
BOBBER: A Prototyping Platform for Batteryless Intermittent
Accelerators

Vishak Narayanan
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa, United States

vishakn@iastate.edu

Rohit Sahu
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa, United States

rsahu@iastate.edu

Jidong Sun
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa, United States

jidongs@iastate.edu

Henry Duwe
Department of Electrical and Computer Engineering

Iowa State University
Ames, Iowa, United States

duwe@iastate.edu

ABSTRACT
Batteryless systems offer promising platforms to support pervasive,
near-sensor intelligence in a sustainable manner. These systems
solely rely on ambient energy sources that often provide limited
power. One common approach to designing batteryless systems is
using intermittent execution—a node banks energy into a capacitive
store until a threshold voltage is met and the digital components
turn on and consume the banked energy until the energy is depleted
and they die. The limited amount of available energy demands the
development of application- and domain-specific accelerators to
achieve energy efficiency and timeliness. Given the extremely close
relationship between volatile state and intermittent behavior, per-
forming actual system prototyping has been critical for demonstrat-
ing feasibility of intermittent systems. However, no prototyping
platform exists for intermittent accelerators. This paper introduces
BOBBER, the first implementation of an intermittent FPGA-based
accelerator prototyping platform. We demonstrate BOBBER in the
optimization and evaluation of a neural network accelerator pow-
ered solely by RF energy harvesting.

CCS CONCEPTS
• Hardware → Hardware accelerators; Sensor devices and
platforms; Reconfigurable logic applications; • Computer
systems organization→ Firmware; Embedded hardware; Em-
bedded software.

KEYWORDS
energy-harvesting; batteryless; intermittent computing; accelera-
tors; system prototyping platform; battery-free sensor

ACM Reference Format:
Vishak Narayanan, Rohit Sahu, Jidong Sun, and Henry Duwe. 2023. BOB-
BER: A Prototyping Platform for Batteryless Intermittent Accelerators . In

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9417-8/23/02.
https://doi.org/10.1145/3543622.3573046

N
o

d
e

 E
n

er
gy

 S
to

re
 V

o
lt

ag
e ON THRESHOLD

OFF THRESHOLD
Time

Off-
time

On-
time

Challenge 1: Loss
of volatile state

In
st

an
ta

n
e

o
u

s
P

o
w

er
 (

d
B

m
)

Time

HARVESTED
POWER
SYSTEM

CONSUMPTION

Challenge 2:
Uncontrollable nature of

harvesting rate

Challenge 3: Short On-times
and variable Off-times

Challenge 4: Optimize
performance and
reduce lost work

Figure 1: Intermittent execution and its challenges.
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’23), February 12–14, 2023, Monterey, CA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3543622.3573046

1 INTRODUCTION
As the Internet of Things (IoT) becomes a reality, tens of billions,
trillions of smart, sensor-enabled devices—capable of sensing, com-
puting, and communicating—will be deployed in just about every
conceivable location in the coming decades. Currently, these sys-
tems are powered by conventional energy sources like batteries
or wired power. But for such large numbers of devices, continu-
ously powering them with wires is infeasible due to cost and loca-
tion. On the other hand, batteries require replacement/maintenance
due to limited lifetimes and most types are not environmentally
friendly [33]. Batteryless systems powered solely from ambient
energy sources such as Radio Frequency (RF), thermal, vibration,
kinetic, or solar [1, 12, 38] have emerged as a promising paradigm.

Even though batteryless systems show the potential of increased
lifetime, near zero maintenance, and environmental friendly ma-
terials, designing them poses insidious challenges. Consider the
illustration of an RF energy trace shown in Figure 1 where the har-
vested power is almost always beneath a mW (0 dBm). Most com-
mercial devices (e.g., MSP430FR5994 [18] with 7mW of operational
power) would be unusable with this magnitude of harvested power.
In response, the intermittent execution paradigm (shown in upper
Figure 1) has emerged where the system banks harvested energy

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543622.3573046
https://doi.org/10.1145/3543622.3573046

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Vishak Narayanan, Rohit Sahu, Jidong Sun, & Henry Duwe

into a capacitor until enough energy is collected to turn on and per-
form sensing, computation, and communication tasks. Once these
tasks are completed or the energy has been exhausted, the system
dies allowing the capacitor to recharge [7, 9, 10, 13, 19, 26, 30, 39].
However, when there is a power failure, nodes lose all state not
stored in a non-volatile memory. This is exacerbated by the spo-
radic and uncontrollable nature of energy harvesting which makes
on-times short and off-times variable.

The MCU-based platforms such as WISP [41] and MOO [46]
demonstrated feasible batteryless systems and have been used ex-
tensively in intermittent systems research. While many of the past
works have used such an MSP430FR5994 MCU system, this sys-
tem has significant performance limitations (e.g., a 16MHz, 3-stage
pipeline with multi-cycle multiply and a conventional dense linear
algebra accelerator). While these devices can support intermittent
inference [13, 23], common neural network hardware accelerator
optimizations such as low-precision, energy-adaptivity, and spar-
sity cannot be explored in these prototypes. This paper presents a
prototyping platform for batteryless intermittent accelerators and
makes the following contributions:

• BOBBER1, an MCU + FPGA-hosted accelerator prototyping
platform that can be used to explore heterogeneous accel-
eration for batteryless intermittent sensor nodes under real
energy-harvesting constraints.

• Demonstration of BOBBER’s capabilities using an intermittency-
awareHW-SWaccelerator framework based on TFlite-micro [8].
Resulting accelerators can achieve both correct execution
and forward progress under varying energy harvesting con-
ditions despite volatile state loss on the accelerator.

