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Abstract—Across basic research studies, cell counting requires
significant human time and expertise. Trained experts use thin
focal plane scanning to count (click) cells in stained biological
tissue. This computer-assisted process (optical disector) requires
a well-trained human to select a unique best z-plane of focus
for counting cells of interest. Though accurate, this approach
typically requires an hour per case and is prone to inter- and
intra-rater errors. Our group has previously proposed deep
learning (DL)-based methods to automate these counts using cell
segmentation at high magnification. Here we propose a novel You
Only Look Once (YOLO) model that performs cell detection on
multi-channel z-plane images (disector stack). This automated
Multiple Input Multiple Output (MIMO) version of the optical
disector method uses an entire z-stack of microscopy images as its
input, and outputs cell detections (counts) with a bounding box
of each cell and class corresponding to the z-plane where the cell
appears in best focus. Compared to the previous segmentation
methods, the proposed method does not require time- and labor-
intensive ground truth segmentation masks for training, while
producing comparable accuracy to current segmentation-based
automatic counts. The MIMO-YOLO method was evaluated
on systematic-random samples of NeuN-stained tissue sections
through the neocortex of mouse brains (n=7). Using a cross
validation scheme, this method showed the ability to correctly
count total neuron numbers with accuracy close to human experts
and with 100% repeatability (Test-Retest).

Index Terms—Deep Learning, Neuron Counts, YOLO, Mi-
croscopy, Stereology

I. INTRODUCTION

Changes in the number of specific cells on histological
sections is an important metric in many fields of biomedical re-
search involving cell degeneration, cytotoxicology, and cellular
inflammation. State-of-the-art unbiased stereology methods to
make accurate cell counts in tissue sections require trained
humans to focus through a z-stack of microscopy images
and manually count (click) on hundreds of cells per case.
This manual counting is both time consuming and prone to
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human error due to subjective decision-making about the cells
counted.

There is a strong interest in the development of accurate
and efficient methods for automatic counts of specific cells
in microscopy images through known tissue volumes [1]–[7],
such as immunohistochemical (IHC) stained images obtained
by ordinary bright-field microscopy. Due to challenges of
three-dimensional (3D) cell counts, work to date has focused
on Extended Depth of Field (EDF) images for automatic cell
counting [8], [9]. However, in tissues with high cell packing
densities, cell counts on EDF images can have variable levels
of under-counts due to overlapping and masking of cells at
different z-plane locations.

More recent work has focused on deep learning (DL)-based
segmentation methods for automation of cell counts using
unbiased methods. One such method uses a similar multiple
input multiple output (MIMO) framework to segment cells
in a z-axis stack of images (disector stack) where every cell
is segmented in its best focus z-plane. This MIMO U-Net
approach [10] shows high accuracy (< 10% error) on NeuN-
immunostained neurons sampled in an unbiased manner. A
drawback of this approach is the requirement for manual
annotation of ground truth (GT) masks for training the DL
model. These masks are exact outlines of neurons at their
plane of best focus in z-stack images. The need to overcome
this drawback has led us to explore cell detection, rather than
cell segmentation, which only requires GT bounding boxes of
each cell as opposed to more time- and labor-intensive fine
outlines of cells, nuclei, cell bodies, etc.

One of the most popular object detection architectures
is You Only Look Once (YOLO) introduced in 2015 [11].
Advantages of this framework are its balance between accu-
racy and speed of detection. Across its iterations, YOLO has
proved useful in many domains including agriculture [12] and
medicine [13]. Due to the limitations of bright-field IHC data
described above, 3D processing is not practical and the z-



stacks are treated as sequential data. In this paper, we describe
our modifications to YOLOv5 [14] to use as input z-stacks
in the form of multi-channel images. The goal is to output
bounding boxes for every cell (X and Y location) along with
a class prediction that corresponds to an individual z-plane for
each counted cell.

To evaluate the performance of our MIMO YOLO approach,
we have used a dataset consisting of z-stack images from
neurons stained by NeuN IHC. Sections and z-axis image
stacks sampled using unbiased methods were obtained from
the neocortex (NCTX) of the mice brains and manually
counted at 100x magnification by trained experts. The same
images were then used in a cross-validation approach where
the model was trained on six mice and tested on one. Results
showed the model was able to correctly count cells with less
than 10% average error (> 90% accuracy) when compared
to human experts. Our MIMO YOLO detection approach
showed no statistical difference in cell counting results when
compared to previous MIMO U-Net results on the same z-
stacks, while MIMO YOLO reduced the training time by
half when compared to MIMO U-Net. This novel approach
showed 100% repeatability (Test-Retest) for each case. Using
the trained MIMO YOLO, time was reduced from about one
hour for manual cell counts to approximately 30 seconds for
automatic counts per case.

