentation | (OD) = 0.741 cell localization, and adding extra
pancreata [147] X . .
. Pixel Accuracy =0.835 | convolutional layers to bypass pooling layer to
Source code: not available .
Object Hausdorff preserve features
(OH) = 27.5
PangNet [120]
P =0.814
R = 0.655
F1 = 0.675
DeconvNet [121]
i:_ %%674; An experimental study of
Dataset: | Here is the Histopathology H&E Fl_— 0 305 three neural networks.
[105] stained images of size 512% 512 pixels Segmentation - Additionally, an ensemble of the
. FCN [54]
Source code: not available P = 0823 FCN and DeconvNet was created to
R _ 0'7 5 improve the results
Fl = 0.763
Ensemble
P =0.741
R = 0.900
F1 = 0.802
Dataset: Total of 158 Whole Slide Images (WSI)
of breast cancer tissue, 79 stained with
H&E, and another 79 s tained using CNN to segment cells and cell membrane
HER?2 monoclonal antibody. P = 09664 in stained microscopy images. The CNN
[127] Resolution of each WSI is 100,000%80,000 Segmentation | R = 0.9679 OPY 1MAES.
. . . uses two blocks of Trapezoidal
pixels of magnification 40x. F1 = 0.9671
. . Short-term-Memory (TLSTM)
Extracted images of size
20482048 pixels by cropping
Source code not available
Dataset: Neural cell images from time-lapse Detection Detection based segmentation using
{136] micrscopy video, total images is based AP = 0.857 Single Shot Detector (SSD) with VGG16
- 386 of size 640*512 pixels . IoU = 0.812 backbone. Then segmentation masks obtained
. Segmentation . . .
Source code: not available using upsampling similar to [9]
A comparison between supervised and
unsupervised machine learning approaches’
performance in segmenting cells.
The approaches compared are: Global thresholding,
Dataset: Total of 50 fluorescence microscopy local thresholding, fast marching level
. - . . DC = 0911
[122] tissue images of glioblastoma cells Segmentation set method [123],
. IoU = 0.843 . o
Source code: not available region competition [124],
random forest based segmentation using
Weka [148] and Tlastik [149],
and Deep learning with and without
atrous spatial pyramid pooling (ASPP) [9][150]
Dataset: Nuclei segmentation challenge A residual based FCN that uses multiple
194] MICCALI 2017 [96] Segmentation | DC = 0.855 scales input images. A custom loss function
Source code: not available was used to account for stain variation
A regression of distance map based
Dataset: Multiple tissues stained H&E microscopy | Regression segmentation to overcome the issue of
[102] images from two datasets [97] [105] based F1 =0.7793 touching nucleus using pre-trained
Source code: available here segmentation models. Post-processing was
applied to the final segmentation

Accurate segmentation and detection of cells are critical
since the removal of cells touching the exclusion line is based
on deep learning segmentation or detection performance.
For instance, a cell that is touching the exclusion line of
the disector may not get segmented entirely (i.e., cell body
segmented partially); thus, the cell may not be removed by
applying the unbiased stereology counting step. Similarly, if
the bounding box detection of objects does not enclose the

entire cell, the cell may not be removed prior to applying
unbiased stereology cell counting. Another issue with
detecting a cell using a bounding box detection approach
is that the cell is completely inside the bounding box,
but the bounding box is loose. Therefore, the cell will be
removed before applying the unbiased stereology since the
bounding box is touching the exclusion lines of the disector,
although, the cell body is not touching the exclusion line.


http://nucleisegmentationbenchmark.weebly.com/website
https://github.com/ruchikaverma-iitg/MoNuSeg
http://cbio.mines-paristech.fr/Apnaylor/BNS.zip
https://github.com/PeterJackNaylor/DRFNS
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TABLE VI: Summary of the datasets, results, and cell segmentation methods, where precision, recall, F1-score, accuracy, dice
coefficient and Intersection over Union are denoted by P,R,F1,Acc,DC,and IoU respectively. (continuation of Table |Y)

