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19, especially in the early stage of the disease outbreak. In this paper, we develop a
deterministic model to investigate the impact of testing and compliance with isolation on
the transmission of COVID-19. We derive the control reproduction number R, which gives
the threshold for disease elimination or prevalence. Using data from New York State in the
early stage of the disease outbreak, we estimate R = 7.989. Both elasticity and sensitivity

Iég%gﬁ; analyses show that testing and compliance with isolation are significant in reducing R¢

Testing and disease prevalence. Simulation reveals that only high testing volume combined with a

Compliance large proportion of individuals complying with isolation have great impact on mitigating

Isolation the transmission. The testing starting date is also crucial: the earlier testing is imple-

New York state mented, the more impact it has on reducing the infection. The results obtained here would
also be helpful in developing guidelines of early control strategies for pandemics similar to
COVID-19.
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1. Introduction

The SARS-CoV-2 pandemic, which started in late 2019, has ravaged global health and national economies worldwide
(Jackson, 2021). The virus causing this pandemic belongs to the family of coronaviruses, which can cause respiratory illness in
humans (Cleveland Clinic, (Accessed Mar 1, 2022). Current evidence suggests that the main route of transmission of the SARS-
CoV-2 virus is from person to person via small liquid droplets when an infected person coughs, sneezes or breathes,
particularly in poorly ventilated or crowded indoor settings (Cleveland Clinic, (Accessed Mar 1, 2022). The pandemic is
currently ongoing despite control measures (e.g, vaccination, social distancing). To date, there have been over 500 million
cases of COVID-19 globally, with about 6 million deaths (Worldometer, (Accessed June 6, 2022). The United States (US) alone
has recorded over 90 million COVID-19 cases, with over a million deaths from the COVID-19 disease (Worldometer, (Accessed
June 6, 2022). New York (NY) state is among several US states with high mortality and infection rates. Specifically, NY has
recorded nearly 6 million cases with over 70,000 deaths thus far (Worldometer, (Accessed July 18, 2022A). In this paper, using
data from New York State in an early phase of the pandemic, we adopt a deterministic model to investigate the impact of
testing and compliance with isolation orders on the transmission of COVID-19.

Mass testing is an effort to test the general population to detect infectious individuals, including those who remain
asymptomatic (Shen et al., 2021). It is cost-effective (Lopez Segui et al., 2021), detects new infections rapidly, and provides an
accurate picture of spread within regions by capturing asymptomatic and symptomatic cases (Shen et al., 2021). Tests for
COVID-19 were developed expeditiously, with the US Food and Drug Administration (FDA) issuing an Emergency Use
Authorization for the real-time polymerase chain reaction (RT-PCR) test on February 4, 2020 (CDC, (Accessed June 14, 2022),
and for the first point of care antigen test on May 9, 2020 (Hahn & Shuren, 2020-05-09). However, a sufficient supply of
COVID-19 testing materials was not readily available in the US early in the pandemic (Cohen, 2020). Manufacturing errors in
February 2020 led to a massive shortage of tests in the US in the early spring of 2020 (Cohen, 2020). Partly for these reasons, it
was not realistic to implement mass testing in the early months of the pandemic. In the US, testing was at first reserved for
very specific situations (only symptomatic individuals with history of travel to Wuhan, China, or those exposed to a known
COVID-19 positive individual), and gradually increased throughout the spring and summer of 2020 (Patel et al., 2020). The US
was unable to ramp up to even 1 million tests per day until October 2020 (Center for Systems Science and Engineering at
Johns Hopkins University, 2020). Even that number of tests is not sufficient to truly implement mass testing. Further, un-
derstanding the effects of testing becomes even more relevant as we now know that a large proportion of COVID-19 infections
(around 40—45%) are asymptomatic (Oran & Topol, 2020; Seibold et al., 2022). Clearly, most asymptomatic individuals (those
without known COVID-19 positive contacts) would not have met the stringent criteria for testing early in the pandemic. Since
these individuals were not being tested, they would have had no indication that they needed to isolate themselves. On the
other hand, studies have indicated that asymptomatic individuals are infectious (Oran & Topol, 2020) and may be a sub-
stantial driver of disease spread (Johansson et al., 2021). This raises one of the questions we examine in our model: If it had
been possible to implement mass testing of both symptomatic and asymptomatic individuals during spring and summer
2020, what effect could such testing have had on the course of the pandemic? Testing alone, however, cannot serve as a
control measure. That is, the testing itself does not have an effect on the number of individuals infected. The behavior of
individuals after testing is the key factor for disease control. Testing allows the determination of which individuals should be
isolated. The isolation serves as the control measure, preventing disease spread by prohibiting contact with others. However,
even when isolation is required by law or encouraged by compensation, perfect isolation is not achievable (Bodas, Peleg, & 6,
2020; Patel et al., 2021; Tseng et al., 2021). There will be individuals who refuse to comply with isolation orders, as well as
mistakes in attempting to isolate. This raises the second question we address in our model: how does isolation compliance
affect the spread of COVID-19 disease? The interplay between the testing level of asymptomatic cases and compliance with
isolation regulations is what we seek to elucidate with our model.

Mathematical modeling has frequently been used to describe the dynamics of infectious and non-infectious diseases. To
date, several types of mathematical and statistical models, including ordinary differential equation (ODE) models and agent-
based models (ABMs), have been used to study and forecast the dynamics of the COVID-19 pandemic in the US and
worldwide. In this paper, we use a deterministic compartmental ODE model to explicitly consider the effects of asymptomatic
spread and compliance with isolation orders on the spread of COVID-19 disease. We next review some key models in relation
to our proposed model. This short review includes models that predict and address issues of testing, isolation, physical
distancing, and compliance, which were vital in controlling the epidemic at its early stages before the availability of vaccines.