II. DATA

The dataset used as described in [10] consists of bright-
field microscopy images collected from the NCTX in seven
mice brains. Systematic-random sets of sections through each
case were stained with IHC for NeuN neurons. Images were
collected at 100x magnification using an Olympus BH-2
microscope with a 100x oil lens and motorized XYZ stage
and Neuron counts were done by a trained expert (YK)
using the manual optical disector method. For each mouse,
approximately 60 image stacks on average were collected with
five images per stack using a z-axis separation of two microns
per image; therefore, each sampled disector stack included
NeuN neurons in 10-µm tissue volume. These color images
were first converted to grayscale using a correlation-based
method [15]. Each of the five-plane z-stacks images were
256x256 pixels, where GT is a bounding box for each cell
counted by a human expert. The class of each bounding box
(object) is equal to the best focus z-plane for that cell. An
example image stack can be seen in Fig. 1.

III. METHOD

Object detection networks are deep neural networks trained
to provide the location and class of an object in an image.
One of the most popular of these object detection networks is
YOLO [11]. Normally, YOLO takes in a three-channel RGB
image and outputs (detects) objects in the image with bounding
box coordinates and a class of the object present in that box.
In this section, we describe our changes to YOLO for multi-
channel input cell detection.

Fig. 1. Example z-stack of images with GT bounding boxes in blue.

A. MIMO YOLO
The MIMO YOLO method uses a z-stack of images as input

to the neural network and outputs a bounding box for every
cell in a z-stack, with the class of the bounding box (object)
corresponding to the image in the z-stack where each cell
is in best focus. To accomplish this goal, we first pass an
entire z-stack into the model to provide bi-direction context
to determine the plane of best focus. This process begins by
converting the z-stack images from RGB to grayscale using
a correlation-based method [15]. This step provides single
channel images for each of the images in the z-stack. The
images from a single z-stack can then be combined into a
single multi-channel Tiff image. The number of channels will
depend on the number of images in the z-stack. The data used
in this paper resulted in a 5-channel image, where each channel
is a single channel z-stack image.

As available on GitHub, YOLOv5 [14] was designed to
work with only 3-channel images. Changes needed to be made
to the data-loader and various data processing functions to
allow the code to work with any number of channels. The
code also comes with built in on-fly augmentation which is
applied to image batches prior to training. In some cases, like
augmenting hue, saturation, and value (HSV), they needed to
be removed, as we were not using color images. The rest of



the built-in augmentation worked with multi-channel images.
The GT for the training images were generated by placing
a bounding box around each cell counted by an expert. The
class for each box was equal to where in the z-stack the cell
was in best focus. Thus, for the data used here we would have
the option of class 0, 1, 2, 3, or 4 for a bounding box. The
zero class corresponded to best focus in the first channel of
the five channel image, and class of four would correspond to
best focus in the last channel of the five channel image.

The models were trained using the built-in learning rate
scheduler along with the Stochastic Gradient Descent (SGD)
optimizer. Training was done for 500 epochs on every fold and
the pre-trained common objects in common context (COCO)
dataset weights were used instead of random weight generation
to start. The images were augmented using on-fly augmenta-
tion of random rotation, translation, scaling, sheering, flipping,
and mosaic. In addition to these on-fly augmentations, images
were also pre-augmented using z-axis flipping of the z-stacks,
doubling the size of original data. To test the performance
of the model, we split the data into seven folds where each
had one mouse left out for unseen test data. The rest of the
data from six mice were split 80% for training and 20% for
validation. This resulted in an average training set size of 609
images per fold, and 79 validation images per fold. Due to
these small training sets, on-fly augmentation, and the speed
of YOLOv5, we were able to train a full model in around
25 minutes and predict on the testing data and apply post-
processing in less than 30 seconds per case.

B. Post-processing

Once the model was trained, predictions were made on the
test data. The model used for these predictions was the one
with the best precision and recall on the validation set. The
inference code from YOLOv5 uses non-maximal suppression
(NMS) to remove extraneous bounding boxes. This function
takes parameters of intersection over union (IOU) and con-
fidence threshold, which it uses to remove bounding boxes
from the final output. For the results shown, we are using a
confidence threshold of 0.40 and IOU threshold of 0.45 as
these produced best performance on validation data. However,
in addition to NMS applied by the YOLOv5 code, we apply
a second level of post-processing to the predictions before
evaluation. An example of the workflow can be seen in Fig. 2

The most common mistake made by the network in predic-
tions is having multiple bounding boxes per cell with different
classes corresponding to best focus. For example, if a cell’s
best focus is in plane 3, we often see a bounding box with class
3 and one with either class 4 or class 2. We call these duplicate
z-plane detections. To combat this issue, our second level of
post-processing involves removing these extra detections when
they occur. We do this by evaluating all bounding boxes for
duplicate z-plane detections with at least a 0.60 IOU with
another from a z-plane directly above or below. The bounding
box with the highest confidence as provided by the model is
kept, and the others discarded. This approach ensures accurate

Fig. 2. MIMO YOLO work flow.

count in the z-stack since each cell is detected and counted
only once in its best focus plane.

