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In self-assembling systems, geometric frustration leads to complex states characterized by inter-
nal gradients of shape misfit. Frustrated assemblies have drawn recent interest due to the unique
possibility that their thermodynamics can sense and select the finite size of assembly at length
scales much larger than constituent building blocks or their interactions. At present, self-limitation
is chiefly understood to derive from zero-temperature considerations, specifically the competition
between cohesion and scale-dependent elastic costs of frustration. While effects of entropy and finite
temperature fluctuations are necessarily significant for self-assembling systems, their impact on the
self-limiting states of frustrated assemblies is not known. We introduce a generic, minimal model
of frustrated assembly, and establish its finite-temperature and concentration dependent thermody-
namics by way of simulation and continuum theory. The phase diagram is marked by three distinct
states of translation order: a dispersed vapor; a defect-riddled condensate; and the self-limiting
aggregate state. We show that, at finite temperature, the self-limiting state is stable at interme-
diate frustration. Further, in contrast to the prevailing picture, its thermodynamic boundaries
with the macroscopic disperse and bulk states are temperature controlled, pointing to the essential
importance of translational and conformational entropy in their formation.

I. INTRODUCTION

Geometric frustration is a common feature of many
condensed matter systems, from low-temperature mag-
netism to liquid crystals, widely associated with the ob-
struction of defect-free bulk order in the ground state [1].
In self-assembling soft matter systems, geometric frustra-
tion leads to distinct scale-dependent behaviors absent
from bulk systems [2], emerging from additional degrees
of freedom associated with reconfigurable boundaries of
a finite-size assembly [3]. In these systems, the costs of
local shape misfit propagate to large length scales [4, 5]
and can compete with cohesive drive to increase size,
leading to what is arguably the most salient behavior:
self-limiting aggregation (SLA), where equilibrium as-
sembly sizes are finite yet much larger than subunits
or their interactions [6]. The ability of frustrated as-
semblies to limit their size on the supra-particle scale
distinguishes them from more canonical forms of assem-
bly, like micellar aggregates that are limited in thickness
by the size of their amphiphilic constituents [7]. This
paradigm has been used to rationalize structural obser-
vations in a diverse range of physical systems, including
two-dimensional crystallization on curved surfaces [8–10],
assemblies of tetrahedral nanoparticles [11], ribbons of
chiral amphiphiles [12, 13], twisted protein fibers [14–17],
spherical protein shells [18, 19] and geometrically incom-
patible polygonal particles [3, 20, 21]. Beyond existing
systems, the unique possibility of engineering the finite
size of a self-assembling system via frustrated building
blocks poses new opportunities for “programming” self-

assembly by design [6], for example exploiting recent ad-
vances in DNA nanotechnology for intentionally shape
misfitting colloids [21, 22].

To date, understanding of self-limiting aggregation in
frustrated assembly relies almost exclusively on zero-
temperature, continuum theories [2] that pit the com-
peting effects of intra-assembly elastic gradients of strain
(i.e. shape misfit) against the cohesive cost of boundary
formation on the ground state morphology. Notably this
picture leaves out the entropic considerations underpin-
ning equilibrium assembly at finite temperature and con-
centration, effects which seemingly pose a basic paradox
for the putative existence of SLA. On one hand, assem-
bly thermodynamics requires chemical equilibrium be-
tween aggregated and free subunits, implying that sub-
units join or leave aggregates at the kBT -energy scale.
On the other hand, self-limitation depends on the propa-
gation of elastic gradients throughout the intra-assembly
order which must not be melted away by finite temper-
ature fluctuations. Moreover, the existence of SLA of
non-trivial size requires that the super-extensive elastic
cost of frustration is not superseded by the incorporation
of localized defects [23], which are necessary features of
bulk frustrated order [24]. Taken together, these consid-
erations raise basic questions about whether and under
what conditions, this equilibrium self-limitation occurs
in frustrated assembly. For example, a recent simulation
study of a discrete particle model of frustrated hyperbolic
tubules showed that the finite-size free-energy minimum
survives for at least specific non-zero temperature val-
ues [21], yet it remains unknown what determines the
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FIG. 1. States of Frustrated Assembly Monte Carlo simulation snapshots depicting the three hallmark states of equilibrium
frustrated assembly: a dispersed vapor free monomers at dilute and highly-frustrated conditions b finite-width aggregates in
saturated systems a intermediate frustration and c bulk phase separation (vortex sponge condensate) at weak frustration.
Subunits are colored by the strain energy as in (Fig. 2).

range of thermal stability of this self-limiting state.

Here we study a minimal lattice model of geometrically
frustrated assembly and show that its finite-temperature
behavior is marked by three distinct states of trans-
lational order shown in Fig. 1: (a) a dispersed state
dominated by free subunits; (b) a self-limiting state,
where dominant aggregates are characterized by multi-
unit finite-widths but exhibit variable lengths and confor-
mations; and (c) phase separation into a sponge-like bulk
condensate which is unlimited in size but perforated by
quasi-regular arrays of topologically-charged voids (vor-
tices). Equilibrium SLA is delimited by dispersion at
large frustration and low concentration and by a ther-
modynamic transition to a defective state of bulk aggre-
gation at low frustration, with both of these transitions
exhibiting a strong temperature dependence.

II. LATTICE MODEL OF FRUSTRATED
ASSEMBLY

We introduce a minimal 2D lattice model for self-
assembly in frustrated systems, shown schematically in
Fig. 2a. This model contains two essential ingredients:
translational degrees of freedom for cohesive subunits and
energy costs of “shape misfit” favored by local interac-
tions (see Appendix A for full details). We consider a
square lattice with a fixed fraction (Φ) of sites occupied
by assembling units, where ηi = 0, 1 is the occupancy
at site i. As a minimal description of continuously de-
formable local shape, each occupied site also carries a
rotational degree of freedom, or phase, θi ∈ [0, 2π]. The
system is described by the lattice Hamiltonian

H = −J
∑
⟨ij⟩

cos
(
∆θij −Aij

)
ηiηj −K

∑
⟨ij⟩

ηiηj , (1)

where ⟨ij⟩ denotes nearest neighbor lattice sites, ∆θij =
θi−θj is the difference in phase between i and j. The sec-
ond term encodes an Ising-like, non-specific binding en-
ergy K between neighbors while the first term describes
an orientationally-dependent neighbor cohesion. Frustra-
tion is introduced through a preferred misalignment be-
tween neighbors, ∆θij = Aij , encoded in a gauge field de-
fined on lattice bonds, Aij , leading to an orientationally-
dependent cohesion shown schematically in Fig. 2b. For
fully occupied XY models (Φ = 1) [25, 26], it is known
that when preferred misfits Aij do not sum to inte-
ger multiples of 2π around elementary plaquettes, phase
strain is unavoidable. Frustration strength f is defined
by the (orientated) plaquette sum,∑

⟳

Aij = 2πf. (2)

Here we consider the case of fixed and uniform frustra-
tion [26, 27], which can be realized by Aij =

∫ xj

xi
dx·A(x),

where A(x) is a 2D vector field ∇⊥ ×A = 2πf .
The scale dependent nature of frustration in the model

can be illustrated by considering the winding of spins in
closed loops, as shown in Fig. 2c. Precessing θi in a
clockwise loop according to the preferred rotation Aij

leads to a net rotation of spin relative to the starting
point, an accumulated spin misfit that grows with loop
area. In fully occupied, uniformly frustrated XY models,
frustration corresponds to the interval −1/2 < f < 1/2,
and the limit of f ≪ 1 results in Abrikosov-like ground
states, punctuated by arrays of vortex defects at densi-
ties proportional to f , implying a characteristic vortex
spacing ℓv ∼ f−1/2 that grows large in the limit of small
frustration [27–29].
In dilute regimes of this model (Φ ≪ 1), a distinct

class of finite-domain, defect-free ground states is pos-
sible. These states mitigate the accumulation of elastic
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FIG. 2. Lattice model of frustrated assembly. a Schematic illustration of lattice degrees of freedom, with orientation
(phase) shown both as vector and color wheel. b Schematic of interactions between neighbor subunits, dependent on their
relative phase difference ∆θij = θi − θj which favors a preferred phase misfit Aij (defined on lattice bonds). c Schematic
illustration of size-dependent effects of the local frustration defined in eq. 2 for closed loops of occupied bonds. Spins follow
optimal phase misfit along clockwise loops starting and ending at the upper left, resulting mismatch between initial (black)
and optimally precessed (red) spin which grows with loops area. d Illustration of analogous frustration of vectorial order on
a hyperbolic surface, where optimal precession is defined by parallel transport. e Ground states of square clusters of bound
subunits of increasing size W showing both phase gradients (top) as well as gradients in phase strain energy (bottom). Note
that the diagonally striped pattern in the phase gradients is a consequence of the particular choice of gauge, while the gradient
patterns of the elastic phase strain are gauge invariant (i.e. under transforms which maintain ∇×A). f Schematic illustration
of the competing effects of cohesion (edge energy) and elasticity (frustration) on the energy density of clusters and the selection
of an optimal finite size W∗. Solid lines correspond to theoretical results for the energy density of frustrated square-shaped
assemblies and the open markers correspond to numerically measured energy density for square aggregates (Fig. 2e).

costs due the presence of free boundaries that screen the
far-field effects of frustration (see e.g. Fig. 2e). The en-
ergy of such a domain D of fully occupied sites that is
much larger than the lattice spacing is well described by
the continuum energy,

E[D] =
J

2

∫
D
d2x

∣∣∇θ −A(x)
∣∣2 +Σ P [D]− ϵbulk A[D],

(3)
where the first term describes the elastic cost of “phase
strain” away from the locally preferred misfit of local ori-
entation θ(x). The last two terms describe the respective
cohesive cost and gain of the domain boundary and bulk
(perimeter, P [D], and area, A[D]) with respective line
and bulk energies Σ = J+K and ϵbulk = 2Σ. As we sum-
marize in Appendix B, the elastic energy of this model
can be directly related to the intrinsic frustration of in-
plane orientational order (e.g. polar, nematic) on sur-
faces of non-zero Gaussian curvature KG, connecting this

generic model to a widely studied class of geometrically
frustrated systems. For frustrated 2D liquid crystalline
order [30, 31], the gauge field derives from the spin con-
nection [32] defined on a non-Euclidean surface for which
∇⊥ ×A = KG. The microscopic connection between the
uniformly frustrated XY model and orientational order
on non-Euclidean surfaces is easily viewed in terms of
the parallel transport of in-plane vectors in closed loops
shown in Fig. 2c-d, whose net precession grows with the
integrated Gaussian curvature within the loops [33]. Ad-
ditionally, recent work by Efrati and coworkers [34, 35]
shows that distinct class of systems, planar bend-nematic
phases, exhibits a variant of the 2D frustrated XY model,
with degree of frustration controlled by the square of the
preferred bend of the director (see Appendix B).

