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2146 NGUYEN ET AL.

1. Introduction. Streams, rivers (streams of large water bodies), and creeks
(streams of small water bodies) are important components of freshwater ecosystems.
One of their key features is the unidirectional current of flowing water (lotic) due to
gravity, in contrast with standing bodies of water in lakes and ponds (lentic). This
characterizes two kinds of movements of biological organisms in a stream: random
diffusion and directed drift. It is of both theoretical and practical significance to
understand the joint impact of diffusion and drift on the persistence of an ecosystem,
which is the core of management and conservation problems in freshwater habitats
[36, 40, 42, 46].

Recent research on population persistence in stream networks has highlighted
the impact of driving factors such as the size of habitat (patch, stream, watershed)
[6, 16, 20, 47], connectivity [6, 13, 43, 47], human influences [41], and flow regime
[13, 28, 34, 43, 46]. Many questions and challenges still remain due to the complexity
of the ecosystem in stream networks, and rigorous theoretical results are rare, even
for small networks.

In this paper, we use directed graphs to describe stream networks, where individ-
uals are assumed to live in patches (or nodes, vertices) and the weights of the edges
indicate the movement rate of individuals between patches. These patches can be
thought of as a section of a stream in the stream system. We start our work by con-
sidering the logistic population model in simple stream networks of three nodes (these
networks were considered in two recent publications [18, 19]). Later, we define leveled
graphs and homogeneous flow stream networks of n nodes, which are generalizations
of the simple stream networks of three nodes. Moreover, we generalize our results on
the metapopulation logistic model to these stream networks.

We are interested in how to maximize the persistence of a single species living in
a stream network system. In each patch, we suppose that the population follows a
logistic type growth functional, where the environmental carrying capacity is assumed
to be a constant. The growth rates of individuals in each patch are assumed to be
dependent on resource availability, where the total amount of resources in the stream
network is assumed to be a constant. The persistence of the species in the stream
network is quantified in terms of two measures: the metapopulation growth rate and
the total biomass (of the stable positive equilibrium). Therefore, the problems we
consider are to maximize these persistence measures when varying the distribution of
resources.

The total biomass for single species population models has been studied exten-
sively [3, 11, 14, 15, 17, 26, 29, 32, 33, 35, 37, 38, 49, 50]. In a work by Lou [29] on the
diffusive logistic model, it was observed that the total biomass of the single species
may exceed the total carrying capacity, which has motivated a series of related works
[3, 11, 15, 17, 26, 49, 50]. In particular, the ratio of total biomass and total resources
is bounded in a one dimensional reaction-diffusion model [3] and unbounded when
the spatial dimension is greater than one [17]. The distribution of resources realizing
the total biomass has been shown to be of the bang-bang type [12, 32, 33, 35, 38].
Maximizing the total biomass for a patch model with logistic growth and random
movement has also been considered [27, 37]. However, we note that in most of these
studies, the population growth rate in each patch is assumed to be proportional to
the carrying capacity, unlike the model considered in this paper, in which we choose
to fix the carrying capacity while varying patch growth rates.

Maximizing the population growth rate for single species reaction-diffusion logistic
models has also been studied in the literature [4, 5, 24, 30], and the solution was also
found to be of bang-bang type. Recent studies considered more general reaction-
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2147

diffusion-advection models [28, 34]. We are not aware of any parallel studies in patch
logistic models. A closely related work [2] studied the minimal number of patches with
positive growth rate needed to achieve a positive growth rate for the metapopulation
model. More general studies have considered the relationship between the dispersal
rate and the metapopulation growth rate in a patchy environment [1, 8, 21, 22]. A
key finding of these studies is that, in a heterogeneous environment with a single
dispersal mechanism, the metapopulation growth rate is a decreasing function of the
propensity to disperse.

The following biological insights are highlighted by our studies on metapopulation
models over stream networks:

(i) Concentration of resources in one of the most downstream patches tends to
increase the metapopulation growth rate in stream networks. We use per-
turbation arguments to study two cases: (1) small diffusion rates and (2)
uniformly distributed resources. For both cases, we provide evidence to sug-
gest that increasing resources in the downstream patches yields the largest
increase in growth rate (see Theorems 3.2, 3.3, and 5.5).

(ii) Concentration of resources in the most upstream patches tends to increase
the population biomass in stream networks. We use a sign pattern argument
to rigorously prove that the total biomass is maximized for stream networks
of three patches when the resources are concentrated in the most upstream
patches (see Theorem 4.1). This result is generalized to arbitrary stream
networks using monotone dynamical system arguments (see Theorem 5.6).

(iii) A larger drift-diffusion ratio could promote population persistence. We pro-
vide some evidence to show that the drift-diffusion ratio q/d could promote
the metapopulation growth rate and biomass. This is very different from the
observations in [7, 9], which state that the species with a smaller drift rate q or
a larger diffusion rate d wins the competition in a two-species Lotka--Volterra
competition model over stream networks.

The paper is organized as follows. In section 2, we define the logistic stream
network model under consideration and revisit recent theoretical results for species
in spatially heterogeneous environments. We then focus on the persistence problem
of a single species in stream networks in sections 3 and 4. In particular, we examine
the question of maximizing the metapopulation growth rate and network biomass,
respectively, in stream networks consisting of three nodes. In section 5, we extend our
results to a general stream network of n nodes. Finally, in section 6 we summarize
our results and discuss possible extensions of this work.

2. Model formulation and preliminary results. In this section, we revisit
the metapopulation logistic model and propose questions on maximizing the metapop-
ulation growth rate and total biomass for stream networks. Let n be a positive integer
representing the fixed number of patches (or nodes) in a heterogeneous environment
and let ui = ui(t),1\leq i\leq n, denote the population scale (size or density) of a certain
species of study in patch i at time t\geq 0. Assume that at each patch i, the population
follows logistic growth with intrinsic growth rate ri and environmental carrying ca-
pacity Ki > 0. That is, when in isolation (i.e., without population movement between
patches), the population satisfies the following system:

u\prime i =
dui
dt

= riui

\Bigl( 
1 - ui

Ki

\Bigr) 
, i= 1, . . . , n.(2.1)

Dispersal links local populations in patches together to form a metapopulation.
Let \ell ij \geq 0 denote the movement rate of the individuals from patch j to patch i for
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2148 NGUYEN ET AL.

1\leq i, j \leq n and i \not = j. We always assume \ell ii = 0 for all i. The system describing the
dynamics of this metapopulation takes the following form:

u\prime i = riui

\Bigl( 
1 - ui

Ki

\Bigr) 
+

n\sum 
j=1

\bigl( 
\ell ijuj  - \ell jiui

\bigr) 
, i= 1, . . . , n.(2.2)

The first term in the sum above,
\sum 

j \ell ijuj , tracks all incoming movements (flux in)
to patch i, while the second term,

\sum 
j \ell jiui, sums all outgoing movements (flux out)

departing from patch i.
All movement coefficients in (2.2) can be associated with a movement network

G. Mathematically, G is a weighted, directed graph (digraph) which consists of n
nodes (each node i in G corresponds to patch i in the heterogeneous environment).
In G, there is a directed edge (arc) from node j to node i if and only if \ell ij > 0, and in
addition we assign \ell ij as the weight of the arc. Thus, we also denote such a movement
network as (G,L), where the n\times n connection matrix L, whose off-diagonal entries
are \ell ij and diagonal entries are  - 

\sum 
j \ell ji, is as follows:

L :=

\left(     
 - 
\sum 

j \ell j1 \ell 12 \cdot \cdot \cdot \ell 1n
\ell 21  - 

\sum 
j \ell j2 \cdot \cdot \cdot \ell 2n

...
...

. . .
...

\ell n1 \ell n2 \cdot \cdot \cdot  - 
\sum 

j \ell jn

\right)     .(2.3)

Throughout this paper, we assume that the movement network G is strongly con-
nected, i.e., L is irreducible. It is easy to see that (1, 1, . . . ,1) is a left eigenvector
of L corresponding to eigenvalue 0. By the Perron--Frobenius theorem, 0 is a simple
eigenvalue of L corresponding with a positive eigenvector.