References | Datasets and Source code Task Results Summary
. P =0.96 Segmentation of cells in Pap smear dataset
[139] g(?;izzt.c;(lleer']e\;;a;a:;s;tla[bllill Segmentation | R = 0.96 using Mask-RCNN followed by post-processing
! F1 = 0.95 using LFCCRF
Dataset: Total of 141 H&E histology images Adaptive hierarchical approach to segment
from 137 patients scanned at cells in large histology images using patches of
[87] magnification of 40x with Segmentation | F1 = 0.8218 size 32%32.The approach uses M AlexNet
a resolution of 2000%2000 pixels with different M resolutions, and higher resolution is used
Source code: javailable here only if further refined segmentation is needed
gztgsfrtr;a?e)zag);) {1224 of Intestine DC =0.74 A Unet like architecture with two decoder
[101] . 4 . Segmentation | P = 0.818 paths: one for cell body and the other decoder for
resolutions 1636*1088 pixels R = 0.723 bound £ cell h .
Source code: not available =0. oundary of cells to enhance segmentation
Dataset: Total of 58 H&E histopathology Acc =92.45% . .
. Applying sparse reconstruction method on
[107] images of breast cancer from Segmentation P=08241 input of H&E stain images before trainin,
N Yale, David Rimm’s Laboratory g R = 0.8604 P 1 " g g
Source code: not available F1 = 0.8393 heural networ
Superpixels pre-processing of input images
(86] Dataset: | ISBI2014 dataset Seementation P = 0.994 followed by training a CNN. The post-processing
- Source code: not available € R =0911 of the masks includes the dynamic shape
level and Voronoi Segmentation
Input images with weak annotation
Dataset: Temporal lobe cortex microscopy (centroids of cells) were used to train
. . . . " P = 0.895 Mixed-scale Dense (MS-D) architecture [143]
[142] 1mages from human bra_ln of Segmentation | R = 0.942 The predicted centroids in the test set were
resolution 2560%2160 pixels A .
Source code: not available F1 =0.918 used as a seed for Multi-object Geometric
Deformable Model (MGDM) [144]
to segment cells correctly
A cascaded approach of two neural networks,
Dataset: Mouse brain microscopy images . where the probability map from the first is
LL16] Source code: not available » ¢ Segmentation | DC = 0.767 used to tra?n the sec>(,)nd rll)eural network
to learn high-level contextual information
This method uses U-Net architecture [9]
Dataset: Total of 50 tissue microscopy DAPI with residual connections [44]
stained images of glioblastoma . and ASPP [99], and fine-tune
1125] cells acquirgd at 6§x Segmentation | ToU = 07981 the neural network on different datasets with
Source code: not available different number of image channels by copying
the weights for each channel
1) MOD dataset:
Dataset: 1) H&E-stained image dataset from P =0.813
7 organ (MOD) [97], R =00914
total images is 30 of 1000*1000 Fl = 0.854
pixel resolution DC = 0.812
2) Breast cancer histopathology image 2) BCD dataset A neural network similar to Unet to segment
dataset (BCD) [1511, P =0.942 cells in normalized stain H&E images using
[108] total images is 39 of 1000*1000 Segmentation | R = 0.915 sparse non-negative matrix factorization (SNMF) [109].
pixel resolution F1 =0.923 The neural network uses patches from original images
3) Breast cancer H&E stained images DC = 0.862 during training, and overlapping patches during testing
dataset (BNS) [105], 3)BNS dataset
total 33 images, with resolution of P =0.920
512*512 pixels R =0.7835
Source code: available here Fl = 0.84
DC = 0.83
A two neural network approach, where the first
Dataset: H&E dataset from 7 different DC = 07932 neural network outputs the probability map
[110] organs [111] Segmentation Fl =0 5.3188 of cell segmentation, and the second neural
Source code: not available : network creates a regression output for the distance map,
which used to seed watershed for refined segmentation
ATUM-SEM :
P =00911
Dataset :1) FIB-SEM dataset [153] 1131_:0(')993;2
[152] 2) ATUM-SEM dataset [154] Segmentation FIB—SEM , 3D residual network to segment Mitochondria
Source code: | available here ’
P =0.882
R =0.938
F1 = 0.909

Thus, unbiased stereology cell counting on a microscopy
image requires: 1) accurate cell body segmentation, and 2)
accurate cell body detection. Some of the other methods,
such as those that detect or segment the cell center only
(200230241 (26](25][32][3 7] [38] [4 3] [46] (48] [451[4 71551 [56]

are not suitable for unbiased stereology because entire cell
body segmentation or detection is required for applying
unbiased stereology rules.