Several authors have previously used compartmental mathematical models to investigate the role of testing and isolation
on the spread of COVID-19 (Aronna et al., 2021; Bartha et al., 2021; Bhaduri et al., 2022; Howerton et al., 2021; Leontitsis et al.,
2021; Sturniolo et al., 2021). In particular, Sturniolo et al. (Sturniolo et al., 2021) presented a compartmental ODE model
investigating the effects of testing, contact tracing, and isolation. Unlike our model, the model in (Sturniolo et al., 2021)
assumes perfect compliance with isolation orders, and instead of considering asymptomatic individuals, includes an exposed
but not yet infectious class. The authors of (Sturniolo et al., 2021) are less concerned with predicting specific disease dynamics
than with comparing the results of their method of including contact tracing in a compartmental model to results from agent-
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based models. In (Bartha et al., 2021), Bartha et al. proposed a compartmental ODE model that considers only symptom-based
testing, using the assumption that adjusting the probability of showing symptoms adequately accounts for asymptomatic
individuals. Bhaduri et al. (Bhaduri et al., 2022) presented a model looking at testing without explicitly including asymp-
tomatic individuals or a measure of compliance with isolation measures. The model analyzed in (Bhaduri et al., 2022), mostly
focuses on finding the effects of false negative test results on spread of COVID-19. Aronna et al. (Aronna et al., 2021) developed
a compartmental ODE model accounting for testing and isolation strategies while separating out asymptomatic individuals. In
contrast to our model, however, the model formulation in (Aronna et al., 2021) assumes a constant population size and does
not include vital dynamics. Another compartmental model examining testing strategies while ignoring vital dynamics was
presented by Leontitsis et al. (Leontitsis et al., 2021). Using stochastic, rather than deterministic, techniques, Howerton et al.
(Howerton et al., 2021) used a compartmental model to examine how mass testing and isolation can augment other strategies
for COVID-19 control. Additionally, a review of the types and usefulness of various compartmental models in predicting
COVID-19 spread was conducted by Padmanabhan et al. (Padmanabhan et al., 2021). The effects of testing, isolation, and
compliance have also been examined in the context of ABMs, as in (Almagor & Picascia, 2020; Kim & Koo, 2021; Moghadas
et al., 2020; Alvarez & Rojas-Galeano, 2020). In particular, Moghadas et al. (Moghadas et al., 2020) suggested that mass testing
of the asymptomatic individuals is necessary to mitigate the spread of COVID-19; this helps slow the disease spread and thus
bring the pandemic under control.

Focusing on only mitigation strategies available early in the pandemic (including testing, isolation, and compliance with
government policies), we develop a deterministic model that investigates the impact of mass testing of both asymptomatic
and symptomatic individuals, together with compliance with isolation policies on the spread of COVID-19 disease. Our model
is parameterized using historic COVID-19 transmission data from New York State for March 11th, 2020 through June 9th,
2020. In the next section, we present the model formulation, followed by model analysis in Section 3. Numerical simulations
of the model are presented in Section 4 followed by a discussion in Section 5. Proofs of theorems are given in.Appendices A, B
and C.

2. Model formulation

We formulate a deterministic model to study the impact of testing and isolation on the epidemic dynamics of COVID-19.
The population is divided into 8 compartments, namely susceptible individuals (S), symptomatic infected individuals waiting
for COVID-19 test results (It), symptomatic infected individuals who have not been tested or who are tested positive but are
not isolated (I), isolated symptomatic infected individuals (L;), asymptomatic infected individuals waiting for test results (A7),
asymptomatic infected individuals who have not been tested or who have tested positive but are not isolated (A), isolated
asymptomatic infected individuals (L4), and recovered individuals (R). We split symptomatic individuals into two compart-
ments (ITand I), and do the same for asymptomatic individuals (Arand A), so that it is convenient to study the impact of the
testing and isolation proportions on the spread of COVID-19.

We assume that all newborns and those entering the population are susceptible and enter the compartment S with
recruitment rate A. Furthermore, all individuals die of natural causes at a constant rate u. According to (He et al., 2020;
Subramanian et al., 2021), asymptomatic infected individuals contribute substantially to the transmission of COVID-19.
Therefore, we assume that susceptible individuals become infected by symptomatic infected individuals (It or I) with
force of infection A; depending on the transmission rate §;, or by asymptomatic infected individuals (Ar or A) with force of
infection /4 depending on the transmission rate §4. A proportion ¢ of the new infections are symptomatic, among which a
proportion ¢ are tested. A proportion 1 — ¢ of the new infections are asymptomatic, among which a proportion « are tested.
Symptomatic infected individuals waiting for their test results leave the compartment I at a rate 6, among which a pro-
portion ¢ do not isolate themselves and move to the compartment I. The rest move to the isolation compartment L; at rate
(1 — ¢)b; or die due to natural causes or COVID-19 at rates u and yy, respectively. Similarly, asymptomatic infected in-
dividuals waiting for their test results leave the compartment Ar at a rate 4, among which a proportion e4 do not isolate
themselves and move to the compartment A. The rest move to the isolation compartment L4 at rate, (1 — €4)f4 or die due to
natural causes at rate u. Infected individuals in classes I, L, A, and L4 recover at rates vy, vy, va, Y1, respectively. In addition,
symptomatic infected individuals in classes I, I and L; die due to the disease at rates uy, y and y;,, respectively. In contrast,
asymptomatic individuals do not die from the disease. We assume that all the parameters are positive, and that the pa-
rameters denoting proportions 6, g, , ¢, ea € (0, 1).

Since we are focusing on an early period of COVID-19 from March 11th, 2020 to June 9th, 2020, we do not consider
reinfection or vaccination in our model. Additionally, we assume that testing is perfect, i.e., no false positive or false negative
results. We also assume that isolation is perfect, i.e., isolated people do not transmit the disease. Detailed descriptions of the
variables and parameters are given in Table 1 and Table 2, respectively.

The resulting model is described by a system of ordinary differential equations given in (2.1), with the corresponding flow
diagram shown in Fig. 1
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Table 1
Description of variables in model (2.1).
Variable Description
S Susceptible individuals
Ir Symptomatic infected individuals who have been tested, waiting for results
I Symptomatic infected individuals who have not been tested or
who have tested positive but are not isolated
Ar Asymptomatic infected individuals who have been tested, waiting for results
A Asymptomatic infected individuals who have not been tested or
who have tested positive but are not isolated
L Isolated symptomatic infected individuals
La Isolated asymptomatic infected individuals
R Recovered individuals
Table 2
Description of parameters in model (2.1).
Parameter Description
A Recruitment rate
w Natural death rate
81 Transmission rate for symptomatic individuals
Ba Transmission rate for asymptomatic individuals
) Proportion of symptomatic individuals among infections
a Proportion of tested individuals among symptomatic infections
K Proportion of tested individuals among asymptomatic infections
w Disease-induced death rate for symptomatic individuals who are not isolated
s Disease-induced death rate for symptomatic individuals who are isolated
0r Waiting rate for symptomatic individuals
Oa Waiting rate for asymptomatic individuals
€ Proportion of symptomatic individuals who do not comply with isolation order
€A Proportion of asymptomatic individuals who do not comply with isolation order
Y1 Recovery rate for symptomatic individuals who are not isolated
v, Recovery rate for symptomatic individuals who are isolated
YA Recovery rate for asymptomatic individuals who are not isolated
YL, Recovery rate for asymptomatic individuals who are isolated

(A +A)S ’(1 - 8)(A; + A4)S

I

(u+ ppIr]

(1—0)8(A+24)S I A=A =8)A+2y)S
0,1,
[ T] [ I:]

S

(e + )l r_l%
R

s

(A —enOilr Yi,Li I [ Yisla L (1 —£2)024r
A

(u+pr )Ly HLa

Fig. 1. Flow diagram describing COVID-19 transmission in model (2.1).

