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MetaCC allows scalable and integrative
analyses of both long-read and short-read
metagenomic Hi-C data

Yuxuan Du 1 & Fengzhu Sun 1

Metagenomic Hi-C (metaHi-C) can identify contig-to-contig relationships with
respect to their proximity within the same physical cell. Shotgun libraries in
metaHi-C experiments can be constructed by next-generation sequencing
(short-read metaHi-C) or more recent third-generation sequencing (long-read
metaHi-C). However, all existing metaHi-C analysis methods are developed
and benchmarked on short-read metaHi-C datasets and there exists much
room for improvement in terms of more scalable and stable analyses, espe-
cially for long-read metaHi-C data. Here we report MetaCC, an efficient and
integrative framework for analyzing both short-read and long-read metaHi-C
datasets. MetaCC outperforms existing methods on normalization and bin-
ning. In particular, the MetaCC normalization module, named NormCC, is
more than 3000 times faster than the current state-of-the-art method HiCzin
on a complex wastewater dataset. When applied to one sheep gut long-read
metaHi-C dataset, MetaCC binning module can retrieve 709 high-quality
genomes with the largest species diversity using one single sample, including
an expansion of five uncultured members from the order Erysipelotrichales,
and is the only binner that can recover the genome of one important species
Bacteroides vulgatus. Further plasmid analyses reveal that MetaCC binning is
able to capture multi-copy plasmids.

Metagenomics aims to study the complex community structures and
reveal metabolic potentials in microbial ecosystems without the iso-
lation or cultivation of microbes in the environment1–4. The recent
introduction of high-throughput chromosome conformation capture
technique (Hi-C) into metagenomics provides new insights into spe-
cies diversity and interactions betweenmicroorganismswithin a single
microbial sample5–10.

Metagenomic Hi-C technique (metaHi-C) combines the rapidly
developed proximity ligation approach with the metagenomic shot-
gun sequencing. Specifically, shotgun experiments directly extract
genomic fragments from a single microbial sample. In parallel, Hi-C
experiments on the same microbial sample create DNA–DNA proxi-
mity ligations between loci within the same physical cell, generating
millions of paired-endHi-C short reads. Fragmented shotgun reads are

assembled into contiguous sequences, termed contigs, to which
paired-end Hi-C reads are subsequently aligned. Therefore, metage-
nomic Hi-C contacts, defined as the numbers of Hi-C read pairs linking
any pair of assembled contigs, reflect the contig-to-contig relation-
ships with respect to their proximity. Since raw metagenomic Hi-C
contacts are substantially affected by systematic biases, normalization
is necessary after processing raw metaHi-C data11–13. We previously
disclosed three systematic biases including the number of enzymatic
restriction sites on contigs, contig length, and contig coverage and put
forward a state-of-the-art normalization method HiCzin that can cor-
rect all three biases14. After the normalization, fragmented contigs can
be grouped into metagenome-assembled genomes (MAGs)15 using Hi-
C contacts. This process, termed Hi-C-based binning, enables the
construction of large compendia of metagenomic assembled
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microbial genomes. Several Hi-C-based binning methods have been
designed, such as MetaTOR16, bin3C17, and HiCBin18.

Despite recent advances of these computational tools designed
for metagenomic Hi-C data, there still exists much room for
improvement for more scalable and stable analyses. For instance, the
Knight-Ruiz algorithm19 utilized by bin3C17 may fail to generate a bis-
tochastic matrix when the raw Hi-C contact matrix is highly sparse20,21.
MetaTOR16 employs the classical Newman-Girvan modularity
function22 in its binning procedure, which cannot identify small gen-
omes due to the resolution limit23 in complex Hi-C contact networks18.
HiCzin14 and HiCBin18 require a large amount of computing resources
on estimating contig abundances and generating contig annotations,
which refers to assigning nucleotide sequences to various taxonomic
levels. Specifically, HiCzin and HiCBin utilize TAXAassign24 to label
contigs at the species level by running BLAST25 against a curated
nucleotide reference database. Moreover, since shotgun libraries in
the original metagenomic Hi-C experiments are constructed using
next-generation sequencing (short-read metaHi-C)10–13, all existing
computational methods are designed and merely benchmarked on
short-readmetaHi-C datasets16–18. With the rapid development of third-
generation sequencing, multiple recent metaHi-C experiments also
leveraged Nanopore or PacBio sequencing to generate long-read
shotgun libraries (long-read metaHi-C)26–29. However, the current
computational tools that have achieved state-of-the-art results on
short-read metaHi-C datasets encounter difficulties in adapting to
long-read metaHi-C datasets. In our experiments for this study, we
observe that the performances of HiCBin, which demonstrated the
superior binning performance on short-read metaHi-C datasets
according to recent benchmarking studies30, are markedly deterio-
rated on long-read metaHi-C datasets. One essential factor contribut-
ing to this decline is the large degradation of HiCBin as well as its
adopted normalization method HiCzin when only a small fraction of
assembled contigs can be successfully labeled at the species level by
TAXAassign (Supplementary Note 1). Additionally, the taxonomic
labeling of contigs assembled from long reads poses a challenge for
TAXAassign (Supplementary Table 1), consequently limiting the
effectiveness of HiCBin and HiCzin on long-read metaHi-C datasets.
Therefore, it is imperative to develop new computational methods to
fill these gaps.

Here we report MetaCC, a scalable and integrative framework for
both long-read and short-read metaHi-C datasets. In the MetaCC fra-
mework, raw metagenomic Hi-C contacts are first efficiently and
effectively normalized by a new normalization method, NormCC. In
comparison toHiCzin, which relies on estimated contig abundances as
input, NormCC employs a negative binomial regression model to
represent contig abundances based on easily obtainable features
including the number of restriction sites on contigs, contig length, and
the number of proximity ligation events within contigs. Consequently,
NormCC does not require the estimation of contig abundances.
Additionally, HiCzin models the Hi-C contacts between contigs of the
same species, necessitating contig annotations. Conversely, NormCC
models the total number of proximity ligation events for each contig
using a second negative binomial regression, eliminating the need for
contig annotation. Using a synthetic yeast dataset11, we validate the
normalization performance of NormCC and show that NormCC out-
performs HiCzin with respect to the spurious contact (i.e., Hi-C con-
tacts linking contigs from different genomes due to experimental
noises) removal, contig clustering, and computational time. Lever-
aging NormCC-normalized Hi-C contacts, the binning module in
MetaCC enables the retrieval of high-quality MAGs. We compare the
retrieval performance of MetaCC binning against all publicly-available
Hi-C-based binning tools MetaTOR, bin3C, and HiCBin as well as one
state-of-the-art shotgun-based binner VAMB31 on two real short-read
metaHi-C datasets and two real long-read metaHi-C datasets. Down-
stream annotation studies and plasmid analyses on long-read metaHi-

C datasets demonstrate the superior ability of MetaCC on character-
izing the species diversity, extracting important microbes out of the
microbial ecosystems, and capturing multi-copy plasmid contigs.

Results
Overview of MetaCC
MetaCC is a comprehensive analysis framework designed for both
short-read and long-read metaHi-C datasets (Fig. 1a) and consists of
four main components. (I) We design a scalable and effective nor-
malization method, NormCC, to eliminate systematic biases from the
raw metagenomic Hi-C contact matrix. (II) We discard spurious inter-
species Hi-C contacts linking contigs from different species due to
experimental noises. (III) Based on the normalized Hi-C contact graph,
we retrieve high-quality MAGs using Leiden clustering32 with all hyper-
parameters automatically tuned. (IV) With several new computational
strategies, we reliably characterize the structure of microbial
ecosystems.

NormCC comprehensively corrected all systematic biases
existing in a synthetic yeast metaHi-C dataset
Leveraging a synthetic yeast metaHi-C dataset11 with all assembled
contigs labeled at the species level, we previously revealed that raw
intra-species Hi-C contacts, defined as the number of proximity liga-
tion events linking contigs from the same species, weremore enriched
between pairs of contigs with a larger number of restriction sites,
longer contigs, and/or contigs with higher coverages14. We have also
demonstrated that HiCzin, the normalization method employed in
HiCBin, outperformed other metaHi-C-based normalization methods,
including those utilized in bin3C and MetaTOR, in terms of spurious
contact detection and contig clustering using the synthetic yeast
metaHi-C dataset14, 18. Notably, HiCzin incorporates contig annotations
at the species level, obtained through TAXAassign24, to select intra-
species Hi-C contacts utilized in fitting its normalization model. In line
with the previous analyses, we validated the performance of NormCC
normalization on this synthetic sample and compared it to HiCzin
using the same benchmarking criteria. Details of processing raw data
were shown in the Methods section.

