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Abstract

Stereology-based methods provide the current state-of-the-art approaches for

accurate quantification of numbers and other morphometric parameters of bi-

ological objects in stained tissue sections. The advent of artificial intelligence

(AD)-based deep learning (DL) offers the possibility of improving throughput
by automating the collection of stereology data. We have recently shown that
DL can effectively achieve comparable accuracy to manual stereology but with
higher repeatability, improved throughput, and less variation due to human fac-
tors by quantifying the total number of immunostained cells at their maximal
profile of focus in extended depth of field (EDF) images. In the first of two
novel contributions in this work, we propose a semi-automatic approach using
a handcrafted Adaptive Segmentation Algorithm (ASA) to automatically gen-
erate ground truth on EDF images for training our deep learning (DL) models
to automatically count cells using unbiased stereology methods. This update
increases the amount of training data, thereby improving the accuracy and ef-
ficiency of automatic cell counting methods, without a requirement for extra
expert time. The second contribution of this work is a Multi-channel Input

and Multi-channel Output (MIMO) method using a U-Net deep learning ar-
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chitecture for automatic cell counting in a stack of z-axis images (also known
as disector stacks). This DL-based digital automation of the ordinary optical
fractionator ensures accurate counts through spatial separation of stained cells
in the z-plane, thereby avoiding false negatives from overlapping cells in EDF
images without the shortcomings of 3D and recurrent DL models. The con-
tribution overcomes the issue of under-counting errors with EDF images due
to overlapping cells in the z-plane (masking). We demonstrate the practical
applications of these advances with automatic disector-based estimates of the
total number of NeuN-immunostained neurons in a mouse neocortex. In sum-
mary, this work provides the first demonstration of automatic estimation of a
total cell number in tissue sections using a combination of deep learning and
the disector-based optical fractionator method.

Keywords: Unbiased Stereology, Automatic Optical Fractionator, Disector
Stacks, Cell Counting, Overlapping Cell Segmentation, U-Net, Microscopy
Image Stack

1. Introduction and Related Work

Accurate quantification of stained cells in tissue sections is a critical compo-
nent of basic and clinical research for a wide range of scientific and medical dis-
ciplines, including experimental research in psychology, neuroscience, pathology
and oncology among others. Using artificial intelligence (AI)-based approaches
to analyze stained tissue sections, our group has focused on combining auto-
matic deep learning (DL) and unbiased stereology for quantification of stained
cells and other biological structures in tissue sections. For example, we have
shown DL with a convolutional neural network (CNN) such as U-Net can esti-
mate the total number of immunostained cells in extended depth of field (EDF)
images with accuracy comparable to manual counts but with higher through-
put, repeatability and reduced error from human factors [1} 2, 3[4, [5]. An EDF
image refers to a synthetic 2D construct that shows stained cells of interest at

their maximal plane of focus through a z-axis stack of digital images (disector
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stack) [6] [7, 18, [9]. These focus-stacked EDF images allow for comparisons of Al
and non-Al based approaches for automatic segmentation by different methods
[1L 2, [3L [1OL [11] 4L [12]. Analyses of EDF images from the same disector stacks al-
low for comparisons of accuracy, repeatability and efficiency of cell counts using
different applications of the optical fractionator method ([13] 14} [15]). However,
a limitation of cell counts in disector stacks converted to EDF images is under-
counting due to the possibility of overlapping cells in the z-plane (masking) as
schematically illustrated in Figure

Here we propose a disector-based DL approach that avoids stereological bias
associated with counts of 3D objects (cells) based on their 2D profiles, i.e., the
Corpuscle problem, as well as undercounting on 2D EDF images due to masking
[10]. This approach uses the optical fractionator method, a combination of
the optical disector and fractionator sampling scheme [13], facilitated by a DL
model for automatic segmentation and counting of cells on a stained tissue
section by thin focal plane optical scanning through a systematic-random series
of z-axis tissue volumes (disector stacks) that represent a known fraction of
the total reference volume. Thus, this contribution includes 1) a disector-based
enhancement of our previous EDF-based DL approach [10]; and 2) an automatic
extension of the ordinary optical fractionator method [13].

A range of previous approaches have been proposed for segmentation of over-
lapping cells due to masking in EDF images of various datasets. In overlapping
cervical cell segmentation work presented by Lee and Kim [16], cell nuclei de-
tected as a first step act as an indicator of presence of a cell in overlapping
cells in EDF images. A similar technique was used to segment cells in genome-
wide RNAI screening images [17] where cell nuclei are usually not overlapping
and have good contrast due to dark color, which facilitates nuclei detection
in the first step. However, that study used images of multichannel fluorescent
probes that allow for interference (subtraction) imaging of co-localized proteins
in specific cell compartments, which is not possible with general DAB-based
immunostaining used in the present work.

