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In the past few years, approaches such as physics informed neural networks (PINNs) have been ap-
plied to a variety of applications that can be modeled by linear and nonlinear ordinary and partial
differential equations. Specifically, this work builds on the application of PINNs to a SIRD (suscep-
tible, infectious, recovered, and dead) compartmental model and enhances it to build new mathemat-
ical models that incorporate transportation between populations and their impact on the dynamics
of infectious diseases. Our work employs neural networks capable of learning how diseases spread,
forecasting their progression, and finding their unique parameters. We show how these approaches
are capable of predicting the behavior of a disease described by governing differential equations that
include parameters and variables associated with the movement of the population between neigh-
boring cities. We show that our model validates real data and also how such PINNs based methods
predict optimal parameters for given datasets.

KEY WORDS: compartmental models, epidemiology, neural networks, transport, deep
learning

1. INTRODUCTION

The outbreak of COVID-19 and its variants has since spread across the globe to over 200 coun-
tries and territories. As of July 2021, over 185 million cases and 4 million deaths worldwide
were due to COVID-19, as the World Health Organization reported in Coronavirus (2021). The
pandemic has changed human relationships and social interactions due to measures such as
mandatory isolation, restricted purchase of essential items, closure of significant public events,
and closure of educational centers. People have had to experience changes in the way people
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communicate, in how they learn, or in the way inhabitants of different regions travel and com-
municate, even in the same territory. With travel that has resumed again, there is now potential
for more interaction in populations moving within and between cities. For this reason, under-
standing the dynamics of disease transmission continues to be a problem of global interest.

Different methodologies and approaches have been used to model and predict the spread of
infectious diseases, for example, deterministic epidemiological models which use systems of or-
dinary differential equations such as SIR (susceptible, infected, and recovered), SIS (susceptible
and infected), and SEIR (susceptible, exposed, infected, and recovered). The first epidemiolog-
ical mathematical model was developed to study influenza using an SIR model (Kermack and
McKendrick, 1927). In this model, three types of individuals are distinguished: the suscepti-
ble, the infected, and the removable. Susceptible individuals are those who are likely to catch
a disease by having infectious contact with infected individuals who may or may not present
symptoms of the disease. Removable individuals are those who are no longer infected. Follow-
ing the influenza pandemic, several countries and leading organizations increased funding and
attention to finding cures for infectious diseases in the form of vaccines and medicines. Along
with these policy implementations, newer modified SIR models for mathematical epidemiology
continued to evolve, particularly for those diseases that are categorized as reemerging infections
that spread through sexual transmission, such as HIV (Castillo-Chavez, 2013), through vectors
such as mosquitoes, e.g., malaria or dengue (Chowell et al., 2007), through both sexual and
vector transmissions, such as Zika (Padmanabhan et al., 2017), and those that can be spread by
viruses, including SARS (Dye and Gay, 2003).

While there have been significant advances in mathematical modeling of infectious diseases,
there is a great need to develop efficient and fast computational techniques for estimating param-
eters in these associated differential equation systems (Raissi et al., 2019b). One of the promis-
ing approaches is the physics informed neural networks (PINNs) where neural networks are
trained to solve supervised learning tasks while respecting any given law of physics described
by general nonlinear partial differential equations (Raissi et al., 2019a). Specifically, the mech-
anism solves two problems: the solution based on data and the discovery of partial differential
equations based on data. Other methodologies have emerged, such as those studied in Yazdani
et al. (2020), where the system of ordinary differential equations (ODEs) is incorporated into
neural networks, effectively adding constraints to the optimization algorithm, which makes the
method robust for scarce and noisy measurements. Many of these works focus on understand-
ing the operation of differential equations that learn from data. Recently, a unified approach
called DINNs (disease informed neural networks) was introduced where an approach can be
employed to effectively predict the spread of infectious diseases; is presented in Shaier et al.
(2022).

In this work, we focus on expanding the study of DINNs by analyzing different scenarios
using modified SIRD compartmental models and including the disease transmission rate incor-
porating individuals’ transport between the two crowded neighboring cities. Specifically, the mo-
tivation comes from Colombia and its two main cities, the largest city, Bogotá, and Medellı́n, the
second-most populated city with industrial, business, and commercial activities. People travel
between these cities for business, family, and vacation. The estimated flight time is approxi-
mately 55 minutes.

