
An SQP algorithm based on a hybrid architecture for
accelerating optimization of large-scale systems

Anugrah Jo Joshy∗, Ryan Dunn†, Mark Sperry‡, Victor Gandarillas§, and John T. Hwang¶

University of California San Diego, La Jolla, CA, 92093

The optimization of large-scale and multidisciplinary engineering systems is now prevalent
in many fields, exemplified in areas such as aircraft, satellite, and wind turbine design. The
rise of advanced modeling frameworks has expanded the scope of large-scale optimization
techniques across various research domains. However, novel applications have emerged that
pose efficiency-related computational challenges to the existing methods employed in large-scale,
gradient-based optimization. The authors previously proposed a new paradigm for accelerating
the optimization of large-scale and complex-engineered systems, laying the groundwork for a
new approach. The new paradigm is based on a hybrid optimization architecture called SURF
which stands for strong unification of reduced-space and full-space. SURF has the potential to
expedite optimization of models with state variables that are iteratively computed by solving
nonlinear systems. This paper extends the existing paradigm by providing new theoretical
results that unify the reduced-space and full-space algorithms in a practical optimization setting
that considers line searches and quasi-Newton methods. We also present a practical, SQP-based
SURF algorithm that can be applied to general, inequality-constrained problems. The new
algorithm also includes an adaptive hybrid selection strategy for robust convergence and faster
solutions. We test the new algorithm on a low-fidelity motor optimization problem and a wind
farm layout optimization problem to validate the optimization results, and to demonstrate its
computational benefits. In one of the problems, SURF was able to speed up the traditional
optimization by approximately 25 percent. In the other problem, SURF was able to converge to
a better optimal solution.

I. Nomenclature

𝜕𝐹

𝜕𝑥
= partial derivative of a function 𝐹 with respect to a variable 𝑥

d 𝑓
d𝑥

= total derivative of a function 𝐹 with respect to a variable 𝑥

II. Introduction

Design optimization is the computation of a vector of optimal design variables 𝑥 that minimize or maximize a given
objective 𝐹 (𝑥) while adhering to a vector of specified constraints 𝐶 (𝑥). A typical design optimization workflow

(shown in Fig. 1) involves a general-purpose optimization algorithm (also known as optimizer) iteratively evaluating
a computational model until a design that fulfills the specified optimality is identified. The primary function of the
model is to compute the objective, constraints, and their gradients with respect to the design variables, and forward
them to the optimizer. The development of large-scale and multidisciplinary system models is typically facilitated by
optimization-targeted modeling frameworks that also provide interfaces to various optimization algorithms.

∗PhD Candidate, Department of Mechanical and Aerospace Engineering, AIAA Student Member
†MS Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member
‡PhD Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member
§PhD Candidate, Department of Mechanical and Aerospace Engineering, AIAA Student Member
¶Assistant Professor, Department of Mechanical and Aerospace Engineering, and AIAA Member

1

The application of system-level optimization in engineering design is on the rise. Many engineering systems are
large-scale in nature with tens to thousands of design degrees of freedom, and this makes gradient-based algorithms the
only viable approach for optimizing them. Moreover, large-scale systems are seldom restricted to a single field, and
the inherent multidisciplinary nature of these systems often entails complex numerical modeling for gradient-based
optimization. This often discourages new users from exploiting the benefits of large-scale system design optimization
(LSDO). Recent enhancements in the usability of modeling frameworks have lowered the barrier-to-entry for new users,
leading to an increase in the applications for LSDO over the last few years. With the expanding user base and emergence
of new applications, the current optimization algorithms are faced with new challenges, and one of them being their
computational efficiency.

Optimizer

Model
F(x), C(x)

x

d f
d x

, d c
d x

Fig. 1 Current optimization workflow [1]

Numerical optimization algorithms that are agnostic to specific models, commonly known as general-purpose
optimization algorithms, have been in use for several decades. The sequential quadratic programming (SQP) and
interior point (IP) methods are among the most effective optimization algorithms for large-scale optimization, capable of
solving optimization problems with thousands of design variables in only hundreds or fewer model evaluations. These
algorithms have a very high level of computational efficiency, which has nearly reached a saturation point over the last
decade. This suggests that substantial reductions in optimization time can only be achieved by constructing optimizers
tailored to specific applications. This directly follows from the no free lunch (NFL) theorems for optimization which
establishes that "for any algorithm, any elevated performance over one class of problems is offset by performance
over another class" [2]. Efficiency improvements could be achieved by developing optimization algorithms that are
specialized to exploit the structure of specific classes of problems [3].