A widely used method for overlapping cell segmentation in absence of flu-
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Figure 1: Schematic showing overlapping objects (masking) along a single viewing axis caused
by objects clustered together (1,2,3) and a larger object (4) masking the observation of smaller
objects (5,6). As shown in the top panel, the clustered and masked objects are not separable
in the Extended Depth of Field (EDF) image. Counting along the multiple planes parallel
to the observation plane may resolve false negative counts along a single viewing axis. Such
multiple parallel planes are represented by horizontal dotted lines (a through e). Using single
optical plane scanning along the viewing axis, all cells may be accurately counted at the best
plane of focus; or when they first come into focus, i.e. (1,d), (2,d), (3,b), (4,e), (5,c), (6,a).
Notably, the number of cells counted in this manner converges on the true or expected value,

thereby avoiding under-counts due to cell clustering and masking.
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orescent co-localization is the Distance Transform (DT) followed by watershed
segmentation [18] [19, (17, [1], 2 [3] [5, [4]. This technique works for touching or
overlapping cells with a small amount of overlap (i.e., ’bottle-neck’ shaped con-
nections). However, the DT fails to provide extrema/seeds for the watershed
transform in case of highly overlapping cells.

Abdolhoseini et al. [20] proposed an approach to fuse image intensity with
the DT followed by watershed segmentation to segment overlapping cells. The
design of this fusion approach is based on darker pixel intensity at the center
of the cell and lighter intensities near the edges (i.e., the overlapping area).
However, this is not always true for overlapping cells, particularly cells with
high overlap. Furthermore, this method cannot be used for datasets with non-
uniform intensity within a cell, such as the dataset in the present work.

Lin et al. [21] proposed a gradient-fused DT followed by watershed to seg-
ment fluorescent-labeled cell nuclei in 3D confocal microscope image stacks. The
key idea behind the use of gradient information is that there is a higher inter-cell
intensity gradient than intra-cell intensity gradient. The challenge with apply-
ing this method to focus-stacked 2D (EDF) images of our dataset is that there is
little-to-no inter-cell gradient among highly overlapping cells in most instances.

Lugagne et al. [22] use the focal signature of individual pixels along the
z-axis for cell identification in z-stacks of bright-field microscopy images. Pixels
are labeled as one of multiple classes like cell contour, cell interior, halo, etc.
A machine learning model [support vector machine (SVM)] is trained with in-
dividual pixel focal signature to classify the signal as one of the classes based
on the idea that the pixels in each of the classes have distinct intensity profiles
along the z-axis. Though versatile, one limitation of this method is that a pixel
can belong to only one of the classes, i.e., a pixel belonging to one cell interior
cannot belong to another cell interior or cell contour. All the pixels of multiple
overlapping cells can be classified as ’cell interior’ forming a big blob resulting
in under-counting. Also, this method cannot resolve a small cell completely
occluded by a larger cell above in the z-axis (masking).

In our case, microscopy image stacks consist of multiple images (n=10) in
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each z-stack (disector stack) where each image shows cells at a different focal
plane in the z-axis. Different cells can appear in best focus at the same or dif-
ferent focal planes depending on their physical location in the z-stack. Thus,
segmenting/counting cells in their singularly best focus plane overcomes mask-
ing bias that leads to undercounts in EDF images. Furthermore, cells that
highly overlap in the x-y plane can be separated in the z-direction provided
3D context is available to identify the best focus plane for each cell. The 3D
cell counting approach proposed here offers numerous advantages over existing
DL-based methods, including the need for less training data, which is often
a limiting factor in biomedical applications; and lower computational costs in
terms of memory requirement and training time, as compared with existing
methods with 3D context processing such as 3D convolutional networks and
Recurrent Neural Networks (RNN) [23].

The discussion above outlines the need for a new approach for automatic
DL-based cell counting in tissue volumes that combines 3D context with the
low computational costs and minimal training data requirements. To achieve
these goals, we propose a disector-based Multi-channel Input and Multi-channel
Output (MIMO) framework that represents a digital realization of the ordinary
optical disector method where an expert carries out manual thin focal-plane
scanning of z-axis volumes while counting cells of interest at a unique point, e.g.,
the best plane of focus for every cell in each disector stack. In both approaches,
the total number of cells in the reference volume is estimated in an unbiased
manner using the fractionator method [15], i.e., the product of the reciprocal of

all sampling fractions and the sum of cells counted in all disector volumes.

2. Methods

2.1. ASATP-DL: An update in ASA-DL framework

One of the state-of-the-art methods for automatic profile counting in EDF
images of single-immunostained microscopy image stacks is the Adaptive Seg-

mentation Algorithm-Deep Learning (ASA-DL) combination presented by Alah-
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mari et al. [3]. The same framework has been demonstrated for automatic
counts of EDF images by Dave et al. [4] after stain-separation of counter-
stained tissue sections (NeuN with cresyl violet counterstain). In the ASA-DL
framework, the Ground Truth (GT) is divided into two steps as follows. In the
first step (count-annotation) an expert identifies and counts (clicks) on the im-
munostained cells (neurons) of interest to create GT. In the second step (mask-
annotation) creates binary image masks (with cells of interest in foreground) for
training a deep learning model to automatically segment unseen cells. The mask-
annotation, which does not require an expert, is done via manual verification of
segmentation mask generated automatically by the handcrafted algorithm ASA
[10 [11]. During this verification, a human observer reviews an ASA segmen-
tation mask superimposed on the count-annotation and accepts or rejects the
image based on the quality of the segmentation. For example, a false positive
(FP) could be the basis for the human observer to reject an image in the ASA
segmentation. On completion of this review process, the accepted images are
used for training the DL model.