• Experimental evaluation of BOBBER under RF energy har-
vesting. The evaluations include both platform overhead
characterization and end-to-end functional correctness of a
CNN under energy-harvesting.

2 BACKGROUND AND MOTIVATION
Commercial-off-the-shelf (COTS) devices are designed to be contin-
uously powered or controllably duty-cycled into low-power states
while powered by a battery. Batteryless systems may often harvest
insufficient power to even maintain low-power states much less
operate continuously. For example, with an Powercast TX91501b RF
transmitter [35] (PTX) and corresponding Powercast P2110B Pow-
erharvester [34] (PRX) power at the receiver may vary between
6.56 𝜇𝑊 and 5.7 𝑚𝑊 based on placement within a research lab,
while an MSP430FR5994 [18] consumes 7 𝑚𝑊 of average active
power and 15 𝜇𝑊 when in sleep (retaining all the volatile state).
Larger variations may occur based on system deployment, changes
in the environment around the system, or system motion. Such
intermittent batteryless systems must be carefully designed with
system execution and power usage tightly coupled to the small and
variable energy harvesting rate.

Typically, batteryless intermittent proposals contain both volatile
state (e.g., in SRAM and flip-flops) and non-volatile state (e.g., FRAM
memory of the MSP430 that most prototype systems use). Volatile
1Like a bobber in the water, being pushed and pulled by external, uncontrollable forces,
BOBBER intermittently surfaces to compute during on-times and disappears beneath
the waves to gather energy to surface again. All PCB hardware, FPGA designs, and
software are available at https://zenodo.org/record/7439488

Table 1: Comparison of most closely related works.

Work Reconfig Accelerator EH Prototype
SoC [21] x FFT (fixed) ✔

SONIC [13] x LEA (fixed) ✔
NEURO-ZERO [23] x 2nd MSP430 ✔

HAWAII [20] x LEA (fixed) ✔
PHASE [11] ✔ DNN x
ResiRCA [36] ✔ ReRAM (RCA) x

MaxTracker [37] x ReRAM (RCA) x
NORM [40] ✔ x x

CP-FPGA [45] ✔ x x
BOBBER (this work) ✔ FPGA (e.g., DNN) ✔

memory is generally used for frequently used data and instruc-
tions while non-volatile memory is used for large capacity data
and persisting execution progress and code across powerloss. Any
volatile state not checkpointed must be recomputed in the next
on-time. However, if a program reads and updates a non-volatile
state (i.e., has a Write-After-Read (WAR) anti-dependency on non-
volatile state), re-execution may produce results not attainable by
any correct program execution—the recomputation produces an
inconsistent state [24, 29]. Additionally, if execution is continually
halted before another checkpoint is created, the application may
never complete—i.e., it ceases to make forward progress.

Software solutions for guaranteeing correctness while provid-
ing forward progress through an application range from guaran-
teed checkpointing based on ADC triggers [4] to periodic check-
points [2, 3, 19, 27] to task-based execution [7, 24, 26, 30, 39]. These
run on existing platforms such as WISP[41], MOO[46], Flicker [15],
or other custom platforms built around an FRAM-based MSP430. Al-
though the MSP430 provides the low energy accelerator (LEA) [17]
which has been leveraged by [13, 20] for DNN inference, it lacks
reconfigurability to specifically target an application or domain
(e.g., it efficiently handles neither sparsity of convolution layers
nor precision lower than 8-bits).

In order to support the design, test, and debug of these proto-
type systems, intermittency-aware tools were needed. CleanCut [6]
guarantees termination under a given set of system assumptions.
The energy-interference-free debugger (EDB) [5] enables debug-
ging on MSP430-based prototypes without perturbing the tight
coupling between energy harvesting and consumption. EKHO [14]
records and replays harvested energy traces for prototyped systems.
NORM [40] emulates an intermittent system on an FPGA using an
energy-harvesting model while replaying previously recorded en-
ergy traces. However, NORM can only model the energy harvesting,
power delivery, and power consumption of the design.

Other works have proposed processor microarchitectures for
intermittent computing. Clank[16] uses idempotence—a property
that a sequence of instructions can be arbitrarily restarted by main-
taining the inputs to the sequence [28]—to guarantee correct re-
execution. Other approaches include the use of processor hetero-
geneity in PHASE [11] and wholly non-volatile processors in inci-
dental computing [25]. However, all of these are simulation-based.

Recent works have proposed accelerators specially designed
for intermittent systems. Reconfigurable ReRAM crossbar-based
accelerators (RCAs) have emerged as a promising technology to
efficiently perform the multiply and accumulate (MAC) operations
dominant in CNNs [36, 37]. However, RCAs are not commercially

https://zenodo.org/record/7439488

BOBBER: A Prototyping Platform for Batteryless Intermittent Accelerators
FPGA ’23, February 12–14, 2023, Monterey, CA, USA

FPGAMCU

IOCPU

ACCELERATOR

SPI SRAMSPI

Reset

Power
control

CTPL

r
Harvester

PTX

APP
 +
system

kernel 1
comp_temp(…..)

Energy
store

kernel n
comp_temp(…..)

