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Abstract

Stereology-based methods provide the current state-of-the-art approaches for

accurate quantification of numbers and other morphometric parameters of bi-

ological objects in stained tissue sections. The advent of artificial intelligence

(AI)-based deep learning (DL) o↵ers the possibility of improving throughput

by automating the collection of stereology data. We have recently shown that

DL can e↵ectively achieve comparable accuracy to manual stereology but with

higher repeatability, improved throughput, and less variation due to human fac-

tors by quantifying the total number of immunostained cells at their maximal

profile of focus in extended depth of field (EDF) images. In the first of two

novel contributions in this work, we propose a semi-automatic approach using

a handcrafted Adaptive Segmentation Algorithm (ASA) to automatically gen-

erate ground truth on EDF images for training our deep learning (DL) models

to automatically count cells using unbiased stereology methods. This update

increases the amount of training data, thereby improving the accuracy and ef-

ficiency of automatic cell counting methods, without a requirement for extra

expert time. The second contribution of this work is a Multi-channel Input

and Multi-channel Output (MIMO) method using a U-Net deep learning ar-
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chitecture for automatic cell counting in a stack of z-axis images (also known

as disector stacks). This DL-based digital automation of the ordinary optical

fractionator ensures accurate counts through spatial separation of stained cells

in the z-plane, thereby avoiding false negatives from overlapping cells in EDF

images without the shortcomings of 3D and recurrent DL models. The con-

tribution overcomes the issue of under-counting errors with EDF images due

to overlapping cells in the z-plane (masking). We demonstrate the practical

applications of these advances with automatic disector-based estimates of the

total number of NeuN-immunostained neurons in a mouse neocortex. In sum-

mary, this work provides the first demonstration of automatic estimation of a

total cell number in tissue sections using a combination of deep learning and

the disector-based optical fractionator method.

Keywords: Unbiased Stereology, Automatic Optical Fractionator, Disector

Stacks, Cell Counting, Overlapping Cell Segmentation, U-Net, Microscopy

Image Stack

1. Introduction and Related Work

Accurate quantification of stained cells in tissue sections is a critical compo-

nent of basic and clinical research for a wide range of scientific and medical dis-

ciplines, including experimental research in psychology, neuroscience, pathology

and oncology among others. Using artificial intelligence (AI)-based approaches5

to analyze stained tissue sections, our group has focused on combining auto-

matic deep learning (DL) and unbiased stereology for quantification of stained

cells and other biological structures in tissue sections. For example, we have

shown DL with a convolutional neural network (CNN) such as U-Net can esti-

mate the total number of immunostained cells in extended depth of field (EDF)10

images with accuracy comparable to manual counts but with higher through-

put, repeatability and reduced error from human factors [1, 2, 3, 4, 5]. An EDF

image refers to a synthetic 2D construct that shows stained cells of interest at

their maximal plane of focus through a z-axis stack of digital images (disector
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stack) [6, 7, 8, 9]. These focus-stacked EDF images allow for comparisons of AI15

and non-AI based approaches for automatic segmentation by di↵erent methods

[1, 2, 3, 10, 11, 4, 12]. Analyses of EDF images from the same disector stacks al-

low for comparisons of accuracy, repeatability and e�ciency of cell counts using

di↵erent applications of the optical fractionator method ([13, 14, 15]). However,

a limitation of cell counts in disector stacks converted to EDF images is under-20

counting due to the possibility of overlapping cells in the z-plane (masking) as

schematically illustrated in Figure 1.

Here we propose a disector-based DL approach that avoids stereological bias

associated with counts of 3D objects (cells) based on their 2D profiles, i.e., the

Corpuscle problem, as well as undercounting on 2D EDF images due to masking25

[10]. This approach uses the optical fractionator method, a combination of

the optical disector and fractionator sampling scheme [13], facilitated by a DL

model for automatic segmentation and counting of cells on a stained tissue

section by thin focal plane optical scanning through a systematic-random series

of z-axis tissue volumes (disector stacks) that represent a known fraction of30

the total reference volume. Thus, this contribution includes 1) a disector-based

enhancement of our previous EDF-based DL approach [10]; and 2) an automatic

extension of the ordinary optical fractionator method [13].

A range of previous approaches have been proposed for segmentation of over-

lapping cells due to masking in EDF images of various datasets. In overlapping35

cervical cell segmentation work presented by Lee and Kim [16], cell nuclei de-

tected as a first step act as an indicator of presence of a cell in overlapping

cells in EDF images. A similar technique was used to segment cells in genome-

wide RNAi screening images [17] where cell nuclei are usually not overlapping

and have good contrast due to dark color, which facilitates nuclei detection40

in the first step. However, that study used images of multichannel fluorescent

probes that allow for interference (subtraction) imaging of co-localized proteins

in specific cell compartments, which is not possible with general DAB-based

immunostaining used in the present work.

A widely used method for overlapping cell segmentation in absence of flu-45
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Figure 1: Schematic showing overlapping objects (masking) along a single viewing axis caused

by objects clustered together (1,2,3) and a larger object (4) masking the observation of smaller

objects (5,6). As shown in the top panel, the clustered and masked objects are not separable

in the Extended Depth of Field (EDF) image. Counting along the multiple planes parallel

to the observation plane may resolve false negative counts along a single viewing axis. Such

multiple parallel planes are represented by horizontal dotted lines (a through e). Using single

optical plane scanning along the viewing axis, all cells may be accurately counted at the best

plane of focus; or when they first come into focus, i.e. (1,d), (2,d), (3,b), (4,e), (5,c), (6,a).