Here we propose a novel update to this verification process in which an
ASA-segmented blob (cell) can be identified as an FP automatically if there is
no matching annotation (click) in the count-annotation. In this case, FPs are
automatically erased from the ASA segmentation masks prior to presentation
of the image to the human observer for verification. This automatic FP removal
from ASA mask requires no expert time and allows more accepted data for
training the DL model. The framework with the update is referred as ’ASATP-
DL’ (where only True Positives (TP) of the ASA segmentation (ASA-TP) are
verified). Figure |2 depicts the process for generating the mask-annotation for
the training set in ASA-DL and ASATP-DL. An example of ASA segmentation
before and after automatic FP removal is shown in Figure |3} The green crosses
(x) indicate count-annotation, the contours represent segmentation by ASA

while green and red contours are TPs and FPs, respectively.
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Figure 3: Left: ASA segmentation mask verified (and rejected) in the ASA-DL approach.
Right: ASA segmentation mask verified (and accepted) after FP removal in the proposed
ASATP-DL approach. The green cross marks indicate count-annotation and the contours

represent segmentation by ASA. Green contours are TPs and red contours are FPs.

2.2. Disector-based MIMO Framework

An overview of the proposed disector-based MIMO framework for cell counts
is shown in Figure In the first step (far left), the color image stacks are
converted to grayscale using stain separation [4]. Next, the grayscale image stack
is fed as input to a trained MIMO U-Net model for automatic segmentation/
counting of cells. The prediction map stack is then post-processed to avoid
over-segmentation of a cell and remove some of the FPs. Finally, Gundersen’s
unbiased counting rules are applied based on inclusion and exclusion planes in

3D [24]. Each of these steps are explained in detail in the following subsections.

2.2.1. Disector-based MIMO U-Net

A U-Net deep learning architecture was used in the present work based
on its previous performance segmenting biomedical images.

As discussed in the Section [I} we propose to use a 2D U-Net model [25]
with MIMO to exploit the 3D context in an image stack for identifying the
best focus plane for each cell and to avoid the high computational cost and

training data requirement for known 3D methods, e.g., RNNs. To segment a
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Figure 4: An overview of the proposed disector-based MIMO framework

cell in the channel (optical plane) with its best (sharpest) focus, the number of
input and output channels are the same as the number of planes (z-axis planes)
in a stack (here 10 channels). Each image plane in the z-stack is treated as
an input channel and each output channel is foreground of the corresponding
image plane in the stack where foreground for an input channel contains the
cells in best focus. In other words, a cell that appears in several z-axis planes

is segmented only once at a unique point, i.e., its sharpest focal plane.

2.2.2. Color to Gray Conversion

In order to use each image plane of a stack as an input channel, the plane has
to be a single channel (gray-scale) image. Since visible light microscopy images
are typically three channel [R (red), G (green), B (blue)] color images, it is nec-
essary to transform the color images to gray scale. The conventional BT.601-7
(studio encoding parameters for digital television) Equation 1| [26] can be used
for color to gray conversion of microscopy images of cells in tissue sections im-
munostained with a single color, e.g., neurons immunostained with a nuclear
(NeuN) with colorization by the diaminobenzidine (DAB) reaction forming a
brown product. In Equation[l] R, G, and B are the intensity values of the red,
green, and blue channels respectively, and Y is the gray scale intensity value.
A common option in histological staining is to combine a primary immunos-

tain or histochemical stain with a counterstain to enhance definition of cellular

10
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structures. Examples of common dual stain combinations are hematoxylin and
eosin (H&E) and a DAB-based immunostain, e.g., NeuN, with a Nissl stain such
as cresyl violet (DAB-CV). For the present study, NeuN-immunopositive nuclei
appear brown while Nissl substances stained blue violet with the CV counter-
stain are not of interest. Importantly, Equation 1] would convert both the brown
and blue objects in the dual stain images to gray, which is not desirable. Stain
separation is done on each image to remove the CV counter-stain and thereby
generate a single channel grayscale image corresponding to the primary (brown)
stain. This approach uses a digital stain separation method proposed by Dave
et al. [4] with two modifications as described below. It should be noted that
a constant (fixed) stain color basis is required across the images of a stack to
maintain the focus profile of a cell as expected after stain separation. That is,
the focus profile of a cell in a stack is expected to monotonically increase until

the best focus plane then monotonically decrease thereafter.

Y = 0.2989 % R+ 0.5870 % G + 0.1140 B (1)

The sparse solution for stain separation used by Dave et al. [4] reduces the
background noise. However, stain separation with such a sparse solution can
result in ’holes’ (zero valued pixels) within cells in some of the planes in an
image stack. Such ’holes’ are not a problem while working with EDF images
since they are present only in some of the planes and are filled with the contents
from the other planes of the stack by the EDF algorithm. On the other hand,
the high sparsity can be a problem while using each plane as an input channel,
especially because the aim is to segment each cell in its best focus plane. Hence,
the sparsity coefficient is made zero (no sparsity) for the disector-based approach
presented here.

As mentioned earlier, the CV counterstain improves the contrast definition of
the objects of interest stained with the brown color of the primary immunostains.
Hence, if both stains are present at a pixel, it is imperative to combine both

stains while transforming the color image to gray scale. In the first step, the

11
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stain density maps of the primary stain (brown) and counterstain (blue) are
obtained through stain separation. Second, at all the pixels where primary
stain density is above a threshold (here, 5% of the maximum possible value),
the stain density values of the two stains are summed to a single grayscale value,
effectively removing the counter-stain while preserving the intensity perceived

by the human for the object of interest.

