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1. INTRODUCTION

Quantification of stained cells in microscope images is important in many fields of biomedical research. In bright-
field microscopy, a tissue slide is homogeneously illuminated as opposed to confocal and multi-photon microscopy
where a precisely focused laser beam spatially filtered through a pin-hole is used. Hence, confocal and multi-
photon microscopy are capable of providing a signal from only one thin focal plane. Such z-stacks allow for 3D
segmentation /reconstruction of cell structures due to no out-of-focus structures.! Moreover, the fluorescent dyes
used in widefield, confocal, and multi-photon microscopy also contribute to a high Signal-to-Noise Ratio (SNR)
compared to the immunohistochemical staining used in brightfield microscopy. Various methods are available for
3D analysis of neurons in fluorescent modalities.?® However, such a method for brightfield microscopy z-stacks is
a challenge because of the presence of background signal from out-of-focus structures and low SNR.! Stajduhar
et al. in? performed NeuN neuron counting on a single image collected at low magnification (40x) resulting
in thicker focal plane. Another work in' localized neurons in the z-direction based on the image sharpness of
a neuron body. The neurons are first detected on only the mid-plane of the z-stack using the method from.”
However, highly overlapping or masked neurons at different z-depths can result in under-counting. A similar
issue occurs in another approach where neuron counting is done on an Extended Depth of Field (EDF) image.'’
Our recent publication!! for neuroscience audience has shown that accurate counting of overlapping or masked
cells can be achieved by segmenting each cell in its best focus image, to leverage the z-separation between the
cells, using a MIMO approach. In this manuscript, we present algorithmic details of the MIMO approach, report
results on a new dataset, and release the dataset and code. Also, the MIMO approach is applied to a publicly
available dataset with a suitable configuration and compared against a more sophisticated method.

A z-stack can be "viewed” as either volumetric or sequential data. 3D segmentation is impractical for our
data because of poor SNR and signals from out-of-focus neurons as described above. Hence, each z-stack is
treated as a set of sequential images in the present work.

The neuron segmentation in its best focus plane is a binary segmentation task where the foreground for a
z-image consists of neurons in the best focus in the given z-image. We refer to this task as best-focus-neuron
segmentation task. Identification of the best focus image strongly requires bi-directional context from the images
above and below the target z-image. Hence, it is an intuitive approach to use sequence processing methods such
as bi-directional Recurrent Neural Networks (RNNs). However, the computational cost of such methods is high
due to the high neural network parameters, longer training time and requires larger training data which is often
a limiting factor in biomedical applications. Moreover, parallelization of such a network is also challenging.

There is a line of research that treats a z-stack as multiple input channels to a 2D Fully Convolutional Network
(FCN) thereby leveraging the sequential information and each of the multiple output channels represents one of
the multiple output classes (Multiple Input Multiple Output - MIMO).*? We propose to first, pose the two-class
best-focus-neuron segmentation problem as a multi-class multi-label problem by considering foreground in nt"
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z-image as output class "n” and second, utilize the channel axis of a 2D U-Net in a MIMO setup to obtain
bidirectional sequential context. This approach is referred to as MIMO U-Net hereafter.

The proposed MIMO U-Net approach is also applied to image sequences of a different nature, fluorescent time-
lapse microscopy. The reason behind the application of MIMO U-Net for time-lapse microscopy is not to resolve
overlapping cells using z-separation but to validate its sequential context learning capability since the time-lapse
microscopy image sequences are 2D+t in contrast to the 2D+z z-stacks. Here, a cell has to be segmented in every



time-stamp t-image instead of only the best focus z-image. We used the Fluo-N2DH-GOWT1 dataset from the
Cell Tracking Challenge - CTC (http://celltrackingchallenge.net/) and the result is compared against a
U-LSTM method designed for the CTC datasets.'? It is important to note that the present work does not claim
the best result on the CTC dataset. The sole purpose of this activity was to show that the proposed MIMO
approach using a 2D U-Net for exploiting the sequential features performs equally well as the U-LSTM method
where C-LSTM memory units are integrated into a 2D U-Net architecture to leverage the sequential context on
a publicly available benchmark dataset.