Notably, the number of cells counted in this manner converges on the true or expected value,

thereby avoiding under-counts due to cell clustering and masking.
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orescent co-localization is the Distance Transform (DT) followed by watershed

segmentation [18, 19, 17, 1, 2, 3, 5, 4]. This technique works for touching or

overlapping cells with a small amount of overlap (i.e., ’bottle-neck’ shaped con-

nections). However, the DT fails to provide extrema/seeds for the watershed

transform in case of highly overlapping cells.50

Abdolhoseini et al. [20] proposed an approach to fuse image intensity with

the DT followed by watershed segmentation to segment overlapping cells. The

design of this fusion approach is based on darker pixel intensity at the center

of the cell and lighter intensities near the edges (i.e., the overlapping area).

However, this is not always true for overlapping cells, particularly cells with55

high overlap. Furthermore, this method cannot be used for datasets with non-

uniform intensity within a cell, such as the dataset in the present work.

Lin et al. [21] proposed a gradient-fused DT followed by watershed to seg-

ment fluorescent-labeled cell nuclei in 3D confocal microscope image stacks. The

key idea behind the use of gradient information is that there is a higher inter-cell60

intensity gradient than intra-cell intensity gradient. The challenge with apply-

ing this method to focus-stacked 2D (EDF) images of our dataset is that there is

little-to-no inter-cell gradient among highly overlapping cells in most instances.

Lugagne et al. [22] use the focal signature of individual pixels along the

z-axis for cell identification in z-stacks of bright-field microscopy images. Pixels65

are labeled as one of multiple classes like cell contour, cell interior, halo, etc.

A machine learning model [support vector machine (SVM)] is trained with in-

dividual pixel focal signature to classify the signal as one of the classes based

on the idea that the pixels in each of the classes have distinct intensity profiles

along the z-axis. Though versatile, one limitation of this method is that a pixel70

can belong to only one of the classes, i.e., a pixel belonging to one cell interior

cannot belong to another cell interior or cell contour. All the pixels of multiple

overlapping cells can be classified as ’cell interior’ forming a big blob resulting

in under-counting. Also, this method cannot resolve a small cell completely

occluded by a larger cell above in the z-axis (masking).75

In our case, microscopy image stacks consist of multiple images (n=10) in
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each z-stack (disector stack) where each image shows cells at a di↵erent focal

plane in the z-axis. Di↵erent cells can appear in best focus at the same or dif-

ferent focal planes depending on their physical location in the z-stack. Thus,

segmenting/counting cells in their singularly best focus plane overcomes mask-80

ing bias that leads to undercounts in EDF images. Furthermore, cells that

highly overlap in the x-y plane can be separated in the z-direction provided

3D context is available to identify the best focus plane for each cell. The 3D

cell counting approach proposed here o↵ers numerous advantages over existing

DL-based methods, including the need for less training data, which is often85

a limiting factor in biomedical applications; and lower computational costs in

terms of memory requirement and training time, as compared with existing

methods with 3D context processing such as 3D convolutional networks and

Recurrent Neural Networks (RNN) [23].

The discussion above outlines the need for a new approach for automatic90

DL-based cell counting in tissue volumes that combines 3D context with the

low computational costs and minimal training data requirements. To achieve

these goals, we propose a disector-based Multi-channel Input and Multi-channel

Output (MIMO) framework that represents a digital realization of the ordinary

optical disector method where an expert carries out manual thin focal-plane95

scanning of z-axis volumes while counting cells of interest at a unique point, e.g.,

the best plane of focus for every cell in each disector stack. In both approaches,

the total number of cells in the reference volume is estimated in an unbiased

manner using the fractionator method [15], i.e., the product of the reciprocal of

all sampling fractions and the sum of cells counted in all disector volumes.100

2. Methods

2.1. ASATP-DL: An update in ASA-DL framework

One of the state-of-the-art methods for automatic profile counting in EDF

images of single-immunostained microscopy image stacks is the Adaptive Seg-

mentation Algorithm-Deep Learning (ASA-DL) combination presented by Alah-105
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mari et al. [3]. The same framework has been demonstrated for automatic

counts of EDF images by Dave et al. [4] after stain-separation of counter-

stained tissue sections (NeuN with cresyl violet counterstain). In the ASA-DL

framework, the Ground Truth (GT) is divided into two steps as follows. In the

first step (count-annotation) an expert identifies and counts (clicks) on the im-110

munostained cells (neurons) of interest to create GT. In the second step (mask-

annotation) creates binary image masks (with cells of interest in foreground) for

training a deep learning model to automatically segment unseen cells. The mask-

annotation, which does not require an expert, is done via manual verification of

segmentation mask generated automatically by the handcrafted algorithm ASA115

[10, 11]. During this verification, a human observer reviews an ASA segmen-

tation mask superimposed on the count-annotation and accepts or rejects the

image based on the quality of the segmentation. For example, a false positive

(FP) could be the basis for the human observer to reject an image in the ASA

segmentation. On completion of this review process, the accepted images are120

used for training the DL model.