) S(l') A —puS— (A +44)S
o Ir(t) = 00(A + Aa)S = (1 + py + Ol
I(t) = (1= 0)0(4 + 4a)S + erfiIr — (b + py + vp)!
o Ar() =k(1=0)(A +4a)S — (k + ba)Ar
A(t) = (1 =k)(1 = 0)(A + 24)S + ealaAr — (1 + 74)A
Li(t) = (1 — en)fidr — (0 + pag, + v,
La(t) = (1 = ea)laAr — (1 + 71, )La
R(t) = vl +vpA + vy, L + v,La — pR

where the force of infection A; and A4 are given by
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_ Bulr+D _ Ba(Ar +4)
e

We let D(t) be the total number of individuals who die from COVID-19 in the time span of our study. It follows from model
(2.1) that the equation of the rate of change of D(t) is given by

D(t) = wy(I+Ir) + Ly (2.2)

-8
Solutions withsnon-negative initial conditions stay in the closed positive hyperspace, i, for the rest of the time, i.e. (S,Ir,],
Ar, AL Ly, R)EN_, since

Sls-0>0,  Irlyg>0, I,0>0,  Arls,0>0, (23)
Algo =0,  Ll,_0>0, Ial,0=0, Rlgq>0.

Setting N(t) as the total population, i.e. N(t) = S(t) + I(t) + I(t) + Ar(t) + A(t) + Li(t) + La(t) + R(t), and taking the sum of
equations in (2.1), we have

N(t) = A — uN — gy (Ir +1) — p, Ly < A — uN,

where It > 1,1 > 0, and L; >. It follows that

lim sup N(t) < é.
t— oo 13
We define the domain of system (2.1) to be

-8
Q= {(S,ITJ,AT,A,L],LA,R) S §H+‘O§S+IT+I+AT+A+LI+LA +R§%}

The inequalities in (2.3) imply the region Q is positively invariant for system (2.1). We take the initial conditions in Q, then
the trajectory will stay in Q for all time. Using a standard method (see, e.g. (Gao et al., 2021)), we can show that for any initial
conditions in €, there exists a unique solution of system (2.1) in Q for t € [0, ). Therefore, system (2.1) is both epidemio-
logically and mathematically well posed.

3. Analysis
3.1. Control reproduction number

System (2.1) always has a disease-free equilibrium E9 = (%,0,0,0,0,0,0,0). Using the next-generation matrix approach (van
den Driessche & Watmough, 2002) (see Appendix A), the control reproduction number R is given by

Re = UaRC,IT +(1- 0')(373(71 +k(1- 6)RCAT +(1-x)(1- 6)RCA7 (3.1)
where
Bi Biert

Rep = + :

T R N TR T )
Rc,l=7ﬂl ;

M+ up (32)
Req— P Bacala
b (wAOa) (e va)
Ba

Reca= .

cA M+ YA

We denote the control reproduction number associated with symptomatic and asymptomatic individuals by %; and R4
respectively, that is R¢c = R;+ R4, where
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= JéRC,IT + (1 — 0)572(‘1[,
Ra=k(1-0)Rca, +(1—k)(1-0)Rca.

To see the biological interpretation of R¢,, in the incidence term Nﬂ'L’TSL , we assume that all individuals not in the

isolation classes (active population) are susceptible (N7L517 = 1. Then () represents the number of secondary infections per
unit of time generated by one symptomatic infected individual who has been tested in a population with all active individuals
susceptible. Here e +0 is the average time a symptomatic infected individual who has been tested spends in the I class.
Therefore, Hﬁiﬁ represents the number of secondary infections generated by this infectious individual when in compart-
ment I1. After receiving the test result, this individual may not be isolated but then move to compartment [ with probability
m lew For a symptomatic individual, the average time spent in compartment I is W Thus, the second term in the
expression for R¢y represents the number of secondary infections generated by this infectious individual when in
compartment I. Therefore, R¢, is the number of secondary infections generated during their whole infectious period by one
symptomatic infected individual who has been tested in a population with all active individuals susceptible. There are similar
meanings for R¢j, Rca,, and R¢ 4. Note that there are four groups of infectious individuals, namely, I, I, Arand A. An infected
individual enters compartments I, I, Ay, and A with respective proportions d6, (1 — ¢)d, k(1 — ) and (1 — «)(1 — 6). Therefore,
Rc represents the average number of secondary infections generated by one infectious individual during their whole in-
fectious period in a population with all active individuals susceptible. Here infectious individuals symptomatic or not, tested
or not are included. From the expression of R, it follows that to reduce R¢ <1, both symptomatic and asymptomatic
transmission need to be reduced.

3.2. Equilibrium and stability

Since the control reproduction number R is derived using the next-generation matrix approach, the local stability result
for the DFE follows from (van den Driessche & Watmough, 2002).
Theorem 1. When R¢ <1, the DFE E° is locally asymptotically stable; when R¢ > 1, the DFE E° is unstable.

In addition, we also have the global stability of the DFE, stated in Theorem 2 with the proof given in.Appendix B.
Theorem 2. When R < 1, the DFE E° is globally asymptotically stable.

Furthermore, the following theorem establishes the uniqueness of the endemic equilibrium and the details are provided in
Appendix C.