Themetapopulation growth rate \rho of (2.2), determining the metapopulation growth
rate when the population is small, is defined as the spectral bound of the Jacobian
matrix J for the linearization of (2.2) at the trivial equilibrium (u1, u2, . . . , un) =
(0,0, . . . ,0). That is,

\rho :=max
\Bigl\{ 
Re\lambda : \lambda is an eigenvalue of J =L+R

\Bigr\} 
,(2.4)

where R = diag\{ ri\} and L is the connection matrix (2.3). An upper bound and a
lower bound for the metapopulation growth rate \rho are established in [8].

Proposition 2.1 (see [8]). Let L as defined in (2.3) be irreducible. Suppose
\bfitr = (r1, . . . , rn)\geq (\not =)0. The metapopulation growth rate \rho as defined in (2.4) has the
following bounds:

n\sum 
i=1

\theta iri \leq \rho \leq max
i

\{ ri\} ,(2.5)

where (\theta 1, \theta 2, . . . , \theta n)
\top is the positive eigenvector of L corresponding to eigenvalue 0

with
\sum n

i=1 \theta i = 1.

Remark 2.2. In fact, the result from [8] is more general than Proposition 2.1.
The Jacobian matrix of the model in [8] has the form \mu L+R, where \mu is a positive
coefficient. Let s(\mu L+R) denote the spectral bound of a matrix \mu L+R. By [8], the
metapopulation growth rate, given by s(\mu L + R), either is a constant or is strictly
decreasing in \mu > 0 on (0,\infty ) with
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2149

lim
\mu \rightarrow 0

s(\mu L+R) =max
i

\{ ri\} and lim
\mu \rightarrow \infty 

s(\mu L+R) =
n\sum 

i=1

\theta iri.

Proposition 2.1 is a special case of this result, where we take \mu = 1.

The global dynamics of system (2.2) is well known.

Proposition 2.3 (see [10, 25, 31]). Let L as defined in (2.3) be irreducible.
Suppose that \bfitr = (r1, . . . , rn)\geq (\not =)0 and Ki > 0 for all 1\leq i\leq n. Then system (2.2)
has a unique positive equilibrium which is globally asymptotically stable with respect
to all nonnegative nontrivial initial data.

Let u\ast = (u\ast 1, u
\ast 
2, . . . , u

\ast 
n) be the unique positive equilibrium of (2.2). In order to

quantitatively measure the metapopulation, we define the network biomass \scrK as

\scrK :=
n\sum 

i=1

u\ast i .(2.6)

Notice that when there is only one patch in the network (i.e., n = 1), the metapop-
ulation growth rate \rho becomes the intrinsic growth rate and the network biomass \scrK 
becomes the environmental carrying capacity. If the species has the same intrinsic
growth rate at each patch (i.e., r1 = r2 = \cdot \cdot \cdot = rn = r/n), then \rho = r/n, regardless of
the movement network.

Suppose that the intrinsic growth rate in each patch ri depends in a simple, linear
way on some resource and the total number of resources among all patches are fixed,
i.e., r=

\sum n
i=1 ri is a positive constant. Here we interpret a positive ri to represent ad-

ditional resources in patch i, as ri \geq 0 implies that all patches have inherent resources
available since ri = 0 means the patch density would remain constant in the absence
of dispersal. What type of allocation of these resources results in a maximized growth
rate or biomass of the metapopulation?

We study this question for stream networks in this paper. As a starting point,
we consider three different configurations of stream networks with three nodes, as
depicted in Figure 1. Configuration (i) is commonly observed in the upper course of
freshwater systems, where small streams join up to form a larger one. This configu-
ration can also be used to describe the situation when a tributary (i.e., a freshwater

(i) (ii) (iii)

1

2

3

1

2 3

1 2

3

d+ q

d+ q

d

d

d+ q
d

d+ q
d

d+ q
d

d+ q
d

Fig. 1. Stream networks with three nodes: (i) a tributary stream with 1, 2 being upstream nodes
and 3 being a downstream node; (ii) a straight stream with 1 being an upstream node, 2 being a middle
node, and 3 being a downstream node; (iii) a distributary stream with 1 being an upstream node and
2, 3 being downstream nodes. Here the solid edges represent a larger movement from the upstream
to the downstream and the dashed edges represent movement from the downstream to the upstream.
The individuals are assumed to be subject to a diffusion rate d and a drift rate q.
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2150 NGUYEN ET AL.

stream) feeds into a larger stream (or river). Thus, we call configuration (i) a trib-
utary stream. Configuration (ii) represents a straight stream, which is often seen in
the middle course of stream/river systems (meanders are common but ignored in our
study). Configuration (iii) describes a distributary stream, which is commonly seen
in the lower course of the water system (e.g., near the delta of streams/rivers).

We restrict our study to the special case when all patches have the same carrying
capacity but could have different intrinsic growth rates. We assume that the movement
of individuals among patches is subject to diffusion and drift, where d> 0 represents
the diffusion magnitude and q > 0 represents the drift magnitude (see Figure 1). More
precisely, we impose the following assumptions:

(H1) ri \geq 0 for all i, and
\sum 

i ri = r > 0 is a fixed constant.
(H2) For all i, Ki =K > 0.
(H3) The connection matrix L is irreducible. Moreover, all upstream movement

coefficients are given by d and downstream movement coefficients are d+ q.
We also define the drift-diffusion ratio of a stream as q/d. Later we show that

an increase in this drift-diffusion ratio could promote the network biomass if source
patches are located upstream.

3. Maximizing the metapopulation growth rate for stream networks
of three patches. In this section, we study the configuration of \bfitr = (r1, r2, r3) to
maximize the metapopulation growth rate \rho . We first compute the bounds of \rho for
the three patch networks in Figure 1. These three networks describe all possible
homogeneous flow stream networks, as defined in section 5, on three nodes:

(i) The tributary stream of three patches in Figure 1 has connection matrix

L=

\left[   - d - q 0 d
0  - d - q d

d+ q d+ q  - 2d

\right]  .
It follows from Proposition 2.1 that the metapopulation growth rate \rho for (2.2) on
the tributary stream is bounded as follows:

dr1 + dr2 + (d+ q)r3
3d+ q

\leq \rho \leq max
i

\{ ri\} 

since ( d
3d+q ,

d
3d+q ,

d+q
3d+q ) is the normalized eigenvector corresponding to the eigenvalue

0 of L. Since r1+r2+r3 = r and ri \geq 0 (i.e., assumption (H1)), the above inequalities
can be rewritten as

1

3 + q
d

r+
q
d

3 + q
d

r3 \leq \rho \leq max
i

\{ ri\} \leq r.

(ii) The straight stream of three patches in Figure 1 has connection matrix

L=

\left[   - (d+ q) d 0
d+ q  - 2d - q d
0 d+ q  - d

\right]  .
By Proposition 2.1, the metapopulation growth rate has the following bounds:

1

3 + 3 q
d + q2

d2

r+
q
d

3 + 3 q
d + q2

d2

r2 +
2 q
d + q2

d2

3 + 3 q
d + q2

d2

r3 \leq \rho \leq max
i

\{ ri\} \leq r.
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2151

(iii) The distributary stream in Figure 1 has connection matrix

L=

\left[   - 2d - 2q d d
d+ q  - d 0
d+ q 0  - d

\right]  .
By Proposition 2.1, the metapopulation growth rate \rho satisfies

1

3 + 2 q
d

r+
q
d

3 + 2 q
d

r2 +
q
d

3 + 2 q
d

r3 \leq \rho \leq max
i

\{ ri\} \leq r.

Remark 3.1. The connection matrix L for each of the three cases can be written
as L = dD + qQ, where D and Q represent the diffusion and advective movement
patterns, respectively.