The procedures of NormCC normalization and spurious contact
removal can be visualized in Fig. 1b. To quantify the biases existing for
raw intra-species Hi-C contacts, we computed the Pearson correlation
coefficients between all raw intra-species contacts and the product of
the number of restriction sites, the length, and the coverage for cor-
responding contig pairs, which were 0.429, 0.400, and 0.184, respec-
tively, indicating the strong biases of three factors on raw
metagenomic Hi-C contacts. After the NormCC normalization, the
correlation coefficients between the bias-corrected Hi-C contacts and
the product of three factors were decreased to 0.094, 0.090, and
0.004, respectively, demonstrating that NormCC was able to com-
prehensively correct all systematic biases for the metaHi-C datasets.

NormCCoutperformedHiCzin on the spurious contact removal,
contig clustering, and computational time
Though the magnitude of the spurious inter-species contacts is sig-
nificantly smaller than that of the intra-species contacts in the
NormCC-normalized Hi-C contact matrix (Supplementary Fig. 1), dis-
carding all Hi-C contacts below a threshold as spurious inevitably
resulted in the loss of a few informative intra-species contacts.
Therefore, the improved capacity for removing spurious contacts
from one single Hi-C contact matrix can be assessed by effectively
eliminating a greater number of spurious contacts while minimizing
the unintended removal of informative intra-species contacts.We then
applied the spurious contact removal strategy (seeMethods) based on
the raw, HiCzin-normalized, or NormCC-normalized Hi-C contact
matrices, respectively, and plotted discard-retain (DR) curves where
the proportion of discarded spurious contacts among all spurious
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contacts is plotted against the proportion of retained intra-species
contacts within all intra-species contacts at various thresholds corre-
sponding to various percentiles (Fig. 2a). The area under the discard-
retain curve (AUDRC) can measure the ability of spurious contact
removal. With respect to AUDRC, NormCC outperformed HiCzin.

Moreover, we applied the Leiden clustering strategy (see Meth-
ods) on the raw, HiCzin-normalized, or NormCC-normalized Hi-C
contact matrices, respectively, to cluster contigs. To explore the
impact of spurious contact removal on contig clustering, we also
grouped contigs based on the NormCC-normalized Hi-C contact

Fig. 2 | Benchmarking the NormCC normalization module on the synthetic
yeast metaHi-C dataset. a Discard-retain curves for evaluating spurious contact
removal basedon the raw,HiCzin-normalized, or NormCC-normalizedHi-C contact
matrices, respectively. NormCC achieved the highest AUDRC (i.e., area under
discard-retain curve).b Performance of contig clustering based on the raw, HiCzin-

normalized, or NormCC-normalized Hi-C contact matrices as well as NormCC-
normalized Hi-C contact matrix with spurious contact removal, respectively.
NormCC outperformed HiCzin on the contig clustering in terms of F-score, ARI,
and NMI.

Fig. 1 | Overview of the MetaCC framework for metagenomic Hi-C analyses.
a The inputmetaHi-C dataset consists of shotgun libraries andHi-C libraries. Short/
long reads in shotgun libraries are assembled into contigs, towhichHi-Cpaired-end
reads are subsequently aligned. In this way, raw Hi-C contact matrix displaying the
proximity similarity between contigs within cells can be constructed. The raw Hi-C
contact matrix is normalized by the NormCC normalization module to correct the

systematic biases and spurious inter-species contacts are subsequently removed.
Assembled contigs are then binned into high-quality MAGs leveraging the nor-
malized Hi-C contact matrix. Finally, downstream analyses are conducted.
bVisualize the procedures ofNormCCnormalization and spurious contact removal
by plotting heatmaps of the Hi-C contact matrix for contigs belonging to the spe-
cies Kluyveromyces wickerhamii and Ashbya gossypii from a synthetic yeast dataset.
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matrix after removing spurious contacts. Since the true species iden-
tity of all contigs was available, we employed three comprehensive
metrics (Supplementary Note 2): Fowlkes-Mallows score (F-score),
Adjusted Rand Index (ARI), and normalized mutual information (NMI)
to evaluate the clustering performance. As shown in Fig. 2b, the bias
elimination and the spurious contact removal could improve the
clustering performance while NormCC outperformed HiCzin on the
contig binning in terms of F-score, ARI, and NMI.

Finally, NormCC and HiCzin were executed on a 2.40 GHz Intel
Xeon Processor E5-2665 with 50,000 MB RAM provided by the
Advanced Research Computing platform at the University of Southern
California. The time recording started at the input of raw Hi-C contact
matrix and ended at the output of normalized Hi-C contact matrix. We
ran both NormCC and HiCzin on the synthetic yeast dataset as well as
four realmetaHi-C datasets. The results of running timewere shown in
Supplementary Table 2. NormCC is much faster than HiCzin on all
datasets. In particular, NormCC ismore than 3000× faster thanHiCzin
on the wastewater short-read metaHi-C dataset10. Apart from the run-
ning time, HiCzin consumed a large amount of extra computational
resources to prepare the input data, including generating contig
annotations and estimating the contig abundances, compared to
NormCC.

MetaCC binning achieved the best performance of MAG
retrieval on short-read metaHi-C datasets
To validate MetaCC binning on short-read metaHi-C datasets, we
applied it to two datasets from different microbial environments:
human gut13 and wastewater10. Since the actual genomes are unknown
in real samples, we leveraged CheckM33 to evaluate the quality of the
recovered bins (seeMethods).We comparedMetaCC binning to other
three publicly-available Hi-C-based binning tools, i.e., MetaTOR16,
bin3C17, and HiCBin18. Additionally, we included one state-of-the-art
shotgun-based binning method VAMB31 into comparison. Without
using Hi-C information, the shotgun-based binning depends on the
sequence similarity and abundance features of contigs to retrieve draft
genomic bins. In both datasets, MetaCC binning recoveredmore near-
complete and high-quality bins than the alternatives considered
(Fig. 3). Specifically, on the human gut dataset, VAMB as well as three
Hi-C-based binning methods, i.e., MetaTOR, bin3C, and HiCBin, could
recover 39, 47, 60, and 67 near-complete MAGs, respectively, while
MetaCC binning increased this number to 79. Moreover, VAMB,
MetaTOR, bin3C, and HiCBin retrieved 11, 82, 44, and 94 near-
complete MAGs, respectively, which was improved to 103 by MetaCC

binningon thewastewater dataset. Notably, in all instances,Hi-C-based
binning pipelines outperformed the shotgun-based method on short-
read metaHi-C datasets, indicating the great potential of Hi-C
information.

Additionally, for the human gut short-read metaHi-C dataset, we
assessed the number of bins corresponding to known bacteria iden-
tified in the humangut environment and thenumber of bins thatmight
contain chimeric genomes for different binning methods using UHGG
gut microbial reference database34 (see Methods). MetaCC binning
recovered the largest number of known bacteria from the human gut
environment based on the UHGG database. Specifically, VAMB, Meta-
TOR, bin3C,HiCBin, andMetaCCbinning retrieved83, 107, 89, 118, and
128 bins, respectively, which were assigned to only one known species.
Furthermore, only one bin was detected as chimeric for MetaCC bin-
ning, while 4, 6, 2, and 11 chimeric bins were identified for VAMB,
MetaTOR, bin3C, and HiCBin, respectively.

MetaCC binning markedly outperformed existing binners on
long-read metaHi-C datasets
Since all previous studies only compared Hi-C-based binning tools on
short-read metaHi-C datasets, we focused on the benchmarking of
MetaCC binning and other existing Hi-C-based binners on long-read
metaHi-C datasets leveraging one cow rumen long-read metaHi-C
dataset26 andone sheep gut long-readmetaHi-C dataset28. Resultswere
shown in Fig. 4a. On the cow rumen long-read metaHi-C dataset,
VAMB, MetaTOR, and bin3C created 4, 5, and 5 near-complete MAGs,
respectively, while MetaCC binning increased this number to 8. In
total, MetaCC binning reconstructed 71 high-quality bins, a gain of 38
(115%), 28 (65.1%) and 31 (77.5%) high-quality bins against VAMB,
MetaTOR and bin3C, respectively. HiCBin failed to bin contigs on the
cow rumen dataset due to the nonconvergence of its adopted nor-
malization method HiCzin. As for the sheep gut long-read metaHi-C
dataset, VAMB generated 190 near-complete, 94 substantially com-
plete, and 94 moderately complete bins. MetaTOR created 228 near-
complete, 102 substantially complete, and 105 moderately complete
MAGs. bin3C recovered 268 near-complete, 83 substantially complete,
and 51moderately complete draft genomic bins. HiCBin reconstructed
99 near-complete, 55 substantially complete, and 54 moderately
complete bins. In contrast, MetaCC binning retrieved 417 near-com-
plete, 162 substantially complete, and 130moderately completeMAGs,
significantly outperforming VAMB, MetaTOR, bin3C, and HiCBin with
an increase of 227 (119.5%), 189 (82.9%), 149 (55.6%), and 318 (321%)
near-complete bins, respectively. MetaCC binning also improved the

Fig. 3 | Benchmarking the MetaCC binning module on short-read metaHi-C
datasets.MetaCC binning outperformedother binners on both the human gut and
wastewater short-read metaHi-C datasets according to the CheckM criteria (Near-

complete: completeness ≥ 90% and contamination ≤ 10%; Substantially complete:
70% ≤ completeness < 90% and contamination ≤ 10%; Moderately complete: 50% ≤

completeness < 70% and contamination ≤ 10%).