Theorem 3. When R > 1, the system (2.1) has a unique endemic equilibrium

= (§%,I},I" A}, A" L], Ly ,R"), where

. A
S= 1 1 6 Re-1__
A+ IU'I( +(11)+/.LL’(14+/.L +ijlaj T+a,+a,+as+as
* Rc_l £ * * * *
= S, I =aqlr, Ar=ayly,
1+a1+a2+a3+a6 T T 2T
A =asly, L=a4ly, Ly=asly, R =agl;
with
(1 —0)(u+up+ 01)]
a; = el + ,
! u+u1+71{” v
a _ KA = 0) (et +0p)
2 a0(u + Oy)
a3—— bm+m—MW+@q%
w7 K (33)
__6(-«) '
B+ g v
05:9,4(1 —<alg,.
W+,

1
ag :ﬁ(wa] + 7403 + 71,04 + 7, 05).-
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3.3. Elasticity analysis

From the previous theorems, the control reproduction number R¢ is a threshold for disease elimination. According to the
biological meaning of R, it represents how fast the disease can spread. Therefore, the smaller the R, the slower the disease
can spread. To estimate which control strategies can help to reduce R more efficiently, we perform an elasticity analysis
according to (van den Driessche, 2017). This measures the relative change of R¢ regarding w and is defined by

(:)RC [0
YRe = IRC O
© T 9w R

where w is any parameter in the expression of R¢. Here we consider the elasticity index of R regarding parameters related to
testing and isolation, i.e. o, k, ¢, €a, 0], 64. Using this expression, it follows that

yRe — 9081y, — (1 —en)ly] yRe _ K(1L=0)Balva — (1 — ea)0a]
7 Relp 4 py+ 01 (w4 py + 1) « Re(p+0a)(w+va)
Re _ o0eB;0; 20 yRe k(- 0)eaBala
O Re(ptpy 0+ )" “ Re(u+0a)(m+va)" 7
YR — —00810;[(1 — ) (u + py) + 71] yRe _ —K(1 = 0)Ba0al(1 — ea)u + YA]
0 — 7 O, —

Re(u+ uy + 0p)? (,u+u,+7,) R+ 04) (1 + v4)

The elasticity indices for non-compliance proportions (¢; and e4) are always positive, implying that if more people comply
with isolation, then transmission is reduced. Since 1/6; and 1/64 represent the average waiting time for test results, YRC <0
and YRC <0 imply that reporting test results faster can reduce transmission. However, the elasticity indices for te’stmg
proportlons (o and k) can be positive or negative depending on the signs of y; — (1 — ¢)f; and y4 — (1 — e4)da, respectively.
Based on the parameter values from Tables 4 and 5, we can compute the above elasticity values, which are shown in Table 3.
YR = —0.0537 indicates that 1% increase in ¢ leads to 0.0537% decrease of R¢. The other terms in Table 3 have similar
meanings.

4. Numerical simulation

The baseline parameter values given in Table 4 are now used to simulate the model (2.1) and to assess the effects of testing
and isolation compliance on COVID-19 spread for the entire New York state during the period of March 11, 2020 to June 9,
2020. In Section 4.1, the simulation was carried out by fitting D(t) (where D(t) is given by Equation (2.2)) to the cumulative
mortality data obtained from the John Hopkins COVID-19 repository (Dong et al., 2020). Since New York was the global
epicenter for COVID-19, the aforementioned data set represents the period for the first wave of the COVID-19 pandemic in the
United States (Hoogenboom et al., 2021). Furthermore, in Section 4.2 a global sensitivity analysis is carried out by using PRCC
and heat map graphs display the impact of testing and isolation compliance on R.

4.1. Data fitting and parameter setting

The time series illustration of the least squares fit of the model (2.1) depicted in Fig. 2(a), shows the model output (blue
curve) for the cumulative deaths compared to the observed cumulative mortality data (red dots) from the period of March
11th, 2020 to June 9th, 2020 in the state of New York. To show the goodness of the fit, predicted daily mortality from the
simulation of the model is compared with the observed daily mortality data (depicted in Fig. 2(b)).

The model (2.1) consists of 17 parameters, of which 6 were obtained from the available literature. We calculated the daily
recruitment rate (A) as a product of the total population of New York State (19, 453, 561) and the daily natural mortality rate
(u). We assumed the following four parameters for the data fitting of the model: x = 0.1, ¢ = 0.1, ¢, = 0.1 and ¢4 = 0.3. Since
during the period of our data set, very few tests were done (largely due to lack of testing kits), we assume a testing proportion
of k = ¢ = 0.1. Since testing was limited, it is reasonable to assume that the vast majority of those who were able to get tested
and tested positive were isolation-compliant. Furthermore, it is also sensible to assume that COVID-19 positive tested in-
dividuals with symptoms were more likely to comply than those without symptoms. Hence, we chose ¢4 > ¢, with specific

Table 3
Elasticity indices for the control reproduction number with respect to testing and compliance parameters based on the
parameter values from Tables 4 and 5

Elasticity Value Elasticity Value

TRC —0.0537 YFC -0.0141

r?c 0.0072 YRe 0.0105
Y ~0.0108 yie ~0.0105

[
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Table 4
Table of fixed parameters of the COVID-19 model (2.1).
Parameter Value Source
A 681 person/day [Calculated]
w 3.5 x 107> day ! (Gumel et al,, 2021; Mancuso et al., 2021)
0 0.6 (dimensionless) (Mancuso et al.,, 2021; Brozak et al., 2021)
Y=L 1/20 day~! (Tang et al.,, 2020; Zhou et al., 2020; Eikenberry et al., 2020)
Ya =71, 1/10 day! (Tang et al., 2020; Zhou et al., 2020; Eikenberry et al., 2020)
K 0.1 (dimensionless) [Assumed]
a 0.1 (dimensionless) [Assumed]
0, 1/3 day! (Health and Hospitals, (Accessed June 30, 2022)
Oa 1/3 day ! (Health and Hospitals, (Accessed June 30, 2022)
€ 0.1 (dimensionless) [Assumed]
7 0.3 (dimensionless) [Assumed]
Table 5
Table of fitted parameters of the COVID-19 model (2.1).

Parameter Value

B8 0.4783 day~!

Ba 0.7019 day !

w 1.0001 x 10~* day™"

i, 5.0546 x 10~% day~!

values ¢, = 0.1 and e4 = 0.3. The values of these fixed and assumed parameters are tabulated in Table 4. In addition, we
estimated the following parameters §, 84, 4 and y;, by using Isqcurvefit in MATLAB 2021a. The package Isqcurvefit uses the
least squares regression method, which we use in this project to minimize the total sum of the squared errors (SSE) between
the cumulative predicted mortality generated through the model and the observed mortality data. The fitting for the model
using the COVID-19 cumulative mortality data for New York is illustrated in Fig. 2(a). The estimated parameter values for the
unknown parameters from the data fitting are §; = 0.4783, §4 = 0.7019, y1; = 1.0001 x 10~*and uy, =5.0546 x 10~4, which are
also tabulated in Table (5). For this set of parameters, the control reproduction number for the model (2.1) is R¢ = 7.989 and
the model exhibits a unique endemic equilibrium (given by Theorem 3.2). Due to the complexity of the model, we do not have
the result of the stability of the endemic equilibrium. However, in Fig. 3 we show two examples to illustrate its stability and
uniqueness using two different sets of initial conditions. The endpoints in both Fig. 3(a) and (b) are approximately.(Iy, I, Ag A, L;,
La) = (107, 6490, 71, 2216, 636, 167), which are the values of the endemic equilibrium computed from the expression in
Theorem 3.