Notice that the lower bounds for \rho are maximized if all the resources are concen-
trated at the downstream ends. By Remark 2.2, this lower bound is achieved when d
and q approach infinity while maintaining a constant ratio. We conjecture that \rho is
maximized for the tributary and straight stream if \bfitr = (0,0, r) and for the distribu-
tary stream if \bfitr = (0, r,0) or \bfitr = (0,0, r). Next, we provide two pieces of evidence
to support this conjecture. We first verify that the conjecture holds when diffusion
is sufficiently small. We then consider the case where the system is perturbed away
from uniformly distributed resources. In what follows, we use the notation \rho (d, q,\bfitr )
to emphasize the dependence of \rho on d, q, and \bfitr .

3.1. Small diffusion, \bfitd \gtrapprox 0. First suppose d = 0. Then we can easily see the
following:

(i) For a tributary stream, \rho (0, q,\bfitr ) =max\{ r1  - q, r2  - q, r3\} . Therefore, for any
q > 0, the maximum of \rho (0, q,\bfitr ) is achieved when \bfitr = (0,0, r).

(ii) For a straight stream, \rho (0, q,\bfitr ) = max\{ r1  - q, r2  - q, r3\} . Therefore, for any
q > 0, the maximum of \rho (0, q,\bfitr ) is achieved when \bfitr = (0,0, r).

(iii) For a distributive stream, \rho (0, q,\bfitr ) =max\{ r1  - 2q, r2, r3\} . Therefore, for any
q > 0, the maximum of \rho (0, q,\bfitr ) is achieved when \bfitr = (0, r,0) or \bfitr = (0,0, r).

Thus, when d= 0, the metapopulation growth rate is maximized when all the resources
are concentrated in a single downstream patch. We can extend this result to hold for
d\gtrapprox 0.

Theorem 3.2. Suppose that assumptions (H1) and (H3) hold for system (2.2).
Let q, r > 0 be fixed. Then the following statements hold:

(i) There exists d\ast > 0 such that the maximum metapopulation growth rate \rho 
of the tributary or straight stream in Figure 1 is attained when (r1, r2, r3) =
(0,0, r) for all 0<d\leq d\ast .

(ii) There exists d\ast \ast > 0 such that the maximum metapopulation growth rate \rho of
the distributary stream in Figure 1 is attained when (r1, r2, r3) = (0, r,0) or
(r1, r2, r3) = (0,0, r) for all 0<d\leq d\ast \ast .

Proof. We only prove (i) here. The proof of (ii) is similar and is provided in
Appendix A. Let \rho (d, q,\bfitr ) be the metapopulation growth rate. Denote S = \{ (r1, r2, r3)
\in R3

+ : r1 + r2 + r3 = r\} , S1 = \{ (r1, r2, r3)\in S : r1 \geq q/2 or r2 \geq q/2\} , S2 = S\setminus S1, and
\^S2 = \{ (r1, r2, r3)\in S : r1 < q and r2 < q\} .

If \bfitr \in S1, then r1 - q, r2 - q\leq r - q and r3 = r - r1 - r2 \leq r - q/2. Hence, we have

\rho (0, q,\bfitr ) =max\{ r1  - q, r2  - q, r3\} \leq r - q/2.
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2152 NGUYEN ET AL.

By the continuity of \rho [48], there exists d1 > 0 such that

\rho (d, q,\bfitr )< r - q/4(3.1)

for all d\in [0, d1] and \bfitr \in S1. Since \rho (0, q, (0,0, r)) = r, there exists d2 <d1 such that

\rho (d, q, (0,0, r))> r - q/4(3.2)

for all d\in [0, d2]. By (3.1)--(3.2) and (0,0, r)\in S2, we have

max\{ \rho (d, q,\bfitr ) : \bfitr \in S\} =max\{ \rho (d, q,\bfitr ) : \bfitr \in S2\} 

for all d\in [0, d2]; i.e., the maximum of \rho is attained in S2.
For any \bfitr \in \^S2, we have \rho (0, q,\bfitr ) = r3, where r3 is a simple eigenvalue of dD +

qQ + diag\{ ri\} . Therefore, there exists d3 < d2 such that \rho (d, q,\bfitr ) is analytic for
d \in [0, d3] and \bfitr \in S2. Hence, the derivatives of \rho are continuous for d \in [0, d3] and
\bfitr \in S2.

Let h = ( - 1,0,1) or (0, - 1,1). It is easy to compute the directional derivatives
of \rho with respect to (r1, r2, r3):

Dh\rho (0, q,\bfitr ) = 1 for any \bfitr \in S2.

By continuity, there exists d\ast < d3 such that Dh\rho (d, q,\bfitr ) > 0 for any 0 \leq d \leq d\ast 

and \bfitr \in S2. Hence, the maximum of \rho (d, q,\bfitr ) is attained at \bfitr = (0,0, r) for any 0 \leq 
d\leq d\ast .

3.2. Equal patch growth rates, \bfitr 1 = \bfitr 2 = \bfitr 3 = \bfitr /3. The second case we
consider is when all patches have the same intrinsic growth rate, that is, r1 = r2 =
r3 = r/3. Notice that, since the column sums of both D and Q are zero, we have
(1,1,1)(dD+ qQ) = 0. It follows that

(1,1,1) (dD+ qQ+ r/3I) = (1,1,1)r/3.

Thus, r/3 is an eigenvalue of the inherent projection matrix and (1,1,1) is the corre-
sponding left eigenvector. Next, we note that since dD+qQ is essentially nonnegative
and irreducible, the matrix dD+qQ+r/3I is as well. Thus, by the Perron--Frobenius
theorem, we have \rho (d, q,\bfitr ) = r/3.

In Theorem 3.3, we consider how the metapopulation growth rate is affected
when the patch growth rates are perturbed away from uniform by examining the
impact of increasing the amount of resources in a single patch. Since we wish to
keep the total amount of resources fixed at r, we assume that an increase in one
patch is compensated by a decrease in the other patches. Theorem 3.3 shows that the
metapopulation growth rate increases the most if the increase in resources is applied
to one of the most downstream nodes.

Theorem 3.3. Suppose that assumptions (H1) and (H3) hold for system (2.2).
Let q, r > 0 be fixed, and let ri = r/3. Consider the perturbation rI \rightarrow rI + \epsilon E where
\epsilon \gtrapprox 0 and E is a diagonal matrix with diagonal entries 1,  - \alpha and  - \beta such that
\alpha ,\beta \geq 0, and \alpha + \beta = 1. Then the metapopulation growth rate is largest when matrix
entry 1 corresponds to one of the most downstream patches.
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2153

Proof. Let \rho \epsilon denote the metapopulation growth rate of the perturbed matrix
rI + \epsilon E. Following standard perturbation arguments (see, for example, [23, Chapter
3]), we have

\rho \epsilon \approx r/3 + \epsilon \bfitw \intercal E\bfitv + o(\epsilon 2),(3.3)

where \bfitv and \bfitw \intercal are the right and left Perron eigenvectors of dD+ qQ+ r/3I, respec-
tively, such that \bfitw \intercal \bfitv = 1. Here we take \bfitw \intercal = (1,1,1). Notice that the right eigen-
vector \bfitv is a solution to the equation (dD + qQ)\bfitv = 0. Denote this right eigenvector
for the tributary, straight, and distributary streams by \bfitv t,\bfitv s, and \bfitv d, respectively.
Explicit calculations show that

\bfitv t =
d

3d+ q

\left(  1
1

d+q
d

\right)  , \bfitv s =
d2

3d2 + 3dq+ q2

\left(   1
d+q
d\Bigl( 

d+q
d

\Bigr) 2
\right)   , \bfitv d =

d

3d+ 2q

\left(  1
d+q
d

d+q
d

\right)  .

Notice that, for all three cases, the largest component of \bfitv corresponds to the most
downstream patch(es).