Article https://doi.org/10.1038/s41467-023-41209-6

Nature Communications | (2023)14:6231 4



total number of high-quality MAGs by 331 (87.6%), 274 (63.0%), 307
(76.4%), and 501 (240.9%) compared to VAMB, MetaTOR, bin3C, and
HiCBin, respectively. We also tested the efficacy of polishing HiFi
assemblies using short reads on binning and found it did not improve
the binning performance on the sheep gut dataset (Supplementary
Note 3), suggesting that the polishing stepmight not be necessary and
could be omitted in the future possibly due to the high accuracy of
HiFi reads.

Moreover, we used Mash35 to identify instances that MetaCC
binning and other Hi-C-based binners (i.e., MetaTOR, bin3C, and HiC-
Bin) retrieved the same near-complete MAGs on both long-read
metaHi-C datasets. As shown in Fig. 4b, most of near-complete MAGs
recovered by MetaTOR, bin3C, and HiCBin could also be retrieved by
MetaCC binning in near-complete quality. MetaCC binning further
reconstructed a large number of near-complete MAGs that were only
recovered in substantially and moderately complete quality (or
absent) by other Hi-C-based binners on both long-read metaHi-C
datasets and the inverse cases were relatively rare, validating the
superior ability of MetaCC binning to retrieve near-complete bins on
long-read metaHi-C datasets.

Finally, we explored the capability of different binners to capture
the species diversity in microbial samples by annotating all high-
quality bins generated by MetaCC and other Hi-C-based binners on
both long-read metaHi-C datasets using GTDB-TK36. As shown in
Fig. 4c, bins derived from MetaCC binning represented a larger taxo-
nomic diversity at the species level on both datasets. Additionally, we

found that one near-complete MAG (BIN 1254; Completeness: 97.94
andContamination: 0.38) retrieved byMetaCCbinning from the sheep
gut samples belonged toone speciesBacteroides vulgatus, which is one
of the most important species in gut environments and plays impor-
tant roles in inhibiting atherosclerosis and decreasing the production
of the gut microbial lipopolysaccharide37. However, this important
species could not be recoveredby other binnerswith high quality from
the sheep gut dataset. Therefore,MetaCCbinning outperformedother
binners on extracting the species structure out of microbial
ecosystems.

MetaCC binning identified and expanded the order Erysipelo-
trichales from the cow rumen and sheep gut samples
Members of the order Erysipelotrichales, which are found to have very
important functions in animal disease and physiology38, have been
isolated from the human38, cow39, insect40, and mouse41 gut. Among
high-quality MAG sets recovered by different binners, we found that
only the set of MetaCC binning included the draft genome from the
order Erysipelotrichales on the cow rumen dataset.

Similar to other gut environments, we also observed the pre-
valence of this order from the sheep gut sample, indicating an
increasingly important role of the order Erysipelotrichales in animal
microbiomes. Specifically, according to the annotation results of
GTDB-TK, eight high-quality MAGs retrieved by MetaCC binning
belonged to the order Erysipelotrichales (compared to five, three, and
one recovered by MetaTOR, bin3C, and HiCBin). Three out of these

Fig. 4 | Benchmarking the MetaCC binning module on long-read metaHi-C
datasets. a MetaCC binning outperformed other binners on both the cow rumen
and sheep gut long-readmetaHi-C datasets according to the CheckM criteria (Near-
complete: completeness ≥ 90% and contamination ≤ 10%; Substantially complete:
70% ≤ completeness < 90% and contamination ≤ 10%; Moderately complete: 50% ≤

completeness <70% and contamination ≤ 10%). HiCBin failed to bin contigs on the
cow rumen dataset due to the nonconvergence of its adopted normalization
methodHiCzin. bComparison of near-complete bins identified byMetaCC binning
and other Hi-C-based binners from the long-read metaHi-C datasets. The total

lengthof eachbar shows the total numberof near-complete (NC)bins recovered by
each binner. Each bar is then colored according to the number of NC bins that can
be identified by both binners (NC in both), the number of NC bins that are sub-
stantially complete in the other bin set (SC in other), and the number of NC bins
that are moderately complete or missing in the other bin set (MC or miss in other).
c Comparison of the number of species recovered by different binners with high
quality. MAGs retrieved by MetaCC binning represent the largest taxonomic
diversity at the species level.
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eight bins could be annotated at the species level. The other fiveMAGs
could be annotated to four different genus but failed to be annotated
at the species level, suggesting the potential expansion of species in
the order Erysipelotrichales. Further experiments are required to col-
lect more data on their phenotypic and physical properties before
these uncultured members can be finally determined.

Plasmid analyses among high-quality MAGs retrieved by
MetaCC binning from the sheep gut sample
Taxonomic statistics of 709 high-quality MAGs retrieved by MetaCC
binning from the sheep gut dataset are shown in Supplementary
Table 3. Among contigs contained in these high-quality MAGs, 99
contigs were identified as plasmid contigs with high confidence (see
Methods). The majority of plasmid contigs were included in MAGs
from the orders Oscillospirales and Bacteroidales (Supplementary
Table 4), which were commonly reported in the gut microbiomes42.
Though there were only 8 out of 709 MAGs (1.1%) from the order
Erysipelotrichales, 13 out of 99 plasmid contigs (13.1%) could be found
within these 8MAGs.We also observed three plasmid contigs inMAGs
from the order Christensenellales, members of which are hydrogen-
producing fibrolytic and have been reportedmore predominant in the
sheep rumen environment than other rumen environments, such as
the mice and rabbits43.

Plasmids present in multiple copies in genomes are often absent
from MAGs retrieved by shotgun-based binning methods since such
kind of methods rely on the coverage information to bin contigs39.
Therefore,wewould like to explorewhetherMetaCCbinning couldbin
multi-copy plasmids. To look for the existence of multi-copy plasmid
contigs, we extracted plasmid contigs with coverage > 2 × than the
meanaverage coverageof their respectiveMAGs, andweobserved two
plasmids contig_24425 and contig_61128, whose coverages were
around 3 × and 5 × than the mean average coverage of their respective
MAGs, respectively (Supplementary Table 5). Another plasmid con-
tig_58576 (length: 103,370 bp) had strong BLAST25 hits with a total of
101,669 bp alignment length (98.4%) to NCBI plasmid reference gen-
ome NZ_CP080264.1 (Assigned taxon: Escherichia coli). Indeed,
MetaCC binning attributed this plasmid contig to BIN 1239, which was
annotated as Escherichia coli at the species level by GTDB-TK.

Running time of the overall MetaCC pipeline
On a 2.40 GHz Intel Xeon Processor E5-2665 with 50,000-MBmemory
allocated, the overall MetaCC pipeline spent 19 min, 56 min, 15 min,
and 109min on the human gut short-read, wastewater short-read, cow
rumen long-read, and sheep gut long-read metaHi-C datasets,
respectively.

Discussion
In this work, we have developed MetaCC for scalable and integrative
metaHi-C analyses. The MetaCC framework consists of two major
modules, the NormCC normalizationmodule and the binningmodule.

NormCC models both proximity ligation counts across contigs
and within contigs using negative binomial and enables correcting all
systematic biases. Compared to HiCzin, NormCC showed better per-
formance in terms of the spurious inter-species contact removal and
contig clustering on a synthetic yeast dataset and was much faster on
real metaHi-C datasets. Moreover, HiCzin suffers substantial perfor-
mance deterioration when the species-level annotation by TAXAassign
is achieved for only a limited fraction of assembled contigs (Supple-
mentary Note 1). This vulnerability is particularly noticeable on long-
readmetaHi-C datasets (Supplementary Table 1), as further evidenced
by HiCzin’s failure to converge on the cow rumen long-read metaHi-C
dataset (Supplementary Table 2). In contrast, NormCCdoes not relyon
contig annotations as input and performs normalization solely based
on fundamental features of assembled contigs, including contig length
and the number of restriction sites on contigs. These essential features

can be directly obtained from contigs after assembly regardless of the
sequencing technologies employed. This adaptability enablesNormCC
to be easily applied to both short-read and long-read metaHi-C data-
sets, demonstrating its versatility in comparison to HiCzin.

