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ViralCC retrieves complete viral genomes
and virus-host pairs from metagenomic
Hi-C data

Yuxuan Du 1, Jed A. Fuhrman 2 & Fengzhu Sun 1

The introduction of high-throughput chromosome conformation capture (Hi-
C) into metagenomics enables reconstructing high-quality metagenome-
assembled genomes (MAGs) from microbial communities. Despite recent
advances in recovering eukaryotic, bacterial, and archaeal genomes usingHi-C
contact maps, few of Hi-C-based methods are designed to retrieve viral gen-
omes. Herewe introduce ViralCC, a publicly available tool to recover complete
viral genomes and detect virus-host pairs using Hi-C data. Compared to other
Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a
complementary information source for the Hi-C interactions. Using mock and
real metagenomic Hi-C datasets from several different microbial ecosystems,
including the human gut, cow fecal, and wastewater, we demonstrate that
ViralCC outperforms existing Hi-C-based binning methods as well as state-of-
the-art tools specifically dedicated to metagenomic viral binning. ViralCC can
also reveal the taxonomic structure of viruses and virus-host pairs inmicrobial
communities. When applied to a real wastewater metagenomic Hi-C dataset,
ViralCC constructs a phage-host network, which is further validated using
CRISPR spacer analyses. ViralCC is an open-source pipeline available at https://
github.com/dyxstat/ViralCC.

Viruses constitute the most divergent and ubiquitous biological
organismonearthwith an estimatedglobal abundance of 1031 1. Viruses
have enormous impacts on ecosystems as predators and/or parasites
within microbial communities through the lysogenic or lytic cycle
infecting bacteria and archaea2,3. For instance, viruses contribute sig-
nificantly to the biogeochemical cycling of carbon and nitrogen in
aquatic habitats4,5 and are implicated in certain diseases such as
inflammatory bowel disease and severe acute malnutrition in human
systems6,7. Therefore, the interest in viromics has risen dramatically in
the past two decades.

Since the number of viruses that can be traditionally cultivated in
the laboratory is too limited to assess viral diversity8,metagenomics, as
a culture-independent sampling strategy, has been widely exploited to
recover viral genomes and to identify the hosts of these newly dis-
covered viruses, one of themost difficult aspects of studying viruses in

microbial communities9–11. Metagenomic whole genome shotgun
sequencing (WGS) directly extracts genomic fragments from various
environmental samples, generating a large number of short reads that
are subsequently assembled into contigs12–14. Metagenomic viral con-
tigs are then identified from large assemblies based on sequence
composition, sequence similarity, and/or detection of viral
proteins15–17. However, viral genome assembly from shotgun reads is
challenging18 and short viral contigs may only represent segments of
entire viral genomes19. Incomplete viral fragments have a significantly
adverse impact on the downstream analyses, including the character-
ization of the underlying viral diversity and abundance, prediction of
host and functional capacity20,21. Therefore, metagenomic viral bin-
ning, defined as a process to group viral contigs from the same species
into viral metagenome-assembled genomes (vMAGs), is valuable,
especially for giant viruses22.
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Most of traditional shotgun-based binning tools are developed to
recover eukaryotic, bacterial, and archaeal genomes23–26 and ignore the
challenges associated with viruses, such as the lack of universal single-
copy genes and relatively small size of viral genomes. Additionally,
those binning tools exploiting microbial marker gene analysis are not
applicable for viruses24,27,28. CoCoNet29 and vRhyme30 are two existing
methods specifically dedicated to metagenomic viral binning. CoC-
oNet trains a neural network using both composition and co-
occurrence features of viral contigs across samples to predict the
probability that two viral contigs originate from the same genome.
vRhyme utilizes single- or multisample coverage effect size compar-
isons to calculate coverage differences between viral contigs. To pro-
cess the sequence composition information, vRhyme first pretrains
supervised machine-learning-based classification models using gen-
ome fragments. Then, the nucleotide feature similarity vector between
two viral contigs is input into the classification models to predict the
probability value that viral contigs originate from the same genome.
Finally, vRhyme constructs a weighted network, where each node is a
viral contig and an edge weight is calculated by dividing the coverage
difference by the probability value. Networks are further refined into
vMAGs. However, both CoCoNet and vRhyme may be critically
impaired when there are not enough samples to construct reliable co-
abundance profiles of viral contigs, i.e., profiles showingwhich contigs
share consistent abundance values across multiple samples and are
therefore likely to come from the same genome.

Metagenomic high-throughput chromosome conformation cap-
ture (metagenomic Hi-C) has been developed in recent years to
simultaneously recovermetagenome-assembled genomes (MAGs) and
determine virus-host pairs from a single microbial community
sample31–37. Combined with the conventional shotgun sequencing,
metagenomic Hi-C applies a genomic proximity ligation technique to
construct chimeric junctions between metagenomic sequences in
close proximity within the same cell. After sequencing,millions of Hi-C
read pairs are generated and subsequently aligned to contigs assem-
bled from the shotgun reads. Contigs belonging to the same genome
display enriched Hi-C contact frequencies compared to those from
different genomes31, resulting in dozens of nearly complete bacterial
genomes retrieved by publicly available Hi-C-based binning tools, such
as MetaTOR, bin3C, and HiCBin38–40. Although recovering high-quality
viral genomes is vital and prerequisite for downstream analyses, apart
from a proprietary and commercial genome reconstruction service
called ProxiPhage41, Hi-C-based binning methods with open-source
pipelines are not developed to retrieve viral genomes. For example,
HiCBin requires the taxonomic annotation of some contigs by

TAXAassign (https://github.com/umerijaz/TAXAassign) to generate
the intra-species contacts in thenormalization step42whileTAXAassign
can hardly annotate viral contigs, resulting in the inability of HiCBin to
bin viral contigs.