We first consider the straight stream configuration. Let Ei denote the diagonal
perturbation matrix describing an increase in resources in patch i, that is, E1 =
diag\{ 1, - \alpha , - \beta \} , E2 =diag\{  - \alpha ,1, - \beta \} , and E3 =diag\{  - \alpha , - \beta ,1\} . We find that

\bfitw \intercal E1\bfitv s =
d2

3d2 + 3dq+ q2

\biggl( 
1 - \alpha 

d+ q

d
 - \beta 

(d+ q)2

d2

\biggr) 
< 0,

\bfitw \intercal E2\bfitv s =
d2

3d2 + 3dq+ q2

\biggl( 
 - \alpha +

d+ q

d
 - \beta 

(d+ q)2

d2

\biggr) 
,

\bfitw \intercal E3\bfitv s =
d2

3d2 + 3dq+ q2

\biggl( 
 - \alpha  - \beta 

d+ q

d
+

(d+ q)2

d2

\biggr) 
> 0.

Therefore, increasing the intrinsic growth rate in patch 1 while maintaining the total
intrinsic growth rate at r results in a decrease in the metapopulation growth rate.
Meanwhile, increasing the intrinsic growth rate in patch 3 increases the metapop-
ulation growth rate. Moreover, the metapopulation growth rate when the intrinsic
growth rate is increased in patch 2 lies between these two cases. Thus, we may con-
clude that shifting resources from upstream patches to the most downstream patch
increases the metapopulation growth rate the most. In the same manner, we may
show that this also holds true for the other two configurations.

4. Maximizing the network biomass for stream networks of three
patches. In the following theorem, we summarize our results on maximizing the
network biomass associated with stream networks in Figure 1. The proof is provided
in the next subsection.

Theorem 4.1. Suppose that assumptions (H1), (H2), and (H3) hold for system
(2.2) on stream networks. Let \scrK t,\scrK s,\scrK d denote the network biomass associated with
a tributary stream, a straight stream, and a distributary stream as depicted in Figure
1, respectively. Then the following results hold:

(i) \scrK t \leq (3+ q
d )K. The maximum is reached when (r1, r2, r3) = (r1, r - r1,0) for

any 0\leq r1 \leq r.

(ii) \scrK s \leq (3 + 3 q
d + q2

d2 )K. The maximum is reached when (r1, r2, r3) = (r,0,0).
(iii) \scrK d \leq (3 + 2 q

d )K. The maximum is reached when (r1, r2, r3) = (r,0,0).
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2154 NGUYEN ET AL.

Theorem 4.1 implies that the straight and distributary streams, which are com-
monly observed in the middle and lower courses of freshwater systems, could sustain
larger population sizes than the tributary streams, which often occur in the upper
course of stream/river systems. Moreover, the biased population movement in the
streams tends to promote the network biomass. Specifically, when the drifted move-
ment is neglected (i.e., q = 0), all upper bounds of the network biomass \scrK in The-
orem 4.1 become 3K, the sum of the carrying capacities of the three patches. In
contrast, the larger the drift-diffusion ratio q/d, the larger the maximum network
biomass.

4.1. Proof of Theorem 4.1 using sign patterns. In order to prove
Theorem 4.1, we introduce the notion of sign patterns of an equilibrium. Note that
the positive equilibrium \bfitu \ast = (u\ast 1, u

\ast 
2, u

\ast 
3) satisfies

riu
\ast 
i

\biggl( 
1 - u\ast i

K

\biggr) 
+

3\sum 
j=1

(\ell iju
\ast 
j  - \ell jiu

\ast 
i ) = 0, i= 1,2,3,(4.1)

where \ell ij are the entries of the movement matrix L.

Definition 4.2. Suppose \bfitu \ast is the unique positive equilibrium for a certain choice
of parameters (r1, r2, r3). We assign to each node i of the stream network one of the
three signs \{ +, - ,0\} , which is the same as the sign of the corresponding logistic growth
term at the equilibrium, i.e.,

sign(node i) = sign

\Biggl( 
riu

\ast 
i

\Bigl( 
1 - u\ast i

K

\Bigr) \Biggr) 
.

The sign pattern of the equilibrium \bfitu \ast is defined as

sign(\bfitu \ast ) = (sign(node 1), sign(node 2), sign(node 3)).

Definition 4.3. Suppose that node i is an immediate upstream node of node j.
At the positive equilibrium we define the flow from node i to node j as (d+ q)u\ast i and
the flow from node j to node i as du\ast j . We say that there is a net flow from node i to
node j if (d+ q)u\ast i >du

\ast 
j , there is a net flow from node j to node i if (d+ q)u\ast i <du

\ast 
j ,

and there is zero net flow between the two nodes if (d+ q)u\ast i = du\ast j .

Example 4.4. For the straight stream as depicted in Figure 1, if (r1, r2, r3) =
(r,0,0), then the positive equilibrium is

\bfitu \ast =

\biggl( 
K,

d+ q

d
K,

(d+ q)2

d2
K

\biggr) 
.

Therefore, the sign pattern of this equilibrium is sign(\bfitu \ast ) = (0,0,0). We show later
that (0,0,0) is the sign pattern which maximizes the network biomass in all three
stream networks (straight, tributary, and distributary).

We provide some intuitions on sign patterns in the following remark.

Remark 4.5. A node having a ( - ) sign implies that the population of that node
at the equilibrium exceeds the carrying capacity K. This also implies that at the
equilibrium there is a net inflow of the population from adjacent nodes to this node,
or the total flow out of the node is smaller than the total flow into the node.
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2155

On the other hand, a patch having a (+) sign implies that the population of that
node at the equilibrium is smaller than the carrying capacity K and there is a net
outflow of the population from this node to adjacent nodes.

Finally, a patch having a (0) sign implies that the population of that node at the
equilibrium is exactly the same as the carrying capacity K or ri = 0 for that node,
and thus both the growth and the net flow at the patch are 0.

Next, we make an observation that due to the strong connectivity and asymmetry
of stream networks, not all sign patterns can happen. Specifically, we say that a
sign pattern is admissible if there is a choice of parameters (r1, r2, r3) such that the
corresponding positive equilibrium admits that sign pattern; otherwise, it is called
inadmissible. The following lemma characterizes the admissible/inadmissible patterns
for stream networks.

Lemma 4.6. The following statements hold for all three stream networks, as de-
picted in Figure 1.

(i) Any admissible sign pattern must be (0,0,0), or it must have at least one (+)
and one ( - ) sign.

(ii) The population at the positive equilibrium of the most upstream nodes can-
not exceed the carrying capacity K, and thus the sign patterns where a most
upstream node has a ( - ) sign are inadmissible. Specifically, for a tributary
stream, the sign patterns ( - , \cdot , \cdot ) and (\cdot , - , \cdot ) are inadmissible. For a straight
stream, the sign patterns ( - , \cdot , \cdot ) are inadmissible. For a distributary stream,
the sign patterns ( - , \cdot , \cdot ) are inadmissible.

(iii) The sign patterns where a most downstream node has a (+) sign are inad-
missible. Specifically, for a tributary stream, the sign patterns (\cdot , \cdot ,+) are
inadmissible. For a straight stream, the sign patterns (\cdot , \cdot ,+) are inadmis-
sible. For a distributary stream, the sign patterns (\cdot , \cdot ,+) and (\cdot ,+, \cdot ) are
inadmissible.

Proof. (i) Taking the sum of the three equations in (4.1), we have

3\sum 
i=1

riu
\ast 
i

\biggl( 
1 - u\ast i

K

\biggr) 
= 0.(4.2)

Thus, either all three terms in the sum are 0, or there must be at least one positive
and one negative term.

(ii) We prove the statement for each of the three configurations.
A tributary stream
First, without loss of generality, assume that u\ast 1 > K. This means node 1 must

have a ( - ) or (0) sign. Remark 4.5 tells us that the total flow into node 1, du\ast 3, must
be greater than or equal to the total flow from node 1, (d+ q)u\ast 1. This implies that
du\ast 3 \geq (d+ q)u\ast 1 and thus u\ast 3 \geq 

d+q
d u\ast 1 >

d+q
d K. Thus, node 3 must have a ( - ) or (0)

sign. From part (i), node 2 must have a (+) sign or the sign pattern must be (0,0,0).
We first consider the case when the sign pattern is (0, 0,0). Since there must

be at least one ri > 0, there must be at least one u\ast i = K. It is easy to check that
when u\ast 2 = K or u\ast 3 = K, we must have u\ast 1 < K. Thus, in all cases, u\ast 1 \leq K, which
contradicts the initial assumption.