MetaCC binning also outperformed all existing Hi-C-based bin-
ners consistently on short-read and long-read metaHi-C datasets.
Downstream annotation studies and plasmid analyses on real long-
read metaHi-C datasets further demonstrated the unique ability of
MetaCC on characterizing the structures of microbial samples. Nota-
bly, on short-readmetaHi-Cdatasets,HiCBin demonstrated substantial
outperformance compared to other competing methods except
MetaCC binning, aligning with previous benchmarking studies30.
MetaCC binning further showed a slight improvement over HiCBin
(Fig. 3). Both methods employ Leiden clustering, with the key dis-
tinction lying in their respective normalization approaches. MetaCC
employs NormCC as its normalization method, whereas HiCBin relies
on HiCzin. Consequently, the improved performance of MetaCC bin-
ning over HiCBin can be primarily attributed to the superior contig
clustering performance facilitated by its normalization method
NormCC, as also supported by Fig. 2b. However, in line with HiCzin,
HiCBin also exhibits notable degradation in performance when
assigning taxonomic labels for contigs at the species level is challen-
ging (Supplementary Note 1), which is particularly evident on long-
read metaHi-C datasets (Supplementary Table 1). This limitation of
HiCBin adversely affects its performance on long-read metaHi-C
datasets, underscoring the notable superiority ofMetaCCbinning over
other Hi-C-based binners, including HiCBin, specifically in the context
of long-read metaHi-C datasets.

In the spurious contact removal step, it is important to note that
there is no gold standard for determining the threshold value, as the
fraction of spurious inter-species contacts among all Hi-C contacts
varies due to the quality of metaHi-C experiments. Moreover, there
exists a trade-off in selecting this cut-off value. Opting for larger
thresholds can eliminatemore spurious contacts butmay also result in
the unintended removal of a higher number of informative intra-
species contacts. Therefore, wehave taken a conservative approach by
selecting a small yet safe threshold (i.e., the default 5-th percentile) to
mitigate the loss of importantHi-C information. Fromour experiments
on the synthetic yeast dataset, the default cut-off enabled the removal
of 19.3% of spurious inter-species contacts while incorrectly discarding
fewer than0.5%of informative intra-species contacts. Furthermore, we
conducted experiments to evaluate the impact of the spurious contact
removal step using the default threshold on the downstream binning
results of all four real metaHi-C datasets. Our results consistently
demonstrated that the inclusion of this step with the default threshold
led to improved binning outcomes across all datasets (Supplementary
Note 4). In addition to the default conservative thresholds, an
outcome-oriented strategymay be an alternative for selecting cut-offs.
For example, we can try different thresholds and choose one that
yields the bestMAG retrieval results in downstream analysis. However,
those outcome-oriented strategies always consume much more com-
puting resources and lack generalizability.

In long-read metaHi-C experiments, it is noteworthy that contigs
assembled from error-prone long reads are typically polished using
accurate short reads obtained from the same sample to improve
sequence accuracy26,27,29. One important reason for adopting polishing
is due to the low alignment quality of accurate Hi-C short reads to
contigs assembled from error-prone long reads. Regarding our
NormCC normalization method, the polishing step can also help to
mitigate the impact of sequencing errors on the identification of
restriction sites on contigs due to the improved accuracy at the
nucleotide level. However, for the contigs assembled from the accu-
rateHiFi long reads, previous studies have indicated that polishingHiFi
assemblies using short reads did not markedly enhance sequence
accuracy28. Furthermore, we have demonstrated that polishing HiFi
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assembles didnot improve theHi-C-basedbinning results on the sheep
gut dataset (Supplementary Note 3). Therefore, considering the high
accuracy of HiFi reads, we believe the polishing step may not be
necessary in this case.

For the four real metaHi-C datasets, we employed CheckM to
evaluate the binning performance. Though CheckM is the main soft-
ware used to assess the quality of bins retrieved from real metage-
nomic samples, there is a need for further investigation into how
accurately the validation method based on marker genes can reflect
the actual completeness and contamination of the recovered MAGs.
This is particularly relevant as certain genomic regions may lack mar-
ker genes. Moreover, the focus of CheckM on marker sets suitable for
evaluating bacterial and archaeal genomes may result in eukaryotic
genomes being classified as significantly incomplete33.

There are several directions thatMetaCC can be further extended.
For large MAGs with high abundances, it is interesting to combine
NormCC-normalized Hi-C contacts with other information sources,
such as the assembly graph to scaffold the assembled contigs within
the same MAG retrieved by MetaCC binning. Moreover, identifying
interactions between mobile genetic elements and hosts using
NormCC-normalized Hi-C contacts is of great potential. One major
challenge in this topic is to choose a threshold of Hi-C contacts as the
true interactions. As a new and themost systematic framework to date,
we hopeMetaCC enables improved analysis of metaHi-C data with the
potential to shed new light on the dark matter of the microbiome.

Methods
Real metaHi-C datasets
In this study, we leveraged several publicly available metagenomic Hi-
C datasets, consisting of two short-read metaHi-C datasets and two
long-read metaHi-C datasets. The specific sizes of raw datasets were
shown in Supplementary Table 6.

Two short-read metaHi-C datasets were generated from different
microbial ecosystems, including human gut (BioProject:
PRJNA413092)13 and wastewater (BioProject: PRJNA506462)10. Each
short-read metaHi-C dataset was composed of shotgun libraries and
Hi-C libraries derived from the same sample source. The restriction
endonucleases Sau3AI and MluCI were utilized to construct all Hi-C
sequencing libraries. All shotgun libraries and Hi-C libraries were
sequenced by Illumina platforms at 150 bp.

Two long-read metaHi-C datasets were derived from cow rumen
samples (BioProject: PRJNA507739)26 and sheep gut samples (BioPro-
ject: PRJNA595610)28, respectively. The cow rumen long-readmetaHi-C
dataset consisted of PacBio uncorrected long read libraries and Hi-C
libraries. The error-prone PacBio long reads were generated using the
PacBio RSII and PacBio Sequel while Hi-C libraries were created by the
restriction enzymes Sau3AI andMluCI and subsequently sequenced on
an Illumina HiSeq 2000 at 80 bp. The sheep gut long-read metaHi-C
dataset contained PacBio circular consensus sequencing (CCS) long
read libraries and Hi-C sequencing libraries. PacBio CCS long reads
were highly accurate (average Q scores above 20) and hereafter
referred to as theHiFi reads. Separate Hi-C libraries from the sheep gut
long-read metaHi-C dataset were generated by the restriction endo-
nucleases Sau3AI and MluCI and sequenced at 150 bp for analysis.

Data processing
In the metagenomic Hi-C experiment, the read cleaning procedure
is necessary before the alignment of Hi-C read pairs, since the
adaptor sequences, low-quality reads, and PCR duplication can
cause significant problems in downstream analyses. Therefore, we
applied a standard cleaning procedure to all Hi-C read libraries
using bbduk from the BBTools suite (v37.25)44 (Supplemen-
tary Note 5).

For the two short-read metaHi-C datasets, shotgun reads were
assembled into contigs by MEGAHIT (v1.2.9)45 with parameters ‘-k-

min 21 -k-max 141 -k-step 12 -merge-level 20,0.95 -min-contig-len
1000’. The assembled contigs of both PacBio uncorrected long
reads and HiFi long reads from the two long-read metaHi-C datasets
were provided by the original authors and thus were directly
downloaded for analyses. Bickhart et al.26 assembled PacBio raw
reads from the cow rumen long-read metaHi-C dataset by Canu
v1.6+101 changes (r8513)46, and subsequently polished the assembly
twice with Illumina data using Pilon47. The final assembly was
deposited at https://figshare.com/articles/usda_pacbio_second_
pilon_indelsonly_fa_gz/8323154. An updated version of the assem-
bly of PacBio HiFi long reads from the long-read sheep gutmetaHi-C
dataset was provided by authors of the original paper utilizing
metaFlye (v2.9)48 with default parameters and was deposited at
https://doi.org/10.5281/zenodo.5228989 under the file ‘flye.v29.-
sheep_gut.hifi.250g.fasta.gz’. The assembly statistics of contigs
from all datasets are shown in Supplementary Table 7.