In addition to the difficulties in recovering vMAGs, tools for
benchmarking the performance of viral genome retrieval remains rare
in metagenomic Hi-C experiments. CheckV has been widely used to
estimate the completeness of vMAGs by comparing them to a large
database curated from NCBI GenBank and environmental samples43.
However, unlike the CheckM which takes advantage of universal
single-copy marker genes to assess both completeness and con-
tamination of prokaryotic MAGs44, CheckV is unable to estimate the
contamination of vMAGs since there is no such marker gene set
available for viruses21. CheckV is also limited in its ability to assess the
completion of vMAGs since randomly grouping two viral contigs
together generally increases completion. Moreover, though methods
based on simulating known viral contigs from NCBI RefSeq viral
genomes45 have already been employed to estimate the binning results
of shotgun-basedmethods29,30, they cannot be generalized to evaluate
Hi-C-basedbinning approaches since few studies havebeen conducted
on modeling Hi-C interactions for viral contigs. Therefore, it is
imperative to design a systematic and comprehensive benchmarking
strategy for Hi-C-based metagenomic viral binning.

To tackle the problem of a paucity of viral binning methods in
metagenomic Hi-C experiments, we developed ViralCC, a Hi-C-based
binning method dedicated to recovering complete viral genomes and
determining virus-host pairs. The general pipeline of ViralCC is shown
in Fig. 1. ViralCC not only considers theHi-C interaction graph, but also
puts forward a host proximity graph of viral contigs as a com-
plementary source of information to the Hi-C interaction map. Two
graphs are then integrated together, followed by Leiden graph
clustering46, to generate draft viral genomes. We compared ViralCC to
VAMB26, CoCoNet29, vRhyme30, MetaTOR38, and bin3C39. Our experi-
ments indicated that ViralCC substantially improved the CheckV
completeness of viral genomic bins on real metagenomic Hi-C data-
sets.Moreover,weput forward a systematic strategy tobenchmark the
viral genome retrieval performance inmetagenomic Hi-C experiments
by generating mock metagenomic Hi-C datasets from real samples.
The ground truth of all mock viral contigs is known in mock datasets
while Hi-C interactions between mock viral contigs can be obtained
directly from real samples without simulation. Leveraging mock
metagenomic Hi-C datasets derived from three real samples, we fur-
ther demonstrated that ViralCC outperformed other binning methods
and recovered viral genomes with higher completeness and lower

Fig. 1 | Overview of the ViralCC pipeline. The general workflow of ViralCC to
retrieve high-quality viral genomes and determine virus-host pairs. Shotgun reads
are first assembled into contigs, to which Hi-C paired-end reads are aligned. Viral
contigs are subsequently identified. Leveraging Hi-C linkages and the virus-host

proximity structure to link viral contigs, ViralCC constructs the Hi-C interaction
graph and the host proximity graph. After integrating two graphs, ViralCC employs
Leiden clustering to reconstruct draft viral genomes, and additionally detects the
virus-host pairs based on recovered viral genomes and Hi-C linkages.

Article https://doi.org/10.1038/s41467-023-35945-y

Nature Communications | (2023)14:502 2

https://github.com/umerijaz/TAXAassign


contamination. Finally, we showed that the virus-host pairs can be
determined based on the recovered viral genomes.

Results
Generatingmockmetagenomic Hi-C datasets for benchmarking
All viral contigs detected by VirSorter were assessed by CheckV to
select single contigs with high completeness as putative reference
genomes. As a result, 51 putative reference genomes, with length
ranging from 11,410 bp to 194,784 bp were generated from the human
dataset; 11 putative reference genomes from 11,452 bp to 42,000 bp
were obtained from the cow fecal dataset; and 17 putative reference
genomes, ranging from 11,455 bp to 127,910 bp were derived from the
wastewater dataset (Supplementary Table 1).

We then constructed mock viral contigs by splitting the putative
viral genomes and obtained 1010, 94, and 279 fragmented mock viral
contigs from the three datasets, respectively (Supplementary Table 1).
For each real metagenomic Hi-C dataset, mock viral contigs were
mixed with all non-viral contigs (i.e., contigs that are not identified as
viral contigs by VirSorter), followed by the alignment of Hi-C paired-
end reads to construct the mock metagenomic Hi-C dataset. The
analyses of binningmock viral contigs on themock human gut dataset
were presented in the main text. We also provided benchmarking
results on themockwastewater and themock cow fecal datasets in the
Supplementary Note 1.

Integrating the Hi-C interaction graph and the host proximity
graph improves binning performance on the mock human gut
dataset
We first constructed the Hi-C interaction graph Ghic and the host
proximity graph Ghost for 1010 mock viral contigs from the mock
human gut dataset. There are 2699 edges in Ghic. The parameter k for
Ghost was tuned to be 30, which means that any two viral contig nodes
with an edge in Ghost were linked to at least the same30 host contigs by
the Hi-C interaction. This resulted in 2698 edges in Ghost. Among these
2698 edges in Ghost, 14.5% of the edges were spurious edges, which
were defined as the edges that linked two contigs from different
putative reference genomes in Ghost. We then integrated Ghost and Ghic

into Gint, which contained 4397 edges. We could observe 1000 com-
mon edges between Ghost and Ghic, accounting for around 37% of the
total number of edges in either graph.

We applied the Leiden clustering on Ghic, Ghost, and Gint, respec-
tively, and assessed the binning results using four clusteringmetrics: F-
score, ARI, NMI, and homogeneity (Supplementary Table 2). Gint out-
performed both Ghic and Ghost in terms of all four clustering metrics.