In Fig.

examples are given to illustrate unbiased

stereology rules and the effect of inaccurate segmentation or



https://github.com/choosehappy/public/tree/master/DLLevelTutorial
https://cs.adelaide.edu.au/~carneiro/isbi14_challenge/
https://github.com/easycui/nuclei_segmentation
https://github.com/danifranco/EM_Image_Segmentation/tree/master/sota_implementations/xiao_2018
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TABLE VII: Summary of the datasets, results, and cell segmentation methods, where Fl-score, average similarity metric,
jaccard measure, and dice coefficient are denoted by F1, Avg SM J,and DC respectively (continuation of Table |Y and

References | Datasets and source code Task Results Summary
; Dataset: Fluorescent microscope images . _ FCN similar to U-Net for training and
lLiz] Source code: not available Segmentation | Avg SM = 0.86 testing followed by post-processing of feature maps
Deep Contour Aware Neural network (DCAN)
Dataset: Gland segmentation challenge dataset ?rfo[c)lrelT an;()if;r dntlglshzed using Deeplab
[98] Nuclei segmentation challenge dataset Segmentation | DC = 0.876 ; .
Source code: not available decoders (one for nuclei body and the
: other for nuclei contour)
initialized randomly
1) Breast Cancer dataset
CNN: FI = 0.8967
SAE: F1 = 0.8874
DBN: FI = 0.8785
: 2) Kidney renal dataset .. .
Dataset: 1) Breast cancer dataset [118], CNN: FI = 0.9156 An empirical study of the effect of spatial
{117] 2) Kidney renal clear cell S i S AE'.F] - 0 '9123 information (different window sizes patches extracted
4 carcinoma dataset [119]. cgmentation DBN: Fl = 0.8793 from original image) on the results of CNN,
Source code: not available o SAE, and DBN.
Note: results shown
here are for
highest test samples
with window
size = (13*13)
Dataset: Microscopy images from three datasets: Fluo;NZD]Z—HeLa: 1 Ks: the fi
PhC-HeLa [36] Proposal DC = 0.87 Two neural networks: the first proposes
1 - PhC-HeLa: K cells and the second neural
[146] Fluo-N2DL-HeLa [60], based
. . DC = 0.818 network uses these proposed
and Hist-BM [53] segmentation . . ) - . L
Source code: available here Hist-BM: cells to get the segmentation masks
DC =0.823
Unlike generative adversarial networks, this
approach does not generate images from random
noise vector, but instead it estimate segmentation of
Dataset: Microscopy images from cells on an image The proposed method consists
{1311 H1299 dataset:consisting of 72 frame Seementation | T = 0.806 of estimator and discriminator networks, where the
N of size 512*%640 pixels [133] g - estimator learns to generate cell
Source code: Javailable here segmentation, while the discriminator learns
to discriminate between the generated
mask and the manual ground truth
mask (manual mask).
The approach train generative adversarial
networks (GAN) to learn weight
parameters, then the weights from
the discriminator is transferred to the
encoder part of U-Net architecture.
Dataset: Microscopy images of human iRPE Th? U—Ngtharchltlicture wlz;s further
cells. Tmages patches of size trgmed with small manually annotated
[134] 256*256 was extracted, Segmentation | DC = 0.637 mflcr(;lscopy 1mages to se%ngnt cgntours
where total was 1000 images. [135] ot cells. Moreoyer, transfer learning
Source code: not available i using model trained on annotate
: Common Objects in Context (COCO) data
set was done. [[104].
Furthermore, the authors tried also augmentations
of the small manually annotated
microscopy images data set for
training U-Net.

detection. The disector box is shown on top of the images,
where green lines are the inclusion lines (cell touching
inclusion lines is counted), whereas, the red lines are the
exclusion lines (cell touching the exclusion lines is not
counted). In Fig. a disector box is shown with multiple
objects (i.e., cells), one of the cells is touching the exclusion
line, and thus is excluded from unbiased stereology counting.
However, to exclude this cell, an accurate segmentation or
detection has to show that the cell is touching the exclusion
line. For instance, Fig. and Fig. show the accurate
detection and segmentation (respectively) of the cell touching
the exclusion line. On the other hand, Fig. [8d] and Fig
show inaccurate segmentation and detection of the cell
touching the exclusion line. This cell will be counted (false-
positive), although the cell body is touching the exclusion
line. Another example of inaccurate detection is shown in

Fig. [Bf, where the cell in the lower left will not be counted
due to the intersection of the bounding box with the disector
exclusion line, although the cell itself is not touching the
exclusion line (false-negative).