There are several advantages of the proposed MIMO U-Net method. First, a minimal increase in network
parameters compared to vanilla U-Net. Second, high performance with a small amount of training data as
compared to other sequence processing models due to a smaller number of trainable parameters. Third, MIMO U-
Net can provide bidirectional context by default compared to other methods where additional network complexity
is required to obtain bidirectional context. Fourth, the MIMO formulation can process multiple images as one
sample vs one image as one sample, leading to a significant reduction in training and inference time. Finally, it
allows for a larger input size, thereby making more context available for learning.

2. METHODS
2.1 MIMO U-Net

A 2D U-Net model consisting of four down- and up-sampling layers with multiple input channels and multiple
output classes was used for the multi-class multi-label segmentation. In the proposed MIMO approach, each
image of an image sequence is treated as an input channel and the foreground for the n*® input channel is
considered as the n'" output class. The intuition behind using 2D U-Net for image sequence analysis is that any
FCN can learn sequential information across input channels since the convolution kernel depth in the first layer is
equal to the number of input channels and equal to the number of feature map channels, from the previous layer,
in the second layer and so on. Also, each output class is correlated to the other classes. The MIMO approach
provides for a computationally efficient mutualism where each image in an input sequence receives context from
the other images and provides context to the other images at the same time.

Best-focus-neuron segmentation: There is a strong inter-dependence for the most part among output
class probabilities. Hence, the softmax function was used in the last layer for classification. Softmax assumes
the target probability distribution to sum up to one. The overlapping cell regions belong to multiple classes
- a class for each of the overlapping cells. The label vector is converted to shared-one-hot where each non-
zero entry is 1/k for k > 1 classes for the XY-location.!* A background class is added as one of the output
classes to obtain a cleaner softmax distribution in the output. The XY-locations of the z-stack not belonging
to any of the foreground classes belong to the background class. Hence, the number of output classes is one
more than the number of inputs in this segmentation task as shown in Fig. 1. The loss is computed as
Yoo, class_weight; xbinary_crossentropy(y-pred;, y_true;) where ¢ is number of output classes and class weights
are used to balance the output classes.

CTC dataset: In contrast to the best-focus-neuron counting (2D+z), a cell should be segmented in every
time instance t-image (2D+t). The output class probabilities are independent of each other. Hence, Sigmoid
activation was used in the last layer. The same loss function as used in best-focus-neuron segmentation was used
with the class weights vector set to 1 since the output classes in this task are not imbalanced. As shown in Fig.
2, there is no background class in the output classes since sigmoid activation can predict none of the output
classes for a background pixel. A sequence of 92 images was divided into multiple overlapping sub-sequences of
10 images with a stride of 1. Each sub-sequence was used as an input to the MIMO U-Net.

2.2 Post-processing

Best-focus-neuron segmentation: Post-processing, tuned on a random subset of thirteen stacks from the
dataset, was performed to prune over-segmentations and False Positives. A minimum area threshold of 500
pixels (which is close to the smallest Ground Truth (GT) blob in the dataset) was used for the blobs completely
inside the image and 200 pixels was used for the blobs touching the edges of the image since it can be a cell
partially outside the field of view. The z-images in our dataset are 2 microns apart and the neurons are 3D
spherical structures (typically > 4 microns in diameter). Hence, it is very likely that any two overlapping blobs
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Figure 2: Top row: Segmentation results (green con-
tours) overlaid on crops of five consecutive t-images
of a test sequence from CTC dataset. Bottom row:
GT masks for the 5 foreground output classes. No
background class is required as discussed in Section 2