4.2. Sensitivity analysis

Due to the uncertainty raised from the assumed and estimated parameter values, it is critical to quantify the impact of
parameter sensitivities on the dynamics of the model (2.1) (with respect to a particular response function). The analysis
performed in Section 3.3 provides the relations between parameters and R¢ by elasticity indices. In this section, we use PRCC

%10% (a) (b)
3 1000 o ® Observed data
58 == Model estimation
: 800
2

600

400

Daily deaths (New York)

® Observed data
== Model estimation

Cumulative deaths (New York)

S d 8 @ @ S N G
@‘b WO & & 8 KX R\ IS & & &
o & Qw‘\ Wu’*\ NS N RN Q@“ S

v
Date 2020 Date 2020
Fig. 2. (a) Time series illustration of the least squares fit of the model (2.1). It compares the cumulative deaths from model output (blue curve) with the observed

cumulative mortality for New York (red dots) from March 11th, 2020 to June 9th, 2020. (b) A comparison of the simulated daily deaths curve (blue) using the fixed
and estimated parameter values given in Tables 4 and 5 with the observed data for New York State (in red).
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to quantitatively demonstrate the global uncertainty and sensitivity of parameters on R¢ and model dynamics. From the
analysis, we know that R¢ is the threshold for disease elimination. Thus, we are interested in parameters that have great
impact on R¢. In addition, we are concerned with the prevalence of the total active infections. Therefore, we choose R and
It + 1+ Ar+ A as our response functions. The inputs are the following assumed and fitted parameters: «, a, 0}, 04, €, €a, 1, 4, 41
M-

I We choose parameter values from Tables 4 and 5 as baseline. For the ranges of testing and non-compliance proportions («,
a, €, €a), we assume them to be in the interval [0.01, 0.99] so that they remain within the defined domain of (0,1). The ranges
for the other parameters are obtained by taking 20% to the left and right of their baseline values. We assume that all pa-
rameters obey the uniform distribution. The range of each parameter is separated into 1000 equal sub-intervals. Parameter
sets are drawn from this space without replacement, which leads to a 1, 000 x 10 parameter matrix. Then R¢ and
It + I + At + A are derived and simulated for each column of this parameter matrix, and PRCCs are then computed. The
negative or positive sign of PRCC values represents negative or positive correlation between parameters and the response
functions R¢ and It + I + Ar + A. High PRCC values near —1 or +1 are considered to be substantially linked with the response
function (Marino et al., 2008).

Fig. 4(a) shows PRCCs of assumed and fitted parameters on Rc. We can see that the magnitude of PRCC values for k, a, ¢, €a,
G1, and (4 are relatively large (see Table 6 for exact values). This indicates that they have more significant influence on R¢. We
recall that «, g, ¢, e4 represent proportions for testing and compliance with isolation, and g}, G4 are infection rates. Therefore,
the above result implies that testing and isolation are effective strategies to mitigate the transmission of COVID-19. Reducing
the infection rate by wearing masks or social distancing is also important. Similar results are found in Fig. 4(b), which shows
PRCCs of assumed and fitted parameters on the total active infections It + I + Ar + A on day 18. The reason we choose day 18 is
that we are more interested in the time point when the infection achieves the peak. From Fig. 2(b) we can see that the peak of
daily deaths occurs around day 25. The peak for the infection is usually earlier than that for the death. Therefore, here we
choose day 18, i.e., one week earlier than the peak of the death. Note that the results derived from both elasticity analysis in
Section 3 and sensitivity analysis here agree with each other.

In Fig. 5, we visualize the effect of varying non-compliance on the control reproduction number Rc. In Fig. 5(a) we use
baseline fixed and fitted parameters from Tables 4 and 5 respectively, whereas in Fig. 5(b) we assume perfect testing
(¢ = k = 0.99). From Fig. 5(a) we conclude that under the baseline testing conditions (¢ = « = 0.1), changing isolated
compliance behavior is inefficient in controlling Rc. In fact, Fig. 5(a) also suggests that if the testing proportion is low, then
high isolation compliance on its own may not be a sufficient measure for controlling the spread of the disease. Additionally,
from Fig. 5(b) we conclude that reducing R below 1 through testing and isolation only is not possible. Additional measures
are needed to reduce R.

In Fig. 6, we visualize the effect of the proportion of tested COVID-19 individuals on the control reproduction number R.
Specifically, « is the proportion of asymptomatic individuals who are tested, whereas ¢ is the proportion of symptomatic
individuals who are tested. Fig. 6(a) corresponds to varying ¢ and k with other baseline fixed and fitted parameters from
Tables 4 and 5 respectively, whereas Fig. 6(b) corresponds to near perfect isolation compliance among individuals having
positive test results (¢; = e4 = 0.01). From Fig. 6 we once again conclude that although testing and isolation compliance are
important factors in controlling the spread of COVID-19, they are not enough to bring the control reproduction number below
unity. Hence, additional control measures are needed.In Fig. 7 we visualize the effect of varying testing turnaround time and
testing proportion. We notice that decreasing the turnaround time has a major impact on reduction of R¢. In fact, Fig. 7(b)
shows that it is even possible for R to be below one if a large proportion of individuals are tested with fast testing turnaround
and high isolation compliance. It is worth pointing out that the R for the duration relevant to our study was 7.989, which
may have demanded strict control strategies to obtain R¢ < 1.
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Fig. 3. Endemic equilibria when R = 7.989. In (a) and (b) two different random initial conditions are taken, illustrating that when R¢ > 1, the endemic
equilibrium is stable. Initial conditions for (a) and (b) are (5(0), I{(0), I(0), A¢{0), A(0), L(0), L4(0), R(0)) = (10000, 1000, 500, 1000, 500, 800, 800, 100) and (S(0),
I{0), I(0), A7{0), A(0), L[(0), Ls(0), R(0)) = (20000, 500, 500, 100, 100, 20, 20, 10000), respectively. They have different infection peaks, but approach the same
endemic equilibrium.
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L0 (a) PRCCs: Re id (b) PRCCs: Iy + I+ Ar + A (t=18)

0.0 0.0
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Fig. 4. Partial rank correlation coefficients (PRCCs) of assumed and fitted parameters on the control reproduction number R¢ (as shown in (a)) and the total
active infections It + I + Ar + A on day 18 (as shown in (b)). The baseline values of the parameters are as given in Tables 4 and 5

Table 6
Table of PRCC values with assumed and fitted parameters for R¢ and It + I + Ar + A. The larger PRCC values are
indicated with *, implying that the corresponding parameters are more significant.