Ground states of finite domain size W adopt intra-
domain gradient patterns in the phase strain that vary
approximately linearly from boundary to boundary (Ap-
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pendix C), as shown for the square clusters in Fig. 2e.
These strain gradients lead to a mean elastic strain that
grows as |∇θ−A(x)| ∼ fW , and super-extensive growth
of the elastic energy density ∼ Jf2W 2. At zero temper-
ature, equilibrium between the competing effects of per
subunit elastic and cohesive (boundary) energy of cluster
formation selects a finite size

W∗ ≈ ℓd ≡
(Σ/J

f2

)1/3

(4)

Here ℓd is a characteristic domain scale which, like the
inter-vortex spacing, decreases with frustration and, con-
trary to the vortex-spacing, is dependent on the ratio
of surface energy to elastic (spin) stiffness. Note that
this suggests defect-free domains approach the “ferro-
magnetic” state (i.e. ∇θ − A = 0) in the f → 0 limit,
with ground state phase-strain vanishing in the absence
of frustration. Although energy density diverges quadrat-
ically with domain size as ∼ Jf2W 2 for finite frustra-
tion, the growth of optimal domain size W∗ as frustration
grows is sufficiently slow as f → 0 that the energy den-
sity due to frustration in these domains vanishes in this
limit, albeit with a sublinear scaling ∼ J1/3Σ2/3f2/3.

III. SELF-LIMITATION AT INTERMEDIATE
FRUSTRATION

We investigate the conditions for SLA at finite-
temperature by way of canonical ensemble Monte Carlo
simulation of our minimal model, over a wide parame-
ter range (Appendix A). As we describe below, we find
the key result that equilibrium SLA requires low ratios
of cohesion to elastic stiffness, Σ/J ≪ 1 (corresponding
to the range 0 < K < −J).
We begin by illustrating the concentration dependence

of the unfrustrated (f = 0) model for βΣ = 0.09 and
βJ = 40.0. As shown in Fig. 3a-b, for Φ < Φ∗(f = 0) ≃
0.03 the system is dispersed (Supplementary Video 1),
and for Φ > Φ∗(f = 0) exhibits bulk phase separation
between a vapor phase and a macroscopic droplet (Sup-
plementary Video 2). As these parameters are well be-
low the expected temperature for spin ordering (i.e. the
Kosterlitz-Thouless temperature βKTJ ≃ 0.9 [36]), the
condensed droplets exhibit low values of phase strain,
implying ferromagnetic order. Relative to the spin or-
dering transition, the system is much closer to the point
of phase separation (i.e. the Ising critical point corre-
sponding to βIsingΣ ≃ 1.8 [37]), and therefore, droplets
are round and exhibit visible capillary fluctuations.

Fig. 3c shows a snapshot at the same concentration
(Φ = 0.04) but with a jump to strong frustration at
f = 0.012, leading to redispersal into a vapor phase
dominated by free subunits (Supplementary Video 3).
Aggregation at strong frustration requires pushing to
even higher concentration values, as shown in Fig. 3d
at Φ = 0.08 (Supplementary Video 4). In this case,
however, the state of assembly takes the distinct form of

FIG. 3. Zero-frustration condensation versus aggre-
gation at strong frustration Representative snapshots of
equilibrated MC simulations of frustrated assemblies with
Σ/J = 0.09, βJ = 40 and a f = 0.0, Φ = 0.02 (dispersed
vapor) b f = 0.0, Φ = 0.04 (vapor-droplet coexistence) c
f = 0.012, Φ = 0.04 (vapor) d f = 0.012, Φ = 0.08 (finite-
width aggregates). System size is L = 500 and subunits are
colored according to mean strain energy.

multiple aggregates coexisting with a population of free
subunits. As highlighted by the aggregate in Fig. 3d, at
strong frustration these structures are distinct from f = 0
droplets, due to their anisotropic, wormlike shapes and
the internal gradients of phase-strain. Although more
complex in shape than the finite square domains in Fig
2e, strongly frustrated wormlike aggregates exhibit self-
limiting widths. This suggests a strong analogy between
the minimal model of frustrated assembly and micelliza-
tion [7], wherein the transition from low to high concen-
tration takes the form of a pseudo-critical aggregation
transition to a state of variable length, quasi-1D (i.e. fi-
nite width) clusters in equilibrium with a vapor of dis-
persed subunits.

To understand the mechanism underlying the variable
and anisotropic aggregate shapes, we consider the en-
ergy per sub unit ϵ, of a simplified model of rectangu-
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FIG. 4. Self-limiting aggregation a Continuum predictions of the energy density landscape as a function of lateral x and y
dimensions of rectangular aggregates, with contours of constant aggregation number (n = xy) shown in white. The minimal
energy shapes as function of n trace out the black path, and have a energy dependence shown in the inset, with dashed
red curve showing the unstable portion of the square (x = y) branch. The labeled points (i-iv) correspond to the aggregate
structures shown below. b Shows theoretical predictions (top) from the ideal aggregation of the continuum “worm” model and
MC simulation results (bottom) for mass fraction of n-mer aggregates for f = 0.016, Σ/J = 0.09 and βJ = 40. The values
of increasing concentration are indicated by color and correspond to the points highlighted in the inset plots of aggregated
subunit fraction. The same sequence of points (i-iv) are highlighted for theory (top), while similar n values are chosen for the
points (i’-iv’) highlighted for the example states of lattice aggregates (bottom).

lar aggregates, modeled by ground states of the contin-
uum energy in eq. (3) (Appendix C). Figure 4a shows
ϵ(X,Y ), where X and Y are cross-sectional dimensions
of the aggregate. As aggregation thermodynamics is
largely determined by the dependence of the interaction
free energy of aggregates on subunit number n = XY ,
we focus on the optimal aggregate energy density ϵm(n),
which is minimized over aspect ratio X/Y as a func-
tion of fixed n, Fig. 4a inset. The minimal-energy do-
main shapes, shown as black lines Fig. 4a, are split into
two regimes according to a critical aggregation number,
nc ≃ 0.837ℓ2d. For small aggregates (n ≤ nc) optimal
aggregates favor square shapes, Fig. 4i-ii, while above
this critical size (n > nc), optimal aggregate shapes
split off into two anisotropic rectangular branches which
grow to arbitrary length, Fig. 4iii-iv. Emergent domain
anisotropy is a feature of many models of frustrated as-
sembly [3, 5, 8, 9, 16], in which optimal structures dis-
tribute strain gradients across their narrow dimensions to
evade the super-extensive costs of frustration. For large
n, the optimal width of “rigid worms” approaches a con-
stant, self-limiting value W∗(n → ∞) = 31/3π−2/3ℓd,

which unlike the thickness of micelles, may extend well
beyond the subunit size.

Similar to wormlike micelles [7], the energetic costs
of “end-caps” favors arbitrarily long aggregates, yet the
translational entropy favors equilibrium size distributions
with a finite mean length, as opposed to bulk assem-
bly. Fig. 4b shows ideal aggregation theory predictions
(Appendix C) for the mass fraction ϕn of aggregates of
size n for an increasing sequence of total concentration
Φ for the same strong frustration conditions simulated
in Fig. 3c-d. We predict a transition from a state dom-
inated by free monomers, to one characterized by a sec-
ondary peak for n ≈ nc (= 42 for this case) above a
threshold concentration. Because energetically optimal
aggregates are infinite length (finite width) structures,
we predict an exponential tail of ϕn with a width that
grows with (square-root) concentration [6]. For compar-
ison, Fig. 4b shows the concentration dependence of the
aggregation behavior of our lattice simulations. Upon
increasing Φ a transition from free monomers to aggre-
gates occurs, peaked around n ≈ 50, followed by tail that
grows with concentration. The crossover from monomer-
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FIG. 5. Statistics of large-n aggregates Large-n tail of
the aggregation concentration, measured for several different
parameter sets: (a) Σ/J = 0.005, f = 0.001, βJ = 650 and
Φ = 0.3; (b) Σ/J = 0.005, f = 0.0015, βJ = 650 and Φ = 0.3;
and (c) Σ/J = 0.09, f = 0.015, βJ = 40 and Φ = 0.3).
Numerical data is compared to the large-n scaling ϕn ∼ nγZn.
Best fits for both 2D branched polymer scaling [38] (γ = 0,
orange) and 1D linear chain aggregation [6] (γ = 1, blue)
are compared. Fits were performed for n > 200. Note that
the largest aggregates in the raw numerical data (solid gray
discs) occur only in small integer frequencies, leading to the
visible spread between the ϕn ∼ lnn shaped bands in the
distribution. In order to obtain a better view of the ϕn scaling
in the large-n limit, we binned the raw data into histograms
with a bin width of ∆n = 200 (black open circles). Fits shown
in the figure were made using the binned data.

to aggregate-dominated (aggregation fraction plots in the
inset) is strongly shifted in concentration relative to the
ideal aggregation rectangular clusters (continuum the-
ory). We attribute this to undersampling of both lattice-
scale configurational entropy as well as large-scale confor-
mational fluctuations of the worm-like aggregate shapes
of the continuum model. Notably, the lattice aggregates
show significant bend deformations, random branching
and occasional looping, suggesting that their conforma-
tional statistics are likely in the universality class of
branched polymers. Analysis of the large-n tail of sim-

ulated aggregate distributions (Fig. 5) suggests a devia-
tion from purely 1D aggregation statistics, characterized
by ϕn(n ≫ nc) ∼ nγZn, where we find a value γ ≈ 0
consistent with results for 2D branched polymers [38],
and distinct from linear aggregation (γ = 1)[6]. Despite