If node 2 has a (+) sign, there must be a net outflow from node 2. This means
that u\ast 2 <K and (d+ q)u\ast 2 > du\ast 3, which imply that u\ast 3 <

d+q
d u\ast 2 <

d+q
d K. We reach a

contradiction.
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2156 NGUYEN ET AL.

A straight stream
Next, suppose that u\ast 1 >K, which implies that node 1 must have a ( - ) or (0) sign.

Since the total flow into node 1, du\ast 2, must be greater than or equal to the total flow
from node 1, (d+ q)u\ast 1, this implies that du\ast 2 \geq (d+ q)u\ast 1 and thus u\ast 2 \geq 

d+q
d u\ast 1 >K.

Thus, node 2 must have a ( - ) or (0) sign. Using a similar argument, we must have
(d + q)u\ast 1 + du\ast 3 \geq du\ast 2 + (d + q)u\ast 2. Combining this with du\ast 2 \geq (d + q)u\ast 1 from the
analysis of node 1 yields du\ast 3 \geq (d+ q)u\ast 2, which implies that u\ast 3 \geq 

d+q
d u\ast 2 >K. Thus,

node 3 also has a ( - ) or (0) sign.
According to part (i), since there is no node with a (+) sign, the only admissible

sign pattern in this case is (0, 0,0). Since there must be at least one ri > 0, there must
be at least one u\ast i = K. It is easy to check that when u\ast 2 = K or u\ast 3 = K, we must
have u\ast 1 <K. Thus, in all cases, u\ast 1 \leq K, which contradicts the initial assumption.

A distributary stream
Finally, assume that u\ast 1 >K, or equivalently that node 1 must have a ( - ) or (0)

sign. From (4.2) in part (i), the sign pattern must be (0,0,0), or at least one of the
two downstream nodes must have a (+) sign.

If the sign pattern is (0,0,0), similar to the first two configurations, we must have
u\ast 1 \leq K, which contradicts the initial assumption.

If the sign pattern is not (0,0,0), at least one of the two downstream nodes must
have a (+) sign. Without loss of generality, suppose node 2 has a (+) sign. Then we
have u\ast 1 >K and u\ast 2 <K and there must be a net outflow from node 2. This requires
du\ast 2 > (d + q)u\ast 1, and thus u\ast 2 >

d+q
d u\ast 1 > K, which contradicts the assumption that

node 2 has a (+) sign.
(iii) We prove the statement for each of the three configurations.
For a tributary stream, suppose that node 3 has a (+) sign. From part (i), either

node 1 or node 2 must have a ( - ) sign, which is in turn impossible due to part (ii).
For a straight stream, suppose that node 3 has a (+) sign. We must have u\ast 3 <K,

and there is a net outflow from node 3. This means that du\ast 3 > (d+ q)u\ast 2, and thus
u\ast 2 <

d
d+qu

\ast 
3 <

d
d+qk < K. So node 2 must have a (+) or a (0) sign and, due to part

(i), node 1 must have a ( - ) sign, which is in turn impossible due to part (ii).
For a distributary stream, without loss of generality, suppose that node 2 has a

(+) sign. Using the same argument above, u\ast 1 <
d

d+qK and node 1 must have a (+)
or (0) sign. Due to (4.2), node 3 must have a ( - ) sign. This means there must be a
net inflow into node 3, which implies that du\ast 3 < (d+ q)u\ast 1 and thus u\ast 3 <

d+q
d u\ast 1 <K.

We reach a contradiction.

Remark 4.7. The last two statements in Lemma 4.6 highlight the effect of the
asymmetry inherent to stream network on the positive equilibrium. Since the asym-
metry is in favor of the downstream nodes, at the equilibrium it is impossible for a
most upstream node to have population exceeding the carrying capacity or a most
downstream node to have population less than the carrying capacity.

Now we are ready to list all the admissible sign patterns for each stream network
and provide the proof of Theorem 4.1.

Proof of Theorem 4.1. It suffices to prove the theorem for the sign patterns not
ruled out by Lemma 4.6.

(i) A tributary stream: The remaining admissible sign patterns for a tributary
stream are included in Figure 2 together with a visualization of the net population
flow into or out of a node at the positive equilibrium.

It is straightforward to check that the only choices of (r1, r2, r3) resulting in
the sign pattern (0,0,0) are (r1, r2, r3) = (r1, r2,0) and (0,0, r). The former yields
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0

0

0 +

−

0 0

−

+ +
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+

Fig. 2. All admissible sign patterns for a tributary stream. The arrows capture the net flows
between nodes at the positive equilibrium.

0

0

0

0

+

−

+

0

−

+

−

0

+

+

−

+

−

−

Fig. 3. All admissible sign patterns for a straight stream. The arrows capture the net flows
between nodes at the positive equilibrium.

\bfitu \ast =
\bigl( 
K,K, d+q

d K
\bigr) 
, and the latter yields \bfitu \ast =

\bigl( 
d

d+qK,
d

d+qK,K
\bigr) 
. Thus, \scrK t \leq \bigl( 

3 + d+q
d

\bigr) 
K and the equality happens when (r1, r2, r3) = (r1, r2,0) = (r1, r  - r1,0)

for any 0\leq r1 \leq r.
For the remaining sign patterns, again by using net flow at each node it is easy

to show that u\ast 1 <K, u\ast 2 <K and u\ast 3 <
d+q
d K. Thus, for these sign patterns we have

\scrK t \leq 
\bigl( 
3 + d+q

d

\bigr) 
K.

(ii) A straight stream: The remaining admissible sign patterns for a straight
stream are included in Figure 3 together with a visualization of the net population
flow into or out of a node at the positive equilibrium.

It is straightforward to check that the only choices of (r1, r2, r3) that result in
the sign pattern (0,0,0) are (r1, r2, r3) = (r,0,0), (0, r,0), or (0,0, r). In all three
cases, the positive equilibrium can be computed explicitly, and it is easy to check

that \scrK s \leq 
\bigl( 
1 + d+q

d + (d+q)2

d2

\bigr) 
K =

\bigl( 
3 + 3 q

d + q2

d2

\bigr) 
K where the equality happens when

(r1, r2, r3) = (r,0,0). For the sign pattern (0,+, - ), we have u\ast 2 <K, and looking at the

net flow yields u\ast 1 =
d

d+qu
\ast 
2 <K and u\ast 3 <

d+q
d u\ast 2 <

d+q
d K. Thus, \scrK s <

\bigl( 
3+3 q

d +
q2

d2

\bigr) 
K.

For each of the remaining sign patterns, by analyzing the net flow at each patch,

it is straightforward to verify that u\ast 1 <K, u\ast 2 <
d+q
d K, and u\ast 3 <

(d+q)2

d2 K. Thus, for

these sign patterns we also have \scrK s <
\bigl( 
3 + 3 q

d + q2

d2

\bigr) 
K.

(iii) A distributary stream: The remaining admissible sign patterns for a distribu-
tary stream are included in Figure 4 together with a visualization the net population
flow into or out of a node at the positive equilibrium.

It is straightforward to check that the only choices of (r1, r2, r3) resulting in
the sign pattern (0,0,0) are (r1, r2, r3) = (r,0,0), (0, r2, r3). The former has positive
equilibrium \bfitu \ast =

\bigl( 
K, d+q

d K, d+q
d K

\bigr) 
, and thus \scrK d =

\bigl( 
3+2 q

d

\bigr) 
K. The latter has positive

equilibrium \bfitu \ast =
\bigl( 

d
d+qK,K,K

\bigr) 
, and thus \scrK d <

\bigl( 
3 + 2 q

d

\bigr) 
K.