Parameter PRCC: R¢ PRCC: It + I+ Ar+ A (t=18)

K —0.234* -0.371*

a —0.693* —0.564*

0 —-0.085 -0.170

Oa -0.104 -0.163

uy —0.027 —0.032

73 0.028 —0.007

€ 0.811* 0.762*

7 0.567* 0.655*

B 0.725* 0.778*

Ba 0.465* 0.681*

(a) e =r=0.1 (b) o =K =0.99 Re
9
8
= 7
6
5
o 4
3
2
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

€A €A

Fig. 5. The effect of varying isolation non-compliance on R for imperfect testing ¢ = k = 0.1 (shown in (a)) and near perfect testing ¢ = k = 0.99 (shown in (b)).
Here ¢ and ¢4 denote the non-compliant isolation proportion for symptomatic and asymptomatic infections, respectively. Other parameter values are from Tables
4 and 5

To investigate the impact of COVID-19 testing among infected individuals, we varied testing proportions k and ¢ with other
parameter values from Tables 4 and 5 Fig. 8(a) and (b) show the daily number of infectious individuals (Ar + A + It + I) by
varying k and o values, respectively. In Fig. 8, solid lines are the results with higher non-compliance proportions (e4 = ¢, = 0.7),
and the dashed lines are with lower non-compliance proportions (e4 = ¢, = 0.01). The number of infected individuals is larger
with higher non-compliance proportions (solid lines) than with lower non-compliance proportions (dashed lines), and there
is not much effect of testing proportion under the higher non-compliance proportions. Under lower non-compliance, the
peak size is reduced by about 20% when the testing proportion among asymptomatic individuals is increased from k = 0.1 to
k = 0.9 in Fig. 8(a), whereas the size is reduced by about 39% when the testing proportion among symptomatic individuals is
increased from ¢ = 0.1 to ¢ = 0.9 in Fig. 8(b).
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(b) Ef = €74 = 0.01 Re

0.2 0.4 0.6 0.8
o o

Fig. 6. The effect of varying proportions of tested individuals among symptomatic () and asymptomatic (¢) individuals on R¢. Fig. 6(a) has baseline fixed and
fitted parameters from Tables 4 and 5 respectively, whereas Fig. 6(b) has near perfect isolation compliance (¢ = ¢4 = 0.01).

(a) er=0.1,24 = 0.3

NOW R U N O

[

2 4 6 8 10 12 14 2 4 6 8 10 12 14
1/0 (in days) 1/0 (in days)

Fig. 7. The effect of varying testing turnaround time (1/6) and testing proportions (a, k) on R¢. The value of 6 = 6; = 0, is taken to be in [1/14, 1] which corresponds
to a testing turnaround time of 1—14 days. Furthermore, for simplicity, we choose ¢ = «. Fig. 7(a) has baseline fixed and fitted parameters from Tables 4 and 5
respectively, whereas Fig. 7(b) has near perfect isolation compliance (¢ = ¢4 = 0.01).

Fig. 9(a) and (b) demonstrate the impact of non-compliance proportions and show the daily number of infectious in-
dividuals (Ar+ A + It + I) by varying e4 and ¢ values, respectively. In Fig. 9, solid lines correspond to higher testing proportions
(k = ¢ =0.99), and the dashed lines correspond to lower testing proportions (k = ¢ = 0.1). The number of infected individuals
is larger with lower testing proportions (dashed lines) than with higher testing proportions (solid lines), and there is almost
no effect of non-compliance proportions under the lower testing proportions. Under higher testing proportions (solid lines),
the peak size of the outbreak is reduced and delayed as each non-compliance proportion decreases in Fig. 9(a) and (b). The
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Fig. 8. The number of infectious individuals (Ar + A + Ir + I) by varying tested proportions « and ¢, respectively. The solid lines correspond to higher non-
compliance proportions ¢4 = ¢ = 0.7 and the dashed lines correspond to lower non-compliance proportions ¢4 = ¢ = 0.01.
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peak size is increased by about 81% when the non-compliance proportion among asymptomatic individuals increases from
ea = 0.1 to ¢4 = 0.9 in Fig. 9(a), whereas the peak size is increased by about 97% when the non-compliance proportion among
symptomatic individuals increases from ¢ = 0.1 to ¢ = 0.9 in Fig. 9(b).

In Fig. 10, we study the impact of test waiting time on the prevalence of infectious individuals (Ar + A + It + I) by varying 64
and #; since 1/64 and 1/6,4 represent the waiting time. Here, solid lines correspond to higher testing proportions (k = ¢ = 0.99),
and the dashed lines correspond to lower testing proportions (xk = ¢ = 0.1). We can see that in both cases, there are more
infectious individuals with lower testing proportions (dashed lines) compared to higher testing proportions (solid lines). In
addition, there is almost no effect of waiting time on the prevalence under the lower testing proportions. In contrast, under
higher testing proportions (solid lines), the peak size of the outbreak can be reduced and delayed as waiting time decreases.
More specifically, the peak size is decreased by about 54% (see Fig. 10(a)) and 65% (see Fig. 10(b)) when the waiting rate among
asymptomatic individuals (f4) or symptomatic individuals (6;) increases from 0.1 to 0.9.

From above, we know that high testing proportion combined with high compliance to isolation can significantly reduce
the prevalence of the total active infections. In addition, prompt response to the pandemic is also important. Therefore, in
Fig. 11 we investigate the impact of starting dates of increasing testing capacity by assuming near perfect testing and near
perfect compliance to isolation. In the early stage of the pandemic, there was a lack of testing resources in the US and
worldwide. Back then, only symptomatic infected individuals were tested. We are also interested in the effect that mass
testing would have had on the course of the pandemic. Therefore, two scenarios were considered, i.e., increasing testing by
near perfect testing only for symptomatic individuals (¢ = 0.99, k = 0.1) or by near perfect mass testing (¢ = x = 0.99). Both
Fig.11(a) and (b) show that if we increase the testing capacity before the infection peak, then the prevalence of the total active
infection can be significantly reduced. For example, if we adopt near perfect mass testing, then more than 60% of infections
could be reduced (see Fig. 11(b)). However, if the increase in testing capacity is implemented after the infection peak, there is
only minor influence. In addition, if we focus on a specific case, namely, increase in testing since day 7, and compare Fig. 11(a)
and (b), it can be seen that mass testing can reduce many more infections than only testing symptomatic individuals.
However, if we compare the other 3 cases, the difference between the two pictures is not much. This again emphasizes the
importance of early implementation of increased testing capacity.