The paper is structured as follows. In Section 2, we review the necessary background infor-
mation. Section 3 shows the application of the proposed method to some benchmark applications
involving both synthetic data and real data from Colombia. Finally, we conclude with discussion
and conclusions in Section 4.
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2. MODELS AND BACKGROUND

Over the past several decades, compartmental models have been employed with mathematical
modeling to study the spread of infectious diseases (Brauer et al., 2012). As mentioned before,
one of the original mathematical conceptualizations of how disease spreads is an SIR model that
was introduced to describe the interaction between susceptible (S), infectious (I), and recovered
(R) human sub-populations (Kermack and McKendrick, 1927). A modified version of this model
is the SIRD model, where a dead (D) compartment is also introduced, and its dynamics are
also studied along with the other three compartments. This model was used to describe one of
the earlier models for understanding COVID-19 spread in Italy (Calafiore et al., 2020). This is
illustrated by the flow diagram in Fig. 1, where β, ω, and γ are the rates of infection, recovery,
and mortality, respectively. This can be modeled as a system of differential equations:

Ṡ = −β
S

N
I, (1a)

İ = β
S

N
I −ωI − γI, (1b)

Ṙ = ωI, (1c)
Ḋ = γI. (1d)

Here we have assumed that N = S + I + R + D is the total human population. It is assumed
that susceptible individuals S move to the infected class I after acquiring the COVID-19 disease
through interaction with an infected individual. This transmission is being modeled via the ad-
dition of terms directly proportional to the respective infected human classes I involved in the
transmission and an infection rate proportional to the infected individuals. The rate of transmis-
sion from the infected to susceptible humans is given by the usual product β. Members of the
infected class I can either recover with a rate proportional to ω, moving to the recovered class,
or move to the death compartment with a rate of γ. Next we expand this model to include the
impact of transportation which is one of the motivations of this work.

2.1 Adding Transportation

The flow diagram in Fig. 1 considers only one population. Motivated by Hernández et al. (2016),
we expand the SIRD model to include transportation to study the spread of COVID-19. Specifi-
cally, we consider a transportation matrix for two population regions given by(

0 τ1,2
τ2,1 0

)
,

S I R

D

β ω

γ

FIG. 1: Classical SIRD flow diagram
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where each τi,j represents the flux of transportation from region i to region j, where i, j = 1, 2.
Then the associated flow diagram for a new compartmental model this scenario can be modeled
as Fig. 2. Its corresponding system of differential equations follows:

Ṡ1 = −β1
S1
N1

I1 − τ1,2S1 + τ2,1S2, (2a)

İ1 = β1
S1
N1

I1 −ω1I1 − γ1I1 − τ1,2I1 + τ2,1I2, (2b)

Ṙ1 = ω1I1 − τ1,2R1 + τ2,1, R2, (2c)

Ḋ1 = γ1I1, (2d)

Ṡ2 = −β2
S2
N2

I2 − τ2,1S2 + τ1,2S1, (2e)

İ2 = β2
S2
N2

I2 −ω2I2 − γ2I2 − τ2,1I2 + τ1,2I1, (2f)

Ṙ2 = ω2I2 − τ2,1R2 + τ1,2R1, (2g)

Ḋ2 = γ2I2. (2h)

2.2 Transportation with Short-Term Cross Transmission

System (2) does not consider the interaction between people from different regions. Since we
are modeling short-term travel, for example, people who commute to work, we introduce two
new parameters. First of all, δi,j is the rate of infection among people who travel from region
i to region j but susceptible individuals from i interact with infected individuals from i, for
example, when commuting in the morning in a bus or train. Secondly, ζi,j is the rate of infection
between people who travel from region i to region j but individuals from i interact with infected

FIG. 2: SIRD model with transportation flow diagram
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individuals of j, for example, interaction in an office, school, etc. The associated flow diagram
for this scenario can be modeled as Fig. 3. The system of governing differential equations for
Fig. 3 is as follows:

Ṡ1 = −β1
S1
N1

I1 − τ1,2S1 + τ2,1S2 − ζ1,2
S1
N1

I2 − δ1,2
S1
N1

I1, (3a)

İ1 = β1
S1
N1

I1 −ω1I1 − γ1I1 − τ1,2I1 + τ2,1I2 + ζ1,2
S1
N1

I2 + δ1,2
S1
N1

I1, (3b)

Ṙ1 = ω1I1 − τ1,2R1 + τ2,1R2, (3c)

Ḋ1 = γ1I1, (3d)

Ṡ2 = −β2
S2
N2

I2 − τ2,1S2 + τ1,2S1 − ζ2,1
S2
N2

I1 − δ2,1
S2
N2

I2, (3e)

İ2 = β2
S2
N2

I2 −ω2I2 − γ2I2 − τ2,1I2 + τ1,2I1 + ζ2,1
S2
N2

I1 + δ2,1
S2
N2

I2, (3f)

Ṙ2 = ω2I2 − τ2,1R2 + τ1,2R1, (3g)

Ḋ2 = γ2I2. (3h)

Table 1 defines each parameter in the model.

2.3 Derivation of the Basic Reproduction Number

When studying the dynamics of a certain disease, it is important to estimate the speed with
which it can spread in a population, a measure known as the basic reproductive number, notated
as R0, which is defined as the average number of secondary infections produced by a typical
case of an infection in a population where everyone is susceptible (Diekmann et al., 1990). This

FIG. 3: SIRD model with transportation and cross transmission flow diagram
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TABLE 1: Parameter definition of model (3)

Parameter Definition
βi Transmission rate

δi,j

Rate of infection between people who travel from region
i to region j but susceptible individuals from i

interact with infected individuals from i

ζi,j

Rate of infection between people who travel from region
i to region j but individuals from i interact with
infected individuals of j

ωi Rate at which individuals become recovered
ξi Rate at which symptomatic individuals become quarantined
γi Rate at which infected individuals become dead
τi,j Transport rate between two regions

number is a measure of the potential for disease spread within a population (Van den Driessche
and Watmough, 2008).

In this section, we will derive a basic reproduction number R0 to measure the transmission
potential of COVID-19 as proposed by the system of Eq. (2).

Model (2) includes sub-populations with different infectious states; therefore, we have em-
ployed a general approach called the next generation matrix (Brauer et al., 2012) to find the basic
reproduction numberR0 which is given by the following equations.

Given the infectious states I1, I2 in system (2), we can create a vector F that represents the
new infections flowing only into the exposed compartments given by

F = (β1I1 + τ2,1I2, β2I2 + τ1,2I1)
⊤
. (4)

Along with F , we will also consider V which denotes the outflow from the infectious com-
partments in the system of equations (2) which is given by

V = (ω1I1 + γ1I1 + τ1,2I1, ω2I2 + γ2I2 + τ2,1I2)
⊤
. (5)

Next, we compute the Jacobian F from F given by

F =

(
β1 τ2,1
τ1,2 β2

)
,

and the Jacobian V from V given by

V =

(
ω1 + γ1 + τ1,2 0

0 ω2 + γ2 + τ2,1

)
.

We can then compute the inverse of the matrix V to be

V −1 =


1

ω1 + γ1 + τ1,2
0

0
1

ω2 + γ2 + τ2,1

.
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Using matrices F and V one can then compute the next generation matrix FV −1 given by

FV −1 =


β1

ω1 + γ1 + τ1,2

τ2,1

ω2 + γ2 + τ2,1

τ1,2

ω1 + γ1 + τ1,2

β2

ω2 + γ2 + τ2,1

.

Note that the (i, j) entry of the next generation matrix FV −1 is the expected number of
secondary infections in compartment i produced by individuals initially in compartment j as-
suming that the environment seen by the individual remains homogeneous for the duration of
their infection. Also, matrix FV −1 is non-negative and therefore has a non-negative eigenvalue.
The basic reproduction number can then be computed as R0 = ρ

(
FV −1) which is the spectral

radius of the matrix. This non-negative eigenvalue is associated with a non-negative eigenvector
which represents the distribution of infected individuals that produce the greatest numberR0 of
secondary infections per generation.