Figure 1: Top row: Segmentation results (green con-
tours) overlaid on crops of the z-images of a stack
using the MIMO U-Net. Green dots indicate GT.
Bottom row: GT masks for the 5 foreground and 1
background as output classes.

in any two consecutive z-images belong to a single cell. such blobs are combined and assigned to the z-image
with the bigger blob. Hole filling was performed to account for a solid cell body. Finally, blobs having less than
a predefined overlap (here, 30%) with a minimum enclosing circle are discarded since neurons are spherical for
the most part. CTC dataset: For evaluation on the challenge set, the multiple prediction maps for an image
resulting from overlapping sub-sequences were averaged to obtain a single prediction map. Blobs having area
smaller than the minimum blob area for a cell blob in the train set (438 pixels) were discarded. After hole filling,
distance transform seeded watershed segmentation was applied to the blobs larger than double the average area
of cells (3000 pixels) in the training data.

3. DATASET AND EVALUATION METRICS

Dataset: The best-focus-neuron segmentation dataset consists of brightfield microscopy z-stacks, captured
using an Olympus microscope with a 100x oil lens, from tissue sections of the neocortex region of seven mouse
brains. The tissue sections are stained with DAB immunostain for NeuN neurons. This dataset was locally
collected and labeled by an expert. There are ~ 60 z-stacks per mouse. Each z-stack has five images (2um
apart). The color images were converted to gray-scale using RGB channel weights obtained by applying a
correlation-based method from'® to a random subset of 28 images. The fluorescent time-lapse microscopy image
dataset from the Cell Tracking Challenge, namely Fluo-N2DH-GOW'T1, has two sequences of 92 8-bit gray-scale
images in each of the train and test sets.

Evaluation Metrics: While evaluating on the z-stacks, the objective is to count the neurons using the unbi-
ased stereology rule.!'’ Hence, accuracy, precision, recall, and Fl-score at an object (neuron) level are used as
evaluation metrics. A blob in GT and a predicted blob are called a match if the GT blob’s centroid is inside or
within a 10-pixel distance from the closest boundary of the predicted blob. The prediction blob is not restricted
to be in the same z-image as the GT blob. The matching is one-to-one to ascertain that no predicted blob is
matched with more than one highly overlapping or obscured GT blobs. For the CTC dataset, a submitted result
on the test set was evaluated by the challenge organizers for detection accuracy (DET), segmentation accuracy
(SEG), and overall performance in cell segmentation benchmark (OPcgp).0 17

4. EXPERIMENTS AND RESULTS

Best-focus-neuron segmentation: Given the dataset of z-stacks from seven mice, Leave-One-Out (LOO)
cross-validation experiment was performed. A random split of 80:20 of the stacks from each of the six mice
contributed to the training and validation sets, respectively. Adam optimizer with learning rate=1le™%, first
moment coefficient 31=0.9, second moment coefficient 32=0.999, eps = le~’, and weight decay=1e™3 was
used.'® With a batch size of 16, and standardization for feature scaling the model was trained for 100 epochs
and the model at the epoch with the smallest validation loss was used for evaluation. The prediction confidence
threshold for each fold was selected based on the validation set. The input images of size 256 x 256 were
augmented using x, y, and z-flip. The LOO results are reported in Table 1. The training time per fold was ~ 35
mins on NVIDIA GeForce GTX 1080Ti GPU with Cuda 10.2. The segmentation result is visualized in Fig. 1.