Here we propose a novel update to this verification process in which an

ASA-segmented blob (cell) can be identified as an FP automatically if there is

no matching annotation (click) in the count-annotation. In this case, FPs are

automatically erased from the ASA segmentation masks prior to presentation125

of the image to the human observer for verification. This automatic FP removal

from ASA mask requires no expert time and allows more accepted data for

training the DL model. The framework with the update is referred as ’ASATP-

DL’ (where only True Positives (TP) of the ASA segmentation (ASA-TP) are

verified). Figure 2 depicts the process for generating the mask-annotation for130

the training set in ASA-DL and ASATP-DL. An example of ASA segmentation

before and after automatic FP removal is shown in Figure 3. The green crosses

(⇥) indicate count-annotation, the contours represent segmentation by ASA

while green and red contours are TPs and FPs, respectively.
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Figure 3: Left: ASA segmentation mask verified (and rejected) in the ASA-DL approach.

Right: ASA segmentation mask verified (and accepted) after FP removal in the proposed

ASATP-DL approach. The green cross marks indicate count-annotation and the contours

represent segmentation by ASA. Green contours are TPs and red contours are FPs.

2.2. Disector-based MIMO Framework135

An overview of the proposed disector-based MIMO framework for cell counts

is shown in Figure 4. In the first step (far left), the color image stacks are

converted to grayscale using stain separation [4]. Next, the grayscale image stack

is fed as input to a trained MIMO U-Net model for automatic segmentation/

counting of cells. The prediction map stack is then post-processed to avoid140

over-segmentation of a cell and remove some of the FPs. Finally, Gundersen’s

unbiased counting rules are applied based on inclusion and exclusion planes in

3D [24]. Each of these steps are explained in detail in the following subsections.

2.2.1. Disector-based MIMO U-Net

A U-Net [25] deep learning architecture was used in the present work based145

on its previous performance segmenting biomedical images.

As discussed in the Section 1, we propose to use a 2D U-Net model [25]

with MIMO to exploit the 3D context in an image stack for identifying the

best focus plane for each cell and to avoid the high computational cost and

training data requirement for known 3D methods, e.g., RNNs. To segment a150
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Figure 4: An overview of the proposed disector-based MIMO framework

cell in the channel (optical plane) with its best (sharpest) focus, the number of

input and output channels are the same as the number of planes (z-axis planes)

in a stack (here 10 channels). Each image plane in the z-stack is treated as

an input channel and each output channel is foreground of the corresponding

image plane in the stack where foreground for an input channel contains the155

cells in best focus. In other words, a cell that appears in several z-axis planes

is segmented only once at a unique point, i.e., its sharpest focal plane.

2.2.2. Color to Gray Conversion

In order to use each image plane of a stack as an input channel, the plane has

to be a single channel (gray-scale) image. Since visible light microscopy images160

are typically three channel [R (red), G (green), B (blue)] color images, it is nec-

essary to transform the color images to gray scale. The conventional BT.601-7

(studio encoding parameters for digital television) Equation 1 [26] can be used

for color to gray conversion of microscopy images of cells in tissue sections im-

munostained with a single color, e.g., neurons immunostained with a nuclear165

(NeuN) with colorization by the diaminobenzidine (DAB) reaction forming a

brown product. In Equation 1, R, G, and B are the intensity values of the red,

green, and blue channels respectively, and Y is the gray scale intensity value.

A common option in histological staining is to combine a primary immunos-

tain or histochemical stain with a counterstain to enhance definition of cellular170
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structures. Examples of common dual stain combinations are hematoxylin and

eosin (H&E) and a DAB-based immunostain, e.g., NeuN, with a Nissl stain such

as cresyl violet (DAB-CV). For the present study, NeuN-immunopositive nuclei

appear brown while Nissl substances stained blue violet with the CV counter-

stain are not of interest. Importantly, Equation 1 would convert both the brown175

and blue objects in the dual stain images to gray, which is not desirable. Stain

separation is done on each image to remove the CV counter-stain and thereby

generate a single channel grayscale image corresponding to the primary (brown)

stain. This approach uses a digital stain separation method proposed by Dave

et al. [4] with two modifications as described below. It should be noted that180

a constant (fixed) stain color basis is required across the images of a stack to

maintain the focus profile of a cell as expected after stain separation. That is,

the focus profile of a cell in a stack is expected to monotonically increase until

the best focus plane then monotonically decrease thereafter.

Y = 0.2989 ⇤R+ 0.5870 ⇤G+ 0.1140 ⇤B (1)

The sparse solution for stain separation used by Dave et al. [4] reduces the185

background noise. However, stain separation with such a sparse solution can

result in ’holes’ (zero valued pixels) within cells in some of the planes in an

image stack. Such ’holes’ are not a problem while working with EDF images

since they are present only in some of the planes and are filled with the contents

from the other planes of the stack by the EDF algorithm. On the other hand,190

the high sparsity can be a problem while using each plane as an input channel,

especially because the aim is to segment each cell in its best focus plane. Hence,

the sparsity coe�cient is made zero (no sparsity) for the disector-based approach

presented here.

As mentioned earlier, the CV counterstain improves the contrast definition of195

the objects of interest stained with the brown color of the primary immunostains.

Hence, if both stains are present at a pixel, it is imperative to combine both

stains while transforming the color image to gray scale. In the first step, the

11



stain density maps of the primary stain (brown) and counterstain (blue) are

obtained through stain separation. Second, at all the pixels where primary200

stain density is above a threshold (here, 5% of the maximum possible value),

the stain density values of the two stains are summed to a single grayscale value,

e↵ectively removing the counter-stain while preserving the intensity perceived

by the human for the object of interest.