Microscopy image analysis must take into consideration the
variation in scanners, staining, sampling, and tissue texture.
Recent work has been trying to address these issues by
designing neural networks to overcome stain and multi-tissue
variation [94]. These methods account for stain variations
between cells and within the cell body by applying stain
normalization [95] and designing a weighted loss function.
The stain normalization methods such as [109] [111] [95]
reduce the variations of stains caused by stain absorption
variations, scanners, and light setting differences. Another
technique to overcome the stain variation and complications
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(a) (b)
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Fig. 8: Examples of inaccurate segmentation and detection
impact on unbiased stereology cell counting. a) image with
three cells, one of the cells is touching the exclusion line (red
line), b) illustration of accurate detection c) illustrates accu-
rate segmentation, d) an example of inaccurate segmentation
(because mask on the left is not touching exclusion line) , e)
and f) are examples of inaccurate detection. Orange bounding
box indicates that the cell will not be counted since it touches
exclusion line.

is to remove the counter-stain while maintaining the principle
stain which is called stain deconvolution [27][72]. However,
some research found that using the stained normalized
microscopy images is better than color deconvolution since
color deconvolution could remove some critical information
of cell body and tissue structure in microscopy images [108].
Additionally, two stains may get absorbed together by a cell
body, which makes stain decomposition (i.e., deconvolution)
difficult.

In some diseases such as cancer and Alzheimer’s, where
the cells are continually changing, some cells appear small in
size or have deformed shape due to inflammation. Therefore,
the size of cell and shape variation due to the cell mutation is
a challenging task in microscopy image analysis and unbiased
stereology in particular. Therefore, studying microscopy
images requires collecting and labeling a large number of
images to enable supervised learning algorithms such as deep
learning, to learn discriminative features that generalize to
more subjects and perform accurately in cell segmentation
and detection.

Supervised learning algorithms learn to map input x to the
output y (i.e., y = f(x)), therefore, the supervised learning
algorithm f needs to learn features from a substantial training
set X with associated labels Y. Training set X is currently
large and sufficient to train a good learning model due to
the availability of sophisticated scanners and imaging tools.
However, obtaining labels Y remains difficult because manual
labeling is time-consuming and labor-intensive. Additionally,
microscopy images require an expert to produce the label
rather than relying on a crowd-sourcing technique [119]
to annotate images. Therefore, leveraging unlabeled data
using active learning, transfer learning, unsupervised learning
algorithms, and self-supervised learning approaches is a
crucial step for quickly obtaining less expensive labels to
train a deep learning model. For instance, [[160] applied an
unsupervised learning algorithm to get initial segmentation
masks followed by a human verification process to accept or
reject rather than manually creating pixel-wise labels (masks).
In [L62][L164][L6S]], active learning approaches were applied
to leverage unlabeled data by generating labels for images in
unlabeled pool U. Followed by decision making by a human
(i.e, either accept/reject or relabel uncertain instances) to
add images to the training set. This approach increases and
diversifies training set instances to train a better performing
deep learned model.

Whole slide microscopy images (WSI) contain a large
number of objects; therefore, crowding, touching, and
overlapping of objects (i.e., cells) in microscopy images
are obstacles to more accurate segmentation and detection.
Several studies have proposed to segment each cell body
and its contour using deep learning to obtain a separate
mask for each cell accurately [101[][97][108]. However, this
approach is very applicable when cells are touching; but,
when partial overlap of cells occurs, these approaches fail.
Another method that uses shape information to segment cells
of specific shapes could segment partially overlapped cells
[38]. However, this approach is also limited since cells could
appear in any shape, especially in the case of Alzheimer and
cancer tissues, where cells are continuously deforming.

Despite the high correlation of augmented images to the
original image, image argumentation such as random cropping,
rotation, flipping, and elastic deformation could help balance
the datasets for better classification of two or more classes.
However, the class imbalance within the same image is im-
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portant for better pixel-level segmentation or object detection.
For instance, microscopy images are large resolution images;
therefore, cropping or patch extraction is usually done to
reduce deep learning input image resolution and thus to reduce
the computation of deep learning models. Hence, the chance of
having microscopy image patches with different cell quantities
is high, which creates an imbalance of object and background
(i.e., two-class pixel-level classification). In [[166]], a focal loss
was proposed to penalize the loss for a well-classified class
during the training of a one-stage object detector such as
SSD. Therefore, accounting for cell imbalance when extracting
patches is important in training segmentation or detection
model on microscopy images.