2.2.3. Prediction Maps Post-processing

The threshold value for the prediction confidence maps is first selected based
on the smallest absolute error rate on the validation data. Next, the blobs
smaller than a minimum area threshold are discarded for noise removal. A
minimum area threshold of 500 pixels is used for the blobs inside the prediction
map image and 200 pixels is used for the blobs which are touching any of the
edge of the prediction map image considering the fact that it can correspond to
a cell with partial cell body outside the field of view (disector box).

As discussed earlier, there are ten output channels (same as number of input
channels) and each cell is expected to be segmented in the corresponding best
focus plane. It is interesting to note that one plane before or after the best
focus slice can have a prediction confidence value lower than the best focus slice
and remain above the prediction confidence threshold. Based on the fact that
the planes in the dataset used in this study are 1pum apart and the neurons
are 3D volumetric structures, with a spread in the z-axis as well (generally
larger than 2 pm spread in the z-axis), there is a high probability that any two
overlapping blobs in any two consecutive planes belong to a single cell. Hence,
such overlapping blobs are combined and assigned to the plane with the bigger
blob among the two participating blobs.

Since the blobs at this stage might have holes, any holes in all the blobs are
filled as a cell body is expected to be a solid. Finally, any blob with circularity
less than a circularity threshold (here, 30%) are filtered out since NeuN-stained
nuclei are roughly spherical concave structures. In post-processing we used

circularity-based filtering to help discard some of the FPs. To assess the extent

12
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of systematic error (bias) related to the 3D shape of the objects, we computed
the results with and without the circularity-based filtering. The average error
rates (Table |3) are 4.82% and 5.93% with and without the shape assumption,
respectively, for a difference of 1.11%. Thus, circularity-based filtering based on
an assumption about the object shape only slightly affects the results and is not

an absolute requirement for the proposed method.

3. Collection of Image Datasets

The image dataset for these experiments (Section consisted of images from
tissue sections processed for NeuN immunostain and cresyl violet counterstain
(NeuN-CV) from five mice, which represent a subset of the NeulN counter-stained
dataset from our prior published work [4].

Animals for this study were aged 6-8 months Tg4510 male mice (n=3) and
male non-tg littermate controls (n=2) sampled at random from the colony at the
Byrd Alzheimer’s Disease Center at the University of South Florida in Tampa,
FL. Under deeply anesthesia on an isothermal pad, mice were perfused with
25 ml of cold sterile buffered saline, their brains removed and one hemisphere
immersion fixed for 24 hours in fresh 4% phosphate buffered paraformaldehyde
then transferred to Dulbecco’s phosphate buffered saline, cryoprotected in 10, 20
and 30% sucrose and stored at 4°C. 50 um frozen sections were collected with
a sliding microtome, with every 6% section sampled in a systematic-random
manner to obtain 8-12 sections through neocortex of each brain. The number
of coronal sections analyzed varied due to difference in the length of the brain
along the rostro-caudal axis. As shown by Gundersen et al. in [27], this range
of sections (~ 8 — 12) is sufficient to capture the between-section variation for
any size or shape of reference space. Average thickness of the samples after
post-processing was ~18.5 nm.

Staining protocols were conventional immunostaining with primary and sec-
ondary antibodies and DAB-based colorization followed by standard counter-

staining in a 2% cresyl violet (CV) solution, as we have previously detailed [28].

13
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On the day of immunostaining, sections were moved into a multi-sample stain-
ing tray for blocking of endogenous peroxidase 10% methanol, 3% H202 in PBS;
30 min. Tissue samples were permeabilized with 0.2% lysine, 1% Triton X-100
in PBS solution and incubated overnight in anti-NeuN primary antibody (Milli-
pore). After washing in PBS, sections were incubated in biotinylated secondary
antibody (Vector Laboratories, Burlingame, CA), washed after 2 hours and in-
cubated with Vectastain® Elite® ABC kit (Vector Laboratories, Burlingame,
CA) for enzyme conjugation. In the final step, sections were colorized in 0.05%
diaminobenzidine in 0.03% H202 with nickel intensification, mounted onto slides,
dehydrated, and cover slipped.

Disector stacks were collected in a known systematic-random fraction of the
reference space similar to manual analysis of disector volumes with the ordi-
nary optical fractionator method for unbiased estimates of the total number of
stained cells in an anatomically defined reference space [13} 29}, 30, [31]. The work
was done with assistance from a computerized stereology system (Stereologer®,
SRC Biosciences, Tampa, Florida, USA) consisting of an Olympus microscope
equipped with automatic XY stepping motors and Z-axis focus motor for auto-
matic collection of z-axis image stacks (disector stacks). Starting at a random
X-Y location in the upper left quadrant of the reference space (neocortex) in
the first section, images were collected in a systematic-random sampling manner
at intervals of 1200 pm x 1200 pm, and repeating on 8-12 sections sampled in a
systematic-random manner through the entire mouse neocortex. Each disector
stack consists of a set of ten images (1 pm apart) in the z-axis captured using
100x oil lens (NA=1.4) with a guard volume of at least 2pm. This level of
sampling stringency achieved a low sampling error as evidenced by coefficient of
error ~ 0.10 (CE ~ 10%) as shown by [27]. The time required for unsupervised
(automatic) collection of images for each case (46 to 66 disector stacks) was
~ 30 to 45 minutes. The dataset used is summarized in Table [l

The 'Ground Truth (GT)’ for a mouse brain in this work is the sum of the
cells counted in all disector stacks sampled through an anatomically defined

reference space (mouse neocortex) in a systematic-random manner as we have
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previously reported [1} 2, B 4} 5, 10} 11}, [12].