While there has been little progress in computational efficiency with modern general-purpose optimization algorithms
for LSDO in the past decade, optimization frameworks developed by engineering practitioners have made significant
strides. This is attested by the automation of efficient total derivative computation for complex multidisciplinary
models by the MAUD (modular analysis and unified derivatives) [4] architecture, and its successful implementation in
NASA’s OpenMDAO [5] framework for multidisciplinary design, analysis and optimization. Another notable example
is the Computational System Design Language (CSDL) [6] which automates adjoint-based sensitivity analysis using a
graph-based methodology. These rapid pace of developments in optimization-targeted modeling environments have
opened up new avenues for developing specialized optimization algorithms through innovations in a combined modeling
and optimization paradigm.

One such innovation is enabling robust optimization convergence in the presence of partially converged model
evaluations. This could provide potential speedups for the class of optimization problems with models having expensive
nonlinear solvers. The speedups can be achieved by evaluating the model at high accuracy only when required, thereby
effectively reducing the overall cost of model evaluations via adaptive adjustments in model fidelity as directed by an
optimization algorithm. However, this moves away from the conventional rigid optimization architecture shown in Fig.
1 and necessitates the development of a new, flexible architecture capable of optimization with partial model evaluations.
We also need modeling frameworks that are capable of facilitating such an architecture.

Joshy and Hwang [1] had earlier proposed a hybrid architecture that has the potential to reduce overall optimization
times for large-scale systems with expensive nonlinear systems by utilizing an intrusive paradigm combining modeling
and optimization. Based on this intrusive paradigm, a new algorithm called SURF (strong unification of reduced-
space and full-space) was shown to accelerate the optimization by an order of magnitude for an equality-constrained
optimization problem. This algorithm was further extended as a hypothesis [7] for general, inequality-constrained
optimization, and the validity of the paradigm was verified experimentally on a nonlinear topology optimization problem.

SURF is a hybrid of two multidisciplinary optimization (MDO) architectures popularly known as the multidisciplinary
feasible architecture (MDF), and the simultaneous analysis and design architecture (SAND). SURF provides the capability
to select a hybrid of the two architectures by adjusting the tolerances on the nonlinear systems within the computational

2

models. Previous investigations on SURF relied primarily on the theoretical unification of the two architectures for a
simplified, equality-constrained optimization case which disregards some of the practical components of an optimization
algorithm.

In this paper, we address this deficiency and present new theoretical results on the unification in the presence of
line searches that impose the Armĳo or strong Wolfe conditions, as well as Hessian approximations that enforce the
quasi-Newton condition. We also present the theoretical unification for general-inequality constrained optimization that
was only conjectured previously. Furthermore, we provide other essential details for a complete practical implementation
of the hybrid algorithm with sequential quadratic programming (SQP), and a strategy for adaptively selecting solver
tolerances for ensuring convergence.

We apply the complete, SQP-based SURF algorithm to two distinct engineering design optimization problems.
The first problem deals with the optimization of a permanent magnet synchronous motor (PMSM) for maximizing its
efficiency by tuning the sizing parameters. The second problem concerns the optimization of a wind farm layout with
the objective of maximizing the annual energy production (AEP) through the optimal placement of wind turbines.

The remainder of the paper is structured as follows. In Sec. III, we discuss the two parent architectures for the
SURF algorithm, which we call the reduced-space and full-space architectures. We also discuss the prior unification
results on SURF in this section. In Sec. IV, we present the new theoretical results along with a complete, practical
SQP algorithm implementing SURF. We also discuss an adaptive hybrid selection method in this section. In Sec. V,
we solve two optimization problems using the new SURF approach and the conventional approaches, and discuss the
results. In Sec. VI, we conclude by summarizing the work, and identifying directions for future research.

III. Background

A. Optimization problem statement
A general optimization problem with models having implicitly computed state variables can be written as

minimize 𝐹 (𝑥) R(𝑥,Y(𝑥)) = 0
with respect to 𝑥 where 𝐹 (𝑥) = F (𝑥,Y(𝑥))

subject to 𝐶 (𝑥) ≥ 0, 𝐶 (𝑥) = C(𝑥,Y(𝑥)),
(1)

where 𝑥 ∈ R𝑛 are the design variables, 𝐹 : R𝑛 → R and F : R𝑛×R𝑟 → R represent the objective function,𝐶 : R𝑛 → R𝑚
and C : R𝑛 × R𝑟 → R𝑚 represent the vector-valued constraint function, and Y : R𝑛 → R𝑟 represents the implicit
solution of R(𝑥,Y(𝑥)) = 0 as an explicit function. We define 𝑦 ∈ R𝑟 as the vector of state variables, 𝑓 ∈ R as the
objective, and 𝑐 ∈ R𝑚 as the vector of constraint variables. Design variables are the parameters that define the design
space and are often referred to as optimization variables or decision variables depending on the context in which they
are used.