VII. CONCLUSION AND FUTURE TRENDS

Current practices to handle high-resolution microscopy
images are to extract overlapping or non-overlapping
patches that are used individually as input to the deep
learning architecture. After training, results from patches
are aggregated together to obtain the final output. Although
this approach reduces the overwhelming computation time
significantly, it does not take the spatial information of the
WSI into account. For instance, the relations between the
nucleus and the surrounding cytoplasm and tissue structure
carry useful information that is relevant and important
in many cancer gradings of a tissue sample. Hence, a
method that integrates neighboring patches for unified feature
learning using deep learning could improve the performance
and efficiency of current deep learning models trained on
patches of WSI. One potential approach is to input more
related patches at a particular point in the neural network
architecture. Thus, a fusion of the learned features from one
patch with deep features of the other patch for further training
could improve the performance of a deep learning model.

Data labeling is expensive and time-consuming due to
the vast availability of data nowadays. Leveraging unlabeled
data is of great interest in many supervised learning-based
applications. Many applications can rely on crowd-sourcing
techniques [119] to get labels such as (annotating animal
images), where expert in the field knowledge is not needed
to obtain optimal labels. In the medical field, annotation
(labeling) requires expert knowledge, and can not be done by
crowd-sourcing based approaches. Therefore, active learning
and semi-supervised learning approaches [162][161] to obtain
pseudo labels for instances from unlabeled data to train more
deep learning models in an iterative approach are critical
and useful for more accurate deep learned models. Recently,
self-supervised learning approaches that leverage unlabeled
data have shown promise to reduce the expert effort in data
labeling and to improve learning model performance. For
instance, [167] uses worker (U-Net) and supervisor (ResNet)
models trained together to learn optimal object segmentation,
where the worker model learns pixel-level classification, and
a supervisor model learns regression of dice coefficient. Then,
unlabeled data is used to generate labels where the supervisor
guides the learning process. We believe that active learning
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and self-supervised learning approaches have a great potential
for success in microscopy image analysis.

In microscopy image analysis where quantification of
the number of cells is critical, accurate segmentation and
detection of cells plays a significant role in understanding the
behavior of diseases. However, microscopy images present
many challenges such as cell overlapping, variations in stains,
stain absorption, sampling of tissues, microscopy cameras,
and light settings during microscopy image acquisition.
Although there have been works that tackle some of these
issues as discussed in Section the generalizability of such
methods to large datasets of different organs and stains is
unknown because these methods are stain and tissue-specific.
Therefore, we believe a more comprehensive evaluation of
the applicability of prior cell detection and segmentation
to different stains, tissue samples using large datasets will
present an excellent contribution to the field of microscopy
image analysis.

Sabour et al. introduced a new type of neural network
called Capsule Networks [168]. Capsule Networks replace
max-pooling layers with convolutional layers with strides and
a dynamic routing algorithm [168]]. Additionally, each piece
of information at a single neuron of the neural network is
stored as a capsule vector rather than a scalar in CNN based
networks. Henceforth, more information is stored, such as
orientation, and the magnitude of the spatial features. The
dynamic routing algorithm [168] routes capsule vectors based
on their agreement to the next layer of the capsule network.
This technique enables the preservation of information and
maintains information on the relationship of part-to-whole.
Since the relationship between cell, surrounding objects,
and cytoplasm carries information. Capsule Networks for
microscopy image analysis will enable learning robust features
that take the relationship of nuclei and the surrounding tissue
parts into account. SegCaps [10] introduced deconvolution
modules for Capsule Networks in a similar approach to U-Net
[9] to perform segmentation on the LUNAI16 dataset. We
believe that Capsule Networks applied to microscopy image
analysis for cell segmentation, detection, classification, and
unbiased stereology will have huge success and will be the
future trend.

In unbiased stereology, bounding-box localization of
cell-based counting is an approach that could alleviate the
burden of counting overlapping cells and may require less
post-processing compared to segmentation based unbiased
stereology cell counting. Therefore, we believe localization-
based unbiased stereology could gain more interest in the
future. On the other hand, unbiased stereology counting is
based on stacks of images (3D); therefore, using individual
frames from stacks to train a deep learning model for detection
and segmentation of cells could improve the performance
of unbiased stereology cell counting compared to a single
in-focus image from each stack [158][162].

This review paper provides a summary of deep learning-
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based cell detection and segmentation approaches in the litera-
ture. Furthermore, the article highlights the recent applications
of deep learning to unbiased stereology. Also, we offer rules
for applying deep learning for cell segmentation and detection-
based unbiased stereology cell counting. Limitations and chal-
lenges of deep learning in microscopy image analysis were
presented. We also sketched future work and trends that we
believe will gain more interest.
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