FIG. 6. Self-limiting width selection a Histograms of
mass distribution as function of effective width of aggregated
subunits for increasing values of total subunit concentration
(same values of Φ as shown in Fig. 4b according to the color
scheme). b Mean measured width ⟨Weff⟩ from aggregates in
MC simulations for a range of f , Σ/J and βΣ, compared
to predicted dependence of the finite aggregate width (solid
curve). Error bars for ⟨Weff⟩ show the variance of width dis-
tribution. Full Parameters and corresponding symbols given
in SI Table 3.

the oversimplified model of fluctuations, the ideal con-
tinuum model captures the tightly regulated aggregate
width. Figure 6a shows distribution of Weff , a measure
of the mean subunit distance to the boundary (Appendix
A), for the same parameters as Fig. 4b , showing that ag-
gregate widths fall into two distinct well-defined popula-
tions of free monomers and Weff ≃ 4 aggregates, indepen-
dent of Φ. Figure 6b compares the predicted self-limiting
width W∗ for long-rectangular aggregates to ⟨Weff⟩ mea-
sured from simulations (supersaturated conditions) for
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a range of cohesion to stiffness ratios and strong frus-
tration values, showing quantitative, fit-free agreement
over nearly an order of magnitude of self-limiting di-
mension. Beyond the gross dimension, analysis of the
shape of simulated aggregates (Fig. 7) also shows the
same transition from compact aggregates, for n ≲ nc,
to extended (quasi-1D, finite-width) shapes for n ≳ nc

as highlighted in Fig. 4i?-iv?. This mass-dependence of
aggregate shape bears striking resemblance to the so-
called ladder model of concentration driven transitions
from spherical to cylindrical micelles [39]. The strong

FIG. 7. Compact to extended transition in frustrated
assemblies Ratio of outer cluster surface perimeter, P , to
square root of enclosed area, A, (averaged over all observed
aggregates) plotted as a function of n over nc, the predicted
critical size from continuum theory. Colors represent the fol-
lowing parameter sets: Σ/J = 0.09, f = 0.015, Φ = 0.3
(red); Σ/J = 0.005, f = 0.0005, Φ = 0.3 (orange); and
Σ/J = 0.005, f = 0.0010, Φ = 0.3 (green). Example ag-
gregates are taken from the data corresponding to the green
parameter set. The solid black line corresponds to the ratio
of P to

√
A calculated explicitly for aggregates living along

the aspect ratio minimized “saddle path” (see Fig. 4a). The
black line surrounding each example aggregate represents the
domain boundary and the perimeter, P , for each aggregate is
taken to be the length of this line. The aggregation area, A,
is the number of subunits (green circles).

agreement between the continuum model and lattice sim-
ulations of frustrated aggregates, even under conditions
where effects of conformational and configurational fluc-
tuations are substantial, suggests that the purely en-
ergetic (elastic and cohesive) effects of the self-limiting
ground states effectively govern key features of the free
energy landscape of thermalized aggregates. Further ev-
idence of this is given by consideration of the critical
aggregation concentration, Φ∗, which characterizes the

crossover from monomer- to aggregate-dominated states.
Elementary considerations of ideal aggregation theory for
1D aggregates imply that Φ∗ ∼ eβϵm(n→∞), which ac-
cording to the continuum theory (Appendix C) exhibits a

generic dependence on the reduced frustration f/
√
Σ/J

the same dimensionless combination of frustration, co-
hesion and elastic stiffness that controls finite aggregate
size. Specifically, we find the simple relation, eq. (C12),
between the condensation point in the limit of zero frus-
tration Φ∗(f = 0) and the finite-f aggregation concen-
tration

Φ∗(f) ≈ Φ∗(f = 0)e
C0βΣ

(
f√
Σ/J

)2/3

, (5)

where C0 = (3π2)2/3/2. Accordingly Fig. 8, demon-
strates that this simplified analysis captures the key ten-
dency for increased frustration to shift the aggregation
point to larger Φ of a broad range of Σ/J and tempera-
ture conditions.

FIG. 8. Pseudo-critical transition to self-limiting as-
sembly Comparison of aggregation conditions for simulations
to continuum theory predictions, eq. (C12), which give con-
tours of increasing aggregation fraction as a function of scaled
frustration and (log-)concentration, where Φ∗(f = 0) corre-
sponds to the onset of assembly (i.e. binodal) for the unfrus-
trated limit. The points show where MC simulations reach
50% aggregation. The legend shows the values of Σ/J and
βΣ corresponding to simulation results.

IV. CONDENSATION TO
TOPOLOGICALLY-DEFECTIVE BULK

A naive extension of the ideal aggregation theory de-
scribed above would suggest a scenario in which worm-
like aggregates exist for arbitrarily low frustration with
finite-width W∗ ∼ f−2/3 that diverges continuously as
f → 0. Here we show, instead, that the transition from
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FIG. 9. Condensation at weak frustration a Simulation snapshots (Σ/J = 0.09, βJ = 40, Φ = 0.15, L = 800 and
colored by strain energy) for a sequence of frustration values spanning the condensation transition. b Finite size scaling
analysis of mean aggregate size for sequence of frustrations ranging from f = 0.0 to f = 0.02 (with Σ/J = 0.09, βJ = 40 and
Φ = 0.15). c size exponent (top panel) as a function of frustration extracted from finite size scaling analysis of simulations
with Σ/J = 0.05, 0.09, 0.20 (black,green,purple) and Φ = 0.12, 0.15, 0.20 (open circles, diamonds, squares). The normalized
charge density (bottom panel) – measured as the net topological charge per subunit of an aggregate normalized by f – for the
same values of Σ/J (with Φ = 0.15), showing the coincidence of defect incorporation and bulk condensation and threshold
frustration c that is independent of Φ. d The critical value of frustration as a function of Σ/J from analysis of the mean size
susceptibility (Appendix A) and compared to a naive (Abrikosov) scaling. Results for three different values of βΣ (inset) reveal
a temperature dependent shift in the critical frustration.

self-limiting aggregates at strong-frustration (Fig. 3d) to
the unfrustrated, bulk droplets (Fig. 3b) is interrupted by
a thermodynamic transition at a finite, critical value of
frustration, fc, demarking the boundary between strong
and weak frustration. This transition is visible in the se-
quence in Fig. 9a of simulations of variable frustration,
spanning from weak to strong, where other parameters
are held fixed. The larger frustration values (f ≳ 0.01)
correspond to self-limiting aggregate states, with finite
widths that decrease with frustration. At the lower frus-
tration values (f ≲ 0.01), however, assembled subunits
adopt a completely different “bulk sponge” morphology:
a macroscopic condensate, punctuated by an array of
holes (see Supplementary Video 5 for an example bulk
sponge simulation).

Finite-size scaling analysis of the mean-cluster size,
⟨n⟩ϕ, with lattice area A, shown in Fig. 9b, confirms
the weak-to-strong frustration transition as a thermo-
dynamic transition between bulk condensation and dis-
persed phase of self-limiting aggregates. The observed
linear scaling for weak frustration, ⟨n⟩ϕ ∼ A, is con-
sistent with a mean-cluster size that is proportional to
the macroscopic condensate, which occupies a fixed frac-

tion of lattice area. In contrast, for worm-like aggregates
mean aggregate size is only a function of intensive quan-
tities (e.g. Φ, T , f) and is independent of system size,
which is a well-known property of equilibrium quasi-1D
assembly [6]. Hence, ⟨n⟩ϕ ∼ A0 for the dispersed states
of self-limiting aggregates (as well as the disassembled
vapor) at strong frustration.

In Fig. 9c we analyze the dependence of frustration-
driven condensation on concentration and cohesive to
stiffness ratios. While the f -dependence of the finite-size
scaling exponent ⟨n⟩ϕ is independent of Φ (above satu-
ration), the threshold frustration for the bulk-to-disperse
transition clearly shifts to larger values of f with increas-
ing Σ/J .

Careful analysis of the phase-winding in the condensed
sponges reveals that their mesoscopic holes are actually
vortex defects (inset Fig. 9d). The predominant topo-
logical charge of voided-vortices is ±1 (with a sign op-
posite to f), although larger area holes, with higher net
charge are observed (see Fig. S1). Fig. 9d shows the
mean charge density of aggregates normalized by f , the
density of the (Φ = 1) Abrikosov ground state, as a func-
tion of frustration. Comparison to Fig. 9c illustrates that
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charged-to-neutral transition precisely coincides with the
bulk-to-disperse transition. Hence, underlying the con-
densation transition from strong-to-weak frustration is a
transition in the primary mechanism for screening frus-
tration, from free-boundaries of finite domains to exten-
sive numbers of neutralizing vortices in macroscopic con-
densates.

These observations suggest a simple estimate for the
boundary between strong and weak frustration, which
follows from the assumptions that i) energetic costs of
frustration dominate the thermodynamic competition be-
tween self-limiting and bulk states and ii) the bulk “vor-
tex sponge” may be modeled by the Φ = 1 Abrikosov
lattice with a vortex spacing ℓv ∼ f−1/2 [27]. Com-
paring this length scale to the self-limiting scale W∗ ≈
ℓd ∼ f−2/3(Σ/J)1/3, we expect finite-width domains to
be much narrower than the inter-defect spacing (ℓd ≪ ℓv)
at large f , indicating the free-boundary formation is the
favored mechanism of frustration screening. As f is low-
ered, finite domain sizes eventually exceed characteris-
tic vortex spacing (ℓd ≫ ℓv), suggesting that defect in-
corporation becomes favorable when these length scales
crossover. Using the Abrikosov scaling and the condition
ℓv ≈ ℓd yields a naive estimate for the critical frustration

fc ≈ (Σ/J)2 (Abrikosov scaling) (6)

This scaling is qualitatively consistent with the increasing
tendency of fc with cohesion to elastic stiffness, as well as
with the concentration independence, noted in Fig. 9d.