B. Reduced-space and full-space formulations
Within the domain of multidisciplinary design optimization (MDO), optimization formulations or architectures

[8] are broadly categorized as either monolithic or distributed. Monolithic architectures solve a single system-level
optimization problem whereas distributed architectures decompose the the system-level optimization problem into
suboptimization problems and solve them sequentially to obtain a solution for the overarching optimization problem.
Distributed architectures often fail to capture the coupling between different subdisciplines within the system and result
in suboptimal designs. For this reason, monolithic architectures are recommended whenever possible to solve large-scale
and multidisciplinary optimization problems.

Our work in this paper focuses on the unification of two widely-used monolithic MDO architectures: the reduced-
space (RS) architecture, and the full-space (FS) architecture. The RS architecture is also known as the multidisciplinary
feasible (MDF) architecture [9] or nested analysis and design (NAND) [10, 11], and the FS architecture is also known as
the simultaneous analysis and design (SAND) [12] architecture. In a reduced-space architecture, the nonlinear systems
within each subdiscipline are solved to the tightest tolerances possible during each model evaluation to compute the
exact state variable values that are used elsewhere in the model. However, the full-space architecture treats the residual
equations that define the nonlinear systems as additional constraints and the state variables in these nonlinear systems as
additional design variables.

3

Reduced-space

min
𝑥

F (𝑥,Y(𝑥))
s.t. C(𝑥,Y(𝑥)) ≥ 0

with R(𝑥,Y(𝑥)) = 0
(2)

Full-space

min
𝑥,𝑦

F (𝑥, 𝑦)

s.t. C(𝑥, 𝑦) ≥ 0
R(𝑥, 𝑦) = 0

(3)

Optimizer x x x x x

Component 1
R1(x, y) = 0

y1 y1 y1 y1

y...
... y... y... y...

yn yn
Component n
Rn(x, y) = 0

yn yn

f
Objective

f = F(x, y)

c
Constraints
c = C(x, y)

Optimizer x, y x, y x, y x, y x, y

r1
Component 1
r1 = R1(x, y)

r...
...

rn
Component n
rn = Rn(x, y)

f
Objective

f = F(x, y)

c
Constraints
c = C(x, y)

Fig. 2 Reduced-space versus full-space formulation for a model containing implicit state variables [1].

The difference between the formulations for the RS and FS architectures is shown in Fig. 2. The reduced-space
formulation solves R(𝑥,Y(𝑥)) = 0 implicitly inside the model to compute the exact state variables 𝑦 = Y(𝑥)) as a
function of the design variables 𝑥. The full-space formulation, on the other hand, treats the implicit state variables
𝑦 as additional design variables and the residuals R(𝑥, 𝑦) = 0 as additional constraints thereby ensuring that 𝑦 at an
optimally converged solution solves the nonlinear systems. The nonlinear solutions in the RS model evaluation can
make it significantly more expensive than the FS model evaluation. However, the RS optimization problem can be
significantly smaller than the FS optimization problem which contains additional design variables and constraints. The
nomenclature of the two formulations stems from their respective design space dimensions: the "full space" signifies the
(𝑛 + 𝑟)-dimensional design space encompassing both variables 𝑥 and 𝑦, while the "reduced space" corresponds to the
𝑛-dimensional space consisting only variable 𝑥.

The FS approach can be beneficial for certain problems where it converges faster than the RS approach. However,
the full-space approach is more prone to convergence issues and is therefore less robust. Additionally, a full-space
approach is not applicable for models containing nonlinear systems that are not solvable using Newton’s method, for
example, nonlinear systems whose solutions require a bracketing method. Therefore, the more robust reduced-space
approach is always recommended for LSDO problems. However, the RS formulation can be highly inefficient since it
has to ensure the tightest tolerances possible when solving nonlinear systems to ensure that the derivatives are consistent
at a given design variable value 𝑥.

We proceed by examining the optimality conditions and Karush-Kuhn-Tucker (KKT) systems for the two formulations
in an equality-constrained optimization setting. The design variable values satisfying the optimality conditions are
obtained by solving the KKT systems iteratively (shown in algorithms 1, and 2).

Reduced-space equations
Starting with Problem (2) with only equality constraints, we define the Lagrangian 𝑙 = L(𝑥, 𝜆) where L(𝑥, 𝜆) =

F (𝑥,Y(𝑥)) + 𝜆 𝑇 C(𝑥,Y(𝑥)). The first order necessary optimality conditions for this problem are

d𝑙
d𝑥

=

(︃
𝜕F
𝜕𝑥

− 𝜕F
𝜕𝑦

𝜕𝑅

𝜕𝑦

−1 𝜕R
𝜕𝑥

)︃
+ 𝜆𝑇

(︃
𝜕C
𝜕𝑥

− 𝜕C
𝜕𝑦

𝜕R
𝜕𝑦

−1 𝜕R
𝜕𝑥

)︃
= 0

d𝑙
d𝜆

= C(𝑥,Y(𝑥)) = 0.
(4)