The basic reproduction number R0 corresponds to the dominant eigenvalue λ that satisfies
the following equation:

λ2 − λ

(
β1

ω1 + γ1 + τ1,2
+

β2

ω2 + γ2 + τ2,1

)
+

β1β2 − τ1,2τ2,1

(ω1 + γ1 + τ1,2)(ω2 + γ2 + τ2,1)
= 0.

Remark 1. Note that when γ1 = γ2 = 0 and τ1,2 = τ2,1 = 0, then the basic reproduction number
R0 corresponds to the dominant eigenvalue λ that satisfies the following equation:

λ2 − λ

(
β1

ω1
+

β2

ω2

)
+

β1β2

ω1ω2
= 0.

Solving for the roots of the quadratic equations, we have

R0 = max
{
β1

ω1
,
β2

ω2

}
,

which corresponds to the classic result of the ratio of the transmission rate to the recovery rate
of each population.

Figure 4 shows the behavior of R0 for different scenarios when we change the transmission
and recovery rate corresponding to the second region. Each of its nine sub-figures is a contour
plot where the axes are continuous values of τ1,2 and τ2,1. We can see how by modifying these
values we can observe a nonlinear relationship between R0 and the transport rates. However, it
is clear than when the transmission rate is larger, then the maximum value of R0 also increases.
Note that in the first row, R0 is basically between 0 and 2; however, the third row shows values
between around 1.5 and 3.

2.4 Parameter Estimation

One of the challenges in using compartmental models with an associated differential equation
system to describe the dynamics is the estimation of parameters for the given data. Usually, pa-
rameters may be estimated from observing patterns in the data, but transmission rates often have
to be computed using heuristic algorithms that are computationally or statistically motivated. In
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FIG. 4: R0 value (colorized) for different combinations of τ1,2 (horizontal axis) and τ2,1 (vertical axis)

recent years, there have been new approaches with machine learning to discover parameters in
the governing equations (Raissi et al., 2019b). One of the approaches includes artificial neural
networks that are motivated by the human neural system where each neuron is represented with
a node, signals are inputs, and the synapse is the function evaluation. Each neuron is connected
to different neurons to increase accuracy through multiple layers.

Artificial neural networks have been used in regression and classification tasks in the last
few years. By adding the physics behind the given problem, i.e., the system of equations, Raissi
et al. (2019a) proposed a new approach called physics-informed neural networks. These neural
networks encode model equations, like partial differential equations (PDEs), as a component of
the neural network itself (Cuomo et al., 2022).

This approach aims to solve two main classes of problems: data-driven solution and data-
driven discovery of partial differential equations. It is a fast and mesh-free method. However,
it is still in early development. Shaier et al. (2022) proposed to leverage the hidden physics
of infectious diseases and infer the latent quantities of interest by approximating them using
PINNs. This approach is called diseases informed neural networks (DINNs), and the architecture
is similar, as we can see in Fig. 5 for a simple SIRD model.

Consider for example, the SIRD model and that we want to approximate the function t −→
(S, I,R,D). Then the residuals of the ordinary differential equations system can be written as

LS = Ṡ + β
S

N
I, (6a)
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FIG. 5: DINNs architecture for a SIRD model. Training data are only temporal and output is nth dimen-
sional depending on the number of equations/compartments.

LI = İ − β
S

N
I +ωI + γI, (6b)

LR = Ṙ−ωI, (6c)

LD = Ḋ − γI. (6d)

Similarly, model (3) corresponding to transportation for short-term cross transmission has
the following residuals:

LS1 = Ṡ1 −
(
−β1

S1
N1

I1 − τ1,2S1 + τ2,1S2 − ζ1,2
S1
N1

I2 − δ1,2
S1
N1

I1

)
, (7a)

LI1 = İ1 −
(
β1

S1
N1

I1 −ω1I1 − γ1I1 − τ1,2I1 + τ2,1I2 + ζ1,2
S1
N1

I2 + δ1,2
S1
N1

I1

)
, (7b)

LR1 = Ṙ1 − (ω1I1 − τ1,2R1 + τ2,1R2), (7c)