5. Discussion and conclusion

In Section 2 of this paper, we developed a deterministic model to investigate the impact of testing and isolation
compliance on the spread of COVID-19 transmission. More specifically, we aimed to compare the impact of testing and
isolation compliance of symptomatic individuals with that of asymptomatic individuals. So, we considered both symptomatic
and asymptomatic transmission and split each class into two subclasses, i.e., tested classes (Irand Ar) and non-tested or tested
but not isolated classes (I and A). This is a novel feature of our model, and facilitates discussion of the impact of testing and
isolation.

In Section 3.1, we obtained the control reproduction number R¢ (given by Equation (3.1)) and interpreted its biological
meaning. Rigorous analyses of the local and global stability of the disease-free equilibrium are given in Section 3.2. We also
derived the explicit form of the endemic equilibrium. However, due to the complexity of the endemic equilibrium, its stability
was only numerically investigated. We calibrated model (2.1) using cumulative mortality data of the early stage of the
pandemic in New York State. The fixed and fitted parameter values are listed in Tables 4 and 5, respectively. Based on these
parameter values, we computed the control reproduction number R¢ = 7.989. This value is larger than that given in (Ives &
Bozzuto, 2020), where 6.4 is the estimate for the basic reproduction number R at the beginning of the outbreak in New York
State. Another study estimated Rq in New York State to be in the range 3.2—8.1 (Subramanian et al., 2021). Using data from
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Fig. 9. The number of infectious individuals (Ar + A + Ir + I) by varying non-compliance proportions e4 and ¢. The solid lines correspond to higher testing
proportions values k = ¢ = 0.99, and the dashed lines correspond to lower testing proportions k = ¢ = 0.1.
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Fig. 10. The number of infectious individuals (Ar + A + It + I) by varying test waiting rates 64 and 6. The solid lines correspond to higher testing proportions
values k = ¢ = 0.99, and the dashed lines correspond to lower testing proportions k = ¢ = 0.1.
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Fig. 11. (a): The total active infections given different starting dates of improving testing. Here we assume the baseline to be ¢ = k = 0.1. Improving testing in (a)
and (b) refer to only testing symptomatic individuals (¢ = 0.99, k = 0.1) and mass testing strategy (¢ = k = 0.99), respectively. In both panels ¢; = ¢4 = 0.01, and all
the other parameter values are from Tables (4) and (5).

New York and other countries, Kochanczyk et al. derived a larger range, namely 4.7 — 11.4 (Kochanczyk et al., 2020). Our
estimation is within these ranges. Possible reasons for the large ranges may include usage of different data sources (we used
John Hopkins, but there are numerous other data sets, such as that of the New York Times), the study being conducted during
different periods, models being fit to different data sets (we fitted mortality data, but most studies fitted daily case data that is
far less reliable, especially in the early phase of the pandemic with limited testing capabilities), and of course difference in the
models themselves.

To reduce the spread of COVID-19, it is important to lower the R value. To achieve this, it is necessary to understand the
impact that various parameters have on Rc. In Section 3.3, we performed an elasticity analysis to determine positive or
negative changes that key parameters have on R¢. Furthermore, using the values of fixed and fitted parameters reported in
Tables 4 and 5, we calculated sensitivity indices of various key parameters on R and listed these in Table 3. This is a local
sensitivity approach. We also considered a global approach using the PRCC method in Section 4.2. Both methods suggest that
testing and compliance with isolation are important for disease control. Additionally, from Figs. 5—10, we concluded that a
high testing volume combined with a high proportion of compliance to isolation as well as a short waiting time for test results
are needed to slow down the transmission, namely, the peak of infection is lowered and delayed. In Fig. 11, we discussed the
importance of the early implementation of increased testing. In addition, we showed that mass testing can reduce more
infections compared to testing only symptomatic individuals.

The above results are consistent with those from several other studies. For example, Kucharski at al (Kucharski et al., 2020).
showed that in order to lower the effective reproduction number to be less than 1, a high proportion of cases need to self-
isolate and a high proportion of their contacts need to be successfully traced. Howerton et al. (Howerton et al., 2021)
emphasized the importance of a high proportion of testing. They also pointed out that only mass testing followed by short test
delays as well as isolation can mitigate the reliance on distancing. Here mass testing represents testing in the general
population regardless of the presentation of symptoms. It was used in some regions and was widely discussed during the
COVID-19 pandemic. Aronna et al. (Aronna et al., 2021) demonstrated that testing among asymptomatic infections is
fundamental to control the epidemic. The stricter the testing and isolation and the sooner they are implemented, the more
effective they are in flattening the curve of infections. This silent transmission of COVID-19 was also discussed in (Moghadas
et al., 2020). They found that except for symptom-based isolation, identifying asymptomatic and presymptomatic cases are
key factors to minimize the risk of resurgence. Wells et al. (Wells et al., 2021) also pointed out that even perfect isolation of all
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symptomatic individuals would not be sufficient to curb the chain of disease transmission. The importance of early imple-
mentation of control strategies was also studied in several papers. For example, He et al. (He et al., 2021) showed that timely
screening and detection would be needed to avoid future waves. Knock et al. (Knock et al., 2021) concluded that if the
lockdown could have been implemented one week earlier, then approximately half of the mortality in England would have
been avoided.

We acknowledge that the model presented in this paper does not capture all the features of COVID-19. Since we mainly
focus on the impact of testing and compliance of isolation on the transmission of COVID-19, we do not include an exposed
(but not infectious) class, which is also not considered in some other papers modeling COVID-19 (Calleri et al., 2021; Massard
et al., 2022; Serhani & Labbardi, 2021). Another limitation is that the actual size of the epidemic is unknown, which means
that we do not know the exact proportion of asymptomatic and symptomatic people who were tested, especially at the early
phase of the pandemic. The impacts of testing and isolation may vary as the pandemic develops. However, this variation was
not considered in this paper since we mainly focus on the early stage of the pandemic, and aim to compare the impact of
testing and isolation compliance of symptomatic individuals with that of asymptomatic individuals. This variation is an
interesting topic for future research.