Similar to the ASATP-DL approach, the GT is divided into two levels in the
present work. The first is to identify and count the true number of cells (NeuN
neurons) in the sampled disector stacks, also referred to as ’count-annotation’
where expert knowledge was used to distinguish between neurons and various
glia cells. Similar to an optical disector, an expert (YK) used thin focal plane
scanning of a disector stack to count NeulN neurons only once at the best focus
plane. NeuN-immunostained cells in disector stacks were counted (clicked) using
Gundersen’s unbiased counting rules to avoid edge effects [24]. As shown in
Figure 5] cells were included that fell within the disector volume or touched one
of the top, upper or right-side inclusion planes in 3D. Cells were excluded that
fell outside the disector volume or touched either the bottom, lower or left-side
exclusion planes.

A method of Koéhler illumination [32] was used with a % open condenser
diaphragm for data collection. The stacks which did not conform to this rule
and as a result had unclear boundaries/edges of cells were considered as low
quality on the recommendations of a domain expert (YK). About 22% of the
total stacks were discarded due to poor quality. Number of stacks discarded per
case is listed in the data summary in Table [l| For the mice with a significantly
higher number of good quality stacks, a number of stacks were discarded in
a systematic-random manner in order to balance the dataset, i.e., every 3'd
stack with a random start at stack 1, 2, or 3 was discarded from the 98 stacks
from case PI3-20 to obtain 66 stacks. Also, the annotation on the selected data
(subset) was done by one expert (YK) during this work to achieve uniform GT
across all stacks.

Next, binary image masks (with cells as foreground in corresponding best fo-
cal plane) were generated to train the deep learning model ('mask-annotation’)
to segment NeuN neurons. After the count-annotation, no further expert knowl-
edge is required to draw masks (boundaries) around identified neurons, allowing
mask-annotation by trained student researchers to minimize the requirement for

expert time. As for count-annotation, a boundary around a cell was drawn in its
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Mouse ID  # Stacks Used Ground Truth Count # Stacks Discarded

PI3-18 65 312 3
PI3-19 46 274 57
PI3-20 66 394 32%
PI3-21 62 580 35
PI3-22 60 357 2

Table 1: Summary of neuron (NeuN) counterstain dataset used and the number of stacks
discarded per case due to poor illumination setting during data collection. * Good quality

stacks discarded to balance the dataset.

best focal plane. A check is performed on every stack to match the cell count in
both annotations to ensure that no human error is introduced while going from
count-annotation to mask-annotation. The required tools for these annotations

were developed in-house during this work.

4. Experimental Results

The number of accepted images per mouse after manual verification of ASA
and ASA-TP masks is listed in Table The number of images in Table
represents the number of stacks since each stack is converted into an EDF image.
It should be noted that the small number of accepted images after ASA mask
verification is because ASA was originally designed for a single immunostained
dataset. The number of accepted images are significantly larger, and hence
provide a larger training set for subsequent training of a DL model, by automatic
FP removal discussed in Section [2.1] Furthermore, the number of accepted
images is sufficient to train the DL model to obtain an average error rate of
6.05% (Table|3) using the ASATP-DL approach.

A five-fold experiment using leave-one-mouse-out for testing strategy was
performed for both EDF-based ASATP-DL and the disector-based MIMO ap-
proach. In each fold, data from one mouse was left out as a test-set for the

trained model performance evaluation on unseen data (i.e., not seen by the
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Mouse ID  # Images # ASA Accepted # ASA-TP Accepted

PI3-18 65 12 32
PI3-19 46 5 26
PI3-20 66 2 29
PI3-21 62 2 17
PI3-22 60 6 24

Table 2: Number of images accepted per mouse after ASA vs ASA-TP verification.

model during training) since the model is expected to perform well on the train-
ing data. From each of the other four mice, 80% and 20% of the data contributed
to the train set and validation set, respectively. This regimen is repeated five
times leaving a different mouse data out for testing each time. In effect, the
approach is validated on each mouse to ensure the fairness of the performance
evaluation.