2.2.3. Prediction Maps Post-processing205

The threshold value for the prediction confidence maps is first selected based

on the smallest absolute error rate on the validation data. Next, the blobs

smaller than a minimum area threshold are discarded for noise removal. A

minimum area threshold of 500 pixels is used for the blobs inside the prediction

map image and 200 pixels is used for the blobs which are touching any of the210

edge of the prediction map image considering the fact that it can correspond to

a cell with partial cell body outside the field of view (disector box).

As discussed earlier, there are ten output channels (same as number of input

channels) and each cell is expected to be segmented in the corresponding best

focus plane. It is interesting to note that one plane before or after the best215

focus slice can have a prediction confidence value lower than the best focus slice

and remain above the prediction confidence threshold. Based on the fact that

the planes in the dataset used in this study are 1 µm apart and the neurons

are 3D volumetric structures, with a spread in the z-axis as well (generally

larger than 2 µm spread in the z-axis), there is a high probability that any two220

overlapping blobs in any two consecutive planes belong to a single cell. Hence,

such overlapping blobs are combined and assigned to the plane with the bigger

blob among the two participating blobs.

Since the blobs at this stage might have holes, any holes in all the blobs are

filled as a cell body is expected to be a solid. Finally, any blob with circularity225

less than a circularity threshold (here, 30%) are filtered out since NeuN-stained

nuclei are roughly spherical concave structures. In post-processing we used

circularity-based filtering to help discard some of the FPs. To assess the extent

12



of systematic error (bias) related to the 3D shape of the objects, we computed

the results with and without the circularity-based filtering. The average error230

rates (Table 3) are 4.82% and 5.93% with and without the shape assumption,

respectively, for a di↵erence of 1.11%. Thus, circularity-based filtering based on

an assumption about the object shape only slightly a↵ects the results and is not

an absolute requirement for the proposed method.

3. Collection of Image Datasets235

The image dataset for these experiments (Section 4) consisted of images from

tissue sections processed for NeuN immunostain and cresyl violet counterstain

(NeuN-CV) from five mice, which represent a subset of the NeuN counter-stained

dataset from our prior published work [4].

Animals for this study were aged 6–8 months Tg4510 male mice (n=3) and240

male non-tg littermate controls (n=2) sampled at random from the colony at the

Byrd Alzheimer’s Disease Center at the University of South Florida in Tampa,

FL. Under deeply anesthesia on an isothermal pad, mice were perfused with

25 ml of cold sterile bu↵ered saline, their brains removed and one hemisphere

immersion fixed for 24 hours in fresh 4% phosphate bu↵ered paraformaldehyde245

then transferred to Dulbecco’s phosphate bu↵ered saline, cryoprotected in 10, 20

and 30% sucrose and stored at 4�C. 50 µm frozen sections were collected with

a sliding microtome, with every 6th section sampled in a systematic-random

manner to obtain 8-12 sections through neocortex of each brain. The number

of coronal sections analyzed varied due to di↵erence in the length of the brain250

along the rostro-caudal axis. As shown by Gundersen et al. in [27], this range

of sections (⇠ 8� 12) is su�cient to capture the between-section variation for

any size or shape of reference space. Average thickness of the samples after

post-processing was ⇠18.5 µm.

Staining protocols were conventional immunostaining with primary and sec-255

ondary antibodies and DAB-based colorization followed by standard counter-

staining in a 2% cresyl violet (CV) solution, as we have previously detailed [28].
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On the day of immunostaining, sections were moved into a multi-sample stain-

ing tray for blocking of endogenous peroxidase 10% methanol, 3% H202 in PBS;

30 min. Tissue samples were permeabilized with 0.2% lysine, 1% Triton X-100260

in PBS solution and incubated overnight in anti-NeuN primary antibody (Milli-

pore). After washing in PBS, sections were incubated in biotinylated secondary

antibody (Vector Laboratories, Burlingame, CA), washed after 2 hours and in-

cubated with Vectastain® Elite® ABC kit (Vector Laboratories, Burlingame,

CA) for enzyme conjugation. In the final step, sections were colorized in 0.05%265

diaminobenzidine in 0.03% H202 with nickel intensification, mounted onto slides,

dehydrated, and cover slipped.

Disector stacks were collected in a known systematic-random fraction of the

reference space similar to manual analysis of disector volumes with the ordi-

nary optical fractionator method for unbiased estimates of the total number of270

stained cells in an anatomically defined reference space [13, 29, 30, 31]. The work

was done with assistance from a computerized stereology system (Stereologer®,

SRC Biosciences, Tampa, Florida, USA) consisting of an Olympus microscope

equipped with automatic XY stepping motors and Z-axis focus motor for auto-

matic collection of z-axis image stacks (disector stacks). Starting at a random275

X-Y location in the upper left quadrant of the reference space (neocortex) in

the first section, images were collected in a systematic-random sampling manner

at intervals of 1200 µm⇥ 1200 µm, and repeating on 8–12 sections sampled in a

systematic-random manner through the entire mouse neocortex. Each disector

stack consists of a set of ten images (1µm apart) in the z-axis captured using280

100x oil lens (NA=1.4) with a guard volume of at least 2 µm. This level of

sampling stringency achieved a low sampling error as evidenced by coe�cient of

error ⇠ 0.10 (CE ⇠ 10%) as shown by [27]. The time required for unsupervised

(automatic) collection of images for each case (46 to 66 disector stacks) was

⇠ 30 to 45 minutes. The dataset used is summarized in Table 1.285

The ’Ground Truth (GT)’ for a mouse brain in this work is the sum of the

cells counted in all disector stacks sampled through an anatomically defined

reference space (mouse neocortex) in a systematic-random manner as we have
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previously reported [1, 2, 3, 4, 5, 10, 11, 12].