Fig. 9e shows a critical analysis of the variation of fc
extracted from simulations over a broad range of Σ/J val-
ues using a simpler fixed-area proxy for bulk-to-disperse
transition (Appendix A). While fc indeed increases with
Σ/J , the dependence is much closer to linear than the
quadratic dependence predicted by the naive scaling ar-
gument in eq. (6). A clear limitation of this argument
is neglect of the vortex core on the characteristic scaling
which is evidently substantial in the = W∗ ≫ 1 regime.
Specifically, Σ/J ≪ 1 implies relatively large core size
(evident in Fig. 9a), perhaps generalizing the inter-vortex
scaling to ℓv ∼ f−1/2(Σ/J)ν . The linear scaling of fc
would be consistent with only a weak scaling with Σ/J
(i.e. ν ≃ 1/6). While stronger dependence of defect
spacing on f is evident in bulk condensates, a putatively
weaker dependence on Σ/J is not possible to discern from
simulations (see Appendix A, Fig. 13).

Lastly, simulations reveal a temperature-dependence in
fc, which further conflicts with underlying assumptions
and naive scaling for condensation in eq. (6). The inset
of Fig. 9e plots the dependence of fc on Σ/J for three dif-
ferent temperatures, all of which are consistent with the
scaling fc ∼ Σ/J , but with a clear shift to higher frustra-
tion values as temperature is lowered. Despite the clear
evidence that cohesion and elastic cost of frustration con-
trol the self-limiting size (e.g. Fig. 4), these results im-
ply that the competition between self-limiting and bulk
states is not purely energetic. The evident decrease of
fc with T further suggests that entropy of the finite ag-

gregates plays a key role in their equilibrium stability at
these temperatures.

V. PHASE BEHAVIOR

Our minimal model exhibits three distinct states in a
generalized phase diagram controlled by the combined
temperature, concentration, frustration, cohesion and
stiffness. Fig. 10 shows the phase behavior in the Φ-f
plane based on a mosaic of equilibrated simulation snap-
shots for fixed βΣ = 0.09, βJ = 40. While the vapor
of dispersed monomers is stable at dilute concentrations,
increasing Φ leads to two states of assembly dependent on
the strength of f . At weak frustration, the system phase
separates when Φ crosses the binodal into coexistence
between monomer vapor and defect-riddled bulk conden-
sate (i.e. a vortex sponge phase). At strong frustration,
increasing Φ drives aggregation into a dispersed state of
finite-width, wormlike aggregates in equilibrium with a
lower concentration of free monomers. Over the dilute
conditions studied here (Φ ≲ 0.2), the critical value of
frustration for the self-limiting to bulk transition is inde-
pendent of Φ.
From the mosaic of simulations in Fig. 10, one can

see that—as frustration is lowered—the self-limiting ag-
gregates become increasingly loopy, punctuated by holes
that envelope vortices, as the condensation transition
is approached. Despite this increase in loopiness, the
SLA phase can still be clearly distinguished from the
condensed bulk by the subunit mass distribution, which
shows that the SLA phase is a poly-disperse collection of
aggregates with a finite size and a small number of holes
per aggregate, while the condensed phase is a (quasi) bi-
disperse phase with most of the subunit mass contained
in a single bulk aggregate with a large number of holes.
Analysis of the distribution of subunits by aggregate size
and genus is provided in Fig. S1 for a range of frustra-
tions spanning the condensation transition.
The tilt of the aggregation transition in the Φ-f plane

for f > fc leads to a generic sequence of phases at fixed
saturated concentration above the f = 0 binodal Φ ∗
(f = 0). Notably, SLA is only stable at intermediate
frustration, with very large values of f driving dissolution
of subunits while bulk condensation occurs for f < fc.

VI. DISCUSSION

A. Critical behavior and connected models

The minimal model of frustrated assembly can be sit-
uated between two well-studied physical models, each of
which represent a limiting regime of eq. (1) and ex-
hibit unique phase transition behaviors. The fully oc-
cupied limit Φ → 1 corresponds to the uniformly frus-
trated 2D XY model, which has been studied as a model
of field-frustrated superconducting arrays [25, 26, 28] as
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FIG. 10. Phase diagram of frustrated assembly model Mosaic of simulations in the Φ-f plane for Σ/J = 0.09, βJ = 40
and lattice size L = 500 (panels are 150× 150 subsets). The panel boundaries are colored according to assembly state: (black)
dispersed; (gold) self-limiting aggregates; and (blue) bulk condensates. Line thickness of the self-limiting panels highlights
three ranges of aggregation fraction: (thin) 10 − 30%; (medium) 30− 50%; and (bold) > 50%. Subunits are colored according
to mean (phase) strain energy as in Fig. 2.

well as a statistical framework for frustration models of
glasses [27, 40]. Bulk states incorporate a finite den-
sity of vortices for any 0 < |f | ≪ 1/2, leading to a so-
called avoided critical point in the f → 0 limit of the
fully occupied model [41, 42]. In this scenario, “melting”
of spin order by the Kosterlitz-Thouless (KT) mecha-
nism is preempted by unbound vortex order at much
lower temperature. Alternatively, the limit of f = 0
but variable concentration corresponds to the “vector-
ized” Blume-Emory-Griffiths (BEG) model [43] – a 2D
XY variant of the canonical BEG model [44] – that de-
scribes critical behavior in phase-separating superfluid
films. This model describes the interplay between spin
ordering and condensation (i.e. translational order) and
is marked by a line of spin-ordering transitions at high Φ
that descend from the standard (Φ = 1) KT critical tem-
perature towards the Ising-like binodal region describing
phase separation. As the ratio of spin stiffness to Ising
interactions increases, the intersection of spin-ordering

and binodal curves approaches the Ising critical point,
resulting in (nearly) tricritical behavior.

Equilibrium SLA behavior exists at the intermediate
regime to these limiting scenarios, i.e. finite f and
0 < Φ < 1, yet the precise nature of its phase transi-
tions remains to be understood. One clue comes from
the pronounced restructuring of concentration fluctua-
tions by frustration. Relative to spinodal or droplet-like
fluctuations, at finite (strong) frustration, concentration
fluctuations take the form of highly-anisotropic, string-
like aggregates, effectively living polymers, and it is nat-
ural to expect these to strongly alter the transition to
the high-density (bulk) phase. For example, at higher
Φ we anticipate that aggregate interactions become sig-
nificant, and likely exhibit a percolation transition to a
bulk state. The randomly branched polymer structure
of these aggregates suggests further that even at lower
Φ the disperse-to-bulk transition may be described as a
type of sol-gel transition [45]. This scenario is consistent
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with the evident increase of fc with temperature, which
itself suggests that conformational entropy of finite-width
aggregates stabilizes their disperse state relative to the
gel-like, condensed state. It remains to be understood
how the interplay of Σ, J and f determine the shape en-
ergetics of conformational fluctuations (e.g. aggregate
bending, branching and looping).

B. Experimental implications

The results of the model presented here hold more
general lessons for a broad class of frustrated assem-
blies where the frustration leads to quadratic power-law
accumulation of elastic energy with size, including but
not limited to the examples of frustrated orientational
order described in Appendix B. In addition to the pre-
dicted thermodynamic stability of the self-limiting state
at an intermediate frustration regime, the model also con-
strains the parameter regime where finite sizes can be
non-trivially larger than individual subunits, i.e. where
W∗ ≳ 1. Furthermore, as the maximal self-limiting di-
mensions occur at the boundary with the bulk state, we
estimate the upper size limit as W∗(fc) ∼ (Σ/J)−1/3,
using the linear scaling of fc from Fig. 9e. This sug-
gests that non-trivial finite sizes require high stiffness to
cohesion ratios J ≫ Σ. Since subunit binding requires
temperature at or below TIsing ≈ Σ, this further implies
that SLA only occurs well below the nominal KT temper-
ature—deep in the phase-ordered state—suggesting that
elastic fluctuations play little, if any, role in SLA behav-
ior.

Our minimal model of frustrated assembly applies
most directly to 2D liquid-crystalline assemblies embed-
ded on frozen non-Euclidean templates, where Gaussian
curvature and hence frustration is fixed. The best studied
examples of this include nematically ordered assemblies
of rod-like particles on spheres [46, 47] or spherical shells
of nematic liquid-crystals prepared via double-emulsion
droplets with planar anchoring [48–50]. The prior focus
of studies on this latter class of systems has focused ex-
clusively on complex defect states exhibited by “bulk”
shells, where nematics cover the entire surface [51]. In
this system, the bulk to self-limiting transition would oc-
cur in mixed shells composed of controlled fractions of
the nematic and isotropic phase, for example as would
occur in shells of lyotropic liquid crystals. In this case,
line tension between these phases determines Σ, the elas-
tic stiffness is controlled by the Frank elastic constant K,
while the frustration is Gaussian curvature – the inverse
square of the shell radius. Predictions of the lattice model
of frustrated assembly then suggest that finite width self-
limiting domains occur on small shells, while the nematic
domains condense into a single, defective bulk on large
shells, with a transition occuring at a critical radius set
by temperature and the ratio of line tension to Frank
constant. It is conceivable that fixed frustration stud-
ies in thin nematic/isotropic layers could be extended

to negative Gaussian curvature, for example by infusion
into mesoporous minimal-surface-like structures that in-
troduce an additional feature of spatially varying, yet
quenched, frustration to the problem. These structures
could be 3D-printed using techniques similar to [52].

In Appendix B we detail the mapping of the elastic
energy of two additional classes of systems onto the frus-
trated XY model of the form given in eq. (3). Tilted,
hexatic, or otherwise liquid crystal phases of surfactant
membranes are well-studied for the interplay between the
in-plane order and the preferred out-of-plane shapes [53–
55]. Here, generic principles imply that liquid crystalline
order of chiral surfactants induces a preference for mem-
brane shapes with negative Gaussian curvature [56] of
the form that frustrates their lateral assembly [12, 13, 57].
Additionally, recent work by Efrati and coworkers [34, 35]
has shown that the planar bend-nematic liquid crys-
talline phase exhibits a variant of frustrated 2D XY or-
der, and as such, assemblies of curved molecules or par-
ticles will lead to the super-extensive growth of elastic
energy. Here, the effective frustration is determined by
the preferred bend of the director field. Indeed, recent
advances in the fabrication and study of banana shaped
colloids [58–60] has led to the exploration of planar as-
sembly of bulk states exhibiting complex arrays of vor-
tices and other defects that resolve the cost of frustra-
tion [61]. Extending these studies to lower area fractions
of cohesively assembling particles, via e.g. depletion in-
duced attraction, opens up the possibility to investigate
self-limiting states and the condensation transition. It
should be noted (see Appendix B) that these two ex-
amples are critically distinct from the case of fixed frus-
tration, say for spherical nematics, since the gauge field,
and hence the source of frustration, is free to relax in
equilibrium, alongside the assembly process itself. This
introduces new questions about the potential transition
to alternative bulk states, a point which we return to
below.