4

Applying the method of Newton-Lagrange, we obtain the following KKT system for reduced-space optimization:[︄
𝑙𝑥𝑥 𝑐𝑥

𝑇

𝑐𝑥 0

]︄ [︄
𝑝
(𝑥)
𝑘

𝑝
(𝜆)
𝑘

]︄
=

[︄
−𝑙𝑥

−C(𝑥𝑘 ,Y(𝑥𝑘))

]︄
, (5)

where 𝑝𝑘 is the search direction, 𝑙𝑥𝑥 = 𝑑2𝑙/𝑑𝑥2, 𝑐𝑥 = 𝑑𝑐/𝑑𝑥, and 𝑙𝑥 = 𝑑𝑙/𝑑𝑥.

Full-space equations
Starting with Problem (3) with only equality constraints, we define the Lagrangian 𝑚 = M(𝑥, 𝑦, 𝜓, 𝜆) where

M(𝑥, 𝑦, 𝜓, 𝜆) = F (𝑥, 𝑦) + 𝜓 𝑇 R(𝑥, 𝑦) + 𝜆 𝑇 C(𝑥, 𝑦). The first order necessary optimality conditions for this problem
are

d𝑚
d𝑥

=
𝜕F
𝜕𝑥

+ 𝜓𝑇 𝜕R
𝜕𝑥

+ 𝜆𝑇
𝜕C
𝜕𝑥

= 0
d𝑚
d𝜓

= R(𝑥, 𝑦) = 0
d𝑚
d𝑦

=
𝜕F
𝜕𝑦

+ 𝜓𝑇 𝜕R
𝜕𝑦

+ 𝜆𝑇
𝜕C
𝜕𝑦

= 0
d𝑚
d𝜆

= C(𝑥, 𝑦) = 0.
(6)

Applying the method of Newton-Lagrange, we obtain the following KKT system for full-space optimization:⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑚𝑥𝑥 𝑚𝑥𝑦 R𝑥

𝑇 C𝑥
𝑇

𝑚𝑦𝑥 𝑚𝑦𝑦 R𝑦
𝑇 C𝑦

𝑇

R𝑥 R𝑦 0 0
C𝑥 C𝑦 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑝
(𝑥)
𝑘

𝑝
(𝑦)
𝑘

𝑝
(𝜓)
𝑘

𝑝
(𝜆)
𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−𝑚𝑥

−𝑚𝑦

−R(𝑥𝑘 , 𝑦𝑘)
−C(𝑥𝑘 , 𝑦𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where 𝑚𝑥𝑥 = 𝑑2𝑚/𝑑𝑥2, 𝑚𝑥𝑦 = 𝑑2𝑚/𝑑𝑦𝑑𝑥, 𝑚𝑦𝑥 = 𝑑2𝑚/𝑑𝑥𝑑𝑦, 𝑚𝑦𝑦 = 𝑑2𝑚/𝑑𝑦2 , R𝑥 = 𝜕R/𝜕𝑥, R𝑦 = 𝜕R/𝜕𝑦,
C𝑥 = 𝜕C/𝜕𝑥, C𝑦 = 𝜕C/𝜕𝑦, 𝑚𝑥 = 𝑑𝑚/𝑑𝑥 and 𝑚𝑦 = 𝑑𝑚/𝑑𝑦.

C. The modified full-space method [1]
Here we describe the modified full-space (MFS) method proposed in [1] for an equality-constrained setting. The

MFS method is derived from the conventional FS method by incorporating two updates. During each optimization
iteration of the MFS method, the state variables 𝑦 and the vector of Lagrange multipliers 𝜓 corresponding to the nonlinear
residuals are updated before solving the full-space KKT system (7). The optimization variables [𝑥𝑘 , 𝑦𝑘 , 𝜓𝑘 , 𝜆𝑘]𝑇 upon
completion of the 𝑘th iteration are updated to [𝑥𝑘 , 𝑦′𝑘 , 𝜓

′
𝑘
, 𝜆𝑘]𝑇 at the beginning of the (𝑘 + 1)th iteration. The state

variables 𝑦′
𝑘

are obtained by solving R(𝑥𝑘 , 𝑦′𝑘) = 0 and the associated Lagrange multipliers 𝜓′
𝑘

by setting 𝑑𝑚/𝑑𝑦 = 0.
The FS KKT system is then solved at [𝑥𝑘 , 𝑦′𝑘 , 𝜓

′
𝑘
, 𝜆𝑘]𝑇 for obtaining the search direction 𝑝𝑘 toward the next iterate. The

following theorem proves that with these two modifications, the MFS method can generate the same iterates (𝑥𝑘 , 𝜆𝑘) as
the RS method.

Theorem 1. Assume (𝑥0, 𝜆0) are given. Then the sequence of iterates {(𝑥𝑘 , 𝜆𝑘)} generated by the reduced-space
method and the modified full-space method are identical in an equality-constrained optimization setting.