Finally, we aligned processed paired-end Hi-C reads to assem-
bled contigs by BWA-MEM (v0.7.17)49. We switched off the read
pairing mode and regarded the alignment with lowest read coor-
dinate as primary alignments with parameter ‘-5SP’ for the BWA-
MEM mapping. After the alignment, we successively removed
unmapped reads, secondary alignments, supplementary alignments
and alignments with low quality (nucleotide match length <30 or
mapping score <30). Raw contig-to-contig contacts were aggre-
gated by counting the number of Hi-C read pairs aligned to two
contigs separately as across-contig Hi-C contacts, which reflected
the proximity extents between contigs. We also defined the number
of Hi-C read pairs mapped to the same contig as within-contig Hi-C
contacts. Since shorter contigs with fewer Hi-C signals and occur-
rences of restriction sites tended to have much higher variance,
weakening the stability in the downstream analyses17,18, restrictions
on minimum contig length (default, 1000 bp), minimum number of
restriction sites (default, one), andminimumHi-C contacts (default,
two across-contig Hi-C contacts and one within-contig Hi-C contact)
were imposed to filter problematic contigs. RawHi-C contactmatrix
was then generated from the alignment of Hi-C paired-end reads
where the diagonal and non-diagonal entries represented within-
contig and across-contig Hi-C contacts, respectively. Notably,
because metaHi-C experiments were designed to explore contig-to-
contig relationships, across-contig Hi-C contacts were much more
important than within-contig Hi-C contacts and unless otherwise
specified, Hi-C contacts always referred to across-contig Hi-C con-
tacts in this paper.

NormCC normalization module in MetaCC
NormCC is a scalable and effective normalization module to eliminate
the biases of the number of restriction sites, contig length and cov-
erage on the rawmetagenomic Hi-C contacts. LetH denote the rawHi-
C contact matrix. We define the Hi-C signal Mi of contig i as the total
number of proximity ligation events between contig i and other con-
tigs, i.e.,

Mi =
X
k≠i

Hik : ð1Þ

We model the Mi using the negative binomial (NB) distribution,
i.e.,

Mi ∼NBðμi,θÞ, ð2Þ

where θ is the negative binomial dispersion parameter and themeanμi
depends on the three factors of systematic biases for raw metage-
nomic Hi-C contacts, i.e., the number of restriction sites on contigs,
contig length and coverage14. Logarithmic link functions in negative
binomial regression models50 are used to model the dependence of
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parameter μi on the three factors of biases, i.e.,

logðμiÞ=β0 +βs � logðsiÞ+βl � logðliÞ+βc � logðciÞ, ð3Þ

where si, li, and ci represent the number of restriction sites, the length,
and the coverage of the contig i, respectively.

To solve the regression equation (3),weneed toobtain the specific
values of independent variables, i.e., the three factors of explicit biases
for all contigs. Though thenumberof restriction sites and contig length
can be directly obtained, the true contig abundances are always
unknown in real datasets. One solution is to estimate the contig cov-
erages by aligning short reads or long reads used in assembly back to
contigs. However, the alignment procedure usually consumes a huge
amount of computing time and memory resources, especially for long
reads51. To tackle this problem, we design a statistical model to repre-
sent the unknown coverage using known elements. Specifically, let Ni

denote the number of proximity ligation events within the contig i, i.e.,

Ni =Hii: ð4Þ

We assume thatNi also follows the negative binomial distribution,
i.e.,

Ni ∼NBðνi,σÞ, ð5Þ

where σ is the negative binomial dispersion parameter and themean νi
is linked to three factors of biases using logarithmic link functions, i.e.,

logðνiÞ= γ0 + γs � logðsiÞ+ γl � logðliÞ+ γc � logðciÞ: ð6Þ

Based on formulas (5) and (6), we develop the first negative
binomial regression model, denoted by NBR1, where we consider the
factors of systematic biases and the within-contig Hi-C contacts Ni as
the predictor variables and the response variable, respectively. The
residual of NBR1 for contig i can be written as

Ni=νi: ð7Þ

We further assume that no factors other than the number of
restriction sites, the length, and the coverage have a major impact on
the number of proximity ligation events between fragments within the
same contig (i.e., within-contig Hi-C contacts). By taking residuals, the
effects of all factors with substantial impacts on the within-contig Hi-C
contacts are eliminated. As a result, the residuals described in (7) are
primarily composed of non-essential factors, which are assumed to be
the same for all contigs, i.e.,

Ni= expfγ0 + γs � logðsiÞ+ γl � logðliÞ+ γc � logðciÞg

=
Ni

eγ0sγsi l
γl
i c

γc
i

¼: C,

ð8Þ

whereC is a constant. Notably, in addition to factors such as thenumber
of restriction sites, the length, and the coverageof contigs, the extent of
spatial proximity across different contigs also plays a major role in
determining the number of proximity ligation events between them.
Therefore, the assumption mentioned earlier regarding the within-
contigHi-C contacts is not applicable to the across-contigHi-C contacts.

Fromformula (8),we canobtain an approximate expression of the
contig coverage as

ci ¼: �C � Ni

sγsi l
γl
i

 !�γc

, ð9Þ

where �C =C�1 � e�γ0 .

Therefore, the unknown independent variable ci can be approxi-
mately represented using three observable variables Ni, si, and li.
Though the parameters �C, γs, γl, and γc are unsolved, we will then show
that we don’t need to estimate these parameters in our
NormCC model.

Let us plug the approximate expression of contig coverage ci in
formula (9) into equation (3), i.e.,

logðμiÞ=β0 +βs � logðsiÞ+βl � logðliÞ � βcγc � log �C � Ni

sγsi l
γl
i

 !
= ðβ0 � βcγc � logð�CÞÞ+ ðβs +βcγcγsÞ � logðsiÞ
+ ðβl +βcγcγlÞ � logðliÞ � βcγc � logðNiÞ

=fβ0 +
eβs � logðsiÞ+ eβl � logðliÞ+fβN � logðNiÞ,

ð10Þ

where

fβ0 =β0 � βcγc � logð�CÞ,eβs =βs +βcγcγs,eβl =βl +βcγcγl ,fβN = � βcγc:

ð11Þ

Based on formulas (2) and (10), we develop the second
negative binomial regression model NBR2. In NBR2, the Hi-C signal
Mi serves as the response variable, while si, li, and Ni are con-
sidered as predictor variables that contribute to the mean of the
distribution μi for a given contig i. Since all variables in NBR2 are
observable, we can directly estimate fβ0,

eβs,
eβl , and

fβN using the
maximum likelihood. Let β̂0, β̂s, β̂l , and β̂N denote the corre-
sponding maximum likelihood estimations. Once the parameters
of the model are determined, the estimated mean μ̂i can be
obtained as

μ̂i = e
β̂0sβ̂s

i lβ̂l
i N

β̂N
i : ð12Þ

Notably, from formula (2), μ̂i represents the estimated mean of
the number of proximity ligation events between contig i and other
contigs, while this estimate takes into account only the number of
restriction sites, the length, and the coverage of contigs. In other
words, μ̂i reflects the capability of contig i to produce proximity liga-
tions with other contigs, considering the influence of three bias fac-
tors. To address the variations in contig abilities in generating Hi-C
interactions due to these bias factors, we normalize the raw Hi-C
contacts between contig i and contig j (where i ≠ j) by dividing themby
the square root of μ̂i � μ̂j, i.e.,

Hijffiffiffiffiffiffiffiffiffiffiffiffi
μ̂i � μ̂j

q � Ĉ, ð13Þ

where Ĉ =maxk μ̂k is a rescaling constant. In formula (13), the
rescaling constant Ĉ is used to adjust and scale the values of
normalized Hi-C contacts in case they are too small. The square
root of μ̂i � μ̂j can be regarded as a scaled geometric mean of the
expected number of proximity ligation events across contigs,
predicted only based on three bias factors. Our intuition is that
the deviation between the actual across-contig Hi-C contacts and
the expected number of proximity ligation events considering
only the three bias factors can primarily be attributed to the
spatial proximity and thus can reflect the unbiased proximity
across contigs.
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Discarding spurious inter-species contacts based on NormCC-
normalized Hi-C contacts
Spurious inter-species Hi-C contacts refer to the occurrences of
proximity ligation events between contigs fromdifferent genomes due
to experimental noises and confound the interpretability of the Hi-C
data10. Based on the expectation that proximity ligations between
genomic segments in the same species occur orders of magnitude
more frequently than interactions between different species14, we
discard the lowestppercent (default,five) ofNormCC-normalizedHi-C
contacts as spurious.