CTC Dataset: After applying histogram equalization to each image for contrast enhancement, overlapping
sub-sequences of 10 images with a stride of 1 were generated from each of the two training sequences. A random



Count Error (%) Accuracy Precision Recall F1-Score Method DET SEG OPcsp
Mean 6.56 0.68 0.80 0.82 0.81

STD 5.75 0.05 0.06 004 004 MIMO U-Net 0.924 0.883 0.903
Table 1: Average Neuron counting result over U-LSTM 0.937 0.854  0.896
seven folds of leave-one-mouse-out cross validation Table 2: Evaluation on CTC dataset Fluo-N2DH-
experiment using the proposed method. GOWT1.

split of 80% and 20% into the sub-sequences from each sequence contributed to the train and validation set,
respectively. Input size 1024 x 1024 was the same as the original image and batch size was 2. The prediction
confidence threshold was set to 50%. Other training aspects were kept the same as described above for best-focus-
neuron segmentation. The evaluation of the submitted result is reported and compared against the U-LSTM
method in Table 2. The SEG result was reported in the U-LSTM paper,'3 and corresponding DET and OPcsp
values are obtained from the CTC website.

5. DISCUSSION AND CONCLUSION

Manual labeling for neuron counting is a subjective task. About 3%-5% inter-rater variability in neuron counts
has been observed.!?2° Along with indicating a lower bound for count error, the inter-rater variability also
suggests limitations in terms of recall and precision (depending on common and exclusive neurons among raters).

The proposed method is not compared against single z-plane input (vanilla) U-Net for best-focus-neuron
counting since it is not possible to ascertain the optimal focus without bidirectional sequential context. Although
such a network is expected to learn some meaningful features (e.g. the notion of ”well-focusedness” and its
correlation with the chance of being an optimal focal plane), it results in a very noisy learning environment.
Also, we applied the U-LSTM method for the best-focus-neuron segmentation task. As anticipated, the network
failed to learn the best focus and segmented a cell in all relatively good focus planes because only one-dimensional
context is available from the C-LSTM memory units.

One weakness of the best-focus-neuron counting is the assumption of only one ”optimal” focal plane for a
neuron. If multiple planes show a similar level of good focus, it may become a source of ambiguity for the model
during learning. Such cases in prediction are handled by the post-processing step in which overlapping detections
in consecutive slices are merged, allowing for only one detection per cell. Such post-processing can merge two
touching cells in consecutive planes. A possible solution for that can be to allow merging only if the resulting
blob size is not larger than the largest cell size in the training data. The extent of this issue depends on the step
size in the z-stacks with respect to the size of the cells. A limitation of the proposed MIMO approach is that
one model per cell type is required if multiple types of cells are required to be segmented in the same images.
However, this limitation is not very restrictive because of the small training time and computational cost.

The U-LSTM method has C-LSTM memory blocks integrated in the U-Net to facilitate the sequential infor-
mation learning.'® Notably, U-Net alone in the proposed MIMO approach performed equally well on the CTC
dataset. The MIMO U-Net requires a smaller training time because first, it has a small increase in the number
of trainable parameters as compared to the vanilla U-Net since it only increases the number of parameters in
the first and the last layer. The number of trainable parameters for an input size of 256 x 256 in vanilla U-Net,
MIMO U-Net, and U-LSTM is 7760k, 7761k, and 74607k, respectively. And second, the output for multiple
z/t-images is obtained at the same time, as opposed to processing each z/t-image as an individual sample. The
decent performance on the CTC dataset shows that the proposed MIMO framework can also be used for other
sequential image data like 3D segmentation of brain tumors. Also, the proposed method can be applied to large
sequences with varying lengths by using the overlapping sub-sequence approach as used on the CTC dataset.

To conclude, we presented an approach for best-focus-neuron segmentation to resolve overlap using z-
separation in z-stacks of brightfield microscopy, where 3D segmentation is not feasible due to out-of-focus signals
and low SNR. Furthermore, we propose to utilize a 2D U-Net with a MIMO formulation for inter-image feature
learning in microscopy image sequences by posing the binary segmentation problem as a multi-class, multi-label
problem. Its advantages include less trainable parameters, small training time, less training data requirement,
and availability of bi-directional context without additional neural network complexity. The proposed method
achieved an average neuron count error of 6.56%. We also demonstrated that the proposed MIMO U-Net can
perform equally well when compared to a U-Net equipped with memory units on a publicly available dataset.
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