We also evaluated the completeness and contamination of each vMAG
(Supplementary Table 3). Specifically, 8 near-complete, 3 substantially
complete, and 5 moderately complete vMAGs were recovered based
only on Ghic, while 12 near-complete and 2 substantially complete
vMAGs were retrieved based only on Ghost. In contrast, employing the
integrative graph Gint for clustering could reconstruct 26 near-com-
plete, 2 substantially complete, and 4 moderately complete vMAGs.
The improvement of binning performance by integrating two graphs
indicated the Hi-C interaction graph and the host proximity graph
were complementary to each other on binning viral contigs.

ViralCC outperforms other binning methods on the mock
human gut dataset
ViralCC was compared to VAMB, CoCoNet, vRhyme, bin3C, and
MetaTOR on the mock human gut dataset (see Methods). VAMB is a
general shotgun-based binning tool while bin3C and MetaTOR are
general Hi-C-based binning pipelines. CoCoNet and vRhyme are two
shotgun-based binning methods specifically designed for clustering
sequenced viral particles.

As shown in Fig. 2a, VAMB, CoCoNet, vRhyme, bin3C, and Meta-
TOR achieved 0.198, 0.485, 0.366, 0.404, and 0.750 in terms of F-
score, respectively, which was improved to 0.795 by ViralCC. The ARI
scores for viral bins produced byVAMB, CoCoNet, vRhyme, bin3C, and
MetaTOR were 0.111, 0.471, 0.302, 0.274, and 0.744. In contrast, Vir-
alCC increased theARI score to0.787. As for theNMI, VAMB, CoCoNet,
vRhyme, bin3C, andMetaTOR obtained 0.724, 0.742, 0.782, 0.817, and
0.928, whereas ViralCC achieved a score of 0.929. ViralCC also
improved the homogeneity score to 0.921 from 0.570, 0.723, 0.687,
0.691, and 0.911, achieved by VAMB, CoCoNet, vRhyme, bin3C, and
MetaTOR, respectively.

VAMB, CoCoNet, vRhyme, bin3C, andMetaTOR could recover 1, 5,
0, 5, and 22 near-complete vMAGs, respectively, while ViralCC
increased this number to 26 (Fig. 2b). In total, ViralCC could retrieve 32
high-quality vMAGs out of 51 reference genomes whereas VAMB,
CoCoNet, vRhyme, bin3C, and MetaTOR could reconstruct 7, 11, 7, 6,
and 30high-quality vMAGs, respectively.Moreover, we also found that
ViralCC had a better performance than other binners in recovering
near-complete vMAGs from large putative viral genomes (Supple-
mentary Note 2). Altogether, ViralCC outperformed other binning
methods as it recovered viral genomes with higher completeness and
lower contamination based on the mock metagenomic Hi-C dataset.
Notably, MetaTOR and ViralCCwere comparable according to the NMI
and the homogeneity scores, indicating that both approaches could
recover high-purity viral contig bins. On the other hand, ViralCC

Fig. 2 | ViralCC outperforms other binning methods on the mock human gut
dataset. Comparison of viral genome retrieval performance according to (a)
clustering metrics and (b) completeness and contamination criteria (Moderately
complete: 50% ≤ completeness <70%, contamination ≤ 10%; Substantially complete:

70% ≤ completeness <90%, contamination ≤ 10%; Near-complete: completeness ≥
90%, contamination ≤ 10%). ViralCC outperforms other binning methods on the
mock human gut dataset. Source data are provided as a Source Data file.
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achieved better performance than MetaTOR in terms of F-score and
ARI (Fig. 2a) while retrieving more complete bins (Fig. 2b) from the
mock metagenomic Hi-C dataset. This shows the effectiveness of
combining host proximity information with Hi-C interaction
information.

Binning analyses of viral contigs on three realmetagenomicHi-C
datasets
VirSorter detected 791, 1338, and 2757 viral contigs from the human
gut, cow fecal, and wastewater samples, respectively. Viral contigs
were binned using different methods for the three datasets. The
CheckV completeness of viral bins was estimated to evaluate the bin-
ningquality.We referred to viral binswithCheckVcompleteness above
90% as draft viral genomes with high completion and denoted bins
with CheckV completeness above 50% as draft viral genomes with
medium completion.

For the human gut dataset, ViralCC identified 465 viral bins with
sizes ranging from 3001 bp to 307,395 bp, and yielded more high and
medium-completion draft viral genomes than any other tested meth-
ods (Fig. 3a). For the cow fecal dataset, ViralCC constructed 574 viral
bins with sizes ranging from 3002 bp to 157,462 bp. It generated
substantially more medium and high-completion draft viral genomes
than other methods, specifically exceeding the numbers of high-
completion draft genomes from VAMB, CoCoNet, vRhyme, bin3C, and
MetaTORby 161%, 140%, 66.7%, 93.5%, and62.1%, respectively (Fig. 3b).
From the wastewater dataset, ViralCC established 1240 viral bins with
sizes ranging from 3006 bp to 461,626 bp, and could reconstruct
32.8%, 103%, 141%, 175%, and 75%more high completion draft genomes
compared with VAMB, CoCoNet, vRhyme, bin3C, and MetaTOR,
respectively (Fig. 3c). ViralCC also recoveredmarkedlymore draft viral
genomes with medium completion.

Altogether, the analyses of three real metagenomic Hi-C datasets
demonstrated that ViralCC retrieved more complete viral genomes
compared to VAMB, CoCoNet, vRhyme, bin3C, and MetaTOR, which
was consistent with our observations from themockmetagenomic Hi-
C datasets.We also constructed a randombinningmodel based on the
configuration random graph47 as control experiments (Supplementary
Note 3). The model randomly assigned edges to match the degree
sequence of viral contigs in the integrative graph. ViralCC out-
performed the randomcontrol according to theCheckV completeness
criteria. Moreover, we sorted vMAGs by the number of viral contigs in
descending order. If multiple vMAGs contained the same number of
viral contigs, they were further sorted by the bin size in descending
order. Contigs in each vMAG were also sorted by the contig length in
descending order. We then plotted the raw Hi-C contact maps (see
Methods) of the top ten vMAGs for the three datasets with either the
contig index (Fig. 4) or the contig size (Supplementary Fig. 1) as the

axis unit, respectively, which confirmed the valid reconstruction of the
viral genomes. The specific number of viral contigs and the bin size of
these vMAGs are shown in Supplementary Tables 4 to 6.