Beyond these models for which the mapping onto the
specific frustrated 2D XY model is known, we antici-
pate that predictions of our generic model will hold for a
broader class of ?ill fitting? particle assemblies. Namely,
there have been several recent and ongoing efforts fo-
cused on learning how to translate the mechanism of self-
limitation in frustrated systems into a design principle
for size-programmable assembly, for example[3, 11, 20–
22, 62, 63]. Notwithstanding differences in the micro-
scopic mechanisms of frustration and deformation, many
of these models are shown to exhibit the same (quadratic)
power-law growth of elastic energy with finite domain
size. For example, it can be shown that, in the limit of
the narrow sizes where bending elasticity dominates, the
elastic energy dependence of so-called warped jigsaw par-
ticles exhibits identical dependencies on the shape and
size of domains[20]. We anticipate, therefore, that any
such 2D frustrated assembly exhibiting the same power-
law scaling, will be described by the assembly behavior of
our generic model, particularly in the strong-frustration
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regime where domain sizes are sufficiently small that this
generic power-law dependence holds.

One generic ingredient of frustrated assembly behavior
is the elasticity of frustration itself, which is absent from
the present model wherein f is fixed (akin to a frozen to-
pography). In many physical cases, there is a finite elastic
cost to flatten, or defrustrate, the system [6]. For frus-
trated liquid crystalline membranes this takes the form of
a finite elastic cost to “flatten” away from the preferred
non-Euclidean shape [13, 57, 62], while for bend-nematic
assemblies this is controlled by the finite elastic cost of
deviation from the preferred bend [34, 35]. Hence, in
addition to the defect-riddled bulk, the shape elasticity
of the frustration source gives rise to alternative mech-
anisms of “escaping” frustration to a defrustrated bulk
state. We anticipate that incorporation of gauge elastic-
ity into the minimal model will give rise to yet even richer
thermodynamics, which are controlled by an additional
“shape-flattening” length that plays a role analogous to
the penetration length in superconductivity and is like-
wise populated by two distinct bulk states, the analogs
of the type-I and type-II superconducting phases.
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VIII. SUPPLEMENTARY INFORMATION

Supplementary Information - Supplementary Tables
1-8 and supporting notes.
Supplementary Video 1 (unfrustrated dispersed.mp4,
) - Animation of MC simulations of unfrustrated disperse
phase, shown in Fig. 3a: βJ = 40, Σ/J = 0.09, f = 0 and
Φ = 0.02. For purposes of visualization, global cluster
moves are turned off at the later stage of the video.
Supplementary Video 2 (droplet phase.mp4,
http://www.pse.umass.edu/sites/default/files/
grason/images/droplet_phase.mp4)- Animation of
MC simulations of unfrustrated condensed droplets,
shown in Fig. 3b: βJ = 40, Σ/J = 0.09, f = 0 and
Φ = 0.04. For purposes of visualization, global cluster
moves are turned off at the later stage of the video.
Supplementary Video 3 (frus-
trated dispersed phase.mp4, http://www.pse.
umass.edu/sites/default/files/grason/images/
frustrated_dispersed_phase.mp4) - Animation of

MC simulations of strong frustration, disperse phase,
shown in Fig. 3c: βJ = 40, Σ/J = 0.09, f = 0.012 and
Φ = 0.04. For purposes of visualization, global cluster
moves are turned off at the later stage of the video.
Supplementary Video 4 (self-limiting phase.mp4,
http://www.pse.umass.edu/sites/default/files/
grason/images/self-limiting_phase.mp4) - Ani-
mation of MC simulations of self-limiting aggregation
at strong frustration, shown in Fig. 3d: βJ = 40,
Σ/J = 0.09, f = 0.012 and Φ = 0.08. For purposes of
visualization, global cluster moves are turned off at the
later stage of the video.
Supplementary Video 5 (condensed phase.mp4,
http://www.pse.umass.edu/sites/default/files/
grason/images/condensed_phase.mp4) - Animation of
MC simulations of condensed “vortex sponge” formation
at weak frustration: βJ = 40, Σ/J = 0.09, f = 0.004
and Φ = 0.06. For purposes of visualization, global
cluster moves are turned off at the later stage of the
video.

Appendix A: Simulations

Lattice Geometry and Gauge Field We consider
partially occupied L × L = A square lattices with pe-
riodic boundary conditions and fixed number of subunits
N ≡

∑
i ηi = ΦA, where ηi = 0 or 1 is the occupation at

site i.
We consider a divergence-free, uniformly frustrated

gauge field,

A(x) = πf
[
yx̂− xŷ

]
(A1)

where lengths in x = (x, y) coordinates are measured in
units of the lattice spacing. This gives the gauge variables
on nearest neighbor bonds,

Aij = πf(xi × xj) =

{
πfy, ij ∥ x̂
−πfx, ij ∥ ŷ

(A2)

where a×b = axby−aybx. Periodic boundary conditions
introduce a gauge-field requirement that Wilson loops
wrapping around the periodic directions of the simulation
box (i.e. the in x̂ and ŷ)[29] take on the specific value:

Wx̂/ŷ = e
i
∑

Cx̂/ŷ
Aij

= 1 (A3)

where Cx̂/ŷ is a closed loop spanning the lattice in the x̂
or ŷ direction. We satisfy these conditions on the L× L
lattice by restricting to values of frustration of the form
f = 2m/L where m is an integer.
Markov chain Monte Carlo We performed simula-
tions at a fixed concentration, Φ, and temperature, sam-
pling the Boltzmann distribution via an implementation
of the Metropolis-Hastings algorithm. The procedure is
organized into a set of sweeps, which take a given state
of an L × L lattice variables to a new state via a set of
trial moves for positions and phases of occupied subunits,

http://www.pse.umass.edu/sites/default/files/grason/images/droplet_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/droplet_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/frustrated_dispersed_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/frustrated_dispersed_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/frustrated_dispersed_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/self-limiting_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/self-limiting_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/condensed_phase.mp4
http://www.pse.umass.edu/sites/default/files/grason/images/condensed_phase.mp4


13

which we also denote as “particles”. Trial moves are
of two types: multi- particle cluster (MPC) and single-
particle (SP). Lattice sites are indexed by integer i. For
generating MC moves at fixed concentration it is conve-
nient to index occupied subunit positions (i.e. sites for
which ηi = 1) via the label p = 1 . . . N , and identify the
lattice position of pth particle as i(p), and track only spin
variables of the particles (i.e. occupied sites), which we
denote as θp. In practice, spin variables for unoccupied
positions (i.e. where ηi = 0) are not considered.

In each sweep s the following sequence of trial moves
are included:

1. Cluster inversion (one trial)

2. Cluster Wolff rotation (one trial)

3. Single-particle moves (N iterations)

3.a Local translation (one trial)

3.b Global translation (one trial)

3.c Phase rotation (one trial)

3.d Rotation + translation (one trial)

where we summarize each move type below. A typical
simulation is run for Ns = 105 − 6 · 106 sweeps with
configurations sampled every 102 to 103 sweeps. This
sampling interval is chosen to exceed the measured auto-
correlation times of cluster relaxation in the self-limiting
aggregate state (see below). Parameter values (including
lattice size) are given SI Tables S1-11 for all analyzed
simulations.
Single-particle moves We first describe the SP moves,
all of which are accepted with a probability P =
min(1, e−β∆E) where ∆E is the energy difference be-
tween the trial and initial state.

Local translation: i Select random particle p

ii Choose random nearest neighbor site j to I(p)

iii If neighbor is vacant (i.e. if ηj = 0), then
displace p to neighbor position: i(p) → j

Global translation: i Select random particle p

ii Choose random unoccupied site j

iii Displace p to site j: i(p) → j

Phase rotation: i Select random particle p

ii Choose random rotation δθ ∈ [−0.1, 0.1]

iii Rotate phase: θp → θp + δθ

Rotation/translation: i Select random particle p

ii Choose random unoccupied site j

iii Choose random rotation δθ ∈ [0, 2π]

iv Rotate (particle) phase : θp → θ(p) + δθ

v Displace (rotated) p to site j: i(p) → j.

Cluster moves While self-limiting aggregates rapidly
equilibrate with SP moves alone, the formation of defec-
tive (vortex sponge) bulk structures is subject to kinetic
trapping into metastable states and requires additional
non-local cluster moves to facilitate equilibration. To
this end, we designed a Wolff-like [64] cluster inversion
move that is a modification of one described by Liu and
Luijten in [65] and Dress and Krauth in [66] to equili-
brate a simple liquid composed of hard disks. The move
is rejection free and works by point reflecting a cluster
of particles about a randomly chosen reflection point, r.
The new coordinates of a reflected particle (i.e. point
inverted) are given by

(x, y) → (mod[2rx − x, L],mod[2ry − y, L]), (A4)

where (x, y) are the initial coordinates and the modulo
operator is taken with respect to lattice size.

The presence of a gauge field makes it so that simply
moving the position of a cluster changes its energy and
internal strain. For two sites i and j undergoing the
point reflection in eq. (A4), it is straight forward to show
that the gauge field on the ij bond transforms as Aij →
Aij−2πf(xi−xj)×r. Therefore, to generate moves that
are isoenergetic with respect to phase strain within the
inverted cluster it is necessary to “parallel transport” the
spins according to

θp → θp − 2πf(xi(p) × r) + δθ, (A5)

where δθ is a randomly chosen (constant) phase rotation
performed on the entire cluster.

The outline of the algorithm, as shown below, is very
similar to that in Ref. [65] with a few small modifications.