C. Evaluation

After the model prediction and post processing is done
on the test images, the performance is evaluated. A cell
is considered correctly counted if there exists a predicted
bounding box overlapping the ground truth bounding box with
an IOU of at least 0.60, and it is within one z-plane of the
expert’s best focus plane. This buffer of one z-plane is given
because experts determine which of the planes the cell is in
best focus, and in some cases, this can be hard to distinguish.
If no prediction exists that meets this criteria for a cell counted
by the expert, it is considered missed or as a false negative.
Those predictions which are not considered correctly counted
cells make up the false positive count. The main metrics relied
on for model evaluation are count error rate and F1 score.
Count error rate calculation can be seen in (1) which uses GT
cell count (GT Count) and predicted cell count (Pred Count).
The F1 score calculation can be seen in (2), and uses true
positive count divided by predicted count for precision, and
true positive count divided by GT count for recall.

Count Error Rate =
|GT Count� Pred Count|

GT Count
(1)

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
(2)



IV. RESULTS

Each model was evaluated on the test animal that was left
out during training. The predicted labels were processed and
evaluated as described above. The results showed an average
count error rate of 7.34% for the seven folds. The results for
MIMO YOLO can be seen in Table I and results for MIMO U-
Net in Table II. For reference, manual inter-rater count error
is, on average, about 5%. As stated, the F1 score is most
important here, as it supplies information about the balance of
false positives and false negatives. When it comes to overall
count, these can have a canceling effect which results in the
count error rate being low, despite the model making some
errors. A student’s t-test was done with a hypothesis of a
statistical difference with p<0.05 to compare MIMO YOLO
(detection) and our previous MIMO U-Net (segmentation)
model. The results of the student’s t-test on the same folds (i.e.,
same training and testing data) showed no statistical difference
between the count errors with p = 0.80. An example of the final
output can be seen in Fig. 3, where the green bounding boxes
are for GT and the red are for predictions. An example of a
missed cell or false negative can be seen in Fig. 3 on the last
image in the stack. Despite these types of errors, this example
demonstrates the ability of our MIMO YOLO method to learn
both X and Y location of cells and the best focus plane.

TABLE I
MIMO YOLO AVERAGE RESULTS OF SEVEN FOLDS

Count Error (%) Precision Recall F1-Score
Mean 7.34 0.82 0.80 0.81
STD 5.70 0.04 0.05 0.02

TABLE II
MIMO U-NET AVERAGE RESULTS OF SEVEN FOLDS

Count Error (%) Precision Recall F1-Score
Mean 6.56 0.80 0.82 0.81
STD 5.75 0.06 0.04 0.04

V. CONCLUSION

The time currently required for a human expert to make
unbiased cell counts in microscopy images (⇠1 hour per case)
is a limitation in many biomedical research fields. In this
work, we present MIMO YOLO, a multiple input multiple
output version of YOLO which can be used to count cells
in bright field microscopy images. IHC z-stacks of images
are impractical to process in 3D due to out-of-focus structures
and relatively low SNR when compared to immunofluorescent
microscopy images. Thus, z-axis stacks must be processed
as sequence data to make accurate counts of cells contained
within those z-stacks. We described the modifications neces-
sary to YOLOv5 to use z-stacks as multi-channel input images.

Fig. 3. Left column shows predicted bounding boxes in red. Right column
shows ground truth bounding boxes in green.

The GT for these multi-channel microscopy images are bound-
ing boxes for each cell counted by a trained expert, with the
class of that bounding box (object) equal to the plane which
the cell is in best focus. The proposed method is intended
to overcome the time, labor, and potential for low inter-rater
error inherent to subjective human counts. This subjectivity is
reduced here through the use of GT from a well-trained human
expert. The proposed MIMO YOLO method reduces the time
needed to perform cell counts by close to 99% compared to
human experts. Using a professionally collected and annotated
dataset from seven mice of NeuN stained neurons, we showed
counts with less than 10% error when compared to trained
experts. Furthermore, MIMO YOLO provides counts with no
statistical difference to cell segmentation by MIMO U-Net.
In terms of the effort required for building DL models, our
proposed cell detection approach requires GT as a simple
bounding box after expert counts, as opposed to tedious cell
outlines around each cell required for cell segmentation by
MIMO U-Net. Though both approaches still require a human
expert, the use of a bounding box substantially reduces the
demands on the expert’s time and effort. Our MIMO YOLO
approach also reduces the time needed to train a model by



half when compared to MIMO U-Net on the same data.

VI. FUTURE WORK

The present work focused on automatic counts of NeuN-
immunostained neurons in the NCTX of mice brains. Our
future work includes expanding the MIMO YOLO approach to
other datasets with different biostructures stained by different
staining methods, for example, immunofluorescent Rab-5 en-
dosomes on confocal microscopy images from mouse brains.
Other work will include ensembles of MIMO YOLO networks,
various parameter tuning, and post-processing methods to
further reduce count error rates to 5% or below compared
to human experts. Finally, we will explore combinations of
MIMO YOLO and MIMO U-Net as a possible approach to
increase performance beyond that of individual methods.
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