Genome binning in MetaCC
After correcting systematic biases by NormCC and removing spurious
Hi-C contacts, the processed Hi-C contact matrix is successively
transformed to a weighted graph G without self-loops where vertices
represent all contigs and edge weights are values of NormCC-
normalized Hi-C contacts between contigs. Then, we applied the Lei-
den graph clustering algorithm32 on theHi-C contact graph G to cluster
contigs into draft genomic bins. The Leiden algorithm is a modularity-
based community detection algorithm and takes greedy strategies to
optimize the modularity function. Instead of the classical Newman-
Girvan modularity22 which suffers resolution limits and may fail to
identify small bins23, we leverage a flexible modularity function based
on the Reichardt and Bornholdt’s Potts model52 as

X
fi,jjΔij = 1g

eij �
didj

2n
� r

� �
, ð14Þ

where eij is the edge weight (i.e., NormCC-normalized Hi-C contacts)
between contigs i and j; di and dj denote the degree of contig i and
contig j in the graph G, respectively; n is the total number of edges in
the graph; r represents a resolution parameter; Δij is an indicator
function and is equal to one if contigs i and j belong to the same
community. Notably, the resolutionparameter r canbe regarded as the
relative importance between the configuration null part and links
within the communities and controls the number of communities, and
the larger r tends to generate more communities32. Therefore,
determining this hyper-parameter affects the results of contig
clustering.

Similar to53, we detect single-copy marker genes in assembled
contigs using FragGeneScan54 and HMMER (v3.3.2)55 to estimate the
number of genomes in the metagenomic data, denoted by k (Supple-
mentary Note 6). We also set the minimal bin size to the default value
of 150 kbp, slightly smaller than the minimum length of known bac-
terial genomes56, and consider only contig bins above this size as
resolvedMAGs. Then, our objective is to select a suitable value of r for
which the number of resolvedMAGs aligns with the estimated number
of genomes in the sample. To achieve this, we sequentially try a list of
increasing values for r. For each candidate value of the resolution
parameter r, we record the number of resolved MAGs, denoted as kr.
Considering the potential underestimation of the number of genomes,
which can occur due to factors such as the possibility of marker genes
failing to be detected in certain species, the resolution parameter is
determined as the first value for which the number of resolved MAGs
surpasses the estimated number of genomes, mathematically, i.e.,

min r

s:t: kr > k; r 2 f1, 20, 40, 60, 80, � � � g: ð15Þ

After selecting the resolution parameter, we can cluster the assembled
contigs into MAGs, making up the initial bin set of MetaCC binning.

Evaluating the quality of recovered MAGs
We applied CheckM (v1.1.3, module: lineage_wf)33 to evaluate retrieved
MAGs. Following the CheckM criteria for completeness and

contamination13, we referred to the resolved MAGs with CheckM
completeness greater than or equal to 50% and contamination less
than or equal to 10% as high-quality MAGs. We further attributed high-
quality draft genomes to three ranks according to the CheckM com-
pleteness, i.e., near-complete (completeness ≥ 90% and contamination
≤ 10%), substantially complete (70% ≤ completeness < 90% and con-
tamination ≤ 10%), and moderately complete (50% ≤ completeness <
70% and contamination ≤ 10%).

Cleaning partially contaminated bins in MetaCC
Apart from high-quality MAGs, there also existed partially con-
taminated bins with completeness higher than 50% and contamination
higher than 10% in the initial bin set of MetaCC binning. Similar to
other binners, such as MetaTOR16 and HiCBin18, we selected out and
cleaned all partially contaminated bins by partitioning contigs within
each contaminated bin using the Leiden algorithm. The resolution
parameter was kept to be 1 in re-clustering procedures since the
number of groups within each partially contaminated bin was expec-
ted to be small. As a result, groups of relatively smaller bins, denoted
by sub-bins, could be generated and those sub-bins with bin size larger
than the minimal requirement (default, 150 kbp) were retained and
mergedback into the initial bin set to obtain thefinal bin set ofMetaCC
binning.

Assessing the performance of normalization and spurious
contact removal on a synthetic yeast metaHi-C dataset
We assessed the normalization performance of NormCC and the fol-
lowing spurious contact removal on an additional synthetic yeast
sample (BioProject: PRJNA245328)11, consisting of 13 yeast species. The
synthetic yeast metaHi-C dataset contained shotgun libraries and Hi-C
libraries created using restriction enzymes NcoI and HindIII. The raw
shotgun and Hi-C libraries contained 85.7 million read pairs at 101 bp
and 81 million read pairs at 100 bp, respectively. The read cleaning,
contig assembly, and Hi-C read alignment procedures were consistent
with those applied to the real short-readmetaHi-Cdatasets. The contig
assembly statistics were shown in Supplementary Table 7. Since all
species within the synthetic yeast sample were known, the species
identity of the assembled contigs could be identified (Supplementary
Note 7). Thereafter, the ground truth of intra-species Hi-C contacts
(i.e., Hi-C contacts linking contigs from the same species) and spurious
inter-species Hi-C (i.e., Hi-C contacts linking contigs from different
species) contacts can be generated for benchmarking analyses.

Estimating the coverages of assembled contigs
Short/long reads used in the assembly were mapped back to assem-
bled contigs to estimate the contigs’ abundances. We employed
BBMap from the BBTools suite (v37.25)44 and minimap2 (v2.24)57 to
align short reads and long reads back to contigs, respectively.
SAMtools58 was used to transform the alignment files into bam files,
serving as the input for the script ‘jgi_summarize_bam_contig_depths’
provided by59 to calculate the contigs’ coverages.

MAG analyses on the human gut short-read metaHi-C dataset
Sincemany bacteria in the human gut have been identified in previous
studies34,60,61, we evaluated the bins retrieved from the human gut
short-readmetaHi-C dataset using the repository of known human gut
bacteria. Specifically, we downloaded the Unified Human Gastro-
intestinal Genome (UHGG)database (v1.0)34, which is one of the largest
species-level public gutmicrobial referencedatabases. To estimate the
number of bins corresponding to known bacteria and the number of
bins that might contain chimeric genomes for different binning
methods, we utilized Mash (v2.2)35 with 10,000 sketches per genome
to calculate the Mash distance between the UHGG species-level
representative and the bins derived from the human gut dataset.
Mash distance serves as a reliable proxy for one minus the average
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nucleotide identity (ANI)35, with the Mash species-level threshold of
0.05 equivalent to the widely accepted 95% ANI used to define species
boundaries62. Therefore, we assigned one bin to one species if the
Mash distance between the bin and the representative reference gen-
ome of that species was less than 0.05. We also identified a bin as
chimeric if it was assigned to multiple species.

MAG analyses on two long-read metaHi-C datasets
To identify which near-complete bins overlapped each other from
MetaCC binning and other Hi-C-based binners, we employed Mash
(v2.2)35 with 10,000 sketches per bin to calculate the Mash distance
between near-complete bins from different bin sets. Two bins with
mash distance smaller than 0.01 were identified as MAGs from the
same genome31,63. Moreover, to evaluate ability of different binners to
capture the species diversity, we annotated all high-quality bins using
GTDB-TK (v2.1.0, Release: R207 v2)36 with the function ‘classify_wf’ to
obtain the taxonomic information of high-quality MAGs recovered by
different binners.

Plasmid analyses on the sheep gut long-read metaHi-C dataset
A total of 6,320 contigs in 709 high-qualityMAGs retrieved byMetaCC
binning were first filtered by PPR-Meta (v1.1)64 with cut-off 0.5 to
identify potential plasmid contigs. In this way, we identified 111 (1.7%)
potential plasmid contigs. These pre-filtering 111 contigs were further
screened using Platon (v1.6)65 with mode ‘Sensitivity’ to exclude
potential chromosomal contigs. As a result, 99 contigs were finally
identified as plasmids with high confidence. We queried these 99
plasmid contigs by BLAST (v2.12.0)25 with at least 95% identitymatch of
at least 1000 bp to the reference plasmid genomes from NCBI RefSeq
database (Release: November, 2022).

Quality control of all metaHi-C datasets
The quality of Hi-C libraries from different metaHi-C datasets was
assessed using qc3C (v0.5)66 in k-mer mode with default parameters.
Results of qc3C for all datasets were shown in Supplementary Data 1.