Cluster inversion: i Choose random reflection
point r

ii Choose random global phase rotation δθ ∈
[0, 2π]

iii Choose random particle p and point reflect po-
sition and phase according to eqs. (A4) and
(A5). If the new location is occupied, swap
particles, parallel transporting both.

iv Iterate following sequence after each inversion
until no possible particles can be added to the
inverted cluster:

a Add to list of neighboring particles to up-
dated sites and the changes in pair bond
energy, ∆Eb, after a proposed point re-
flection or double-reflection (i.e. when re-
flecting to occupied sites) about r + par-
allel transport

b Choose a neighbor from the list to re-
flect + parallel transport, and accept
that move with probability min(1, 1 −
exp[−β∆Eb]). Remove considered parti-
cle from list of cluster neighbors.
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c Particles can only be reflected once, but
may be added to the neighbor list multiple
times (once per cluster bond).

(iv) Cluster move is completed when neighbor list
is empty.

In addition to the cluster inversion, we perform a stan-
dard Wolff rotation[64] on a cluster of occupied sites,
which can be summarized as follows.

Cluster Wolff rotation: i Choose random global
phase rotation δθ ∈ [0, 2π]

ii Choose random particle p and rotate its spin
by θp → θp + δθ

iii Iterate following sequence after each rotation
until no possible particles can be added to the
rotated cluster:

a Add to list of neighbor particles and com-
pute the change in pair bond energy, ∆Eb,
after a proposed phase rotation by same
δθ

b Choose a neighbor from the list to rotate,
and accept its rotation with probability
min(1, 1− exp[−β∆Eb]). Remove consid-
ered particle from list of cluster neighbors.

c Particles can be rotated only once, but
may be added to the neighbor list multiple
times (once per cluster bond).

(iv) Cluster move is completed when neighbor list
is empty.

Identification and characterization of aggregates
We identify aggregates of subunits as clusters of nearest
neighbor occupied bonds in simulation snapshots using
the Hoshen-Kopelman algorithm [67]. Referring to a par-
ticular subunit cluster (i.e. aggregate) c, c(p) refers to the
aggregate of subunit p, and nc is the number of subunits
in c. Given this definition, the mass distribution (for a
given simulation snapshot) is simply

ϕn =
n

A

∑
c

δn,nc
. (A6)

Equilibrium distributions for ϕn are generated by averag-
ing mass-distributions of statistically uncorrelated snap-
shots, collected at intervals larger than the aggregation
auto-correlation time. For the simulations shown in Fig.
4b, we sampled ϕn every 100 sweeps. Given this averaged
distributions, we characterize the mean aggregate size as

⟨n⟩ϕ =
∑
n

nϕn/Φ, (A7)

as well as the aggregation fraction,

F =
∑

n>ndisp

ϕn/Φ, (A8)

where ndisp is a cut-off to separate the disperse aggregates
(i.e. monomers, dimers, trimers . . .) from aggregates. In
Fig. 4b, this cut-off between disperse and aggregated
states of subunits is characterized by an apparent mini-
mum in ϕn. For all simulations we set ndisp = 9 as the
cut-off between disperse clusters and aggregated states of
subunits.

We characterize the finite size of aggregates in terms
of their effective width, weff(p), which derives from the
local distance of an aggregated subunit p to nearest free
boundary. Defining b(p) as the shortest graph distance
from subunit p to a subunit on the boundary of an ag-
gregate (i.e. subunit missing at least one neighbor) and
p⊥ the set of subunits with nearest neighbor bonds in
both x and y directions the effective width is

weff(p) =

 4
[
b(p) + 1

2

]
, p ∈ p⊥

1, p /∈ p⊥

(A9)

Note the factor of 1/2 for p ∈ p⊥ places the bound-
ary halfway between the occupied boundary site at the
neighboring vacant site, and the factor of 4 is intro-
duced since the mean distance from the boundary of
the rectangular strip of width W is W/4. The rule for
p /∈ p⊥ is defined so that linear chains of occupied sites
are properly counted as weff(p) = 1. We compute the
distribution of effective widths (Fig. 4c) simply from
ϕ(Weff) =

1
A

∑
p δWeff ,weff (p).

Intra-aggregate strain energy We map and visual-
ize the internal distributions (spin) elastic strain energy
from finite-T lattice simulations in terms of the deviation
of rotation of neighbors from its preferred value. For a
given bond ij the bond strain follows from expanding the
spin dependent interactions in eq. (1) around its minimal
energy value ∆θij = Aij , from this we define

εij =
1

2
|∆θij −Aij |2. (A10)

For each given occupied site i, we compute the mean
value of εij averaged over its occupied (i.e. bond) neigh-
bor, to given the strain energy at site i, ε(i).
At finite temperature and frustration, phase strain is

generated both by frustration of the ground state, as
well as thermal fluctuations (i.e. spin waves) around
that state. To better illustrate the underlying elastic
gradients of intra-aggregate stress and compare them to
ground state continuum theory predictions, as shown
in the main text visualizations, we attempt to average
our thermal fluctuations of spin as follows. We comput-
ing intra-aggregate strains within a particular simulation
snapshot, we temporarily turn off translational moves in
the simulation, specifically cluster moves and SP trans-
lations and translations + rotations, and perform this
spin-only MC regimen for 104 sweeps, sampling the val-
ues of ε(i) every 102 sweeps.
Aggregation auto correlations We measure the auto-
correlation of aggregation to ensure equilibrium sam-
pling. Specifically, we compute the time scales (in MC
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FIG. 11. Auto-correlation functions The auto-correlation function for the parameter set Σ/J = 0.09, βJ = 40.0 and L = 800
is computed for the sequences of a increasing strong frustration (with Φ = 0.16): f = 0.0125, 0.015, 0.0175, 0.02, 0.0225, 0.025
(black, purple, blue, green, orange and red, respectively), b increasing concentration (f = 0.015): Φ = 0.08, 0.12, 0.16, 0.2
(black, purple, blue, green) and c increasing weak frustration (Φ = 0.16): f = 0.0025, 0.005, 0.0075, 0.01 (black, purple, blue,
green). Auto-correlation times τa are obtained by fitting lnA to the intermediate time scale linear regime. d The auto-
correlation times measured from Figure 11a-c plotted against frustration. From this we can see that, as frustration is lowered
from strong to weak (i.e. where the system undergoes a condensation transition) the auto-correlation times grow large due to
diverging time scales for macroscopic cluster formation and deformation.

FIG. 12. Topological charge of defect holes in vortex-sponge aggregates Condensed aggregates (isolated) with interior
hole boundaries colored by enclosed topological charge for frustration values of f = 0.0025, 0.0050, and 0.0075 (with Σ/J = 0.09
and βJ = 40). When f ≪ fc we observe a uniform distribution of elementary (q = 1) charge defects (ex. f = 0.0025). For
larger f we observe higher q = 2, 3, 4 · · · charges (ex. f = 0.0050), some of which may result of fusion of multiple q = 1 holes.
For f ∼ fc (SI ex. f = 0.0075) we observe that the size and charge distribution fluctuates, consistently larger holes have larger
charge.

simulation units) for aggregates to assemble and disas-
semble, to generate statistically independent populations
of aggregates, following methods used for micellar simu-
lations [68]. We define a tracer auto-correlation function:

A(∆s) =
⟨nt(s+∆s)nt(s)⟩ − ⟨nt(s)⟩2

⟨n2
t (s)⟩ − ⟨nt(s)⟩2

. (A11)

where s and ∆s initial and intervals of time steps (or
“sweeps”), and nt is cluster size for a tracer particle,
p = t (i.e. nt = nc(t) . In practice we compute the
auto-correlations by averaging t over all particles. Fig.

11a-c shows plots A(∆s)/A(0), for a range of SLA sim-
ulation conditions, showing the decay to zero at long
times, indicating that a given particle is likely to belong
to a statistically uncorrelated aggregate at sufficiently
long times (i.e. longer the the assembly/disassembly
time). While the observed relaxation is evidently not
single-exponential, we fit A(τ) ∼ e−∆s/τa at intermedi-
ate times (longer than short-time single subunit exchange
dynamics with free monomers) and use τa as a measure
of aggregation relaxation (i.e time scale for cluster for-
mation/disassembly). Table S11 reports τa for a range
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FIG. 13. Characterization of defect hole separation and size a Delaunay triangulation (top panel) of the f = 0.0025
condensate where vertices only considered for centers of holes with q = 1 charge. The bottom panel shows the distribution of
inter-hole separation distances for the three example structures shown in Fig. 12. b Characteristic defect spacing (taken as
mode of P (ℓv)) as function of f for three different values of Σ/J . The dotted line is the expected inter-vortex spacing for an
Abrikosov defect lattice in the uniformly frustrated 2D XY model. The inset shows the characteristic defect spacing normalized
by expected Abrikosov spacing f−1/2, showing no evident variation with Σ/J . c Area of holes (with unit charge) for fixed
frustration and increasing Σ/J (top panel) and for fixed Σ/J and increasing frustration (bottom panel).

of simulated parameters, varying f , Φ, βJ and Σ/J .
Measuring aggregate charge The topological charge,
q, contained within a closed lattice loop of bonds, C, can
be measured through the relation[69]:∑

C
mod [∆θij −Aij ] = 2π(q − fP) (A12)

where P denotes the number of elementary plaquettes
enclosed within the closed contour C and the gauge-
invariant phase differences are defined in range (−π, π].
We construct orientated loops that enclose holes within
clusters via a discretized Stokes law construction, in
which clockwise oriented +1 “currents” are added to
the bonds of all plaquettes with fully occupied vertices.
As bonds shared between two fully occupied plaquettes
cancel, the superposition of integer charged loops leads
to two sets of cycles within a cluster: one (clockwise)
“macrocycle” enclosing the outer boundary of a clus-
ter and a set of nhole (counter-clockwise) cycles running
around the edges of internal holes in the cluster.