Finally, we explored the relationships between the quality of Hi-C
datasets and the vMAG retrieval performance. The 3D ratio and the
qc3C CI were employed to measure the quality of Hi-C datasets (see
Methods). Specifically, the 3D ratios were 23.3%, 38.3%, and 54.9% for
the human gut, cow fecal, and wastewater datasets, respectively
(Supplementary Table 7). The midpoints of the qc3C CI for the three
datasets were 5.938%, 52.07%, and 30.66%, respectively (Supplemen-
tary Table 7). Though the higher 3D ratio does not necessarily mean
more informative linkages between contigs36, we still observed that
compared to the traditional shotgun-based binning methods, the
improvement of binning performance by ViralCC was remarkable on
metagenomic datasets with high-quality Hi-C libraries.

Annotation of vMAGs demonstrated the high purity of the
vMAGs at the family level
We annotated 191, 320, and 693 vMAGs in total at the family level for
the human gut, cow fecal, and wastewater datasets, respectively. We
found that 173 (90.6%) out of 191 vMAGs in the human gut sample, 265
(82.8%) out of 320 vMAGs in the cow fecal sample, and 592 (85.4%) out
of 693 vMAGs in the wastewater sample contained only viral contigs
from the same family, demonstrating the high purity of vMAGs at the
family level.

As shown in Fig. 5, the vMAGs were dominated by tailed bacter-
iophages of the order Caudovirales and vMAGs belonging to the
families Myoviridae, Siphoviridae, and Podoviridae were found in all
three samples48. Bacteriophages, mainly Siphoviridae, dominated the
two gut samples49. Compared to the other samples that were more
dominated by Siphoviridae, Myoviridae and Siphoviridae vMAGs were
of similar abundance in the wastewater sample, as reported for water
environments50–53.

Phage-host network in the wastewater sample
We discovered virus-host pairs based on the vMAGs recovered by
ViralCC, and showed the results from the wastewater dataset in the
main text below. The results of virus-host detection from the human
gut and cow fecal datasets are shown in the Supplementary Notes 4
and 5.

For non-viral contigs, expected to be largely bacterial, HiCBin
generated 1253 MAGs, which were assessed by CheckM (v1.1.3, para-
meter: lineage wf)44. The quality evaluation results are shown in Sup-
plementary Table 8. Among 1253 MAGs, 600 MAGs could be
unambiguously annotated by GTDB-TK54 and the taxonomy classifi-
cation results were visualized using ITOL55 (Fig. 6a). Burkholderiales,
Pseudomonadales, Lachnospirales, Bacteroidales, and Oscillospirales

Fig. 3 | ViralCC outperforms other binners on real metagenomic Hi-C datasets.
Comparison of draft viral bins retrieved by different binning tools according to the
CheckV completeness standard on the (a) human gut, (b) cow fecal, and (c)

wastewater datasets. ViralCC can retrievemore complete viral genomes compared
to VAMB, CoCoNet, vRhyme, bin3C, andMetaTOR from all three realmetagenomic
Hi-C samples. Source data are provided as a Source Data file.
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were the predominant orders in the wastewater sample. Burkholder-
iales and Pseudomonadales were common orders reported in water
environments56,57. Lachnospirales, Bacteroidales, and Oscillospirales
were reported in the gut microbiomes58; these are reasonable to be
detected in this domestic wastewater sample from around 25,000
people57.

A total of 1065 (85%) out of 1253 MAGs were associated with at
least one viral MAG. We then explored the infection spectrum of
annotated vMAGs on hosts from different orders (Fig. 6b). We
observed that vMAGs from the family Myoviridae mainly targeted
hosts from theorderBurkholderiales, which is consistentwith previous
findings that some phages belonging to the family Myoviridae could

Fig. 4 | Heatmaps of raw Hi-C contact matrices of the top ten vMAGs from real
metagenomicHi-Cdatasets.Heatmaps of rawHi-C contactmatrices of the top ten
vMAGs from the (a) human gut, (b) cow fecal, and (c) wastewater datasets with the

contig index as the axis unit. The vMAGs were first ranked by their numbers of
contigs and then the contigswithin each vMAGwere rankedby their sizes. The scale
bar shows the number of raw Hi-C contacts between viral contigs.

Fig. 5 | Taxonomy statistics of annotated vMAGs from real metagenomic Hi-C
datasets. Taxonomy statistics of annotated vMAGs on the (a) human gut, (b) cow
fecal, and (c) wastewater datasets. The numbers on the graph indicate the number

of vMAGs belonging to different families. Source data are provided as a Source
Data file.

Fig. 6 | Taxonomic annotations of MAGs and the apparent infection spectrum
of vMAGs from the domestic wastewater sample. (a) Taxonomic annotations of
MAGs recovered by HiCBin from the domestic wastewater sample. Burkholderiales,
Pseudomonadales, Lachnospirales, Bacteroidales, and Oscillospirales were the pre-
dominant orders. (b) The apparent infection spectrum of vMAGs from the

wastewater sample. vMAGs belonging to the familyMyoviridaemainly targeted
hosts from the order Burkholderiales and a large number of vMAGs from the family
Siphoviridae could infect Bacteroidales bacteria. Source data are provided as a
Source Data file.
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lyse bacteria from Burkholderia59. A large number of vMAGs belonging
to the family Siphoviridae could infect Bacteroidales bacteria60. More-
over, we unexpectedly observed that 4 vMAGs apparently infecting
members of the order Burkholderiales came from the family Herpes-
viridae, which previously has been reported only to infect animals,
including human-beings61. Further research is needed to determine if
these reveal a true infection or if the proximity ligation occurred in a
non-infection situation (e.g. extracellularly).