MFS as an architecture is shown in Fig. 3. A comparison of the algorithms for the three architectures (see algorithms
1, 2, 3) is also given below. MFS bridges the RS and FS architectures as it generates RS iterates using an underlying FS
architecture. However, MFS is only the first step toward a hybrid architecture unifying the FS and RS architectures since
we still cannot access hybrids of FS and RS.

It is straightforward to see that by not applying the two updates on 𝑦𝑘 and 𝜓𝑘 , MFS reverts back to the FS method.
This can be seen as applying the nonlinear solver in line 2 and the linear solver in line 3 of the MFS algorithm 3 with
an infinite tolerance. This suggests that by relaxing the tolerance on these solvers, the MFS algorithm moves closer
toward the FS algorithm. Since the standard MFS method is equivalent to the RS method, we can get any hybrids of the
FS and RS by applying inexact tolerances on the two solvers in the MFS method. The SURF (strong unification of
reduced-space and full-space) architecture proposed in [1] results from the introduction of this inexactness into the MFS
architecture. Therefore, SURF provides a complete theoretical unification of the RS and FS architectures as we can now
select one of the two architectures or any of its hybrids by just varying the inexact solver tolerances.

5

Optimizer
dm/dy = 0

x, y x, y x, y x x

y′1
Component 1
R1(x, y

′) = 0
y′1 y′1 y′1 y′1

y′... y′...
... y′... y′... y′...

y′n y′n y′n
Component n
Rn(x, y

′) = 0
y′n y′n

f
Objective

f = F(x, y′)

c
Constraints
c = C(x, y′)

Fig. 3 Modified full-space architecture [1].

The reduced-space, full-space and modified full-space methods [1]:

Algorithm 1 RS method
1: loop
2: Run the model at 𝑥𝑘 solving

R(𝑥𝑘 ,Y(𝑥𝑘)) = 0
3: Assemble 𝐴𝑘 , 𝑏𝑘
4: Solve 𝐴𝑘 𝑝𝑘 = 𝑏𝑘

5: Update
⎡⎢⎢⎢⎢⎣
𝑥𝑘+1

𝜆𝑘+1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑥𝑘

𝜆𝑘

⎤⎥⎥⎥⎥⎦ + 𝑝𝑘

6: end loop

𝐴𝑘 =

⎡⎢⎢⎢⎢⎣
𝑙𝑥𝑥 𝑐𝑥

𝑐𝑥 0

⎤⎥⎥⎥⎥⎦
𝑏𝑘 =

⎡⎢⎢⎢⎢⎣
−𝑙𝑥

−C(𝑥𝑘 ,Y(𝑥𝑘))

⎤⎥⎥⎥⎥⎦

Algorithm 2 FS method
1: loop
2: Run the model at (𝑥𝑘 , 𝑦𝑘)
3: Assemble 𝐴𝑘 , 𝑏𝑘
4: Solve 𝐴𝑘 𝑝𝑘 = 𝑏𝑘

5: Update

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑘+1

𝑦𝑘+1

𝜓𝑘+1

𝜆𝑘+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑘

𝑦𝑘

𝜓𝑘

𝜆𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑝𝑘

6: end loop

𝐴𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚𝑥𝑥 𝑚𝑥𝑦 R𝑥
𝑇 C𝑥 𝑇

𝑚𝑦𝑥 𝑚𝑦𝑦 R𝑦
𝑇 C𝑦 𝑇

R𝑥 R𝑦 0 0

C𝑥 C𝑦 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑏𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑚𝑥

−𝑚𝑦

−R(𝑥𝑘 , 𝑦𝑘)
−C(𝑥𝑘 , 𝑦𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Algorithm 3 MFS method
1: loop
2: Run the model at (𝑥𝑘 , 𝑦𝑘) solving

R(𝑥𝑘 , 𝑦′𝑘) = 0
3: Compute 𝜓′

𝑘
by solving

R𝑇
𝑦𝜓

′
𝑘
= −F 𝑇

𝑦 − C𝑇
𝑦 𝜆𝑘

4: Assemble 𝐴𝑘 , 𝑏𝑘
5: Solve 𝐴𝑘 𝑝𝑘 = 𝑏𝑘

6: Update

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑘+1

𝑦𝑘+1

𝜓𝑘+1

𝜆𝑘+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑘

𝑦′
𝑘

𝜓′
𝑘

𝜆𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑝𝑘

7: end loop

𝐴𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚𝑥𝑥 𝑚𝑥𝑦 R𝑥
𝑇 C𝑥 𝑇

𝑚𝑦𝑥 𝑚𝑦𝑦 R𝑦
𝑇 C𝑦 𝑇

R𝑥 R𝑦 0 0

C𝑥 C𝑦 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑏𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑚𝑥

0

0

−C(𝑥𝑘 , 𝑦′𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D. Notation:

For conciseness, we use the following notation for the rest of this paper. Note that the corresponding formulation
(RS, FS, or MFS) needs to be interpreted from the context.