GND

Figure 2: BOBBER platform overview.
available and must be evaluated in simulation. FPGA-based accel-
erators are also appealing because of their reconfigurability. CP-
FPGA [45] and DFT-FPGA [47] represent non-volatile FPGA fabric
architectures coupled with checkpointing schemes for volatile com-
putation data. However, the resulting systems are only evaluated
in simulation. Currently, while a few commercially available FP-
GAs have non-volatile logic elements such that their programming
is not lost with power [31], they only have volatile state within
the circuits (i.e., flip-flops) and configurable memory (i.e., SRAM).
Therefore, any accelerator system prototype designed with them
will have to address the consistency problem caused by WAR de-
pendencies to external non-volatile memory when recomputing
lost volatile state on the FPGA.

In summary, to the best of our knowledge, there have been
no platforms that support reconfigurable accelerator prototyping
under real-world energy harvesting (see Table 1).

3 BOBBER
BOBBER offers a full-stack prototyping platform to quickly develop
functionally correct custom intermittent accelerator applications.
As shown in Figure 2, BOBBER is powered solely by an RF energy-
harvester and computationally comprises an MCU and a discrete
FPGA. The MCU runs application and system software on top of
an intermittency-aware firmware. The application software can be
accelerated by an arbitrary number of computational kernels that
are implemented by an accelerator on the FPGA. Kernel calls are
simple to implement and templated such that correctness can be
guaranteed evenwhen power failures occur during kernel execution
and the accelerator’s local volatile data is lost.

3.1 BOBBER Hardware Platform
The core BOBBER hardware platform is implemented with COTS
components on a 4-layer PCB. Jumper and header support is in-
cluded to isolate and test individual components such as the energy
harvester and extend functionality to include sensors and a radio.

The RF energy harvesting frontend is a Powercast P2110B Power-
harvester [34] module with built-in power regulator and supervisor
to provide the digital components with a regulated 3.3V during
on-times and 0V during off-times. The RF harvester charges a series
of dynamically-programmable capacitor banks similar to Capy-
bara [7] in order to support a range of applications, accelerators,
and their associated energy costs. BOBBER has four banks of low-
leakage ceramic super capacitors, with the default bank having two
multi-layer ceramic chip capacitors (MLCC). For an intermittent
accelerator, when a larger computation is needed the platform can

save-up energy to perform the computation using the accelera-
tor while making simple system control decisions with its MCU.
The MCU can also monitor the capacitive storage voltage via an
on-board ADC for power control decisions.

As quantified in Section 2, the rate of RF energy harvesting is
low and the energy store is limited. Therefore, we selected MCU
and FPGA components for low power and low-energy boot. BOB-
BER uses an Igloo Nano[31] FPGA which has 3K non-volatile LUT
elements, 36 Kbits of SRAM (volatile state) and 1 Kbit of non-
runtime-writable ROM. While the Igloo Nano does not need to
be reprogrammed after an off-time, any intermediate data stored
in its SRAM is lost. BOBBER uses a MSP430 [44] microcontroller,
which is commonly used in energy harvesting applications, due
to it’s byte-updatable FRAM that allows efficient non-volatile up-
dates and checkpoints. It also has wide range of operating modes
(7𝑚𝑊 at the most performant active mode and about 15 𝜇𝑊 at its
lowest-power retention mode). BOBBER utilizes SPI, the highest-
bandwidth (2MB/s) communication peripheral supported by the
MSP430, to communicate data and instruction set to the FPGA-
based accelerator.

3.2 BOBBER Software Platform
Intermittent systems have to deal with frequent power failures and
the associated correctness and forward progress issues. BOBBER
takes a two-pronged approach: (1) for execution on the MCU we
use a full checkpointing-based system to guarantee correctness
and forward progress; (2) an idempotent interface to the FPGA
accelerator. The flexibility of this interface allows the application
to craft sufficiently small kernels to guarantee forward progress.

To illustrate this approach, consider the example application in
the upper left of Figure 3. The application makes 𝑛 computational
kernel calls to the accelerator using the (comp_temp) template. Dur-
ing intermittent execution at point 𝐶1, the off threshold is reached,
the MCU dies, and the program unceremoniously terminates. Un-
der traditional execution, the program would start from the begin-
ning again, loosing any forward progress made. To retain forward
progress and to avoid any WAR dependencies, BOBBER uses TI’s
compute through power loss (CTPL) [43] to save all volatile state to
a reserved region in the FRAM as the internal power rail approaches
its brownout voltage. The volatile state includes registers (general
purpose, stack pointer, and PC), peripheral interrupt settings, stack,
and heap. Upon restart, the bootloading process (wakeup()) first
restores the volatile SRAM state, registers, and interrupts, and then
returns from the ADC interrupt to precisely the point at which the
checkpoint was initiated.

While CTPL works for the MCU portions of the application,
a death during an accelerator template call (e.g., point 𝐶4) can
still cause incorrect execution since the local accelerator state is
in volatile SRAM. CTPL will restart the program execution right
there and not resend any data to the accelerator before asking the
accelerator to perform the computation (compute()). The result is
that the random startup values are transferred back to the MCU
producing incorrect final results. In order to solve this BOBBER
treats the template function as atomic—either it fully completes
and stores the result back to FRAM or it is re-executed from the
beginning. For correctness this function must be idempotent— re-
execution of the function with the same inputs will produce the

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Vishak Narayanan, Rohit Sahu, Jidong Sun, & Henry Duwe

Application region

Application region

Application region

main(){

init();

*a= load_vals()

Non-volatile FRAM
main(){

init();

int *a= load_vals();

 for(int i=0;i<n;i+4){

comp_temp(i,a[i],3);