Using this set of oriented loops, we evaluate eq. (A12)
and the number plaquettes enclosed in each loop (using∑

C Aij/(2πf) = P), to compute the topological charge
q of each hole, as well the net charge of the entire ag-
gregate. A visual example of all of the holes—along with
their measured topological charge—is shown in Fig.12 for
several example aggregates. An analysis of the center-to-
center spacing ℓd for variable frustration and cohesion to
stiffness ratios is shown in Fig.13.
Aggregation-to-condensation transition We per-
formed finite-size scaling ⟨n⟩ϕ ∼ Aν analysis of mean
cluster size ⟨n⟩ϕ versus lattice size A for only a limited
set of parameters described in Fig. 9b-c to characterize
the bulk-to-disperse simulation. For the broader range of
parameters analyzed in Fig. 9d, we performed a simpler

analysis of this finite-size scaling, but at a fixed lattice
size. The approach follows from the fact that in the bulk
state as f → 0, the mean aggregate size scales with the
largest aggregate and hence ⟨n(f → 0)⟩ϕ A, whereas at
strong frustration, states are dispersed, and the mean
aggregate size is independent of system size, and in gen-
erally much smaller than that bulk f → 0 state. Hence,
as a function of increasing f , ⟨n(f)⟩ϕ/⟨n(0)⟩ϕ falls from
O(1) in weak frustration to O(A−1) at the the transition
point between bulk and dispersed states. For large A
this transition is sufficiently sharp to measure a critical
frustration, fc, from the generalized susceptibility,

χn = − 1

⟨n(0)⟩ϕ
d⟨n(f)⟩ϕ

df
. (A13)

In practice, and as shown in Fig. 14a, we measure fc
from the peak value of a finite-difference approximation
to χn, and associate the uncertainty of its values with
the variance. Comparisons to finite-size scaling analysis
for measurement of fc in Fig. 14b show quantitative
agreement between the two measures within resolution
limits allowed by discrete values of f in the model.

Appendix B: Mapping to models of physical,
frustrated systems

Here, we summarize the mapping between our generic
continuum model of geometrically frustrated assembly
(eq. 3) and two different models of distinct physical
classes of frustrated systems: (i) liquid-crystalline (LC)
assemblies on non-Euclidean surfaces; (ii) bend-nematic
assemblies on planar substrates. In both cases, the model
parameters Σ and ϵbulk describe the (bare) free energy of
boundaries and the bulk of aggregates, respectively. In
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FIG. 14. Metrics for observing the condensation transition a χn measured from simulations with Φ = 0.1,
Σ/J ∈ 0.09, 0.3, 0.5, 0.75, 1.0 and fixed βΣ = 3.6. The location of the peak of each distribution is used to identify the critical
condensation frustration for the corresponding value of Σ/J and the full width half maximum is used as a measure of the
uncertainty. b Comparison of the different metrics used to observe the condensation transition for the three values of surface
energy to elastic (spin) stiffness (Σ/J = 0.05, 0.09, 0.20 and Φ = 0.15) used as examples Fig. 9bc. The peak of the mean size
susceptibility (green) lines up with the point where both the mean size exponent (black) and the normalized charge density
(red) drop to zero; hence we use the location of this peak to define the critical value of frustration.

general, both of these increase in magnitude with cohe-
sive interactions between subunits. More generally, the
energetics of eq. (3) are applicable to any case where
there is phase separation into a dense/ordered phase and
a dilute/disordered phase, as is characteristic e.g. for
lyotropic liquid crystalline states, in which Σ parameter-
izes the line tension between dense and dilutes states.
The distinct mechanisms of frustration then enter in the
form of the elastic energy and its effective mapping to
the frustrated 2D XY model, described as follows.
LC assemblies on non-Euclidean surfaces The elas-
ticity theory of liquid-crystalline order embedded on sur-
faces of non-zero Gaussian curvature was derived by Nel-
son and Peliti [30] and studied in the context of “bulk”
phases that fully cover curved 2D manifolds by numerous
others, including [31, 70, 71]. Here, following ref. [30] we
employ theMonge gauge, which considers a surface whose
shape is described by its height above the x-y plane, h(x),
i.e. the position is given by R(x) = xx̂+ yŷ+h(x)ẑ [32].
In LC domains, order is described by a director n(x) de-
scribing orientation in the tangent plane of the surface,

n(x) = cos θ(x) ê1(x) + sin θ(x) ê2(x) (B1)

where ê1(x) and ê2(x) are defined to be orthonormal and
perpendicular to the local surface normal ê1(x)×ê2(x) =

N(x) = (ẑ−∇⊥h)/
√

1 + |∇⊥h|2. We consider the small
slope approximation where |∇⊥h| ≪ 1, which is consis-
tent with domains having (small) finite size relative to
curvature radii of the surface. In this case, it is straight-
forward to show that the following set of vectors,

ê1 ≃ x̂
(
1− |∂xh|2/2

)
+ ∂xh ẑ − ∂xh∂yh/2 ŷ + . . .

ê2 ≃ ŷ
(
1− |∂yh|2/2

)
+ ∂yh ẑ − ∂xh∂yh/2 x̂+ . . .

N ≃
(
1− |∇⊥h|2/2

)
ẑ − ∂xh x̂− ∂yh ŷ + . . . (B2)

satisfy orthonormality and unit length up to O(|∇⊥h|3).
The most simple and widely used generalization of the
Frank elastic energy of LC order on 2D surfaces only
considers intrinsic gradients of orientation, that is only
elastic costs due to changes of the director in the tangent
plane of the surface itself. Hence, these intrinsic gradients
are measured in terms of surface derivatives of the form,

∂′
in = ∂in−N(N · ∂in)

= (n×N)
[
∂iθ −Ai

]
, (B3)

where

Ai(x) ≡ −ê2(x) ·
[
∂iê1(x)

]
= ê1(x) ·

[
∂iê2(x)

]
, (B4)

This covariant derivative of n results directly from pro-
jection of the derivatives of eq. (B1) into the tangent
plane. The field Ai(x) is the so-called “spin connec-
tion” that accounts for the differences in local coordi-
nates when computing director gradients. It can be fur-
ther shown that this covariant derivative of n, ∂iθ − Ai,
is invariant under arbitrary changes of the local coordi-
nate frame. Specifically, for a given director field, arbi-
trary rotations of the frame vectors ê1(x), ê2(x) around
the normal by δθ(x) transform the director angle as
θ(x) → θ(x) + δθ(x) while the spin connection trans-
forms as Ai(x) → Ai(x) + ∂iδθ(x), leaving the covariant
derivative unchanged. The simplest form of the Frank
free energy assumes a single elastic constant K for in-
plane splay and bend, which form

FLC =
K

2

∫
d2x

√
ggij(∂iθ −Ai)(∂jθ −Aj), (B5)

where gij is the inverse of the metric gij = (∂iR) · (∂jR)
and g is its determinant. Note that this form of intrin-
sic Frank elastic gradient free energy neglects extrinsic
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couplings between the director orientation and the cur-
vature tensor, which we return to briefly in the context
of self-assembled membranes.

Following Nelson and Peliti [30] we consider the lowest
order couplings to surface shape in the small slope ap-
proximation, valid in the limit of large curvature radii,
wherein eq. (B5) takes the simple form of the elastic
energy in eq. (3)

FLC(|∇⊥h| ≪ 1) ≃ K

2

∫
d2x|∇⊥θ −A|2, (B6)

where the spin-stiffness is the Frank elastic constant, J →
K, and the gauge field is the spin-connection, which is a
2D vector field in the small-slope limit

Ai(x) ≃
1

2

(
∂xh∂i∂yh− ∂yh∂i∂xh

)
. (B7)

While A(x) itself depends on the coordinate choice (i.e.
local rotations of the ê1(x), ê2(x) frame), its 2D curl
depends only on the surface shape,

∇⊥ ×A ≃ det(κij) = KG, (B8)

where κij ≃ ∂i∂jh(x) is the curvature tensor in the small-
slope approximation. This establishes the connection be-
tween frustration in the 2D XY model and the Gaussian
curvature, f → KG, which can be shown to hold more
generally beyond the small-slope limit [32]. This shows
that the present case of fixed and small f in the lattice
model corresponds to assembly of LC ordered domains
on surfaces of fixed and constant Gaussian curvature (e.g.
spheres), with frustration decreasing with increasing cur-
vature radii.

Note that different symmetries of LC order would cor-
respond to topological defects (disclinations) of different
fundamental charge. Consider the case where the LC or-
der parameter is invariant under θ → θ + 2π/p: p = 1
(polar/tilted); p = 2 (nematic); p = 4 (tetratic); and
p = 6 (hexatic). These variants, and the spectrum of
disclinations they support, are captured by generaliza-
tion of phase dependent interactions in the lattice model
of the form −J cos

[
p(∆θij −Aij)

]
.

This model can also be applied to the assembly of
subunits into LC membranes that favor a non-Euclidean
shape. In addition to the intrinsic Frank elastic terms of
the form of eq. (B5) such systems are modeled by ad-
ditional terms that couple to extrinsic geometry. These
elastic terms can be derived from couplings between the
director and the curvature tensor (e.g. niκijnj) consis-
tent with the symmetries of LC order [56]. Models of
this form have been deployed, for example, to study the
hyperbolic shapes of tilt bilayer membrane ribbons in a
variety of LC materials [53–55]. For example, Ghafouri
and Bruinsma have shown that, in chiral membranes,
such extrinsic terms can be modeled (in the small-slope
limit) as an effective bending energy [12]

Fext ≃
B

2

∫
d2x

(
κij − κ

(0)
ij

)2
, (B9)

where B is a bending modulus and

κ
(0)
ij =

(
0 κ0

κ0 0

)
(B10)

is the preferred curvature tensor, with κ0 a preferred off-
diagonal curvature. More generally, it can be shown that
rotations of the molecular order can also be described in
this form, but with rotations of preferred principle direc-
tions relative to coordinate frame [57]. For sufficiently
large bending modulus, the extrinsic energy of the form
of eq. (B9) will lock the curvature into a fixed value, i.e.