As for the ASA-DL framework, elastic and rotation augmentations were per-
formed on the train-set to obtain a large and diverse dataset for training a deep
learning model. Training the deep learning model is an automatic process that
primarily requires unsupervised computer time, i.e., no expert time is required
once the training is initiated. The actual training time depends on multiple
factors such as amount of training data, hardware capacity, training parameters
etc. In the present work, approximately 4 hrs and 12 hrs allowed for one-fold
training in the ASATP-DL and MIMO approaches in that order. Furthermore,
the training time is a one-time investment per stain and cell type in that less
than 15 minutes is needed to count cells in a complete reference space (~ 60 to
90 disector stacks) using a trained DL model. The predicted cell counts by both
EDF-based ASATP-DL and disector-based MIMO approaches are reported in
Table [3

The motivation behind this work was to develop an automatic disector-

based method that avoids under-counting in previous approaches due to over-
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ASATP-DL MIMO
Ground ASATP-DL MIMO

Test M ID Stacks Truth C C frror C rror
est Mouse tacks rut ount ount ount
# Rate(%) Rate(%)

(G) (A) |G—AJ*100 (L) |G—L[¥100

(—a—) )
PI3-18 65 312 295 5.45 319 2.24
PI3-19 46 274 290 5.84 275 0.36
PI13-20 66 394 413 4.82 426 8.12
PI3-21 62 580 558 3.79 596 2.76
PI3-22 60 357 394 10.36 319 10.64
Average Error Rate (%) 6.05 4.82

Table 3: Automatic counting results using EDF-based ASATP-DL and disector-based MIMO
approach. Where, the fifth and last columns refer to % error; and, the last row refers to the

mean % error for all mice analyzed.

lapping/occluded cells in the z axis of EDF images. The under-counting error
is expected to be relatively high in the stacks with higher cell density. Also,
while improving on the under-counting issue in high cell density stacks, the new
method should perform at least as well as the existing EDF-based method on
stacks with low cell density. To test this hypothesis, stacks were divided into
low and high cell density groups (based on manual stereology counts) then the
performance of the disector-based MIMO approach was assessed on high and
low cell density groups independently. The low cell density group consists of
stacks with < 10 cells per stack and high cell density group with >10 cells per
stack. Notably, the stacks are divided into two groups only for analysis purposes
after stereology counts at the case level where each case contains areas of both
low- and high-density stacks. No extra experiments were performed on the two
groups independently. The cell count result comparison for both groups is pro-
vided in Tables (4] and Under-counting and over-counting error is indicated
by negative and positive error rates, respectively.

As indicated in Table [4, the proposed method has significantly lower abso-
lute error on the low cell density stacks. Table[5|shows that the proposed MIMO
method has significantly lower under-counting as compared to the EDF-based

ASATP-DL approach on the high cell density stacks as expected. Further-
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ASATP-DL MIMO
Ground ASATP-DL MIMO
M ID #Stacks Truth C C rror C Brror
Test Mouse tacks ruth Count ount ount
# Rate(%) Rate(%)
(@) (4) (A-G)+100 (L) (L-G)*100
(=g (=G0,
PI3-18 57 202 208 2.97 205 1.49
PI3-19 37 152 187 23.03 159 4.61
PI13-20 51 179 227 26.82 193 7.82
PI3-21 35 225 238 5.78 232 3.11
P13-22 50 202 260 28.71 180 -10.89
Average Absolute Error Rate (%) 17.46 5.58

Table 4: Automatic counting results using EDF-based ASATP-DL and proposed disector-

based MIMO method for low cell density stacks with <=10 cells per stack where under-

counting and over-counting error are indicated by negative and positive error rate, respectively;

and, the last row refers to the mean % absolute error for all mice analyzed.

ASATP-DL MIMO
Ground ASATP-DL MIMO
Stacks Truth C . Error N Error
Test Mouse ID tacks th Count ount ount
est Mouse #Stacks Truth Coun Rate(%) Rate(%)
(G) (4) (A—G)*100 (L) (L-@)*100
——) ——)
PI3-18 8 110 87 -20.91 114 3.64
PI3-19 122 103 -15.57 116 -4.92
PI3-20 15 215 186 -13.49 233 8.37
PI3-21 27 355 320 -9.86 364 2.54
PI3-22 10 155 134 -13.55 139 -10.32
Average Absolute Error Rate (%) 14.68 5.96

Table 5: Automatic counting results using EDF-based ASATP-DL and proposed disector-

based MIMO method for high cell density stacks with >10 cells per stack where under-counting

and over-counting error are indicated by negative and positive error rate, respectively; and,

the last row refers to the mean % absolute error for all mice analyzed.
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ASATP-DL MIMO
Test Mouse ID Accuracy Precision Recall F1-Score | Accuracy Precision Recall F1-Score
(rprrrsry)  (P=ritep) (R=rptny) (F1=2%00) | (rpripern)  (P= rpiep) (f1=228)
PI3-18 0.61 0.78 0.74 0.76 0.69 0.81 0.82
PI3-19 0.68 0.79 0.83 0.81 0.68 0.81 0.81
PI13-20 0.56 0.70 0.73 0.72 0.66 0.76 0.79
PI3-21 0.65 0.80 0.77 0.79 0.65 0.78 0.79
PI3-22 0.58 0.70 0.77 0.74 0.63 0.82 0.77
Average value 0.62 0.75 0.77 0.76 0.66 0.79 0.80

Table 6: Comparison of accuracy, precision, recall, and F1l-score of EDF-based ASATP-DL

vs proposed MIMO method. The higher average F1l-score of the proposed method represents

better overall performance.