}

}

comp_temp(i,a[i],3)(){

send(&a[i],4);

 compute(&a[i],3,1);

 read(&a[i],4);

 }

A. Example application

 i = 0; //i inc to 4

comp_temp(0,a[0],3);

save(PC,SP,R12-R15);

 save_activation_record;

 check restore_reg_flag; // 0

 set interface_flg;

 send(&a[0],4);

B. Intermittent power program sequence
Application region

C2

Reserved region

SE

&a

PCSP

save_stack()

cmpx.w #1, interface_flg;

jnz alt_restore ;

savecpustack:

set src-> &SP, dst-> &FRAM, BS;

do DMA;

config DCO shutdown;

wait for shutdown();

alt_restore:

pushx.w PC to &ADC_ISR

mask SR bits;

set restore_reg_flag;

jmp savecpustack;

SE

i=0

&a[0]

PCC1

C3

ADC REF IO
RTC

SP

 Stack

SE

i=4

&a[0]

PC

Reserved region

SE

i=0

&a[0]

PC

Reserved region

C2

C3

C4

PC

Reserved region

SP

SP

save_activation_record();

calc activation_record size(AS);

save AS;

set src-> SP dst-> &FRAM;

do DMA; ////SP+AS block size

reta;

restore_activation_record();

restore AS

set dst-> SP src-> &FRAM;

do DMA; //SP+AS block size

reta;

C5

ADC interrupt triggered -> calls
save_stack()

CPU comes back online to
restore_stack()->
restores all the stack

Enters comp_temp() -> base
location(PC), SP, argument
registers(R12-R15) and activation
record is saved

ADC interrupt triggered -> calls
save_stack() and executes
alt_restore -> saving the current
stack and changes ADC interupt ISR
return address to point to PC

WAR

C. Checkpoint assembly pseudo code

CPU comes back online to
restore_stack() -> restores all
the stack -> returns to PC, checks a flag
restore_reg_flag -> restoring
activation record and argument
registers -> resumes operation.

PC

SP
&a PC
src dst

C1

C4

C1

C4

Consistency problem (WAR)
without BOBBER for i and &a[i]

C5

ADC REF RTC
i=0

PC SP R12
R15 dst

&a[0]

src

ADC REF RTC
i=4

PC SP R12
R15 dst

&a[0]

src

ADC REF RTC
i=0

PC SP R12

R15 dst

&a[0]

src

wakeup()

do DCO boot;

restore SP,src,dst,

calc DMA block size BS;

do DMA;

restore SR;

nop;

reta;

PC

check restore_reg_flag; // 1

restore(SP,R12-R15);

restore_activation_record;

 clear restore_reg_flag

set interface_flg;

send(&a[0],4);

compute (&a[0],4)

read(&a[0],4)

clear interface_flag;

comp_temp(4,a[4],3);

save(PC,SP,R12-R15);

save_activation_record;

C5
PC

C5

Figure 3: Example BOBBER application and system software.
same outputs. To do this we must guarantee there are no WAR
dependencies between variables stored in non-volatile state. While
such dependencies between variables can be verified by a compiler,
CTPL’s checkpointing itself causes a WAR dependency when it
saves the stack and the registers just before theMCU dies. Therefore
BOBBER saves the registers and stack activation record at the start
of the template (e.g., point 𝐶3). If the interface_flag is set on
reboot (e.g., point𝐶5), the registers and stack activation record from
the beginning of the template are restored, effectively restarting the
kernel call to the accelerator and guaranteeing correct execution.

4 DEMONSTRATION:
INTERMITTENCY-AWARE CNN HW-SW
ACCELERATOR FRAMEWORK

To demonstrate BOBBER’s capabilities, we designed an intermittent-
aware accelerator framework for one of the most computationally-
challenging workloads for batteryless nodes—CNNs such as LeNet-
5 [22] as used in [13, 32]. As shown in Figure 4, the framework takes
a TFlite [42] model as input to a custom 16-bit TFlite-micro [8]
runtime implementation. The model and TFlite-micro runtime are
hosted on the MCU while 2D and depthwise convolution operators
are accelerated by a 2x2 multiply and accumulate (MAC) accelerator
on the FPGA.

4.1 BOBBER-based Convolution Accelerator
Figure 4 shows the 2x2 multiply and accumulate (MAC) accelerator
hosted on the FPGA. The MAC is a 3-stage pipeline and has a
variable-width instruction set architecture (ISA). Each instruction
starts with a 4-bit opcode. The ISA comprises three instructions:

(1) Load data from MCU: 11-bit address, 10-bit count, and up to
210 bytes

(2) 2x2 MAC: 11-bit addresses, 6-bit count, and up to 26 bytes

MCUMCU

W01

A
ct

iv
at

io
n

 m
em

o
ry

 b
an

k

Weight memory bank

Output memory bank

x +

MAC

PS BUF PS BUF

9I

W9

18

32

32

SPI: CS_N

SPI: MOSI
SPI: MISO

I10,
I00

I11

Io1

SPI: CLK

Input 5
56

28

28

W00 W10

W11

Instruction set ISA
Memory Indices

Number of 2by2's
28

28
6

14

16

6

5
56

5
56

5
56

ke
rn

el
 1

 In
p

u
t

10
16

Depthwise

14

Convolution

WW

W

W

kernel 1 weights

kern
el 2

 w
eigh

ts

ke
rn

el
 2

 In
p

u
t

10

Tile

Output
Tile

kernel 1 output kernel 2 output

Tile
Tile

Tile

TensorFlow Lite
Micro

FPGAFPGA

6

Figure 4: BOBBER-based intermittency-aware CNN accelera-
tor framework.