Other algorithms used in benchmarking
The normalization method HiCzin (v0.1.0)14 was run with default
parameters. All binners used for comparison, i.e., VAMB (v3.0.3)31,
MetaTOR (v1.1.4)16, bin3C (v0.1.1)17, andHiCBin (v1.1.0)18 were executed
with default parameters on all real metaHi-C datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are publicly available from the NCBI
Sequence Read Archive database (http://www.ncbi.nlm.nih.gov/sra).
The human gut dataset used in this study is available under accession
codes: shotgun library SRR6131123, Hi-C libraries SRR6131122 and
SRR6131124. The wastewater dataset is available under accession codes:
shotgun library SRR8239393 and Hi-C library SRR8239392. The cow
rumen dataset used in this study is available under accession codes:
BioProject PRJNA507739. The sheep gut dataset is available under the
accession numbers: HiFi reads SRX10647529 and SRX7628648, Hi-C
reads SRX10704191, and WGS short reads SRX7649993. The synthetic
yeast sample used in this study is available under the accession codes:
shotgun library SRR1263009 and Hi-C library SRR1262938. The final
assembly from the cow rumen dataset is available at https://figshare.
com/articles/usda_pacbio_second_pilon_indelsonly_fa_gz/8323154. The
assembly of PacBio HiFi long reads from the sheep gut dataset is
available at https://doi.org/10.5281/zenodo.5228989 under the file
‘flye.v29.sheep_gut.hifi.250g.fasta.gz’. The curated nucleotide reference
database of TAXAassign is available at http://userweb.eng.gla.ac.uk/

umer.ijaz/bioinformatics/db.sqlite.gz. The GTDB-TK reference database
is available at https://data.gtdb.ecogenomic.org/releases/release207/
207.0/auxillary_files/gtdbtk_r207_v2_data.tar.gz. The UHGG catalogs
are available from the MGnify FTP site http://ftp.ebi.ac.uk/pub/
databases/metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_
catalogue. The NCBI RefSeq database is available at https://ftp.ncbi.nlm.
nih.gov/refseq/release. The complete sequence of NCBI plasmid refer-
ence genome NZ_CP080264.1 is available at https://www.ncbi.nlm.nih.
gov/nuccore/NZ_CP080264.1. The MAGs generated by MetaCC binning
from real metagenomes in the benchmarking can be obtained from
Zenodo: https://doi.org/10.5281/zenodo.805799667. The remaining data
are available within the Article, Supplementary Information, or Source
data. There is no restriction on data availability. Source data are pro-
vided with this paper.

Code availability
TheMetaCC software is freely available at https://github.com/dyxstat/
MetaCCunder theGNUGeneral Public License version v3. TheMetaCC
code used in this work is also archived on Zenodo under https://doi.
org/10.5281/zenodo.805456368. Scripts used in this study to process
the intermediate data and plot figures are available at https://github.
com/dyxstat/Reproduce_MetaCC.

References
1. Handelsman, J. Metagenomics: application of genomics to uncul-

tured microorganisms. Microbiol. Mol. Biol. Rev. 68,
669–685 (2004).

2. Streit, W. R. & Schmitz, R. A. Metagenomics—the key to the uncul-
tured microbes. Curr. Opin. Microbiol. 7, 492–498 (2004).

3. Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455,
481–483 (2008).

4. Simon, C. & Daniel, R. Metagenomic analyses: past and future
trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

5. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human
gut using Hi-C reveals extensive horizontal gene transfer, persis-
tence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

6. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread
transfer of mobile antibiotic resistance genes within individual gut
microbiomes revealed through bacterial Hi-C. Nat. Commun. 11,
4379 (2020).

7. Chen, Y., Wang, Y., Paez-Espino, D., Polz, M. F. & Zhang, T. Prokar-
yotic viruses impact functional microorganisms in nutrient removal
and carbon cycle inwastewater treatment plants.Nat. Commun. 12,
5398 (2021).

8. Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-
bacteria infection network reveals active cycling phages of the
healthy human gut. eLife 10, e60608 (2021).

9. Du, Y., Fuhrman, J. A. & Sun, F. ViralCC retrieves complete viral
genomes and virus-host pairs from metagenomic Hi-C data. Nat.
Commun. 14, 502 (2023).

10. Stalder, T., Press, M. O., Sullivan, S., Liachko, I. & Top, E. M. Linking
the resistome and plasmidome to the microbiome. ISME J. 13,
2437–2446 (2019).

11. Burton, J. N., Liachko, I., Dunham,M. J. & Shendure, J. Species-level
deconvolution of metagenome assemblies with Hi-C–based con-
tact probability maps. G3 (Bethesda) 4, 1339–1346
(2014).

12. Beitel, C. W. et al. Strain-and plasmid-level deconvolution of a
synthetic metagenome by sequencing proximity ligation products.
PeerJ 2, e415 (2014).

13. Press, M. O. et al. Hi-C deconvolution of a human gut microbiome
yields high-quality draft genomes and reveals plasmid-genome
interactions. bioRxiv https://doi.org/10.1101/198713 (2017).

14. Du, Y., Laperriere, S. M., Fuhrman, J. & Sun, F. Normalizing
metagenomic Hi-C data and detecting spurious contacts using

Article https://doi.org/10.1038/s41467-023-41209-6

Nature Communications | (2023)14:6231 10

http://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6131123
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6131122
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6131124
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8239393
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8239392
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA507739
https://www.ncbi.nlm.nih.gov/sra/?term=SRX10647529
https://www.ncbi.nlm.nih.gov/sra/?term=SRX7628648
https://www.ncbi.nlm.nih.gov/sra/?term=SRX10704191
https://www.ncbi.nlm.nih.gov/sra/?term=SRX7649993
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1263009
https://www.ncbi.nlm.nih.gov/sra/?term=SRR1262938
https://figshare.com/articles/usda_pacbio_second_pilon_indelsonly_fa_gz/8323154
https://figshare.com/articles/usda_pacbio_second_pilon_indelsonly_fa_gz/8323154
https://doi.org/10.5281/zenodo.5228989
http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/db.sqlite.gz
http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/db.sqlite.gz
https://data.gtdb.ecogenomic.org/releases/release207/207.0/auxillary_files/gtdbtk_r207_v2_data.tar.gz
https://data.gtdb.ecogenomic.org/releases/release207/207.0/auxillary_files/gtdbtk_r207_v2_data.tar.gz
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_catalogue
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_catalogue
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_catalogue
https://ftp.ncbi.nlm.nih.gov/refseq/release
https://ftp.ncbi.nlm.nih.gov/refseq/release
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP080264.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP080264.1
https://doi.org/10.5281/zenodo.8057996
https://github.com/dyxstat/MetaCC
https://github.com/dyxstat/MetaCC
https://doi.org/10.5281/zenodo.8054563
https://doi.org/10.5281/zenodo.8054563
https://github.com/dyxstat/Reproduce_MetaCC
https://github.com/dyxstat/Reproduce_MetaCC
https://doi.org/10.1101/198713


zero-inflated negative binomial regression. J. Comput. Biol. 29,
106–120 (2022).

15. Hugerth, L. W. et al. Metagenome-assembled genomes uncover a
global brackish microbiome. Genome Biol. 16, 279 (2015).

16. Baudry, L., Foutel-Rodier, T., Thierry, A., Koszul, R. & Marbouty, M.
MetaTOR: a computational pipeline to recover high-quality meta-
genomic bins frommammalian gut proximity-ligation (me) libraries.
Front. Genet. 10, 753 (2019).

17. DeMaere, M. Z. & Darling, A. E. bin3C: exploiting Hi-C sequencing
data to accurately resolve metagenome-assembled genomes.
Genome Biol. 20, 46 (2019).

18. Du, Y. & Sun, F. HiCBin: binning metagenomic contigs and reco-
vering metagenome-assembled genomes using Hi-C contact
maps. Genome Biol. 23, 63 (2022).

19. Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J.
Numer. Anal. 33, 1029–1047 (2013).

20. Rao, S. S. et al. A 3D map of the human genome at kilobase reso-
lution reveals principles of chromatin looping. Cell 159,
1665–1680 (2014).

21. Wu, H. et al. HCMB: a stable and efficient algorithm for processing
the normalization of highly sparse Hi-C contact data. Comput.
Struct. Biotechnol. J. 19, 2637–2645 (2021).

22. Girvan, M. & Newman, M. E. Community structure in social and
biological networks. Proc. Natl Acad. Sci. USA 99,
7821–7826 (2002).

23. Fortunato, S. & Barthelemy, M. Resolution limit in community
detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007).

24. Ijaz, U. & Quince, C. TAXAassign v0. 4. https://github.com/
umerijaz/TAXAassign (2013).

25. Johnson,M. et al. NCBI BLAST: a betterweb interface.Nucleic Acids
Res. 36, W5–W9 (2008).

26. Bickhart, D. M. et al. Assignment of virus and antimicrobial resis-
tance genes to microbial hosts in a complex microbial community
by combined long-read assembly and proximity ligation. Genome
Biol. 20, 153 (2019).