Similar to the ASATP-DL approach, the GT is divided into two levels in the290

present work. The first is to identify and count the true number of cells (NeuN

neurons) in the sampled disector stacks, also referred to as ’count-annotation’

where expert knowledge was used to distinguish between neurons and various

glia cells. Similar to an optical disector, an expert (YK) used thin focal plane

scanning of a disector stack to count NeuN neurons only once at the best focus295

plane. NeuN-immunostained cells in disector stacks were counted (clicked) using

Gundersen’s unbiased counting rules to avoid edge e↵ects [24]. As shown in

Figure 5, cells were included that fell within the disector volume or touched one

of the top, upper or right-side inclusion planes in 3D. Cells were excluded that

fell outside the disector volume or touched either the bottom, lower or left-side300

exclusion planes.

A method of Köhler illumination [32] was used with a 1
3 open condenser

diaphragm for data collection. The stacks which did not conform to this rule

and as a result had unclear boundaries/edges of cells were considered as low

quality on the recommendations of a domain expert (YK). About 22% of the305

total stacks were discarded due to poor quality. Number of stacks discarded per

case is listed in the data summary in Table 1. For the mice with a significantly

higher number of good quality stacks, a number of stacks were discarded in

a systematic-random manner in order to balance the dataset, i.e., every 3rd

stack with a random start at stack 1, 2, or 3 was discarded from the 98 stacks310

from case PI3-20 to obtain 66 stacks. Also, the annotation on the selected data

(subset) was done by one expert (YK) during this work to achieve uniform GT

across all stacks.

Next, binary image masks (with cells as foreground in corresponding best fo-

cal plane) were generated to train the deep learning model (’mask-annotation’)315

to segment NeuN neurons. After the count-annotation, no further expert knowl-

edge is required to draw masks (boundaries) around identified neurons, allowing

mask-annotation by trained student researchers to minimize the requirement for

expert time. As for count-annotation, a boundary around a cell was drawn in its
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Mouse ID # Stacks Used Ground Truth Count # Stacks Discarded

PI3-18 65 312 3

PI3-19 46 274 57

PI3-20 66 394 32*

PI3-21 62 580 35

PI3-22 60 357 2

Table 1: Summary of neuron (NeuN) counterstain dataset used and the number of stacks

discarded per case due to poor illumination setting during data collection. * Good quality

stacks discarded to balance the dataset.

best focal plane. A check is performed on every stack to match the cell count in320

both annotations to ensure that no human error is introduced while going from

count-annotation to mask-annotation. The required tools for these annotations

were developed in-house during this work.

4. Experimental Results

The number of accepted images per mouse after manual verification of ASA325

and ASA-TP masks is listed in Table 2. The number of images in Table 2

represents the number of stacks since each stack is converted into an EDF image.

It should be noted that the small number of accepted images after ASA mask

verification is because ASA was originally designed for a single immunostained

dataset. The number of accepted images are significantly larger, and hence330

provide a larger training set for subsequent training of a DL model, by automatic

FP removal discussed in Section 2.1. Furthermore, the number of accepted

images is su�cient to train the DL model to obtain an average error rate of

6.05% (Table 3) using the ASATP-DL approach.

A five-fold experiment using leave-one-mouse-out for testing strategy was335

performed for both EDF-based ASATP-DL and the disector-based MIMO ap-

proach. In each fold, data from one mouse was left out as a test-set for the

trained model performance evaluation on unseen data (i.e., not seen by the
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Mouse ID # Images # ASA Accepted # ASA-TP Accepted

PI3-18 65 12 32

PI3-19 46 5 26

PI3-20 66 2 29

PI3-21 62 2 17

PI3-22 60 6 24

Table 2: Number of images accepted per mouse after ASA vs ASA-TP verification.

model during training) since the model is expected to perform well on the train-

ing data. From each of the other four mice, 80% and 20% of the data contributed340

to the train set and validation set, respectively. This regimen is repeated five

times leaving a di↵erent mouse data out for testing each time. In e↵ect, the

approach is validated on each mouse to ensure the fairness of the performance

evaluation.

As for the ASA-DL framework, elastic and rotation augmentations were per-345

formed on the train-set to obtain a large and diverse dataset for training a deep

learning model. Training the deep learning model is an automatic process that

primarily requires unsupervised computer time, i.e., no expert time is required

once the training is initiated. The actual training time depends on multiple

factors such as amount of training data, hardware capacity, training parameters350

etc. In the present work, approximately 4 hrs and 12 hrs allowed for one-fold

training in the ASATP-DL and MIMO approaches in that order. Furthermore,

the training time is a one-time investment per stain and cell type in that less

than 15 minutes is needed to count cells in a complete reference space (⇠ 60 to

90 disector stacks) using a trained DL model. The predicted cell counts by both355

EDF-based ASATP-DL and disector-based MIMO approaches are reported in

Table 3.