In summary, we built a deterministic model to investigate the impact of testing and isolation compliance on the early stage
of transmission of COVID-19. Even though the data are from New York State, the control strategies considered here are only
testing and isolation, whereas physical distancing and masking may have also been implemented. However, the results
derived here could be adapted to other control strategies, for other diseases similar to COVID-19, and in other regions.
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Appendix A. Control Reproduction Number

We consider the infected classes (I, I, Ap, A, Ly, La). Taking the Jacobian matrix at the DFE EY and writing it as the matrix of
new infections F minus the matrix of transfers V gives

Uéﬁl 0651 oéﬁA O'(SﬁA 00
(1—0)06 (1—0)06 (1—0)304 (1-0)0Bs 0 0
F— k(1 —0)p; k(1 —0)6; k(1 —0)Ba k(1 —0)Ba 00
(1-x)1-08 (A1-x)1-0B (1-x)(1-0Bs (1-x)(1-0)84 0 0|
0 0 0 0 00
0 0 0 0 00
B+ g+ 0 0 0 0 0 0
—e0; K+ fy g 0 0 0 0
Ve 0 0 -+ 0 0 0 0
- 0 0 —eala m+Ya 0 0
(1 —e)b 0 0 0  pwtp,+v, O
0 0 ~(1-¢)y 0 0 w+ L,

Then the next-generation matrix is written as FV~! = (a;)g, 5, Where the non-zero entries in Fv1are

aj1 =00Rcy,, a;; =00Rcy, a13=00Rc A, a14=00Rca
1-0 k(1—-0 1-k)(1-0 .
ay; = ayj, 031:7( p; )‘11]'7 ‘14]':7( ()755 )alj, j=1,...4

with Rer,, Re Reap Rea as stated in (3.2). -

The matrix FV~! has rank 1. Thus, it has at most one non-zero eigenvalue 2. Since trace(FV~!) is the sum of all eigenvalues of
Fv=!, X = trace(FV—1). Therefore, the control reproduction number R¢ = p(FV-1) = trace(FV-1) = a1 + Gy + G33+ Gaa
where p(FV~1) is the spectral radius of matrix FV .
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Appendix B. Proof of Theorem 2

Using the method introduced in Theorem 2.1 in (Shuai & van den Driessche, 2013), we define the following Lyapunov
function,

L= RCITIT + RCJI + RCATAT + RC’AA.

It is clear that L is radially unbounded and positive definite in the entire space Q. The derivative of L along the trajectories of
system (2.1) yields

L=Rc it +Rel+ReaAr + Rca

A=Re 1,004 +24)S — (1 + py + )] + R [(1 = 0)0(A + Aa)S + eIy — (1 + py + YD1 + R ap [K(1 = 6) (A + 2a)S
= (u+0a)A1] + Real(1 = &)(1 = 0) (A1 + 24)S + €abaAr — (L + 7p)A]

_ Bilr + DS Ba(Ar +A)S

TSt +I+Ar+A+R St +I+Ar+A+R
+[=Rear (b +0a) + ReaeabalAr — Reali +v4)A.

+[=Req (+ uy +0p) + Re et — Re (e + py +v)I

Using the expressions in (3.2), we have
—Rep(R+u+0)+Repabi= -6, Rea(u+p+v) =01,
~Rear(w+0a) +Reaeabp= —Ba,  Realu+va)=ba

Since

S
<1
S+If+I1+Ar+A+R~ 7

it follows that

L < (R¢ = 1)(BiIr + Bil + BaAt + BaA).

Thus if Rc <1, L <0, with equality holding at the DFE. By LaSalle's Theorem (LaSalle, 1960), the DFE E° is globally
asymptotically stable when R¢ < 1.

Appendix C. Proof of Theorem 3

To obtain the endemic equilibrium, we set the right-hand side of system (2.1) to zero, resulting in the following system of
equations.

A—pS—(h+2)S=0 1)
a0(A +24)S — (u+u+0DIr =0 (C2)
(1=0)0(A +244)S + ebilr — (+p +y)I =0 (C3)
k(1= 6) (4 +2)S — (i + O4)Ar = 0 (C4)
(1=k)(1=0)(A1+A4)S + €allaAr — (k+v)A =0 (C5)
(1 —en)0ily — (p+pg, +v,)L =0 (C.6)
(1 —ea)lpaAr — (u+v,)La =0 (C7)
Yl +vaA+ vyl +v1,la — R =0 (C8)

Equation (C.2) gives

+puy+ 0
(Aﬁl@S:%ﬁ.

Substituting the preceding equation into (C.3)-(C.8) gives
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I=aly, Ar=alr, A=aly, Li=alr, Ly=asly, R=agly, (C9)

where a; (i = 1, ..., 6) are stated in (3.3).
Substituting (C.9) into (C.2) gives

[6:(1 + a1) + Balaz +as)|lrS
S h+T+ArAtR  WHmT O (C.10)

The preceding equation holds in the following two cases. (1) If It = 0, from (C9) and (C1), we have
I=Ar=A=L=ILp=R=0andS$S :%.ThisistheDFE.
(2) If It # 0, dividing by It on both sides of (C.10) and rearrange the equation gives:

g1+ 1) +Ba(a +a3) S+Ir+1+Ar+A+R (C.11)
B+t + O S ' '

We notice that
ol ta) 0% 7681€16; + (1= 0)of;
O B T R (T e (TR S T Sk () B TR V!
= U(SRQIT +(1- 0')57?,(71

and
555Aa2 + 3) :K(l—é)ﬂA+ k(1 — a)eallafa +(1—f<)(1—0)6A
B+ 0 pAla (w04 +va) B+
= k(1 =0)Rca, + (1 =K1 = 0)Rca

Therefore, (C.11) can be rewritten as follows:

It +1+Ar+A+R
RC:S+ T+ J;"rJr + . (C12)
This is valid only when R¢ > 1. Rearranging the above equation gives

_ Re—1 3 (C13)
1+ay+ay+as+ag

I

Taking the sum of equations (C.1)-(C.8) and solving for N yields,

1 6
NZE[A— (ug+arpy +agpg)lr] =S+ (1 +Zaj)lr~

=

It follows that

A
Re—1

S= .
6
kAt [/“‘I +apup + dapiy, + “(l + ZJ:TGJ') ] THa;+a;1d3 105

Since all parameter values are positive and all proportions 6, 7, , ¢, 4 € (0,1),a;> 0 forj= 1,2, ..., 6. Then positive S exists
if and only if R¢ > 1. From (C.13) and (C.9) we know that the values of all the components of (S, Iy, I, Ar, A, Ly, La, R) are positive.
Therefore, there exists a unique endemic equilibrium as given above if and only if R¢ > 1.
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