For each of the remaining sign patterns, using the net flow at each node, it is easy
to verify that u\ast 1 <K, u\ast 2 <

d+q
d K, and u\ast 3 <

d+q
d K. Thus, for these sign patterns we

must have \scrK d <
\bigl( 
3 + 2 q

d

\bigr) 
K.
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0

0 0

+

0 −

+

− 0

+

− −

Fig. 4. All admissible sign patterns for a distributary stream. The arrows capture the net flows
between nodes at the positive equilibrium.

(a) (b) (c)

Fig. 5. Total population (biomass) over time for (a) the tributary stream, (b) the straight
stream, and (c) the distributary stream with two distributions of resources: (r1, r2, r3) = (r,0,0),
which maximizes the network biomass (solid blue line), and (r1, r2, r3) = (0,0, r), which maximizes
the growth rate (dashed red line). In all the simulations, we set d= 0.1, q= 0.3, K = 3, and r= 5.

Remark 4.8. From Figures 2, 3, and 4 we observe that the net flows at the
positive equilibrium in all admissible sign patterns tend to agree with the flows of the
stream network from upstream to downstream. In addition, at the positive equilibrium
the populations in upstream nodes are generally smaller than the populations in
downstream nodes.

We illustrate the contrast between maximizing the metapopulation growth rate
and maximizing the network biomass in Figure 5, which compares the network biomass
for the three-node stream networks when the resources are concentrated either in a
most upstream or downstream patch. While a strategy that maximizes the growth
rates results in faster initial growth, it yields a substantially smaller network biomass.

5. Maximizing the metapopulation growth rate and network biomass
for stream networks of \bfitn patches. In this section, we provide a definition of
stream networks to allow for an arbitrary number of patches. We then extend the
results on the metapopulation growth rate and network biomass in sections 3 and 4 to
stream networks with n patches. Additionally, we provide some further analysis on the
straight stream network with n patches, which highlights further differences between
the distribution maximizing the metapopulation growth rate and the distribution
maximizing the total biomass.

5.1. Leveled graphs and homogeneous flow stream networks. In order to
define stream networks with n patches, we first introduce the notion of leveled graphs.

Definition 5.1. Let G be a directed graph, and denote the set of nodes of G by
V . Consider a function f : V \rightarrow Z\geq 0. We call f a level function, and for each node
i, we define f(i) as the level of node i. We say that (G,f) is a leveled graph if the
following assumptions are satisfied:
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1

2 3

4

(a)

1

2

3

4

5

(b)

Fig. 6. Graph (a) is a leveled graph with a level function f(1) = 0, f(2) = f(3) = 1, f(4) = 2,
while (b) is not a leveled graph.

(i) For each 0\leq k\leq maxi\in V \{ f(i)\} , there exists a node j such that f(j) = k.
(ii) For each pair of nodes i, j, there is no edge between i and j if | f(i) - f(j)| \not = 1.

The definition of a leveled graph requires two conditions on the stream network.
The first condition is that every node is assigned a level with each level containing at
least one node. The second condition is that two nodes may only be connected if they
are in consecutive levels. Notice that any graph without cycles of length greater than
two can be made into a leveled graph. A graph with cycles of length greater than two
can be made into a leveled graph if any path in a cycle connecting the node with the
highest level and the node with the lowest level has the same length. For example, the
graph depicted in Figure 6(a) is a leveled graph while the one in Figure 6(b) cannot
be a leveled graph for any choice of level functions.

In what follows, we use leveled graphs to model stream networks. Specifically,
we define the nodes with level 0 to be most upstream nodes, and the level of an
arbitrary node to be the distance between that node and the most upstream nodes.
In particular, the nodes with maximum level are the most downstream nodes.

Definition 5.2. Consider a leveled graph (G,f) and an irreducible connection
matrix L. We say that (G,f,L) is a homogeneous flow stream network if the following
assumptions are satisfied:

(i) If there is an edge from node i to node j, then there is also an edge from node
j to node i.

(ii) If there is an edge from node i to node j, then the weight is \ell ji = d + q if
f(j) - f(i) = 1 (i.e., the edge is from an upstream to a downstream node) and
\ell ji = d if f(i) - f(j) = 1 (i.e., the edge is from a downstream to an upstream
node).

It is easy to check that the three stream configurations in Figure 1 are homo-
geneous flow stream networks. Additionally, we list all possible homogeneous flow
stream networks with four nodes (up to vertical symmetry) in Figure 9 in the appen-
dix. Finding the total number of homogeneous flow stream networks with n nodes is
an interesting combinatorics question, and we leave it to curious readers.

Definition 5.3. Let (G,f,L) be a homogeneous flow stream network and V be
the set of nodes of G. A node i \in V is called a most downstream end node if f(i) =
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2160 NGUYEN ET AL.

maxi\in V \{ f(i)\} ; it is called a downstream end node if there does not exist an adjacent
node j \in V such that f(j) - f(i) = 1.

5.2. Maximizing the growth rate for homogeneous flow stream net-
works. We first prove the following lemma, concerning the right Perron eigenvector
\bfitv to the matrix dD+qQ. For the three-node stream networks considered in sections 3
and 4, this vector appeared in both the biomass and growth rate calculations.

Lemma 5.4. Let (G,f,L) be a homogeneous flow stream network. Let \bfitv be the
solution to (dD+ qQ)\bfitv = 0. Then \bfitv is defined, up to a constant multiple, as

vi =

\biggl( 
d+ q

d

\biggr) f(i)

.

Proof. By the Perron--Frobenius theorem, a nontrivial solution of (dD+qQ)\bfitv = 0
exists, which is an eigenvector of dD+ qQ corresponding to eigenvalue 0. For each i,
the ith row of (dD+ qQ)\bfitv can be rewritten as\sum 

j:f(i) - f(j)=1

((d+ q)vj  - dvi) +
\sum 

j:f(j) - f(i)=1

(dvj  - (d+ q)vi),

where the first sum is over all the nodes connected to and upstream of node i, and
the second sum is over all the nodes connected to and downstream of node i.

Consider a vector \bfitv = (v1, . . . , vn) with

vi =

\biggl( 
d+ q

d

\biggr) f(i)

.

Then we have\sum 
j:f(i) - f(j)=1

((d+ q)vj  - dvi) =
\sum 

j:f(i) - f(j)=1

dvi

\biggl( 
d+ q

d

vj
vi

 - 1

\biggr) 

=
\sum 

j:f(i) - f(j)=1

dvi

\Biggl( 
d+ q

d

\biggl( 
d+ q

d

\biggr) f(j) - f(i)

 - 1

\Biggr) 
=

\sum 
j:f(i) - f(j)=1

0 = 0.

Similarly, we can show that
\sum 

j:f(j) - f(i)=1(dvj  - (d + q)vi) = 0. Thus, each row of
(dD+ qQ)\bfitv is 0 and we can conclude that (dD + qQ)\bfitv = 0.

Using Lemma 5.4, Theorems 3.2 and 3.3 in section 3 can be extended to any
homogeneous flow stream network, as stated in Theorem 5.5. Note that the result
of part (i) does not specify which downstream end node one has to concentrate all
resources on to maximize the metapopulation growth rate. The proof of part (i) is
provided in Appendix C. The proof of part (ii) follows directly from Lemma 5.4 and
the same argument as in Theorem 3.3 and thus is omitted for the sake of brevity.

Theorem 5.5. Let (G,f,L) be a homogeneous flow stream network, and suppose
that assumption (H1) holds:

(i) There exists a \~d\ast > 0 such that for 0 < d < \~d\ast the metapopulation growth
rate of the stream network is maximized when all resources are distributed to
exactly one of the downstream end nodes.
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MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2161

(ii) Suppose ri = r/n. If resources are perturbed so that the number of resources
in a single node are increased while the resources in other nodes are decreased
to maintain

\sum 
ri = r, then the metapopulation growth rate time increases the

most if this increase is applied to one of the most downstream end nodes.