ASATP-DL MIMO
Test Mouse ID Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
rptiors) (P= ) (R= ) (1= 328) | (opbbmy) (P i) (R= ) (1= %28)
PI3-18 0.58 0.72 0.74 0.73 0.67 0.80 0.81 0.80
PI3-19 0.70 0.74 0.91 0.82 0.67 0.79 0.82 0.80
P13-20 0.49 0.59 0.74 0.66 0.60 0.73 0.78 0.75
PI3-21 0.65 0.77 0.81 0.79 0.63 0.76 0.79 0.77
PI3-22 0.57 0.64 0.83 0.72 0.61 0.80 0.71 0.75
Average value 0.60 0.69 0.81 0.74 0.64 0.77 0.78 0.78

Table 7: Comparison of accuracy, precision, recall, and F1l-score of EDF-based ASATP-DL

vs proposed MIMO method for low cell density stacks with <=10 cells per stack. The higher

average F1l-score of the proposed method represents better overall performance.

ASATP-DL MIMO
Test Mouse ID | Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
(rprpry) (P =mitep)  (R=5y) (1=2380) | (rpipern)  (P= i) (R=gffy)  (J1=%25)
PI3-18 0.70 0.93 0.74 0.82 0.74 0.83 0.86 0.85
PI3-19 0.65 0.86 0.73 0.79 0.70 0.84 0.80 0.82
PI13-20 0.64 0.84 0.73 0.78 0.70 0.79 0.86 0.83
PI3-21 0.65 0.83 0.75 0.79 0.66 0.78 0.80 0.79
PI3-22 0.61 0.81 0.70 0.75 0.65 0.83 0.75 0.79
Average value 0.65 0.86 0.73 0.79 0.69 0.82 0.82 0.82

Table 8: Comparison of accuracy, precision, recall, and Fl-score of EDF-based ASATP-DL

vs proposed MIMO method for high cell density stacks with >10 cells per stack. The higher

average F1-score of the proposed method represents better overall performance.
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more, the EDF-based approach has high over-counting error on the low-density
stacks since some glia cells are incorrectly counted as neurons by the EDF-based
method. Interestingly, in the EDF-based method the over-counting (positive)
error on low-density stacks cancels the under-counting error on high-density
stacks when considering all stacks of a mouse together to compute the % er-
ror rate for the mouse (as reported in Table . As a result, the EDF-based
method for overall % error appears comparable to that of the proposed method,
though the proposed method performs with higher accuracy (lower error rate)
on both density groups individually. The same observation can be derived from
the results reported in Tables [6] through [8] The higher F1-score for both den-
sity groups individually as well as on the mouse level indicates better overall
performance of the proposed method.

A few comparison examples between the EDF-based ASATP-DL approach
and proposed MIMO method are shown in Figure The top row shows one
of the image planes of a stack. Middle and bottom rows demonstrate results
by ASATP-DL and proposed MIMO methods in order. All cross marks (green
and red) indicate Ground Truth while the red cross marks show FNs (missed
cells). The contours represent segmentation by ASATP-DL and MIMO methods
with green and red contours showing TPs and FPs, respectively. In the result
(bottom row), all cells segmented in respective best focus planes of a stack are

demonstrated on an EDF image.

5. Discussion and Conclusion

There was an average of about 3-5% inter-rater variability in ’count-annotation’
observed for counts of the same cells in same reference space of the same cases
by multiple raters in our group ([12] [33]). This sets a lower bound on the error
rate for the automatic methods compared to manual stereology counts. As can
be seen in Table [3| the average error rate for the ASATP-DL is already close
to the lower bound, meaning there is not much room for average error rate im-

provement by a new method. However, the low average error in the ASATP-DL
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Figure 5: Visualization of results. The top row shows one of the image planes of the stack.
Middle and bottom rows demonstrate results by ASATP-DL and proposed MIMO methods in
order. All cross marks (green and red) indicate Ground Truth while the red cross marks show
FNs (missed cells). The contours represent segmentation by the automatic methods. The
green and red contours are TPs and FPs, respectively. The unbiased counting frame includes
left and lower exclusion lines (red) and upper and right inclusion lines (green) (lines convert

to planes in 3D).
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method is due to the nuance of error cancellation between the low and high
cell density stacks (as discussed in Section . Thus, the ASATP-DL method
achieves the desired count by counting incorrect objects to compensate for the
under-counting of the highly overlapping cells. In contrast, as shown in Tables
through 5] the proposed method reaches the desired count by primarily counting
the correct objects in both low- and high-density stacks.

In the deep learning field, one of the high-value resources is time required by
the domain expert (well-trained data collector). The proposed disector-based
MIMO method solves the under-counting issue in the current state-of-the-art
EDF-based approach with no extra expert time requirement. That is, the same
count-annotation time by an expert is required for both the EDF-based and
proposed disector-based MIMO methods.

We compared the time requirement for analysis of one case by the EDF-based
approach and the proposed disector-based MIMO method. Both methods were
run on the same computer with Intel i7-4790 CPU and 16 GB RAM. The DL
model was generated on Nvidia 1080Ti GPU with 11 GB frame buffer. Us-
ing a trained DL model, the EDF-based approach required ~ 13 minutes to
count NeuN-immunopositive profiles compared to ~ 12 minutes for the pro-
posed disector-based MIMO method to count NeuN-immunopositive cells, from
the same disector stacks for one case. The EDF-based method takes slightly
higher time to compute an EDF image from each of the stack. Notably, a well-
trained technician requires ~ 2 to 2.5 hours of closely supervised time to count
NeuN-immunopositive cells to the same level of sampling stringency with the
ordinary (i.e., purely manual) optical fractionator. In contrast, the proposed
MIMO method requires ~ 15 minutes of supervised time to outline reference
spaces at low power; and ~ 42 minutes of unsupervised time to automatically
collect disector stacks (~ 30 minutes) and collect data for total cell counts
(~ 12 minutes). Thus, throughput efficiency in terms of supervised time is
~ 5x higher for the proposed MIMO method (~ 0.25 hour versus ~ 2 to 2.5
hours). Whereas collecting accurate data by manual stereology requires con-

stant attention, subjective decision-making, low magnification outlining of the
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reference space boundaries combined with high magnification counting (click-
ing) by a highly trained technician with substantial experience, the DL-based
MIMO method requires minimal expertise to outline the boundaries of the ref-
erence space on tissue sections at low magnification.