Validate virus-host pairs using CRISPR spacer analysis on the
wastewater dataset
We predicted the CRISPR spacers in host MAGs using PILER-CR
(v1.06)62 and 925 CRISPR spacers were detected. Then, we aligned
these spacers to vMAGs using BLAST63 with parameters ‘-task blastn-
short -evalue 1e-5’. The alignments with bitscore below 45 were further
filtered out36. In this way, 16 robust hits between host MAGs and virus
MAGs were found using CRISPR spacer analysis.

Among those 16 hits, 13 virus-host MAG pairs (81.3%) were also
associated by the Hi-C linkages. Noticeably, according to CRISPR
spacer analysis, we observed that vMAG 1198 (family: Siphoviridae) was
associated with two host MAGs from the Fusobacteriales order while
these twohostMAGswere the only two associated hosts of vMAG 1198
predicted by the Hi-C interactions.

Running time of ViralCC
ViralCCwas executed onone computing nodeof a 2.40GHz Intel Xeon
Processor E5-2665 with 50,000 MB RAM provided by the Advanced
Research Computing platform at University of Southern California.
ViralCC consumed 22.5 min, 76.6 min, and 21.7 min running time on
the human gut, cow fecal, and wastewater samples, respectively.

Discussion
ViralCC is anopen-sourceHi-C-based binningmethod for viral genome
retrieval. Unlike otherHi-C-basedbinning tools using onlyHi-C contact
maps. ViralCC exploits a host proximity graph based on the virus-host
proximity structure as a supplementary source of connections
between viral contigs. We demonstrate that ViralCC outperformed
other tools on real metagenomic Hi-C datasets according to the
CheckV completeness criteria. Notably, considering that randomly
binning viral contigs into vMAG does not reduce the CheckV com-
pleteness compared to the completeness of each of the individual
contigs, it is necessary to construct a randombinningmodel as control
experiments when the CheckV completeness is used as the evaluation
metric. Moreover, we observe that the improvement of binning per-
formance by ViralCC was significant from metagenomic datasets with
high-quality Hi-C libraries compared to the shotgun-based binning
methods, indicating the potential importance of good-quality Hi-C
libraries on viral genome retrieval.

Since the assessment by CheckV software is not comprehensive,
we put forward a systematic benchmarking strategy to assess the
performance of binning viral contigs using mock metagenomic Hi-C
datasets. We expect that this benchmarking strategy can facilitate the
evaluation of any Hi-C-based binning tools in viral genome retrieval
studies. However, there are also limitations and biases in the bench-
marking strategy. Since we only choose viral genomes that can be
recovered by a single contig from the whole community, our bench-
marking method inevitably underestimates the true diversity of the
virus community. The effectiveness of the benchmarking is also less
convincing if there are few putative viral genomes. Moreover, though
we have shown the low fraction of spurious contacts in the host
proximity graph using the mock metagenomic Hi-C datasets, we can-
not obtain the results from the real datasets because it is challenging to
know the true labels of viral contigs from the real datasets. Finally, we
observe that the sizes of putative viral genomes tend to be small in the

benchmarking method (Supplementary Note 6). Though all pipelines
are treated equally on the same set of mock viral contigs derived from
the selectedputative viral genomes, the sizes of putative viral genomes
should be accounted for in the benchmarking considering that the full
recovery of a larger putative viral genome requires a binner to cor-
rectly group more viral contigs into a single bin from the mock
datasets.

Apart from the direct binning of viral contigs as we discussed
here, training a classificationmodel to distinguish confidently labelled
viral bins and bacterial bins can also contribute to providing a highly
enriched candidate set of viral bins from bulk metagenome data64.
Viral genome retrieval, combined with the Hi-C proximity ligation also
sheds light on the infection mechanisms and unveils entirely active
virus-host interactions.

Compared to a popular approach, CRISPR spacer analysis, which
can reflect historic linkages between viruses and hosts65,66, metage-
nomic Hi-C experiments are able to detect active virus-host pairs at a
single time point. Chen et al.67 usedmetagenomic Hi-C experiments to
validate virus-host associated pairs predicted by CRISPR in activated
sludge (AS) samples using Illumina sequencing and Nanopore
sequencing separately. They validated 11 out of 21 and 16 out of 28
virus-host associated pairs predicted by CRISPR based on the Illumina
and combined Illumina/Nanopore sequenced samples, respectively,
leveragingHi-C linkages. In our study,we validated 13out of 16, 3 out of
4, and 2 out of 2 virus-host pairs predicted by CRISPR based on the
wastewater, human gut, and cow fecal datasets, respectively (see
Results, Supplementary Notes 4 and 5). Both studies clearly show how
analyses of metagenomic Hi-C data can be a powerful tool in reco-
vering virus-host pairs that are otherwise difficult to determine (e.g.
from non-cultured organisms). It should be noted that some CRISPR-
predicted virus-host associations indicate historical associations that
may not be present in a given sample, and such pairs cannot be
detected by Hi-C67. And it must also be kept in mind that some virus-
bacteria associations apparent from proximity ligation might be a
result of proximity of bacterial and viral DNA from amechanism other
than infection; thus, unexpected results like our reported apparent
herpesvirus infection of Burkholderiales should be validated before
jumping to extraordinary conclusions.