• 𝑧 = (𝑥, 𝑦) or 𝑧 = 𝑥 refers to the vector of design variables,
• 𝜋 = (𝜓, 𝜆) or 𝜋 = 𝜆 refers to the vector of Lagrange multipliers, and
• 𝑣 = (𝑥, 𝑦, 𝜓, 𝜆) or 𝑣 = (𝑥, 𝜆) refers to the concatenated vector of design variables and Lagrange multipliers.

6

IV. Methodology
In this section, we present our new theoretical findings that generalize the SURF algorithm for a practical optimization

setting. We also discuss a scheme for selecting inexact tolerances for the nonlinear solvers.

A. Line searches
Line searches are an essential part of many optimization algorithms to ensure global convergence. Although there

exist multiple merit functions that can be used to check the acceptability of a step length 𝛼 ∈ (0, 1] along the predicted
direction 𝑝𝑘 , only smooth merit functions allow for fast line searches that enforce the strong Wolfe conditions. Therefore,
the results that follow consider the smooth augmented Lagrangian merit function.

The augmented Lagrangian for RS and MFS are respectively

𝐿𝐴(𝑥, 𝜆; 𝜌) = F (𝑥,Y(𝑥)) + 𝜆 𝑇 C(𝑥,Y(𝑥)) + 1
2
𝜌(C(𝑥,Y(𝑥))𝑇C(𝑥,Y(𝑥))), and (8)

𝐿𝐴(𝑥, 𝑦, 𝜓, 𝜆; 𝜌) = F (𝑥, 𝑦) + 𝜓 𝑇 R(𝑥, 𝑦) + 𝜆 𝑇 C(𝑥, 𝑦) + 1
2
𝜌(C(𝑥, 𝑦)𝑇C(𝑥, 𝑦) + R(𝑥, 𝑦)𝑇R(𝑥, 𝑦)), (9)

where 𝜌 is the penalty parameter that controls the penalization for constraint violations. After obtaining the search
direction 𝑝𝑘 and an updated 𝜌, the merit function as a function of step length 𝛼 can be written as

𝜙𝑅𝑆 (𝛼) = 𝐿𝐴(𝑥𝑘 + 𝛼𝑝
(𝑥)
𝑘

, 𝜆𝑘 + 𝛼𝑝
(𝜆)
𝑘

; 𝜌), and (10)

𝜙𝑀𝐹𝑆 (𝛼) = 𝐿𝐴(𝑥𝑘 + 𝛼𝑝
(𝑥)
𝑘

, 𝑦′𝑘 + 𝛼𝑝
(𝑦)
𝑘

, 𝜓′
𝑘 + 𝛼𝑝

(𝜓)
𝑘

, 𝜆𝑘 + 𝛼𝑝
(𝜆)
𝑘

; 𝜌). (11)

For fast line searches, an acceptable step length 𝛼 satisfies the strong Wolfe conditions

𝜙(𝛼) ≤ 𝜙(0) + 𝜂𝐴𝛼𝜙
′ (0) and |𝜙′ (𝛼) | ≤ 𝜂𝑊 |𝜙′ (0) | , (12)

where 𝜂𝐴 and 𝜂𝑊 are constants such that 0 < 𝜂𝐴 ≤ 𝜂𝑊 < 1 and 𝜂𝐴 < 0.5. Typical values used are 𝜂𝐴 = 10−4 and
𝜂𝑊 = 0.5. We refer to the first and second conditions as the Armĳo condition and the Wolfe condition respectively.

The following theorem proves the equivalence of the Armĳo condition for the RS and MFS methods. Note that model
evaluations during an MFS line search solves R(𝑥, 𝑦) = 0. The theorem follows from showing 𝜙𝑅𝑆 (𝛼) = 𝜙𝑀𝐹𝑆 (𝛼),
and 𝜙′

𝑅𝑆
(0) = 𝜙′

𝑀𝐹𝑆
(0).

Theorem 2 (Armĳo condition). At a given (𝑥𝑘 , 𝜆𝑘), the step lengths 𝛼 along 𝑝𝑘 satisfying the Armĳo condition in a
line search using an augmented Lagrangian merit function are identical for the reduced-space and modified full-space
methods, in an equality-constrained optimization setting.

Merely solving R(𝑥, 𝑦) = 0 in the MFS line search does not result in the equivalence for the Wolfe condition. We
additionally require solving a new linear system R𝑇

𝑦𝜓𝛼 = −(F 𝑇
𝑦 + C𝑇

𝑦 𝜆 + 𝜌C𝑇
𝑦 C) at each 𝛼 to redefine the Lagrange

multiplier from its value of 𝜓′
𝑘
+ 𝛼𝑝

(𝜓)
𝑘

. Note that this essentially decouples 𝜓 from the line search. However, this
redefinition results in 𝜙′

𝑅𝑆
(𝛼) = 𝜙′

𝑀𝐹𝑆
(𝛼), leading to the following theorem.