27. Cuscó, A., Pérez, D., Viñes, J., Fàbregas, N. & Francino, O. Novel
canine high-quality metagenome-assembled genomes, prophages
and host-associated plasmids provided by long-read metage-
nomics together with Hi-C proximity ligation. Microb. Genom. 8,
000802 (2022).

28. Bickhart, D. M. et al. Generating lineage-resolved, complete
metagenome-assembled genomes from complex microbial com-
munities. Nat. Biotechnol. 40, 711–719 (2022).

29. Gounot, J.-S. et al. Genome-centric analysis of short and long read
metagenomes reveals uncharacterized microbiome diversity in
Southeast Asians. Nat. Commun. 13, 6044 (2022).

30. Jia, L. et al. A survey on computational strategies for genome-
resolved gut metagenomics. Brief Bioinformatics bbad162
(2023).

31. Nissen, J. N. et al. Improved metagenome binning and assembly
using deep variational autoencoders. Nat. Biotechnol. 39,
555–560 (2021).

32. Traag, V. A., Waltman, L. & Van Eck, N. J. From Louvain to Leiden:
guaranteeing well-connected communities. Sci. Rep. 9,
5233 (2019).

33. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson,
G. W. CheckM: assessing the quality of microbial genomes recov-
ered from isolates, single cells, and metagenomes. Genome Res.
25, 1043–1055 (2015).

34. Almeida, A. et al. A unified catalog of 204,938 reference genomes
from the human gut microbiome. Nat. Biotechnol. 39,
105–114 (2021).

35. Ondov, B. D. et al. Mash: fast genome and metagenome distance
estimation using MinHash. Genome Biol. 17, 132 (2016).

36. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk
v2: memory friendly classification with the genome taxonomy
database. Bioinformatics 38, 5315–5316 (2022).

37. Yoshida, N. et al. Bacteroides vulgatus and Bacteroides dorei
reduce gut microbial lipopolysaccharide production and inhibit
atherosclerosis. Circulation 138, 2486–2498 (2018).

38. Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the
human host. Front. Cell Infect. 5, 84 (2015).

39. Stewart, R. D. et al. Assembly of 913 microbial genomes from
metagenomic sequencing of the cow rumen. Nat. Commun. 9,
870 (2018).

40. Tegtmeier, D., Riese, C., Geissinger, O., Radek, R. & Brune, A.
Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp.
nov., two fermenting bacteria isolated from insect guts, and
emended description of the family Erysipelotrichaceae. Syst. Appl.
Microbiol. 39, 319–329 (2016).

41. Cox, L. M. et al. Description of two novel members of the family
Erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and
Dubosiella newyorkensis, gen. nov., sp. nov., from the murine
intestine, and emendation to the description of Faecalibacterium
rodentium. Int. J. Syst. Evol. Microbiol. 67, 1247 (2017).

42. Gubert, C. et al. Gene-environment-gut interactions in Huntington’s
disease mice are associated with environmental modulation of the
gut microbiome. iScience 25, 103687 (2022).

43. Mi, L. et al. Comparative analysis of the microbiota between sheep
rumen and rabbit cecum provides new insight into their differential
methane production. Front. Microbiol. 9, 575 (2018).

44. Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Tech.
Rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States) (2014).

45. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an
ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de Bruijn graph. Bioinformatics 31,
1674–1676 (2015).

46. Koren, S. et al. Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation. Genome Res. 27,
722–736 (2017).

47. Walker, B. J. et al. Pilon: an integrated tool for comprehensive
microbial variant detection and genome assembly improvement.
PLoS ONE 9, e112963 (2014).

48. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome
assembly using repeat graphs. Nat. Methods 17, 1103–1110
(2020).

49. Li, H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. https://doi.org/10.48550/arXiv.1303.
3997 (2013).

50. Hilbe, J. M. Negative Binomial Regression (Cambridge University
Press, 2011).

51. Kalikar, S., Jain, C., Vasimuddin, M. & Misra, S. Accelerating mini-
map2 for long-read sequencing applications onmodern CPUs.Nat.
Comput. Sci. 2, 78–83 (2022).

52. Reichardt, J. & Bornholdt, S. Statistical mechanics of community
detection. Phys. Rev. E 74, 016110 (2006).

53. Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W.
MaxBin: an automated binning method to recover individual gen-
omes from metagenomes using an expectation-maximization
algorithm. Microbiome 2, 26 (2014).

54. Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short
and error-prone reads. Nucl. Acids Res. 38, e191–e191 (2010).

55. Finn, R. D., Clements, J. & Eddy, S. R. HMMERweb server: interactive
sequence similarity searching. Nucl. Acids Res. 39,
W29–W37 (2011).

56. Nakabachi, A. et al. The 160-kilobase genome of the bacterial
endosymbiont Carsonella. Science 314, 267–267 (2006).

Article https://doi.org/10.1038/s41467-023-41209-6

Nature Communications | (2023)14:6231 11

https://github.com/umerijaz/TAXAassign
https://github.com/umerijaz/TAXAassign
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997


57. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

58. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

59. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for
robust and efficient genome reconstruction from metagenome
assemblies. PeerJ 7, e7359 (2019).

60. Forster, S. C. et al. A human gut bacterial genome and culture
collection for improvedmetagenomic analyses.Nat.Biotechnol.37,
186–192 (2019).

61. Zou, Y. et al. 1,520 reference genomes from cultivated human gut
bacteria enable functional microbiome analyses. Nat. Biotechnol.
37, 179–185 (2019).

62. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance
the species definition for prokaryotes.Proc. Natl Acad. Sci. USA 102,
2567–2572 (2005).

63. Pan, S., Zhu, C., Zhao, X.-M. & Coelho, L. P. A deep siamese neural
network improves metagenome-assembled genomes in micro-
biome datasets across different environments. Nat Commun. 13,
2326 (2022).

64. Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids
frommetagenomic fragments using deep learning.Gigascience 8,
giz066 (2019).

65. Schwengers, O. et al. Platon: identification and characterization of
bacterial plasmid contigs in short-read draft assemblies exploiting
protein sequence-based replicon distribution scores. Microb.
Genom. 6, mgen000398 (2020).

66. DeMaere, M. Z. & Darling, A. E. qc3C: reference-free quality control
for Hi-C sequencing data. PLoS Comput. Biol. 17, e1008839
(2021).

67. Du, Y. & Sun, F. Metagenome-assembled genomes(MAGs) gener-
ated by MetaCC binning (Version 1) [Data set]. Zenodo https://doi.
org/10.5281/zenodo.8057996 (2023).

68. Du, Y. & Sun, F. MetaCC allows scalable and integrative analyses of
both long-read and short-read metagenomic Hi-C data. Zenodo
https://doi.org/10.5281/zenodo.8054563 (2023).

Acknowledgements
The research is partially funded by NIH grant R01GM131407 and NSF
grant EF-2125142.

Author contributions
Y.D. and F.S. conceived the ideas and designed the study. Y.D. imple-
mented the methods, carried out the computational analyses, and
drafted the manuscript. F.S. and Y.D. modified and finalized the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41209-6.

Correspondence and requests for materials should be addressed to
Fengzhu Sun.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41209-6

Nature Communications | (2023)14:6231 12

https://doi.org/10.5281/zenodo.8057996
https://doi.org/10.5281/zenodo.8057996
https://doi.org/10.5281/zenodo.8054563
https://doi.org/10.1038/s41467-023-41209-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data
	Results
	Overview of MetaCC
	NormCC comprehensively corrected all systematic biases existing in a synthetic yeast metaHi-C dataset
	NormCC outperformed HiCzin on the spurious contact removal, contig clustering, and computational time
	MetaCC binning achieved the best performance of MAG retrieval�on short-read metaHi-C datasets
	MetaCC binning markedly outperformed existing binners on long-read metaHi-C datasets
	MetaCC binning identified and expanded the order Erysipelotrichales from the cow rumen and sheep gut samples
	Plasmid analyses among high-quality MAGs retrieved by MetaCC binning from the sheep gut sample
	Running time of the overall MetaCC pipeline

	Discussion
	Methods
	Real metaHi-C datasets
	Data processing
	NormCC normalization module in MetaCC
	Discarding spurious inter-species contacts based on NormCC-normalized Hi-C contacts
	Genome binning in MetaCC
	Evaluating the quality of recovered MAGs
	Cleaning partially contaminated bins in MetaCC
	Assessing the performance of normalization and spurious contact�removal on a synthetic yeast metaHi-C dataset
	Estimating the coverages of assembled contigs
	MAG analyses on the human gut short-read metaHi-C dataset
	MAG analyses on two long-read metaHi-C datasets
	Plasmid analyses on the sheep gut long-read metaHi-C dataset
	Quality control of all metaHi-C datasets
	Other algorithms used in benchmarking
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