In the future, it will be interesting to explore whether existing
binning methods can resolve closely related viruses residing in the
same bacterial host based on virus-host proximities. Moreover, recent
studies have found that specific viruses have mechanisms enabling
multiple viral genomes to infect the same host cell, which is called the
co-infection68. Leveraging the Hi-C proximity ligation to discover the
existence of co-infection for multiple phages within the same cell is
another potential topic for future research.

Methods
Real metagenomic Hi-C datasets
Three real metagenomic Hi-C datasets, all previously published, were
employed to validate the performance of viral genome retrieval and to
discover virus-host pairs. Experiments from the previously published
papers are briefly repeated here.

The human gut dataset. This dataset was derived from the micro-
biome of a human gut and was composed of one WGS library (NCBI
accession: SRR6131123) and two separate Hi-C libraries constructed by
two four-cutter restriction enzymes, MluCI and Sau3AI (NCBI acces-
sion: SRR6131122 and SRR6131124)34. The Illumina HiSeqX Ten was
used to sequence the shotgun and Hi-C libraries, creating 151 bp
paired-end reads. The two Hi-C libraries consisted of 48.8 million
(MluCI library) and 41.7 million (Sau3AI library) read pairs, respec-
tively. The sequencing of the rawWGS library produced 250.9 million
read pairs (ratio Hi-C:shotgun = 0.36).
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The cow fecal dataset. The cow fecal sample was collected and pro-
cessed at the Beef and Sheep Research Centre of Scotland’s Rural
College69, generating one shotgun library (NCBI accession:
ERX2333418) and two Hi-C libraries fragmented using either the
Sau3AI orMluCI restriction enzymes (NCBI accession: ERX2548555 and
ERX2548556). After sequencing all libraries by the Illumina HiSeqX
platform at 150 bp, 159.5million paired-end readswere obtained in the
shotgun library while the two Hi-C libraries contained 86.2 million
(Sau3AI library) and 59.3 million (MluCI library) paired-end reads,
respectively (ratio Hi-C:shotgun = 0.91).

The wastewater dataset. In the wastewater (WW) sample57, the shot-
gun library (NCBI accession: SRR8239393) was prepared using the
DNeasy PowerWater kit while the Hi-C library (NCBI accession:
SRR8239392) was produced by a proprietary Hi-C preparation kit
(PhaseGenomics, Inc). The cutting enzymes utilized in the experiment
were Sau3AI and MluCI. All read-sets were sequenced by the HiSeq
4000 at the length of 150bp. Therewere 269.3million and 95.3million
paired-end reads for the WW shotgun metagenomic and Hi-C read-
sets, respectively (ratio Hi-C:shotgun = 0.35).

Initial processing
We applied bbduk from the BBTools suite (v37.25)70 to thoroughly
clean raw WGS and Hi-C read libraries (Supplementary Note 7). Pro-
cessed shotgun reads were assembled into contigs using MEGAHIT
(v1.2.9)13 with options ‘-min-contig-len 1000 -k-min 21 -k-max 141 -k-
step 12 -merge-level 20, 0.95’ (Supplementary Table 9). Then, pro-
cessed Hi-C paired-end reads were mapped to assembled contigs by
BWA MEM (v0.7.17)71 with parameter ‘-5SP’. After the alignment, we
removed unmapped reads, secondary alignments, supplementary
alignments and alignments with low quality (mapping score or
nucleotide match length <30). Raw Hi-C contact maps between two
contigs were constructed by counting the number of Hi-C read pairs
separately aligned to these two contigs.

Viral contig detection
Long contigs (≥ 3 kbp) assembled from shotgun reads were
screened by VirSorter (v1.0.6)15 with default parameter to identify
viral contigs. VirSorter achieved the best F1 score in a recent
benchmarking study72. Contigs annotated as prophages were
removed from the viral sequences (Supplementary Table 10). We
refer to the contigs that are not identified by VirSorter as potential
host contigs.

Construct the Hi-C interaction graph for viral contigs
We define the Hi-C interaction graph for viral contigs as GhicðV ,EhicÞ,
where the vertex vi 2 V represents the i-th identified viral contig,
and an edge eij 2 Ehic exists if vi and vj are linked by at least one
Hi-C link.

Construct the host proximity graph for viral contigs
Besides the Hi-C interaction graph, we also take advantage of virus-
host proximity structure to link viral contigs. Specifically, we define
two viral contigs as associated by k shared host contigs if these two
viral contigs are linked to at least the same k host contigs by the Hi-C
interaction. Based on this metric to measure the linkage between viral
contigs, we construct the host proximity graph for viral contigs,
denoted by GhostðV ,EhostÞ, where the vertex vi 2 V still represents the i-
th identified viral contig while an edge eij exists in Ehost if vi and vj are
associated by k shared host contigs. Formally, let Hi denote the set of
host contigs for viral contig vi. Then, vi and vj are connected in the host
proximity graph Ghost if

∣Hi \ Hj ∣≥ k, ð1Þ

where ∣�∣ denotes the cardinality of a set and the parameter k here is
automatically determined such that

max
k

∣Ehost∣

s:t: ∣Ehost∣≤ ∣Ehic∣; k ≥ kmin,
ð2Þ

where kmin (default 4) is the lower bound of parameter k. Note that
decreasing k relaxes the requirement for the existence of an associa-
tion by shared host contigs, leading to more edges in Ghost. Thus in
formula (2), maximizing the number of edges in Ghost is equivalent to
minimize the value of k. Though smaller k provides a larger number of
connections for viral contigs inGhost, the valueofk cannot be too small,
which may introduce false positive associations due to the experi-
mental noise. Therefore, two constraints that the number of edges in
Ghost is less than or equal to that in Ghic and k is no less than kmin are
utilized to control the value of k. We found that the vast majority of
edges within the host proximity graph linked the viral contigs from the
same genome on the three mock metagenomic Hi-C datasets,
demonstrating the reliability of the host proximity graph (see Results).