5.3. Maximizing the biomass for homogeneous flow stream networks.
Next, we show that, similar to the stream networks with three nodes, to maximize
the network biomass of a homogeneous flow stream network we must concentrate the
resources in the most upstream nodes.

Theorem 5.6. Let (G,f,L) be a homogeneous flow stream network, and suppose
that assumptions (H1) and (H2) hold. The network biomass \scrK has the upper bound

\scrK \leq K
n\sum 

i=1

\Bigl( 
1 +

q

d

\Bigr) f(i)
,

and the maximum is achieved when ri = 0 for every node i with a positive level, i.e.,
f(i)> 0.

Proof. For \bfitphi = (\phi 1, . . . , \phi n),\bfitpsi = (\psi 1, . . . ,\psi n) \in Rn, we write \bfitphi >\bfitpsi if \bfitphi \geq \bfitpsi and
\bfitphi \not =\bfitpsi ; we denote \bfitphi \gg \bfitpsi if \phi i >\psi i for all 1\leq i\leq n. Since L is essentially nonnegative
and irreducible, the solutions of (2.2) generate a strongly monotone dynamical system
[45, Theorem 4.1.1]; that is, if \bfitu 1(t) and \bfitu 2(t) are both solutions of (2.2), then
\bfitu 1(0) > \bfitu 2(0) implies \bfitu 1(t) \gg \bfitu 2(t) for all t > 0. Let \bfitv be the normalized positive
eigenvector of dD+ qQ corresponding to principal eigenvalue 0 as defined in Lemma
5.4. Let \=\bfitu =K\bfitv . Then \=ui =K if f(i) = 0, and \=ui > K if f(i) > 0. It is easy to see
that

0\geq ri\=ui

\Bigl( 
1 - \=ui

K

\Bigr) 
=

n\sum 
j=1

(dDij + qQij)\=uj + ri\=ui

\Bigl( 
1 - \=ui

K

\Bigr) 
, i= 1, . . . , n.

Therefore, \=\bfitu is an upper solution of (2.2), and the solution \bfitu (t) of (2.2) with initial
condition \bfitu (0) = \=\bfitu is nonincreasing and converges to an equilibrium of (2.2) [45,
Proposition 3.2.1], which is the positive equilibrium by Proposition 2.3. Moreover,
the above inequality has at least one strict sign (which means that \bfitu (t) is strictly
decreasing) if and only if there exists a node i with f(i)> 0 such that ri > 0. Let \bfitu \ast 

be the positive equilibrium of (2.2). Hence, we have that \bfitu \ast \leq \=\bfitu and \bfitu \ast = \=\bfitu if and
only if ri = 0 for any node i with f(i)> 0. This proves the result.

Example 5.7. For the homogeneous flow stream network in Figure 7, we have the
upper bound for the network biomass

\scrK \leq K
n - 1\sum 
i=0

\Bigl( 
1 +

q

d

\Bigr) i
,

where the maximum is reached when (r1, r2, . . . , rn) = (r,0, . . . ,0).

5.4. Effect of network properties. From Theorem 5.6, we know, for example,
that a straight stream consisting of n patches can reach a maximum network biomass
if (r1, r2, . . . , rn) = (r,0, . . . ,0). Assuming such a resource distribution, it is clear from
the network biomass formula in Example 5.7 that the network biomass increases with
respect to the number of patches n and decreases with respect to the diffusion rate
d. Does the metapopulation growth rate \rho respond to changes in n and d in the same
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1 2 · · · n

d+ q d+ q

d d

d+ q

d

Fig. 7. An n-patch homogeneous flow stream network, which is the generalization of the straight
stream in Figure 1. The level function is f(i) = i - 1.

(a) (b) (c)

Fig. 8. The metapopulation growth rate as a function of diffusion rate d for an n- patch straight
stream when the only patch with positive growth rate r is at the upstream end. The number of patches
n vary from n = 2 (solid curves), n = 3 (dotted curves), n = 4 (dashed curves), and n = 5 (dash-
dotted curves). In these figures, we take r = 2. The values of q vary from q = 0.5 in (a), to q = 1.5
in (b), and to q= 10 in (c).

way? In this subsection, we provide additional discussion on how the metapopulation
growth rate and network biomass seem to follow opposite trends with respect to
changes in parameters such as n and d. We base these discussions on an n-patch
straight stream for illustration purposes.

In Figure 8, the metapopulation growth rate for an n-patch straight stream with
(r1, r2, . . . , rn) = (r,0, . . . ,0) is numerically calculated and plotted for different param-
eter values. In all three subfigures, the solid curves are those of a 2-patch stream, the
dotted curves a 3-patch stream, the dashed curves a 4-patch stream, and the dash-
dotted curves a 5-patch stream. These numerical results imply that as n increases
from 2 to 5, the metapopulation growth rate decreases. This is expected since a larger
n means that there is time for individuals in the population to spend outside of the
patch with a positive growth rate.

Besides the contrast between the metapopulation growth rate and the network
biomass when n increases, the dependence of the metapopulation growth rate on d
is also more complex than that of the total biomass. The three subfigures in Fig-
ure 8 correspond to different q values. When q is small (q = 0.5, Figure 8(a)), the
metapopulation growth rate decrease with respect to d in all curves. When q is larger
(q = 1.5, Figure 8(b)), the metapopulation growth rate may increase, or decrease
before increasing, depending on the value of n. When q is large (q = 10, Figure 8(c)),
the metapopulation growth rate increases with respect to d. Therefore, when a direc-
tional drift is present, the metapopulation growth rate is no longer always decreasing
with respect to the diffusion rate d, as discussed in Remark 2.2.

6. Concluding remarks. For all stream networks considered, we found that
the largest network biomass is achieved when resources are concentrated in the most
upstream patches. Meanwhile, to maximize the metapopulation growth rate, it seems
better to concentrate resources in one of the downstream patches. We also observed
that the drift-diffusion ratio q/d could promote the network biomass if source patches
are located upstream. Moreover, the lower bound of the metapopulation growth rate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

32
.1

70
.1

94
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



MAXIMIZING METAPOPULATION GROWTH RATE AND BIOMASS 2163

is increasing in q/d if source patches are located downstream. These observations
suggest that a larger drift-diffusion ratio is beneficial for the species in some aspects.
This is in contrast with the results proved in [7, 9], which state that, for two competing
species with equal growth rates and carrying capacities, the species with a smaller
drift rate q or a larger diffusion rate d will outcompete the other species in a straight
stream network.

We presented two different approaches to studying the question of how to max-
imize the network biomass in a stream network. The first approach, applied to the
three-node networks in section 4, makes use of sign patterns imposed by assumptions
on the stream flow. Meanwhile, the second approach takes advantage of monotonic-
ity properties of the model. Though this latter approach is more broadly applicable,
as it does not rely on the explicit structure of the stream network, the sign-pattern
approach developed here may prove valuable for studying other types of biological
interactions on stream networks. For example, when considering how resource distri-
bution impacts competitive outcomes for a two-species competition model defined on
a stream network, the sign-pattern approach can be used to determine, based on the
distribution of resources for each species, when a semitrivial (exclusion) equilibrium
is stable [39].

Much of the existing literature related to maximizing the network biomass in
spatial models assumes that either the species carrying capacity changes with resource
availability, or both the carrying capacity and growth rate vary proportionally with
changes in resources. Here we take the alternative approach of fixing the carrying
capacity and changing the growth rates. Though population growth rates have been
shown to depend on resource availability in many species (see, for example, [44] and
the references therein), this growth is limited by factors such as biological constraints
and density dependence. Thus, the growth rate distributions found to maximize the
network biomass or metapopulation growth rate may not be biological feasible. From
a management perspective, we may want to instead consider the case where, rather
than determining the growth rate at each patch, additional resources are provided to
supplement the growth in that patch. Such a scenario is described by

u\prime i = (\=ri + ri)ui

\Bigl( 
1 - ui

Ki

\Bigr) 
+

n\sum 
j=1

\bigl( 
\ell ijuj  - \ell jiui

\bigr) 
, i= 1, . . . , n,(6.1)

where \=ri denotes the intrinsic growth rate in patch i and ri represents the increase in
the growth rate due to resource supplementation. Numerical simulations (not included
in the current paper) suggest that under some conditions on the parameters d, q, and
r, our findings continue to hold for model (6.1). In future work, we aim to rigorously
study the question of maximizing the network biomass in model (6.1).