The motivation behind this work was to develop an automatic disector-

based method that avoids under-counting in previous approaches due to over-
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Test Mouse ID #Stacks

Ground

Truth Count

(G)

ASATP-DL

Count

(A)

ASATP-DL

Error

Rate(%)

(
|G�A|⇤100

G )

MIMO

Count

(L)

MIMO

Error

Rate(%)

(
|G�L|⇤100

G )

PI3-18 65 312 295 5.45 319 2.24

PI3-19 46 274 290 5.84 275 0.36

PI3-20 66 394 413 4.82 426 8.12

PI3-21 62 580 558 3.79 596 2.76

PI3-22 60 357 394 10.36 319 10.64

Average Error Rate (%) 6.05 4.82

Table 3: Automatic counting results using EDF-based ASATP-DL and disector-based MIMO

approach. Where, the fifth and last columns refer to % error; and, the last row refers to the

mean % error for all mice analyzed.

lapping/occluded cells in the z axis of EDF images. The under-counting error360

is expected to be relatively high in the stacks with higher cell density. Also,

while improving on the under-counting issue in high cell density stacks, the new

method should perform at least as well as the existing EDF-based method on

stacks with low cell density. To test this hypothesis, stacks were divided into

low and high cell density groups (based on manual stereology counts) then the365

performance of the disector-based MIMO approach was assessed on high and

low cell density groups independently. The low cell density group consists of

stacks with  10 cells per stack and high cell density group with >10 cells per

stack. Notably, the stacks are divided into two groups only for analysis purposes

after stereology counts at the case level where each case contains areas of both370

low- and high-density stacks. No extra experiments were performed on the two

groups independently. The cell count result comparison for both groups is pro-

vided in Tables 4 and 5. Under-counting and over-counting error is indicated

by negative and positive error rates, respectively.

As indicated in Table 4, the proposed method has significantly lower abso-375

lute error on the low cell density stacks. Table 5 shows that the proposed MIMO

method has significantly lower under-counting as compared to the EDF-based

ASATP-DL approach on the high cell density stacks as expected. Further-
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Test Mouse ID #Stacks

Ground

Truth Count

(G)

ASATP-DL

Count

(A)

ASATP-DL

Error

Rate(%)

(
(A�G)⇤100

G )

MIMO

Count

(L)

MIMO

Error

Rate(%)

(
(L�G)⇤100

G )

PI3-18 57 202 208 2.97 205 1.49

PI3-19 37 152 187 23.03 159 4.61

PI3-20 51 179 227 26.82 193 7.82

PI3-21 35 225 238 5.78 232 3.11

PI3-22 50 202 260 28.71 180 -10.89

Average Absolute Error Rate (%) 17.46 5.58

Table 4: Automatic counting results using EDF-based ASATP-DL and proposed disector-

based MIMO method for low cell density stacks with <=10 cells per stack where under-

counting and over-counting error are indicated by negative and positive error rate, respectively;

and, the last row refers to the mean % absolute error for all mice analyzed.

Test Mouse ID #Stacks

Ground

Truth Count

(G)

ASATP-DL

Count

(A)

ASATP-DL

Error

Rate(%)

(
(A�G)⇤100

G )

MIMO

Count

(L)

MIMO

Error

Rate(%)

(
(L�G)⇤100

G )

PI3-18 8 110 87 -20.91 114 3.64

PI3-19 9 122 103 -15.57 116 -4.92

PI3-20 15 215 186 -13.49 233 8.37

PI3-21 27 355 320 -9.86 364 2.54

PI3-22 10 155 134 -13.55 139 -10.32

Average Absolute Error Rate (%) 14.68 5.96

Table 5: Automatic counting results using EDF-based ASATP-DL and proposed disector-

based MIMOmethod for high cell density stacks with>10 cells per stack where under-counting

and over-counting error are indicated by negative and positive error rate, respectively; and,

the last row refers to the mean % absolute error for all mice analyzed.
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Test Mouse ID
ASATP-DL MIMO

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

PI3-18 0.61 0.78 0.74 0.76 0.69 0.81 0.83 0.82

PI3-19 0.68 0.79 0.83 0.81 0.68 0.81 0.81 0.81

PI3-20 0.56 0.70 0.73 0.72 0.66 0.76 0.82 0.79

PI3-21 0.65 0.80 0.77 0.79 0.65 0.78 0.80 0.79

PI3-22 0.58 0.70 0.77 0.74 0.63 0.82 0.73 0.77

Average value 0.62 0.75 0.77 0.76 0.66 0.79 0.80 0.80

Table 6: Comparison of accuracy, precision, recall, and F1-score of EDF-based ASATP-DL

vs proposed MIMO method. The higher average F1-score of the proposed method represents

better overall performance.

Test Mouse ID
ASATP-DL MIMO

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

PI3-18 0.58 0.72 0.74 0.73 0.67 0.80 0.81 0.80

PI3-19 0.70 0.74 0.91 0.82 0.67 0.79 0.82 0.80

PI3-20 0.49 0.59 0.74 0.66 0.60 0.73 0.78 0.75

PI3-21 0.65 0.77 0.81 0.79 0.63 0.76 0.79 0.77

PI3-22 0.57 0.64 0.83 0.72 0.61 0.80 0.71 0.75

Average value 0.60 0.69 0.81 0.74 0.64 0.77 0.78 0.78

Table 7: Comparison of accuracy, precision, recall, and F1-score of EDF-based ASATP-DL

vs proposed MIMO method for low cell density stacks with <=10 cells per stack. The higher

average F1-score of the proposed method represents better overall performance.