Asin all deep learning applications, a relatively large amount of training data
is required for a more accurate and generic model for different image variations.
However, in many biomedical applications including the present work data for
training deep learning models is a limiting factor. We anticipate that more
training data will further improve the performance on the least accurate cases
(e.g., PI3-20 & 22), which will further reduce the standard deviation of the error
rate.

Explainability of AI (’black-box’) is becoming increasingly important for
medical applications. Like most deep learning algorithms, the proposed work
relies on statistical model-free learning. A machine explanation for a decision
made by such systems might not fit with human experts’ explanation as dis-
cussed by Holzinger and Muller in [34]. A better fit can be obtained by incor-
porating human-in-the-loop with affective computing to receive feedback about
if the machine explanation is understandable for the human expert. A case
study on a microscopy image analysis with a similar approach is presented by
Holzinger and Muller in [34].

The present work shows proof-of-concept for the disector-based MIMO frame-
work by quantifying total numbers of NeuN neurons in the mouse neocortex,
which had been quantified previously using manual stereology methods [35] [36].
The focus of this work is to show that the number of NeuN-stained cells counted
by our automatic stereology (MIMO method) is comparable to counts of NeuN
neurons by a trained human technician using manual stereology on the same
disector stacks. We used modern stereology to make estimates of total neuron
number based on unbiased sampling, also known as systematic sampling with a
random start, in conjunction with unbiased cell counting (the optical disector
principle). As shown by many studies, a systematic-random sample of 8-12 sec-

tions as used in the present study provide sufficient statistical power for unbiased
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(i.e., accurate) estimates, without the need to count all cells [13] [15] 24} 27] [28].

The proposed method can be used for automatic stereology counts of any
discrete objects (cells) labelled with a high signal: noise stain. As discussed in
Section [2.2.3] prior knowledge about the object shape only slightly benefits per-
formance (< 2% impact on the error rate) and it is not an absolute requirement
of the proposed MIMO method.

The proposed method can be employed to count heterogeneous (different size
or shape) cell populations provided that a representative dataset is available for
training the deep learning model. The minimum area threshold used in the
postprocessing can be tuned based on minimum cell size in the training data.
Furthermore, the proposed method can be directly adapted to image stacks
with different cell types by using an independent deep learning model for each
cell type. The models can use the same image stacks but learn to count only
one type of cell. Another approach to handle different cell types might include
using each cell type as an output category (e.g. neuron or glia) and the best
focus plane as the output plane. Effectively each output z-plane can have same
number of output categories as the number of types of cells.

One weakness of the proposed framework is the requirement of counting
cells of interest at a unique point, e.g., the best plane of focus for every cell. In
manual stereology, a human expert can count a cell when it first appears (early
detector), at the maximal focal plane, or at the last focal plane of visibility (late
detector). It is important to select one of the three unique points and use that
point across the dataset to effectively teach the process to a deep learning model.
Different cells counted at different points can confuse the model. The optimal
focal plane was selected as the unique point in the proposed work because the
size of the cells of interest with respect to the tissue thickness is such that most
of the cells are visible through out the stack (no unique start and end point).
Ambiguity can arise when a cell is in a similar level of good (best) focus in two
or more focal planes. Such cases are handled through post-processing to merge
overlapping detections in consecutive planes to allow for only one detection per

cell.
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To conclude, we provide two enhancements to the current state-of-the-art
applications of deep learning to unbiased stereology counts of immunostained
cells in tissue sections. The first is an update in the form of a semi-automatic
approach for GT preparation in 3D stacks of microscopy images (disector stacks)
for generating more training data without a requirement for additional expert
time. Second, we present a novel disector-based MIMO framework that rep-
resents an automatic version of the ordinary optical fractionator where all the
planes of a 3D disector stack are analyzed as opposed to a single focus-stacked
image (EDF image) per stack. The MIMO approach avoids the costly com-
putations of 3D deep learning-based methods by using the 3D context of cells
in disector stacks; and prevents stereological bias in the previous EDF-based
method due to counting profiles rather than cells and under-counting overlap-
ping/occluded cells. Taken together, these improvements support the view that
Al-based automatic deep learning methods can accelerate the efficiency of unbi-
ased stereology cell counts without a loss of accuracy or precision as compared

to conventional manual stereology.

6. Future Work

As future work, we plan to apply the proposed method to different datasets
with different staining protocols (i.e., single immunostain) to ensure the gener-
alizability of the proposed method. We are also expanding the present approach

from DAB-stained tissues to immunofluorescent staining of biological structures.
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