Theorem 3 (Wolfe condition). At a given (𝑥𝑘 , 𝜆𝑘), the step lengths 𝛼 along 𝑝𝑘 satisfying the strong Wolfe conditions in
a line search using an augmented Lagrangian merit function are identical for the reduced-space and modified full-space
methods, in an equality-constrained optimization setting.

B. Quasi-Newton Hessian updates
In many large-scale problems, it is impractical to obtain exact Hessians either due to its high computational cost or the

extensive effort required to derive and implement the second derivatives. Most general-purpose algorithms approximate
Hessians, and quasi-Newton approximations are a widely-used class of methods that enforce the quasi-Newton
condition ˆ︁𝐻𝑘+1𝑑𝑘 = 𝑤𝑘 , where ˆ︁𝐻𝑘+1 is the Hessian approximated after the 𝑘th iteration, 𝑑𝑘 = 𝑧𝑘+1 − 𝑧𝑘 = 𝛼𝑘 𝑝

(𝑧)
𝑘

,
and 𝑤𝑘 = ∇𝑧𝐿 (𝑧𝑘+1, 𝜋𝑘+1) − ∇𝑧𝐿 (𝑧𝑘 , 𝜋𝑘+1), where ∇𝐿 is the gradient of the Lagrangian. Enforcing the quasi-
Newton condition incorporates the approximate curvature of the exact Hessian 𝐻𝑘+1 along 𝑑𝑘 into ˆ︁𝐻𝑘+1. The
approximate curvature along 𝑑𝑘 is given by 𝑤𝑇

𝑘
𝑑𝑘 . The next result shows that the curvature 𝑤𝑇

𝑘
𝑑𝑘 incorporated into the

approximate Hessian is the same for RS and MFS if 𝑑𝑘 = 𝛼𝑘 𝑝
(𝑧)
𝑘

in MFS. The result follows from the MFS equations

R𝑇
𝑦𝜓

′
𝑘+1 = −F 𝑇

𝑦 − C𝑇
𝑦 𝜆𝑘+1 and 𝑝

(𝑦)
𝑘

=
d𝑦
d𝑥

𝑝
(𝑥)
𝑘

.

7

Theorem 4 (Quasi-Newton condition). At the end of the 𝑘th iteration, the approximate curvature 𝑤𝑇
𝑘
𝑑𝑘 along

𝑑𝑘 = 𝛼𝑘 𝑝
(𝑧)
𝑘

for the reduced-space and modified full-space methods are identical in an equality-constrained optimization
setting.

This result has a major implication for positive-definite quasi-Newton Hessian updates such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method. BFGS method is the most widely-used Hessian approximation in practice due to its
consistent superior performance over other methods. The BFGS update formula is given by

ˆ︁𝐻𝑘+1 = ˆ︁𝐻𝑘 −
1

𝑑𝑇
𝑘
ˆ︁𝐻𝑘𝑑𝑘

ˆ︁𝐻𝑘𝑑𝑘𝑑
𝑇
𝑘
ˆ︁𝐻𝑘 +

1
𝑤𝑇

𝑘
𝑑𝑘

𝑤𝑘𝑤
𝑇
𝑘 . (13)

For a positive definite ˆ︁𝐻𝑘 , the ˆ︁𝐻𝑘+1 given by the BFGS formula is positive definite if and only if 𝑤𝑇
𝑘
𝑑𝑘 > 0. This fact

along with the previous theorem implies the following corollary.

Corollary 4.1 (Positive-definiteness of BFGS). At a given (𝑥𝑘 , 𝜆𝑘), the updated BFGS Hessian for the RS method is
positive definite if and only if the updated BFGS Hessian for the MFS method is positive definite.

Altogether, theorem 1 in conjunction with theorems 2, 3, 4, and 4.1 prove the equivalence of the RS and MFS methods
in a practical equality-constrained optimization setting with line searches and quasi-Newton Hessian approximations.