(3) Store data to MCU: 11-bit address and a single byte

The FPGA uses four of the Igloo Nano’s eight 4608-bit SRAM banks
for activations and weights, allowing double-buffering to overlap
computation and communication. This state is lost when the FPGA
is not powered.
4.2 BOBBER-based CNN Application
The application software has two jobs: (1) Offloading computation
to the accelerator in idempotent kernel calls and (2) providing knobs
to enable forward progress under intermittent execution.

In order to map the TFlite-based CNNs to kernel calls, we parti-
tioned layerwise TFlite operators to work with 2x2 MACs. Note that

BOBBER: A Prototyping Platform for Batteryless Intermittent Accelerators
FPGA ’23, February 12–14, 2023, Monterey, CA, USA

(a) BOBBER platform (PCB front). (b) BOBBER experimental setup.

Figure 5: BOBBER evaluation.
this is done once per operator and can be reused across the CNN
or any other model using the operator. For example, consider the
LeNet-5 [22] CNN shown in Figure 4. It has one depthwise and two
convolution layers. For the depthwise layer, the input feature maps
have height and width of 28 which uses a 5x5 filter along 6 output
channel to give a 28*28*6 output. The layerwise 5x5 computations
are first broken down to 2x2, padded where necessary, and accu-
mulated at the end to get a single output pixel of 28*28*6. Once the
operator computation is partitioned, we map the core computation
to an inlined and idempotent BOBBER template function.

Even though BOBBER’s software platform guarantees idempo-
tence, the execution time of a single invocation of the compute
kernel function may exceed the available energy buffer’s on-time
causing the computation to never complete. To enable forward
progress, we dynamically tile the TFlite-micro operator template
functions with respect to the output height 𝑝 and width 𝑞. For a tile
of width 𝑙 and height 𝑙 , each output channel has 𝑝

𝑙
∗ 𝑞

𝑙
tiles. Each

tile represents one invocation of the compute kernel. This results in
a tradeoff: as the number of tiles increases, the overall performance
decreases due to redundant computation and data movement. On
the other hand, larger tile sizes also risk losing more computed data
per node death that must be recomputed in the next on-time. To
mitigate this risk an application can turn off early when it predicts
the next tile cannot complete. The application uses off-line pro-
filing and an estimate of available remaining on-time since boot
to predict if the next tile can complete. Although not used by the
application, BOBBER supports charge state sensing and monitoring
(using an on chip ADC), which could be used to explore intelligent
runtime tile selection algorithms.

5 METHODOLOGY
To demonstrate execution on RF energy-harvesting alone we placed
BOBBER at 0.5𝑚 from a Powercast TX91501b RF transmitter [35]
as shown in Figure 5b. Images were stored on the FRAM, wires
disconnected, harvesting jumper set, and, after several minutes,
wires were reattached and LeNet-5 inference results collected. Only
the 50𝑚𝐹 capacitor is used as an energy store. Measurement data
reported in Section 6 was collected using an RF signal generator
feeding 9dBm (equivalent to 0.5𝑚) of RF power into BOBBER’s
antenna SMA connector in order to repeatably compare tile sizes
and design points. For latency measurements in continuous and in-
termittent power, we compare 4 design points, MSP430—execution
using solely the MSP430,MSP430 w-CTPL—execution using MSP430
with only CTPL. Baseline Accel—execution using the FPGA custom
accelerator with only CTPL and no tiling, and BOBBER—execution
using BOBBER. A sniffer node is used to timestamp all the compu-
tational progress of the application, timestamping total inference

MSP430 MSP430
w-CTPL

Baseline
Accel

BOBBER
0

10

20

30

40

T
im

e
(s
)

(a) Continuous power

Cannot Complete

Boot Overhead

Depthwise + Conv Data Movement

Depthwise + Conv Compute

Other Compute

Recharging

MSP430 Baseline
Accel

MSP430
w-CTPL

BOBBER
0

100

200

300

400

500

(b) Intermittent power

Figure 6: LeNet-5 total inference latency.

time, number of computations, data movement, different operator
times. Using this information, measured average system power, and
the number of on-times per layer operator, we calculate the energy
breakdown under intermittent power.

6 RESULTS
We evaluate the BOBBER platform in terms of total latency and
energy for running correct and complete LeNet-5 inference under
both continuous and intermittent power. Importantly, BOBBER
enables correct and complete execution while powered solely by
the RF energy harvester.

Figure 6a shows the overall inference latency measured under
continuous power. In continuous power the Baseline Accel is 2.7x
faster for the depthwise layer, 2.2x faster for the convolution layer,
and 1.9x faster overall compared to the raw application running
only on the MSP430. In continuous power, BOBBER’s overall la-
tency reduces to 1.3x better than the MSP430. The degradation
arises from BOBBER’s tiling—49 tiles for depthwise and 25 tiles
for convolution. This tiling level guarantees reliable intermittent
execution. However compared to the Baseline Accel, BOBBER has
1.4% more data movement and 73% more redundant computation.