Test Mouse ID
ASATP-DL MIMO

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

Accuracy

( TP
TP+FP+FN )

Precision

(P =
TP

TP+FP )

Recall

(R =
TP

TP+FN )

F1-Score

(f1 =
2⇤P⇤R
P+R )

PI3-18 0.70 0.93 0.74 0.82 0.74 0.83 0.86 0.85

PI3-19 0.65 0.86 0.73 0.79 0.70 0.84 0.80 0.82

PI3-20 0.64 0.84 0.73 0.78 0.70 0.79 0.86 0.83

PI3-21 0.65 0.83 0.75 0.79 0.66 0.78 0.80 0.79

PI3-22 0.61 0.81 0.70 0.75 0.65 0.83 0.75 0.79

Average value 0.65 0.86 0.73 0.79 0.69 0.82 0.82 0.82

Table 8: Comparison of accuracy, precision, recall, and F1-score of EDF-based ASATP-DL

vs proposed MIMO method for high cell density stacks with >10 cells per stack. The higher

average F1-score of the proposed method represents better overall performance.
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more, the EDF-based approach has high over-counting error on the low-density

stacks since some glia cells are incorrectly counted as neurons by the EDF-based380

method. Interestingly, in the EDF-based method the over-counting (positive)

error on low-density stacks cancels the under-counting error on high-density

stacks when considering all stacks of a mouse together to compute the % er-

ror rate for the mouse (as reported in Table 3). As a result, the EDF-based

method for overall % error appears comparable to that of the proposed method,385

though the proposed method performs with higher accuracy (lower error rate)

on both density groups individually. The same observation can be derived from

the results reported in Tables 6 through 8. The higher F1-score for both den-

sity groups individually as well as on the mouse level indicates better overall

performance of the proposed method.390

A few comparison examples between the EDF-based ASATP-DL approach

and proposed MIMO method are shown in Figure 5. The top row shows one

of the image planes of a stack. Middle and bottom rows demonstrate results

by ASATP-DL and proposed MIMO methods in order. All cross marks (green

and red) indicate Ground Truth while the red cross marks show FNs (missed395

cells). The contours represent segmentation by ASATP-DL and MIMO methods

with green and red contours showing TPs and FPs, respectively. In the result

(bottom row), all cells segmented in respective best focus planes of a stack are

demonstrated on an EDF image.

5. Discussion and Conclusion400

There was an average of about 3-5% inter-rater variability in ’count-annotation’

observed for counts of the same cells in same reference space of the same cases

by multiple raters in our group ([12, 33]). This sets a lower bound on the error

rate for the automatic methods compared to manual stereology counts. As can

be seen in Table 3, the average error rate for the ASATP-DL is already close405

to the lower bound, meaning there is not much room for average error rate im-

provement by a new method. However, the low average error in the ASATP-DL
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Figure 5: Visualization of results. The top row shows one of the image planes of the stack.

Middle and bottom rows demonstrate results by ASATP-DL and proposed MIMO methods in

order. All cross marks (green and red) indicate Ground Truth while the red cross marks show

FNs (missed cells). The contours represent segmentation by the automatic methods. The

green and red contours are TPs and FPs, respectively. The unbiased counting frame includes

left and lower exclusion lines (red) and upper and right inclusion lines (green) (lines convert

to planes in 3D).
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method is due to the nuance of error cancellation between the low and high

cell density stacks (as discussed in Section 4). Thus, the ASATP-DL method

achieves the desired count by counting incorrect objects to compensate for the410

under-counting of the highly overlapping cells. In contrast, as shown in Tables 3

through 5 the proposed method reaches the desired count by primarily counting

the correct objects in both low- and high-density stacks.

In the deep learning field, one of the high-value resources is time required by

the domain expert (well-trained data collector). The proposed disector-based415

MIMO method solves the under-counting issue in the current state-of-the-art

EDF-based approach with no extra expert time requirement. That is, the same

count-annotation time by an expert is required for both the EDF-based and

proposed disector-based MIMO methods.

We compared the time requirement for analysis of one case by the EDF-based420

approach and the proposed disector-based MIMO method. Both methods were

run on the same computer with Intel i7-4790 CPU and 16 GB RAM. The DL

model was generated on Nvidia 1080Ti GPU with 11 GB frame bu↵er. Us-

ing a trained DL model, the EDF-based approach required ⇠ 13 minutes to

count NeuN-immunopositive profiles compared to ⇠ 12 minutes for the pro-425

posed disector-based MIMO method to count NeuN-immunopositive cells, from

the same disector stacks for one case. The EDF-based method takes slightly

higher time to compute an EDF image from each of the stack. Notably, a well-

trained technician requires ⇠ 2 to 2.5 hours of closely supervised time to count

NeuN-immunopositive cells to the same level of sampling stringency with the430

ordinary (i.e., purely manual) optical fractionator. In contrast, the proposed

MIMO method requires ⇠ 15 minutes of supervised time to outline reference

spaces at low power; and ⇠ 42 minutes of unsupervised time to automatically

collect disector stacks (⇠ 30 minutes) and collect data for total cell counts

(⇠ 12 minutes). Thus, throughput e�ciency in terms of supervised time is435

⇠ 5⇥ higher for the proposed MIMO method (⇠ 0.25 hour versus ⇠ 2 to 2.5

hours). Whereas collecting accurate data by manual stereology requires con-

stant attention, subjective decision-making, low magnification outlining of the
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reference space boundaries combined with high magnification counting (click-

ing) by a highly trained technician with substantial experience, the DL-based440

MIMO method requires minimal expertise to outline the boundaries of the ref-

erence space on tissue sections at low magnification.