Integrate the Hi-C interaction graph and the host proxi-
mity graph
Wehave constructed theHi-C interactiongraph and thehostproximity
graph to link viral contigs. Then, we would like to integrate these two
graphs. Let GintðV , E intÞ denote the final integrative graph, where the
vertex set still represents all viral contigs and an edge eij belongs to the
edge set Eint if vi and vj are linked through any one of the Hi-C inter-
action graph Ghic or the host proximity graph Ghost.

Leiden graph clustering based on the integrative graph
We cluster the viral contigs using the Leiden graph clustering
algorithm46 basedon the integrative graphGint. The Leiden algorithm is
a modularity-based community detection algorithm. It takes a three-
stage greedy approach to optimizing the modularity function. Speci-
fically, in each iteration, the algorithm assigns each node to a com-
munity such that the modularity function will increase after the local
movement, followed by refining the partition into sub-communities
and aggregating the network.Moreover, a generalmodularity function
based on the Reichardt and Bornholdt’s Potts model73 is selected for
the Leiden algorithm to overcome the resolution limit74 and is defined
as:

X

fi,j∣ci = cj g
ðMij � r

didj

2n
Þ, ð3Þ

where M is the adjacency matrix of graph Gint, c denotes the commu-
nity of viral vertices, r is a resolution parameter, d represents the
degree of viral vertices andn is the total number of edges in graph. The
resolution parameter r is tuned using the silhouette coefficient75 of the
binning results,which is a popular clustering evaluationmetricwithout
true labels by measuring the cohesion and the separation of the clus-
ters. The candidate resolution that yields the highest silhouette coef-
ficient is selected as the optimal value for the Leiden clustering.

Evaluate the CheckV completeness of vMAGs on real metage-
nomic Hi-C datasets
We used one popular tool CheckV (v0.7.0)43 to estimate the com-
pleteness quality of viral MAGs recovered from three real metage-
nomic Hi-C datasets. Since CheckV was originally designed for
assessing the quality of single-contig viral genomes, viral contigs from
each vMAG were concatenated into a single sequence as required by
CheckV. CheckV applies two algorithms to compute the completeness
of vMAGs based on amino acid identity (AAI) or hiddenMarkovmodel
(HMM) (Supplementary Note 8). The AAI-based approach reports a
confidence level of estimation based on the alignment quality to the
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CheckV genome database and the contig length, and high- and
medium-confidence estimates are demonstrated to be accurate and
can be trusted43. Therefore, we combined the results estimated by two
approaches to determine the completeness of vMAGs. Specifically, for
each vMAG, CheckV AAI-based estimation of completeness was uti-
lized if this estimation was qualified as medium or high confidence.
Otherwise, the HMM-based estimate was used if available.

A systematic benchmarking strategy to evaluate the perfor-
mance of binning viral contigs
Rationaleof thebenchmarking framework. ThoughCheckVhas been
widely exploited to evaluate the binning performance for viral contigs,
the inability to assess the contamination renders the CheckV evalua-
tion less comprehensive on vMAGs.Moreover, benchmarking the viral
genome retrieval through simulation is challenging since few studies
have been conducted on modeling Hi-C interactions for viral contigs.
To solve these problems, we put forward a benchmarking strategy to
comprehensively evaluate the binning performance of Hi-C-based
tools on viral contigs without the need for simulating Hi-C interactions
for viral contigs.

Generate mock viral contigs with ground truth in a mock metage-
nomic Hi-C dataset directly from the real metagenomic Hi-C sam-
ple. Instead of simulating viral contigs using known viral reference
genomes, we designed a strategy to directly generate mock viral
contigs with ground truth from the real metagenomic Hi-C sample.
Though viral genome assemblies from shotgun reads are commonly
plagued by insufficiently long contigs, there are still a few single con-
tigs that can individually represent the viral genome with relatively
high completeness. Therefore, we first applied CheckV to all identified
viral contigs. Contigs above 10,000 bp and marked as ‘high-quality’ or
‘complete’ by CheckV were considered relatively complete viral gen-
omes and served as the putative reference genomes. Then, we directly
simulated mock viral contigs from real metagenomic Hi-C datasets
using these putative reference genomes. Specifically, we extracted
subsequences from putative reference genomes in sliding windows of
a 3 kbp length moving from the left to right without overlaps. As a
result, putative reference genomes were split into non-overlapping
fragments of 3 kbp. Fragments at the edges of putative reference
genomes were retained if they were longer than 1 kbp. All fragmented
contigs were regarded as mock viral contigs and labeled based on
which putative reference genomes they originated from. We then
mixed the obtained mock viral contigs with all potential host contigs
and aligned theHi-C readpairs to themixed contig set usingBWAMEM
with parameter ‘-5SP’ to create a mock metagenomic Hi-C dataset. In
this way, we generated mock viral contigs with ground truth and
constructed valid Hi-C interactions without simulating the Hi-C
experiments for viral contigs in a mock metagenomic Hi-C dataset.
We were subsequently able to validate the binning performance based
on mock metagenomic Hi-C datasets for Hi-C-based binning approa-
ches as well as shotgun-based binning tools.

Gold standards to evaluate binning performance using mock
metagenomic Hi-C datasets. Since the true labels of all mock viral
contigs in the mock metagenomic Hi-C dataset were known, we
employed four comprehensive evaluation metrics of the clustering
performance (Supplementary Note 9): Fowlkes-Mallows scores (F-
scores), Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI), and Homogeneity. These four metrics were used to evaluate
binning performance.