Figure 6b shows the overall inference latency measured under
intermittent power with a 50 𝑚𝐹 capacitance. The MSP430 and
Baseline Accel do not complete as their execution time exceeds one
on-time and they have no checkpoint mechanism, while BOBBER
and MSP430 w-CTPL complete and guarantee correctness. Since ex-
ecution spans multiple on-times, BOBBER’s latency is increased to
567s for a single inference. The added time comes from booting after
powerloss (41s) and recharging the capacitor (477s). Under the cur-
rent configuration an MSP430 + CTPL implementation outperforms
BOBBER under intermittent operation. Figure 7 shows the reason
why—BOBBER consumes 32.6𝑚𝑊 of total average system power
compared to 4.7𝑚𝑊 for MSP430 w-CTPL. A significant combined
overhead of 17𝑚𝑊 is due to the choice of Igloo Nano’s 3.3V 20
MHz CMOS oscillator with a crystal base resonator and the 41% effi-
cient 3.3 to 1.5V LDO regulator used from the Igloo Nano reference
design. Using straightforward improvements in part selection, the
total system power could be drastically reduced. Further optimizing
the accelerator and interface (e.g., variable/reduced precision or

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Vishak Narayanan, Rohit Sahu, Jidong Sun, & Henry Duwe

MSP430
w-CTPL

BOBBER
0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ow

er
(w

)

MSP Dynamic

SPI

FPGA dynamic

Oscillator

1.5V LDO

Figure 7: Characterization of average power consumption of
different components in BOBBER for Depthwise and Conv
layers.

BOBBER

10−4

10−3

10−2

10−1

100

101

E
n

er
gy

(J
)

Save Stack

Restore Stack

Save Activation Record

Restore Activation Record

Boot

Data Movement

Depthwise

Conv

Overall

Figure 8: Energy breakdown for a full intermittent inference.

1 4 16 49 19
6

78
4

of Depthwise Tiles

1

4

25

100#
of

C
on

v
T

ile
s 24 24 24 25 28 38

26 26 26 27 30 40

35 35 35 36 38 48

57 57 57 58 61 71
30

40

50

60

70

L
aten

cy
(s)

(a) BOBBER inference latency under
continuous power.

1 4 16 49 19
6

78
4

of Depthwise Tiles

1

4

25

100#
of

C
on

v
T

ile
s 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 56
7

90
3

11
43

0 0 0 11
96

12
25

14
82

0

500

1000

L
aten

cy
(s)

(b) BOBBER inference latency under
intermittent power.

Figure 9: Comparison of LeNet-5 inference latency for dif-
ferent tile sizes in continuous power and intermittent power.
Fewer tiles require less redundant computation, but largest
tile’s execution may exceed maximum on-time.
customizing based on layer filter size) would reduce the average
power of the FPGA, SPI, and, as a result, the regulator overhead.

The time spent recharging the capacitor is dependent both on
the total energy of the baseline computation, but also added energy
costs from intermittent execution. Figure 8 shows the breakdown
of energy costs for running a full inference with a 50𝑚𝐹 capacitor.
The largest intermittency-related factors are the energy from FPGA
boot and stack restoration at 61.2 𝑚𝐽 and 74.2 𝑚𝐽 , respectively.
Combined these are still less than 1.4% of the total energy of the
inference demonstrating that BOBBER imposes minimal overheads
to guarantee correctness.

Figure 9a shows the inference latency under continuous power
for different tile configurations in the convolution and depthwise

Minimum Medium Maximum
Tiling Knob

10−3

10−2

10−1

100

101

E
n

er
gy

C
os

t
p

er
In

fe
re

n
ce

(J
)

Required Redundant Data Movement

Resent Volatile Data and Recomputation

Boot

Total

Required Redundant
Computation

Figure 10: Tiling exploration for 50𝑚𝐹 capacitor.
convolution operators. Under continuous power, the best config-
uration has no tiling (# tiles = 1 for both operators) the worst
performance is where the layers are tiled to the maximum possible
extent. Under intermittent power, as shown in Figure 9b, decreasing
the number of tiles still allows a lower inference latency until a
single tile can no longer execute one kernel in a single on-time.

Larger tile sizes also risk an increased amount of wasted energy
due to lost partial computations that must be recomputed and the
corresponding input data that must be resent. Figure 10 plots the
energy overheads due to tiling for tile sizes in decreasing order of
required data movement (i.e., increasing effective tile size). As the
tile size increases the energy cost of required (i.e., required under
continuous power) redundant data and data movement decreases.
Boot energy under intermittent execution also decreases as fewer
on-times are required. Somewhat surprisingly, energy due to re-
computation and resent data from lost volatile state also decreases.
This occurs because our application chooses to die early before
starting a tile if it estimates it cannot complete resulting in all tile
sizes having a similar average data loss per on-time. Since larger tile
sizes have fewer on-times, they actually have less recomputation.

7 CONCLUSION
This paper introduces BOBBER, the first batteryless intermittent
FPGA platform, laying a foundation for quickly prototyping in-
termittent accelerators. BOBBER provides a full stack solution in-
cluding PCB hardware design and system software provide correct-
ness and forward progress on accelerated applications. Evaluations
demonstrate BOBBER can correctly complete LeNet-5 inference
while being solely powered by an RF energy harvester. The low
overheads and flexibility of BOBBER can enable many future direc-
tions such as prototyping energy-adaptive bit-precision accelera-
tors, intermittency-aware on-FPGA operator fusion, intermittent
security co-processors, and other as yet unknown ideas.

8 ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science Foun-
dation under Grant 2144757. Thanks to Dr Nathan Neihart and
Mahmoud Gshash for their assistance and expertise during the
evaluation of BOBBER. Thanks to Jake Meiss, Justin Sung, Zixuan
Guo, Andrew Vogler, and Jake Tener who worked on a preliminary
design of BOBBER.