LD1 = Ḋ1 − γ1I1, (7d)

LS2 = Ṡ2 −
(
−β2

S2
N2

I2 − τ2,1S2 + τ1,2S1 − ζ2,1
S2
N2

I1 − δ2,1
S2
N2

I2

)
, (7e)

LI2 = İ2 −
(
β2

S2
N2

I2 −ω2I2 − γ2I2 − τ2,1I2 + τ1,2I1 + ζ2,1
S2
N2

I1 + δ2,1
S2
N2

I2

)
, (7f)

LR2 = Ṙ2 − (ω2I2 − τ2,1R2 + τ1,2R1), (7g)

LD2 = Ḋ2 − γ2I2. (7h)

One of the novelties in our work is to train a neural network with temporal data and esti-
mate the best values of the model parameters without much prior information. Let the unknown
solution be a vector of eight components such that

u(t; λ) = (S1(t; λ), I1(t; λ), R1(t; λ), D1(t; λ), S2(t; λ), I2(t; λ), R2(t; λ), D2(t; λ))
⊤,
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where λ are the parameters related to disease dynamics, and a known initial condition u(0).
Using the PINNs methodology we need training data, a discretization of time, and the solu-

tion {tj}, {uj} where j = 0, 1, . . . , Ndata such that t0 = 0 is the initial time. The goal is to train
a neural network with the vector of parameters λ̂ and θ (a vector of weights and biases for each
neuron) in order to obtain an approximation ûj (̂λ, θ) using the following loss function for the
optimization step of our model,

L(̂λ, θ) = ωodeLode(̂λ, θ) +ωicLic(̂λ, θ) +ωdataLdata(̂λ, θ),

whereωode,ωic, andωdata are the loss weights of the loss functions of the system of differential
equations, initial conditions, and training data, respectively. The loss function is decomposed in
three other parts, where

Lode(̂λ, θ) = LS1 (̂λ, θ) + LI1 (̂λ, θ) + LR1 (̂λ, θ) + LD1 (̂λ, θ)

+ LS2 (̂λ, θ) + LI2 (̂λ, θ) + LR2 (̂λ, θ) + LD2 (̂λ, θ),

is the loss function for the approximated solution, and

Ldata(̂λ, θ) =
8∑

i=1

1
Ndata

Ndata∑
j=1

(
uj
i − ûj

i (̂λ, θ)
)2

and Lic(̂λ, θ) =
8∑

i=1

(
u0i − û0i (̂λ, θ)

)2
,

where i = 1, . . . , 8 is a counter for each component of the solution; for example, (u1, u2, u3, u4)
correspond to (S1, I1, R1, D1) and (u5, u6, u7, u8) correspond to (S2, I2, R2, D2). Algorithm 1
shows how to predict u(t; λ) and the parameters λ.

Algorithm 1: DINNs algorithm considering transportation between two regions
Input : Training Data {tj}, {uj} where j = 0, 1, . . . , Ndata

Output: û and λ̂
1 Initialize λ̂0 and θ0.
2 Define time interval where the solution will be found.
3 Define loss function L(̂λ, θ), related to residual errors, initial conditions, and training

data.
4 Create a fully connected neural network with one neuron in the input layer and eight

neurons in the output layer (one per compartment), and such that it normalizes the
input data.

5 Choose optimization hyperparameters (e.g., Adam optimizer, learning rate, and loss
weights).

6 for iter = 1, . . . ,max iter do
7 Compute total loss L(̂λiter−1, θiter−1); in particular it is necessary to use

autodifferentiation for ODE residuals.
8 Train neural network with optimizer algorithm and update θiter−1 to θiter.
9 Get approximation ûiter and λ̂iter.
end

10 Return ûmax iter and λ̂max iter.
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3. NUMERICAL EXPERIMENTS

For numerical computations we used Python as a programming language, but in particular the
package DeepXDE (https://github.com/lululxvi/deepxde) as our main tool for PINNs, since it
has the flexibility for working with a system of ODEs.