As in all deep learning applications, a relatively large amount of training data

is required for a more accurate and generic model for di↵erent image variations.

However, in many biomedical applications including the present work data for445

training deep learning models is a limiting factor. We anticipate that more

training data will further improve the performance on the least accurate cases

(e.g., PI3-20 & 22), which will further reduce the standard deviation of the error

rate.

Explainability of AI (’black-box’) is becoming increasingly important for450

medical applications. Like most deep learning algorithms, the proposed work

relies on statistical model-free learning. A machine explanation for a decision

made by such systems might not fit with human experts’ explanation as dis-

cussed by Holzinger and Muller in [34]. A better fit can be obtained by incor-

porating human-in-the-loop with a↵ective computing to receive feedback about455

if the machine explanation is understandable for the human expert. A case

study on a microscopy image analysis with a similar approach is presented by

Holzinger and Muller in [34].

The present work shows proof-of-concept for the disector-based MIMO frame-

work by quantifying total numbers of NeuN neurons in the mouse neocortex,460

which had been quantified previously using manual stereology methods [35, 36].

The focus of this work is to show that the number of NeuN-stained cells counted

by our automatic stereology (MIMO method) is comparable to counts of NeuN

neurons by a trained human technician using manual stereology on the same

disector stacks. We used modern stereology to make estimates of total neuron465

number based on unbiased sampling, also known as systematic sampling with a

random start, in conjunction with unbiased cell counting (the optical disector

principle). As shown by many studies, a systematic-random sample of 8-12 sec-

tions as used in the present study provide su�cient statistical power for unbiased
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(i.e., accurate) estimates, without the need to count all cells [13, 15, 24, 27, 28].470

The proposed method can be used for automatic stereology counts of any

discrete objects (cells) labelled with a high signal: noise stain. As discussed in

Section 2.2.3, prior knowledge about the object shape only slightly benefits per-

formance (< 2% impact on the error rate) and it is not an absolute requirement

of the proposed MIMO method.475

The proposed method can be employed to count heterogeneous (di↵erent size

or shape) cell populations provided that a representative dataset is available for

training the deep learning model. The minimum area threshold used in the

postprocessing can be tuned based on minimum cell size in the training data.

Furthermore, the proposed method can be directly adapted to image stacks480

with di↵erent cell types by using an independent deep learning model for each

cell type. The models can use the same image stacks but learn to count only

one type of cell. Another approach to handle di↵erent cell types might include

using each cell type as an output category (e.g. neuron or glia) and the best

focus plane as the output plane. E↵ectively each output z-plane can have same485

number of output categories as the number of types of cells.

One weakness of the proposed framework is the requirement of counting

cells of interest at a unique point, e.g., the best plane of focus for every cell. In

manual stereology, a human expert can count a cell when it first appears (early

detector), at the maximal focal plane, or at the last focal plane of visibility (late490

detector). It is important to select one of the three unique points and use that

point across the dataset to e↵ectively teach the process to a deep learning model.

Di↵erent cells counted at di↵erent points can confuse the model. The optimal

focal plane was selected as the unique point in the proposed work because the

size of the cells of interest with respect to the tissue thickness is such that most495

of the cells are visible through out the stack (no unique start and end point).

Ambiguity can arise when a cell is in a similar level of good (best) focus in two

or more focal planes. Such cases are handled through post-processing to merge

overlapping detections in consecutive planes to allow for only one detection per

cell.500
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To conclude, we provide two enhancements to the current state-of-the-art

applications of deep learning to unbiased stereology counts of immunostained

cells in tissue sections. The first is an update in the form of a semi-automatic

approach for GT preparation in 3D stacks of microscopy images (disector stacks)

for generating more training data without a requirement for additional expert505

time. Second, we present a novel disector-based MIMO framework that rep-

resents an automatic version of the ordinary optical fractionator where all the

planes of a 3D disector stack are analyzed as opposed to a single focus-stacked

image (EDF image) per stack. The MIMO approach avoids the costly com-

putations of 3D deep learning-based methods by using the 3D context of cells510

in disector stacks; and prevents stereological bias in the previous EDF-based

method due to counting profiles rather than cells and under-counting overlap-

ping/occluded cells. Taken together, these improvements support the view that

AI-based automatic deep learning methods can accelerate the e�ciency of unbi-

ased stereology cell counts without a loss of accuracy or precision as compared515

to conventional manual stereology.

6. Future Work

As future work, we plan to apply the proposed method to di↵erent datasets

with di↵erent staining protocols (i.e., single immunostain) to ensure the gener-

alizability of the proposed method. We are also expanding the present approach520

from DAB-stained tissues to immunofluorescent staining of biological structures.
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