BOBBER: A Prototyping Platform for Batteryless Intermittent Accelerators
FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] Abu Bakar and Josiah Hester. 2018. Making sense of intermittent energy har-

vesting. In Proceedings of the 6th International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems. 32–37.

[2] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Da-
vide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and Luca Benini. 2016.
Hibernus++: a self-calibrating and adaptive system for transiently-powered em-
bedded devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35, 12 (2016), 1968–1980.

[3] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,
Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems. IEEE Embedded Systems
Letters 7, 1 (2014), 15–18.

[4] Wei-Ming Chen, Tei-Wei Kuo, and Pi-Cheng Hsiu. 2020. Enabling failure-resilient
intermittent systems without runtime checkpointing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 12 (2020), 4399–
4412.

[5] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample. 2016. An
energy-interference-free hardware-software debugger for intermittent energy-
harvesting systems. ACM SIGARCH Computer Architecture News 44, 2 (2016),
577–589.

[6] Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposi-
tion for task-based intermittent programs. In Proceedings of the 27th International
Conference on Compiler Construction. 116–127.

[7] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable en-
ergy storage architecture for energy-harvesting devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. 767–781.

[8] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al. 2021. Tensorflow
litemicro: Embeddedmachine learning for tinyml systems. Proceedings ofMachine
Learning and Systems 3 (2021), 800–811.

[9] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable timekeeping for intermittent com-
puting. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 53–67.

[10] Vishal Deep, Vishak Narayanan, Mathew Wymore, Daji Qiao, and Henry Duwe.
2020. HARC: A Heterogeneous Array of Redundant Persistent Clocks for Battery-
less, Intermittently-Powered Systems. In 2020 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 270–282.

[11] HarshDesai and Brandon Lucia. 2020. A power-aware heterogeneous architecture
scaling model for energy-harvesting computers. IEEE Computer Architecture
Letters 19, 1 (2020), 68–71.

[12] Conrad Donovan, Alim Dewan, Deukhyoun Heo, and Haluk Beyenal. 2008. Bat-
teryless, wireless sensor powered by a sediment microbial fuel cell. Environmental
science & technology 42, 22 (2008), 8591–8596.

[13] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence be-
yond the edge: Inference on intermittent embedded systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems.

[14] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the coulombs:
Federating energy storage for tiny, intermittently-powered sensors. In Proceedings
of the 13th ACM Conference on Embedded Networked Sensor Systems. 5–16.

[15] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid prototyping for the battery-
less internet-of-things. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. 1–13.

[16] Matthew Hicks. 2017. Clank: Architectural support for intermittent computation.
ACM SIGARCH Computer Architecture News 45, 2 (2017), 228–240.

[17] Texas Instruments. 2022. Low-Energy Accelerator (LEA). Retrieved Sep 23, 2022
from https://www.ti.com/lit/an/slaa720/slaa720.pdf

[18] Texas Instruments. 2022. MSP430FR599x, MSP430FR596x Mixed-Signal Micro-
controllers. Retrieved Sep 23, 2022 from https://www.ti.com/lit/ds/symlink/
msp430fr5994.pdf

[19] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall:
A low overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers. In 2014 27th International Conference on
VLSI Design and 2014 13th International Conference on Embedded Systems. IEEE,
330–335.

[20] Chih-Kai Kang, Hashan Roshantha Mendis, Chun-Han Lin, Ming-Syan Chen,
and Pi-Cheng Hsiu. 2020. Everything leaves footprints: Hardware accelerated
intermittent deep inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39, 11 (2020), 3479–3491.

[21] Alicia Klinefelter, Nathan E Roberts, Yousef Shakhsheer, Patricia Gonzalez,
Aatmesh Shrivastava, Abhishek Roy, Kyle Craig, Muhammad Faisal, James Boley,
Seunghyun Oh, et al. 2015. 21.3 A 6.45 𝜇W self-powered IoT SoC with integrated
energy-harvesting power management and ULP asymmetric radios. In 2015 IEEE
International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers.
IEEE, 1–3.

[22] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

[23] Seulki Lee and Shahriar Nirjon. 2019. Neuro.ZERO: A Zero-Energy Neural
Network Accelerator for Embedded Sensing and Inference Systems. In Proceedings
of the 17th Conference on Embedded Networked Sensor Systems (New York, New
York) (SenSys ’19). Association for Computing Machinery, New York, NY, USA,
138–152. https://doi.org/10.1145/3356250.3360030

[24] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. SIGPLAN Not. 50, 6 (jun 2015),
575–585. https://doi.org/10.1145/2813885.2737978

[25] Kaisheng Ma, Xueqing Li, Jinyang Li, Yongpan Liu, Yuan Xie, Jack Sampson,
Mahmut Taylan Kandemir, and Vijaykrishnan Narayanan. 2017. Incidental com-
puting on IoT nonvolatile processors. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 204–218.

[26] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2019. Alpaca: Intermittent
execution without checkpoints. arXiv preprint arXiv:1909.06951 (2019).