3.1 Synthetic Data

For validation, we generated synthetic data with specific parameters, which allows us to measure
the parameter error of the model. For this purpose, since the parameters are known we solved
the system of differential equations using the Python package scipy, specifically the function
scipy.integrate.odeint, which uses LSODA from the FORTRAN library odepack.
From here, we have the real values of each parameter and each compartment in every time t
from 0 to 366 (in order to simulate an entire year).

We executed the model several times with different hyperparameters related to the neural
network architecture in order to obtain the best error. Specifically, we employed 30,000 itera-
tions with three and five layers. We considered the number of neurons per layer to be 32, 64,
and 128. For our simulations we employed the rectified linear units (ReLU) as the activation
function. The main advantage of using the ReLU function over other activation functions is that
it does not activate all the neurons at the same time. This means that the neurons will only be
deactivated if the output of the linear transformation is less than 0. For the weights in the respec-
tive loss functions, combinations of 1 and 10 were employed between the observed data, initial
conditions, and ODEs loss.

In the same way as Yazdani et al. (2020), the range for parameter searching is set as (0.2p,
1.8p), where p is a nominal value of each parameter. Figures 6 and 7 show us the training data
(dots) and the full prediction (line) in each sub-population without and with short-term cross
transmission, respectively. As we can see in Tables 2 and 3 we obtained in general really good
approximations of the parameters. In particular, we are interested in parameters which modeled
nonlinear behaviors such as βi, δi,j , or ζi,j where we got relatively small errors. However, in
the short-term cross transmission experiment we can see that τi,j parameters did not do well.

3.1.1 Noise

Next, to study the robustness of the model, we considered adding noise of 5% and 10%, respec-
tively to the synthetic data and simulated DINNs framework. Figures 8 and 9 seem to indicate
that our method is reliable and robust. Also, we notice that as the amount of noise decreases, the
performance of the method improves.

3.1.2 Missing Observations

Our next experiment was to simulate the behavior in the present data with missing values. For
instance, we considered a situation where we did not include the infected sub-population in the
training process. Figure 10 shows that even without that data the method was able to get a good
approximation.
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FIG. 6: SIRD with transportation model, training (dots), and prediction (line) using synthetic data

FIG. 7: SIRD with transportation and short-term cross transmission model, training (dots), and prediction
(line) using synthetic data
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TABLE 2: Parameter predictions and relative errors for
SIRD with transportation

Parameter Real Predicted Relative Error
β1 0.45 0.450849559 0.001887908
ω1 0.05 0.050518012 0.010360249
γ1 0.0294 0.029936808 0.018258763
β2 0.4 0.479594968 0.198987419
ω2 0.05 0.053104374 0.062087473
γ2 0.0294 0.031391702 0.067744976
τ1,2 0.02 0.019206325 0.03968376
τ2,1 0.01 0.009627349 0.037265099

TABLE 3: Parameter predictions and relative errors for
SIRD with transportation and short-term cross transmission

Parameter Real Predicted Relative Error
β1 0.45 0.480948498 0.06877444
ω1 0.05 0.048348768 0.033024639
γ1 0.0294 0.028237397 0.039544315
β2 0.4 0.409425762 0.023564406
ω2 0.05 0.050155453 0.003109051
γ2 0.0294 0.029991729 0.020126824
τ1,2 0.02 0.017977879 0.101106045
τ2,1 0.01 0.008884672 0.111532829
δ1,2 0.01 0.010612074 0.061207387
δ2,1 0.01 0.010150026 0.015002581
ζ1,2 0.01 0.002004724 0.799527586
ζ2,1 0.01 0.017996054 0.79960542

3.2 Real Data

Next, we validate the performance of the method with real data that were collected using a list
of data sets that the Ministry of Health and Social Protection of Colombia makes available to
citizens, freely and without restrictions, so that they can reuse or create services derived from
them. This information is organized by months and years and is found in the COVID-19 Colom-
bia Case Bulletins available in Boletines Casos COVID-19 (2020). The complete query of the
data sets is available on the Open Data Portal of the Colombian State available at the National
Institute of Health, Colombia (Instituto Nacional de Salud, 2021).