Moreover, we defined the completeness and contamination of
each vMAG. Specifically, for each vMAG, we summed the lengths of
contigs from different reference genomes separately and assigned the
vMAG to the reference genomewith the largest query length, denoted
by L(q). We also denoted the length of corresponding reference

genome asL(r) and referred to the total length of the vMAGas L(v). The
completeness of a vMAG is defined as LðqÞ

LðrÞ and the contamination of a
vMAG is defined as LðvÞ�LðqÞ

LðvÞ . Then, we assigned the high-quality vMAGs
into three ranks, i.e., near-complete (completeness ≥ 90%, con-
tamination ≤ 10%), substantially complete (70% ≤ completeness <90%,
contamination ≤ 10%), andmoderately complete (50% ≤ completeness
<70%, contamination ≤ 10%), which is similar to the CheckM evaluation
criteria44.

The quality control of metagenomic Hi-C datasets
As in36, wedefined the inter-contigHi-Ccontacts as the paired-endHi-C
reads mapped to different viral contigs. Then the 3D ratio was calcu-
lated by dividing the number of inter-contig Hi-C contacts by the total
number of paired-end Hi-C reads aligned to viral contigs. We also
performed an additional quality control step on processed paired-end
Hi-C reads using qc3C (v0.5)76 in k-mer mode with default parameters.
We defined the qc3C CI as the 95% confidence interval of the propor-
tion of observed junction sequences considered to be the product of
proximity ligation estimated by the qc3C software. Detailed results of
qc3C for each dataset were listed in Supplementary Data 1.

Annotate vMAGs at the order and family levels
We first employed DemoVir (https://github.com/feargalr/Demovir) to
classify viral contigs to the order and family taxonomic levels by
comparing genes on contigs against the curated viral protein database
(https://figshare.com/articles/NR_Viral_TrEMBL/5822166). Contigs
whose genes were consistently classified to the same family were
finally annotated. Then, we defined the vMAG family as the family to
which the majority of contigs in the vMAG belonged.

Detect virus-host pairs between vMAGs and host MAGs
All non-viral contigs for each sample were binned using HiCBin
(v1.1.0)40 with default parameters to generate potential host MAGs,
which were subsequently annotated by GTDB-TK (v2.1.0, Release:
R207_v2)54 with default parameters and the taxonomic classification
results were visualized using ITOL (v5)55. vMAGs were associated with
potential host MAGs if they were linked by at least two Hi-C read-pairs
as in77.

Additional validation of ViralCC on a meta 3C/Hi-C dataset
Unlike widely used metagenomic Hi-C technique combining shotgun
sequencing with Hi-C sequencing34,57,67,69,77, Marbouty et al.35 showed
that meta3C, another proximity ligation-based approach, allowed the
assembly and scaffolding and thus utilized meta3C reads rather than
shotgun reads to assemble contigs, whichwere subsequently linked by
Hi-C paired-end reads in their recent experiments on human gut
samples36. We refer to such datasets as meta 3C/Hi-C datasets. We
further validated ViralCC on a meta 3C/Hi-C sample from the human
gut microbiome, which consisted of one meta3C library (NCBI acces-
sion: SRR11853875) and two separate Hi-C libraries (NCBI accession:
SRR13435230 and SRR13435231). Considering the short length of Hi-C
reads (35 bp), we neither discarded any Hi-C reads using minimal
length option of bbduk70 nor trimmed Hi-C reads during the read
cleaning step. More details of data processing and the results of vali-
dation were shown in Supplementary Note 10.

Compare ViralCC to other pipelines
VAMB (v3.0.3)26 was executed with option ‘-t 40’. vRhyme (v1.0.0)30,
MetaTOR (v1.1.4)38, and bin3C (v0.1.1)39 were run with default para-
meters. The input coverage files of viral contigs for VAMB and vRhyme
were generated using script ‘jgi_summarize_bam_contig_depths’ pro-
vided by MetaBAT2 (v2.12.1)25. Since CoCoNet29 removed contigs
occurring in only one sample, we used the mode ‘composition’ to
recover the viral genomes. The other parameters were set to default
values.
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Statistics & Reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized except for the random binning model where configuration
graphs were constructed by randomly assigning edges to match the
degree sequence of viral contigs in integrative graphs. The investiga-
tors were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are publicly available from the NCBI
Sequence Read Archive database (http://www.ncbi.nlm.nih.gov/sra).
The human gut dataset is available under accession codes: shotgun
library SRR6131123,Hi-C libraries SRR6131122 andSRR6131124. The cow
fecal dataset used in this study is under accession codes: shotgun
library ERX2333418, Hi-C libraries ERX2548555 and ERX2548556. The
wastewater dataset is available under accession codes: shotgun library
SRR8239393 and Hi-C library SRR8239392. The meta 3C/Hi-C dataset
used in this study is available under accession codes: meta3C library
SRR11853875, Hi-C libraries SRR13435230 and SRR13435231. The
databases required by VirSorter can be downloaded at https://zenodo.
org/record/1168727/files/virsorter-data-v2.tar.gz. The CheckV refer-
ence database is available at https://portal.nersc.gov/CheckV/checkv-
db-v1.0.tar.gz. TheGTDB-TK reference database can be downloaded at
https://data.gtdb.ecogenomic.org/releases/latest/auxillary_files/
gtdbtk_v2_data.tar.gz. The curated viral protein database for DemoVir
is available at https://figshare.com/articles/NRViralTrEMBL/5822166.
The remaining data are available within the Article, Supplementary
Information, or Source data. Source data are provided with this paper.

Code availability
The ViralCC software is freely available at https://github.com/dyxstat/
ViralCCunder the GNU General Public License version v3. The ViralCC
code used in this work78 is also archived on Zenodo under https://doi.
org/10.5281/zenodo.7449911. Scripts to process the intermediate data
and plot figures of our ViralCC paper are available at https://github.
com/dyxstat/Reproduce_ViralCC/tree/main/Scripts.
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