κij = κ
(0)
ij , such that frustration is quenched to a fixed,

non-zero, KG = det
(
κ
(0)
ij

)
= −κ2

0.
In practice, frustration in such terms cannot be con-

sidered fixed, and the extrinsic elasticity of the form of
eq. (B9) describes “soft elasticity” of the frustrating
gauge field. As a result, the effective frustration will ad-
just itself with the size and shape of the self-organized
domain, which can be seen by considering two limits.
First, when the shaped is locked into the preferred one,
the elastic energy density of a finite domain grows as
∼ Kκ4

0W
2. Secondly, when the shape flattens to avoid

the cost of frustration at the expense of bending energy
density ∼ Bκ2

0. These two energy scales crossover at

characteristic scale Wflat ∼ κ−1
0

√
K/B, suggesting that

for sufficiently large domains (W ≫ Wflat) the assembly
can avoid the super-extensive costs of frustration without
defects by elastic defrustation. This effect is not captured
by the fixed-frustration regime that is the central focus of
the present study. Nevertheless, as the frustration relax-
ation is size dependent, we can expect it to have minimal
impact on the regime of narrow, self-limiting domains
(i.e. the regime of f ≫ fc).
Bend-nematic assembly on planar surfaces Follow-
ing Efrati and coworkers, we show that cohesive assembly
of “bend-nematic” (BN) phase also exhibits frustration
captured by a variant of the elastic energy in eq. (3). A
BN phase is a variant of nematic order where the director
has a favorable bend. Here we consider a 2D scenario, ap-
propriate, for example, for assemblies of banana shaped
colloidal particles[61], where the 2D director n(x) is em-
bedded in-plane (itself a variant of the 3D case with a
plethora of bend- or splay-nematic phases [58, 59, 72]):

n(x) = cos θ(x) x̂+ sin θ(x) ŷ. (B11)

A 2D domain of planar bend-nematic is described by the
Frank free energy

FBN =
1

2

∫
d2x

{
K1(∇⊥ · n)2 +K3(∇⊥ × n− b0)

2
}
,

(B12)
where K1 and K3 are the Frank elastic constants that
couple to the splay and bend of the director field and b0
is the preferred bend, which is assumed to be uniform,
an intrinsic property set by e.g. the shape of bent-core
molecule or banana-shaped particle. For this elastic en-
ergy, the texture favors everywhere to be splay-free and
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uniformly-bending (i.e. ∇⊥ · n = 0 and ∇⊥ × n = b0),
a scenario which is easily generalized to arbitrary com-
binations of preferred splay and/or bend. Remarkably,
even on a Euclidean surface, such an assembly will ex-
perience geometric frustration for any non-zero preferred
splay or bend. We demonstrate this general result by
mapping the bend-nematic elastic free energy eq. (B12)
to the frustrated 2D XY model for the simplest single-
elastic constant model K = K1 = K3. Defining a co-
director m ≡ ẑ × n perpendicular to n, the local bend
b = ∇⊥×n = (∇⊥θ) ·n and splay s = ∇⊥ ·n = (∇⊥θ) ·m
characterize the gradient of the director angle,

∇⊥θ = b(x) n(x) + s(x) m(x). (B13)

Using this form and the single Frank constant assump-
tion, eq. (B12) takes the form

FBN =
K

2

∫
d2x

∣∣∇⊥θ − b0n|2. (B14)

Comparison to eq. (3) shows the planar bend-nematics
map to the frustrated 2D XY model under J → K and
with a gauge field,

ABN = b0n(x). (B15)

The effective frustration in the model is characterized by
the 2D curl

∇⊥ ×ABN = b0b(x). (B16)

From this we find that, unlike the case of 2D nematics on
non-Euclidean surfaces where frustration is controlled by
additional shape degrees of freedom, for the planar bend-
nematic phases, frustration is self-generated by the intrin-
sic preference for bend, which favors b(x) = b0. Hence,
in the regime where the preference for the ground-state
bend is sufficiently strong, we expect f → b20, which is
consistent with the results of Efrati and Niv who showed
that the sum of the squares of bend and splay act as
the geometric charge for frustration that is analogous to
the role played by KG surfaces for 2D nematics [34]. In
this case, we see that the gauge field itself is fluctuating,
like the case of the nematic membrane, and as such, the
strength of frustration will vary with domain shape and
size. This is consistent with results of Meiri and Efrati
[35] who found that, in absence of topological defects,
optimal bend of BN domains adopt the preferred value
b(x) = b0 in the limit of narrow domains, which the tex-
ture unbends to b(x) < b0 to relax the super-extensive
costs of frustration as domain sizes grow. This represents
an alternative, elastic mode of frustration escape that will
compete for thermodynamics stability in the limit of low
frustration, i.e. low b0.

Appendix C: Continuum aggregate model of finite
width aggregates

Energetics of rectangular domains As a model of
self-limiting aggregates of the lattice model, we consider

strip-like rectangular domains of occupied subunits, with
a minimal phase energy described by ground states of
the continuum energy in eq. 3. Specifically, we consider
domain shapes, D that occupy a region x ∈ [0, X] and y ∈
[0, Y ] and consider Euler-Lagrange equations for θ(x),

∇2
⊥θ(x, y) = ∇⊥ ·A(x, y) = 0, (C1)

with the boundary condition:

n̂ · ∇⊥θ(x, y)
∣∣
∂D = n̂ ·A(x, y), (C2)

where we have used the divergence free gauge, and n̂ is
normal to the domain boundary ∂D.
Solving this equation on rectangular domains of di-

mension X × Y and including the bulk and boundary
energetics (see Supplementary Sec. 1), we have the en-
ergy density of rectangular aggregates:

ϵ(X,Y ) = Jf2Ω

(
X ′

Y ′

)
(X ′)2 − 2Σ +

X + Y

XY
Σ (C3)

where Ω(α) is a dimensionless factor dependent on the
aspect ratio of our aggregates

Ω(α) =
π2

6
− 32

π3
α

∑
n odd

1

n5
tanh

(nπ
2α

)
. (C4)

Notably, the elastic terms are function of X ′ = X − 1,
Y ′ = X−1 to account for the fact that the elastic energy
is defined on the network of bond between sites, consistent
with the intuitive result that phase strain, and elastic en-
ergy must vanish for X,Y → 1. In the regime where do-
main sizes are large compared to lattice dimensions, gross
features of the energy density landscape are only weakly
dependent on the microscopic lattice cutoff, and hence,
we can make the approximation (X ′, Y ′) → (X,Y ) in
eq. (C3) above. In Supplemental Sec. 2, we describe the
quantitative corrections of the finite lattice cutoff. In this
limit, it is straightforward to show that the energy can
be rescaled in a dimensionless form by measuring lengths
in units of ℓd, (X̄, Ȳ ) = (X/ℓd, Y/ℓd), yielding

ϵ(X̄, Ȳ )− ϵbulk
Σ/ℓd

= Ω
(
X̄/Ȳ

)
X̄2 +

1

X̄
+

1

Ȳ
. (C5)

It is straightforward to analyze the minimal energy
shapes via the minimization of the substitution X̄ =√
αn̄, Ȳ =

√
α−1n̄ into eq. (C5) and minimizing over

α at fixed aggregate size n̄ = X̄Ȳ , leading to the “pitch-
fork” saddle path states highlighted in Fig. 4a, with
anisotropic states becoming favored for n > nc.
In the limit of large n̄ optimal shapes approach α →

0, with ribbons approaching a constant finite width
W∗(n → ∞) = (3/π2)1/3ℓd, and obtaining limiting form
of the energy density for 1D strips,

ϵ1D(n) = lim
n≫nc

ϵ(W∗, n/W∗) ≃ ϵ∞ +∆/n (C6)
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where ϵ∞ = −2Σ+ Σ(3π)2/3

2

(
f2

Σ/J

)1/3

is the limiting per-

subunit energy in bulk of strips, and ∆ = Σ/W∗ effec-
tively parameterizes the cost of finite-length strip ends.

Ideal aggregation of self-limiting domains We use
ideal aggregation theory to predict the aggregate distri-
butions from the continuum theory model of the per
subunit aggregation energy. In particular, we con-
sider the minimal energy density aggregates ϵm(n) ≡
min

[
ϵ(
√
αn,

√
α−1n)

]
. The equilibrium distributions in

this regime are given by the law of mass action [6]

ϕn(µ) = n
(
eβ[µ−ϵm(n)]

)n
, (C7)

where µ = lnϕ1 is the chemical potential of subunits,
which is determined from the equation of state

Φ =
∞∑

n=1

ϕn(µ). (C8)

Note, this sum accounts for the two degenerate branches
of anisotropic “worm-like” aggregate states. For the ag-
gregation distributions shown in Fig. 4b, we evaluate this
sum by numerical integration along the contour of min-
imal energy aggregates, including the explicit effect of
lattice cut-off (see SI sec. 2 for details).

As aggregate populations are ultimately dominated by
quasi-1D aggregates of finite width and, as shown in
Fig. 4b depleted of aggregate states intermediate to dis-
persed monomers to aggregates of size n ≳ nc , a good
approximation of the aggregation transition is given by
a simplified model that considers only two populations
of subunits: free monomers ϕ1; and 1D aggregates for

n ≥ nc with the energy ϵ1D(n) given in eq. (C6). Insert-
ing this into the equation of state, we have,

Φ(ϕ1) = ϕ1 +Φagg(ϕ1) (C9)

where

Φagg(ϕ1) = 2

∫ ∞

nc

dn nz(ϕ1)
ne−β∆

= 2e−β∆z(ϕ1)
nc

nc ln z(ϕ1)
−1 + 1

[ln z(ϕ1)−1]2
(C10)

and z(ϕ1) = ϕ1 exp(−βϵ∞). It is straightforward to see
that there are two regimes with increasing ϕ1. For low
ϕ1 (dilute), z ≪ 1 and ϕ1 ≫ Φagg corresponding to the
disperse monomer state. When ϕ1 approaches

ϕ∗ = eβϵ∞ (C11)

z → 1, and it is clear to see that the population of ag-
gregates diverges corresponding to the saturated regime
Φagg ≫ ϕ1. Noting that, at the crossover between
monomer and aggregate dominated states, Φ∗ ≈ ϕ∗, we
have a simple expectation for the critical aggregation con-
centration,

(βΣ)−1 lnΦ∗ ≈ −2 +
(3π2)1/3

2

( f√
Σ/J

)2/3

, (C12)

Which defines the two key axes of the aggregation behav-
ior in Fig. 4d. Contours of constant aggregate fraction
in this plot are generated by the 1D aggregation model,
which we show in Fig. S5 to capture the key dependence
of the full (variable aggregate aspect ratio) continuum
model.
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