To estimate the parameters of the proposed model, and to carry out the simulations and their
analysis, we focus on the information available for the two main cities of Colombia, Bogotá
and Medellı́n. The data set includes daily cases of infected, recovered, and deceased people,
specifically, the information from January 2021 to December 2021 was selected. After carrying
out an exhaustive cleaning of the data set, to simulate the number of susceptible people, we used
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FIG. 8: SIRD with transportation and short-term cross transmission model, training (dots), and prediction
(line) using synthetic data with 5% of noise

FIG. 9: SIRD with transportation and short-term cross transmission model, training (dots), and prediction
(line) using synthetic data with 10% of noise
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FIG. 10: SIRD with transportation and short-term cross transmission model, training (dots), and prediction
(line) using synthetic data, but infected data are missing

the demographic projection of the National Administration Department of Statistics of Colombia
(DANE, 2018), where it is estimated that the approximate population of the city of Bogotá is
7,871,075, while the estimated number of inhabitants in the city of Medellı́n is 4.055.296. Due
to the difficulty in obtaining real and precise information for the estimation of the value of the
transport flow parameter τi,j from Bogotá to Medellı́n and vice versa, we have assumed and
taken the values from Pérez (2022). Likewise, in the case of the parameter ζi,j , the values were
assumed given the impossibility of obtaining said values in the literature and in the data available
for the study cities. Results with both transportation models are illustrated in Figs. 11 and 12.
These were obtained using similar hyperparameters that we used for synthetic data but since we
are using a smaller data set (only ten training points) we decided to give more weight to the data
loss function. While approximations are not perfect on the training data set, our models can still
capture the underlying behavior.

As it is possible to observe by calculating the relative error, comparing the actual (and/or
assumed) parameter values and the projected values, the estimates of the proposed model are
not exact; this is possibly associated with the uncertainty of the assumed values for τi,j and ζi,j .
However, our models can capture the underlying behavior of the population studied.

4. DISCUSSION AND CONCLUSIONS

In this work, we investigate the dynamics of infectious diseases through mathematical models
that incorporate the impact of travel. The novelty of the work is to employ a computational
approach through neural networks. Specifically, we introduced a DINNs approach that is fast
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FIG. 11: SIRD with transportation model, training (dots), and prediction (line) using Colombia COVID-19
real data

FIG. 12: SIRD with transportation and short-term cross transmission model, training (dots), and prediction
(line) using Colombia COVID-19 real data
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and robust, and is an extensible tool for parameter estimation. We derive the basic reproduction
number for the basic SIRDwith a transport model between two cities. We also validate the model
in the presence of synthetic data. Our numerical results show that the method is reliable even in
the presence of noise as well as missing data situations. While our method is shown to be robust,
there is still a need to find better hyperparameters for the neural network to minimize synthetic
data errors. Future works will include hyperparameter optimization methods. Our hypothesis for
explaining why the flow parameters in the short-term cross transmission experiments did not
perform well is related to the decomposition of loss functions. Artificial neural networks are
still considered black boxes (or gray boxes) as we can predict how they learn from the data and
the ODEs residuals. Considering that ζ1,2 and ζ2,1 are small values and their contribution to
the system of equations (3) could be negligible, we hypothesize that the optimization algorithm
prefers to move in directions where other parameters contribute in a larger sense to the loss
function. Finally, this work indicates the need for more training data that can help improve the
optimization process and better identify nonlinear behaviors. Additionally, as evidenced from
the real data, due to the existing uncertainty around parameters that have been assumed, such as
τi,j and ζi,j , it is essential to implement methodologies that can quantify said variability, as do
the models that include random disturbances within the models that use stochastic differential
equations. Parametric estimations of models that include stochastic approaches such as Rı́os-
Gutiérrez et al. (2021) or Niño-Torres et al. (2022) have been made. We hope to include adding
stochasticity to our models and extending to long-term transmission in our forthcoming work.
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A Case Study, Infect. Disease Model., vol. 7, no. 1, pp. 199–211, 2022.

Padmanabhan, P., Seshaiyer, P., and Castillo-Chavez, C., Mathematical Modeling, Analysis and Simulation
of the Spread of Zika with Influence of Sexual Transmission and Preventive Measures, Lett. Biomath.,
vol. 4, no. 1, pp. 148–166, 2017.
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