Another possible modification to our model could be introducing outflows from
the most downstream patches (see [9], which considers a stream to a sea or to a
lake). Based on numerical simulations, we conjecture that our results still hold for a
large enough drift rate q. Additionally, since our model does not allow for patches
to be sinks, we could modify the model (see [2] for more details) to study these
scenarios. Finally, we will also consider how the distribution of resources may impact
the maximum sustainable yield when harvesting is incorporated into a stream network.

Appendix A. Proof of Theorem 3.2(ii). Let \rho (d, q,\bfitr ) be the metapopulation
growth rate. Denote S = \{ (r1, r2, r3)\in R3

+ : r1 + r2 + r3 = r\} . Fix a small \epsilon > 0. Let

S3 = \{ (r1, r2, r3)\in S : r1 \geq q or | r2  - r3| \leq \epsilon \} 
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2164 NGUYEN ET AL.

and

S4 = \{ (r1, r2, r3)\in S : r1 \leq 3q/2 and | r2  - r3| \geq \epsilon /2\} .

Then S\setminus S3 \subset S4 and S4 = S41 \cup S42, where

S41 = \{ (r1, r2, r3)\in S : r1 \leq 3q/2 and r2 \geq \epsilon /2 + r3\} ,

S42 = \{ (r1, r2, r3)\in S : r1 \leq 3q/2 and r3 \geq \epsilon /2 + r2\} .

If \bfitr \in S3, then r1  - 2q \leq r - 2q, r2 = r - r1  - r3 \leq max\{ r - q, (r+ \epsilon )/2\} =: a < r,
and r3 \leq a. Hence, we have

\rho (0, q,\bfitr ) =max\{ r1  - 2q, r2, r3\} \leq a.

By the continuity of \rho [48], there exists d3 > 0 such that

\rho (d, q,\bfitr )< r - \epsilon (A.1)

for all d \in [0, d3] and \bfitr \in S3. Since \rho (0, q, (0, r,0)) = \rho (0, q, (0,0, r)) = r, there exists
d4 <d3 such that

\rho (d, q, (0,0, r))> r - \epsilon (A.2)

for all d\in [0, d4]. By (A.1)--(A.2) and (0, r, 0), (0,0, r)\in S4, we have

max\{ \rho (d, q,\bfitr ) : \bfitr \in S\} =max\{ \rho (d, q,\bfitr ) : \bfitr \in S4\} 

for all d\in [0, d4]; i.e., the maximum of \rho is attained in S4.
By symmetry, it suffices to show that the maximum of \rho in S42 is attained at

\bfitr = (0,0, r) when d is small. For any \bfitr \in S42, we have \rho (0, q,\bfitr ) = r3, where r3
is a simple eigenvalue of dD + qQ + diag\{ ri\} . Therefore, there exists d5 < d4 such
that \rho (d, q,\bfitr ) is analytic for d \in [0, d5] and \bfitr \in S42. Hence, the derivatives of \rho are
continuous for d\in [0, d5] and \bfitr \in S42.

Let h = ( - 1,0,1) or (0, - 1,1). It is easy to compute the directional derivatives
of \rho with respect to \bfitr :

Dh\rho (0, q,\bfitr ) = 1 for any \bfitr \in S42.

By continuity, there exists d\ast \ast <d5 such that Dh\rho (d, q,\bfitr )> 0 for any 0\leq d\leq d\ast \ast and
\bfitr \in S42. Hence, the maximum of \rho (d, q,\bfitr ) in S42 is attained at \bfitr = (0,0, r) for any
0\leq d\leq d\ast \ast .

Appendix B. Configurations for stream networks with four nodes. In
Figure 9, we show all homogeneous flow stream networks with four nodes.

Appendix C. Proof of Theorem 5.5(i). Let \rho (d, q,\bfitr ) be the metapopulation
growth rate. Let V = \{ 1, . . . , n\} be the set of all the nodes. Suppose that there are
k downstream end nodes: n - k + 1, n - k + 2, . . . , n. If k = 1, then the network is a
straight network and the proof is similar to the proof of Theorem 3.2(i). Therefore,
we assume k\geq 2. Let Ve = \{ n - k+1, . . . , n\} and Vo = V \setminus Ve = \{ 1, . . . , n - k\} . Denote
S = \{ \bfitr = (r1, . . . , rn)\in Rn

+ :
\sum n

i=1 ri = r\} . Fix a small \epsilon > 0. Let S5 = S1
5 \cup S2

5 , where

S1
5 = \{ \bfitr \in S : ri \geq q/2 for some i\in Vo\} 
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Fig. 9. Homogeneous flow stream networks with four nodes. The solid edges have weight d+q,
and the dashed edges have weight d.
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2166 NGUYEN ET AL.

and

S2
5 =

\biggl\{ 
\bfitr \in S : rj  - rl \leq \epsilon for some l, j (l \not = j)\in Ve, where rj =max

i\in Ve

ri

\biggr\} 
.

Then S\setminus S5 \subset \cup n
j=n - k+1S6j := S6, where

S6j = \{ \bfitr \in S : ri \leq 3q/4 for all i\in Vo and rj \geq \epsilon /2 + rl for all l (l \not = j)\in Ve\} 

for j = n - k+ 1, . . . , n.
It is easy to see that

\rho (0, q,\bfitr ) =max\{ r1  - a1q, . . . , rn - k  - an - kq, rn - k+1, . . . , rn\} ,

where ai is the number of adjacent downstream nodes of node i for i\in Vo.
If \bfitr \in S5, then \rho (0, q,\bfitr )\leq max\{ r  - q/2, (r + \epsilon )/2\} =: a < r. By the continuity of

\rho [48], there exists d5 > 0 such that

\rho (d, q,\bfitr )< r - \epsilon (C.1)

for all d \in [0, d5] and \bfitr \in S5. Since \rho (0, q, (0, . . . ,0, r)) = r, there exists d6 < d5 such
that

\rho (d, q, (0, . . . ,0, r))> r - \epsilon (C.2)

for all d\in [0, d6]. By (C.1)--(C.2) and (0, . . . , 0, r)\in S6, we have

max\{ \rho (d, q,\bfitr ) : \bfitr \in S\} =max\{ \rho (d, q,\bfitr ) : \bfitr \in S6\} 

for all d\in [0, d6]; i.e., the maximum of \rho is attained in S6.
It suffices to show that the maximum of \rho in S6j , j = n - k+1, . . . , n, is attained

when all the resources are concentrated at node j if d is small. For brevity, we only
consider the case j = n in the following. For any \bfitr \in S6n, we have \rho (0, q,\bfitr ) = rn,
where rn is a simple eigenvalue of dD+qQ+diag\{ ri\} . Therefore, there exists d7 <d6
such that \rho (d, q,\bfitr ) is analytic for d \in [0, d7] and \bfitr \in S6n. Hence, the derivatives of \rho 
are continuous for d\in [0, d7] and \bfitr \in S6n.

Let h = ( - 1,0, . . . ,0,1), (0, - 1,0, . . . ,0,1) . . . , or (0, . . . ,0, - 1,1). It is easy to
compute the directional derivatives of \rho with respect to \bfitr :

Dh\rho (0, q,\bfitr ) = 1 for any \bfitr \in S6n.

By continuity, there exists \~d\ast < d7 such that Dh\rho (d, q,\bfitr ) > 0 for any 0 \leq d \leq \~d\ast and
\bfitr \in S6n. Hence, the maximum of \rho (d, q,\bfitr ) in S6n is attained at \bfitr = (0, . . . ,0, r) for
any 0\leq d\leq \~d\ast .
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