[27] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[28] Scott A. Mahlke, William Y. Chen, Roger A. Bringmann, Richard E. Hank, Wen-
Mei W. Hwu, B. Ramakrishna Rau, and Michael S. Schlansker. 1993. Sentinel
Scheduling: A Model for Compiler-Controlled Speculative Execution. ACM Trans.
Comput. Syst. 11, 4 (nov 1993), 376–408. https://doi.org/10.1145/161541.159765

[29] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2019. On Intermittence Bugs in the Battery-Less Internet of Things
(WIP Paper). In Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems (Phoenix,
AZ, USA) (LCTES 2019). Association for Computing Machinery, New York, NY,
USA, 203–207. https://doi.org/10.1145/3316482.3326346

[30] Amjad Yousef Majid, Carlo Delle Donne, KiwanMaeng, Alexei Colin, Kasim Sinan
Yildirim, Brandon Lucia, and Przemysław Pawełczak. 2020. Dynamic Task-Based
Intermittent Execution for Energy-Harvesting Devices. ACM Trans. Sen. Netw.
16, 1, Article 5 (feb 2020), 24 pages. https://doi.org/10.1145/3360285

[31] Microsemi 2020. IGLOO nano Low Power Flash FPGAs Datasheet. Microsemi.
[32] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Ca-

maroptera: A Batteryless Long-Range Remote Visual Sensing System. In Proceed-
ings of the 7th International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems (New York, NY, USA) (ENSsys’19). Association for Computing
Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3362053.3363491

[33] Jens F Peters, Manuel Baumann, Benedikt Zimmermann, Jessica Braun, and
Marcel Weil. 2017. The environmental impact of Li-Ion batteries and the role of
key parameters–A review. Renewable and Sustainable Energy Reviews 67 (2017).

[34] Powercast 2016. P2110B 915 MHz RF Powerharvester Receiver. Powercast.
[35] Powercast 2018. TX91501B–915 MHz Powercaster Transmitter. Powercast.
[36] Keni Qiu, Nicholas Jao, Mengying Zhao, Cyan Subhra Mishra, Gulsum Guduk-

bay, Sethu Jose, Jack Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan
Narayanan. 2020. ResiRCA: A resilient energy harvesting ReRAM crossbar-
based accelerator for intelligent embedded processors. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE.

[37] Keni Qiu, Nicholas Jao, Kunyu Zhou, Yongpan Liu, Jack Sampson, Mahmut Taylan
Kandemir, and Vijaykrishnan Narayanan. 2021. MaxTracker: Continuously
Tracking the Maximum Computation Progress for Energy Harvesting ReRAM-
Based CNN Accelerators. 20, 5s, Article 78 (sep 2021), 23 pages. https://doi.org/
10.1145/3477009

[38] D. C. Ranasinghe, R. L. Shinmoto Torres, A. P. Sample, J. R. Smith, K. Hill, and R.
Visvanathan. 2012. Towards falls prevention: A wearable wireless and battery-
less sensing and automatic identification tag for real time monitoring of human
movements. In 2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society.

[39] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support
for Long-Running Computation on RFID-Scale Devices. SIGPLAN Not. 46, 3 (mar
2011), 159–170. https://doi.org/10.1145/1961296.1950386

[40] Simone Ruffini, Luca Caronti, Kasım Sinan Yıldırım, and Davide Brunelli. 2022.
NORM: An FPGA-Based Non-Volatile Memory Emulation Framework for Inter-
mittent Computing. J. Emerg. Technol. Comput. Syst. 18, 4, Article 73 (oct 2022),
18 pages. https://doi.org/10.1145/3517812

[41] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev,
and Joshua R Smith. 2008. Design of an RFID-based battery-free programmable
sensing platform. IEEE transactions on instrumentation and measurement 57, 11
(2008).

[42] TensorFlow. 2022. Deploy machine learning models on mobile and edge devices.
Retrieved Sep 23, 2022 from https://www.tensorflow.org/lite

[43] Texas Instruments 2015. Intelligent System State Restoration After Power Failure
With Compute Through Power Loss Utility. Texas Instruments.

[44] Texas Instruments 2017. MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family
User’s guide. Texas Instruments.

[45] Z. Yuan, Y. Liu, J. Li, J. Hu, C. J. Xue, and H. Yang. 2017. CP-FPGA: Energy-
Efficient Nonvolatile FPGA With Offline/Online Checkpointing Optimization.

https://www.ti.com/lit/an/slaa720/slaa720.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://doi.org/10.1145/3356250.3360030
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/161541.159765
https://doi.org/10.1145/3316482.3326346
https://doi.org/10.1145/3360285
https://doi.org/10.1145/3362053.3363491
https://doi.org/10.1145/3477009
https://doi.org/10.1145/3477009
https://doi.org/10.1145/1961296.1950386
https://doi.org/10.1145/3517812
https://www.tensorflow.org/lite

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Vishak Narayanan, Rohit Sahu, Jidong Sun, & Henry Duwe

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 7 (2017).
[46] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo: A

batteryless computational RFID and sensing platform. University of Massachusetts
Computer Science Technical Report UM-CS-2011-020 (2011).

[47] Xinyi Zhang, Clay Patterson, Yongpan Liu, Chengmo Yang, Chun Jason Xue, and
Jingtong Hu. 2020. Low Overhead Online Data Flow Tracking for Intermittently
Powered Non-Volatile FPGAs. J. Emerg. Technol. Comput. Syst. 16, 3, Article 26
(jul 2020), 20 pages. https://doi.org/10.1145/3371392

https://doi.org/10.1145/3371392

	Abstract
	1 Introduction
	2 Background and Motivation
	3 BOBBER
	3.1 BOBBER Hardware Platform
	3.2 BOBBER Software Platform

	4 Demonstration: Intermittency-aware CNN HW-SW Accelerator Framework
	4.1 BOBBER-based Convolution Accelerator
	4.2 BOBBER-based CNN Application

	5 Methodology
	6 Results
	7 Conclusion
	8 Acknowledgments
	References