C. Inequality-constrained optimization
This subsection presents a result that extends the equivalence between RS and MFS methods to inequality-constrained

problems when following a sequential quadratic programming (SQP) approach. The SQP algorithm for an inequality-
constrained optimization problem solves a sequence of inequality-constrained quadratic programming (QP) subproblems
to obtain the search direction toward the next iterate. Each QP subproblem minimizes a quadratic approximation of
the objective subject to linearized constraints. Note that the quadratic approximation is based on the Hessian of the
Lagrangian rather than the Hessian of the objective. The modified full-space QP subproblem for the (𝑘 + 1)th iteration
can be stated as

min
𝑥,𝑦

[︂
𝜕F
𝜕𝑥

𝜕F
𝜕𝑦

]︂ [︄𝑥 − 𝑥𝑘

𝑦 − 𝑦′
𝑘

]︄
+
[︂
(𝑥 − 𝑥𝑘)𝑇 (𝑦 − 𝑦′

𝑘
)𝑇
]︂ [︄𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

]︄ [︄
𝑥 − 𝑥𝑘

𝑦 − 𝑦′
𝑘

]︄
s.t. C(𝑥𝑘 , 𝑦′𝑘) +

[︂
𝜕C
𝜕𝑥

𝜕C
𝜕𝑦

]︂ [︄𝑥 − 𝑥𝑘

𝑦 − 𝑦′
𝑘

]︄
≥ 0,[︂

𝜕R
𝜕𝑥

𝜕R
𝜕𝑦

]︂ [︄𝑥 − 𝑥𝑘

𝑦 − 𝑦′
𝑘

]︄
= 0

(14)

where [︄
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

]︄
=

[︄
𝜕2F
𝜕𝑥2

𝜕2F
𝜕𝑦𝜕𝑥

𝜕2F
𝜕𝑥𝜕𝑦

𝜕2F
𝜕𝑦2

]︄
+

𝑚∑︂
𝑖=1

[𝜆𝑘]𝑖

[︄
𝜕2C𝑖
𝜕𝑥2

𝜕2C𝑖
𝜕𝑦𝜕𝑥

𝜕2C𝑖
𝜕𝑥𝜕𝑦

𝜕2C𝑖
𝜕𝑦2

]︄
+

𝑟∑︂
𝑖=1

[𝜓′
𝑘]𝑖

[︄
𝜕2R𝑖

𝜕𝑥2
𝜕2R𝑖

𝜕𝑦𝜕𝑥
𝜕2R𝑖

𝜕𝑥𝜕𝑦

𝜕2R𝑖

𝜕𝑦2

]︄
(15)

is the Lagrangian Hessian at [𝑥𝑘 , 𝑦′𝑘 , 𝜓
′
𝑘
, 𝜆𝑘] 𝑇 . Notice that the modified QP subproblem differs from the full-space QP

subproblem only by the updates on 𝑦𝑘 and 𝜓𝑘 using exact solutions from lines 2 and 3 in Algorithm. 3.

Theorem 5 (Inequality-constrained SQP). At a given (𝑥𝑘 , 𝜆𝑘), the solution (𝑥𝑘+1, 𝜆𝑘+1) provided by the modified
full-space QP subproblem is also a solution to the reduced-space QP subproblem.

This theorem is proved in two steps. In the first step, we show that both the RS and MFS QP subproblems are
equivalent which implies that the minimizer 𝑥̂𝑘 from the MFS QP subproblem is a solution to the RS QP subproblem
and vice-versa. In the next step, we show that the solution 𝜆̂𝑘 provided by the MFS QP subproblem is a solution to the
RS QP subproblem and vice-versa. Additionally, this means that whenever there is a unique (𝑥̂𝑘 , 𝜆̂𝑘) solution for the RS
subproblem, the (𝑥̂𝑘 , 𝜆̂𝑘) obtained from solving both the QP subproblems are identical. Therefore, starting from an
(𝑥0, 𝜆0), the sequence of iterates {(𝑥𝑘 , 𝜆𝑘)} generated by the reduced-space method and the modified full-space method
are identical in an inequality-constrained optimization setting, assuming the uniqueness of the QP subproblem solutions.

We do not delve any deeper into the proof of this theorem in this paper. We also note that theorems 2, 3, 4, and 4.1
can be extended to an inequality-constrained algorithm based on SQP.

8

D. A practical SQP algorithm with SURF
We now present a generalized SQP-based SURF algorithm below, incorporating the results from the previous three

subsections.

Algorithm 4 SURF with SQP
SURF unifies the reduced- and full-space methods for any general, constrained optimization setting.

1: loop
2: Run the model at (𝑥𝑘 , 𝑦𝑘) inexactly solving R(𝑥𝑘 , 𝑦′𝑘) = 0
3: Compute 𝜓′

𝑘
by solving R𝑇

𝑦𝜓
′
𝑘
= −F 𝑇

𝑦 − C𝑇
𝑦 𝜆𝑘

4: Apply the BFGS update to compute ˆ︁𝐻𝑘 , using 𝑑𝑘−1 = 𝛼𝑘−1𝑝
(𝑧)
𝑘−1 and 𝑤𝑘−1 = ∇𝑧M(𝑧′

𝑘
, 𝜋′

𝑘
) − ∇𝑧M(𝑧′

𝑘−1, 𝜋
′
𝑘−1)

5: Solve the modified QP subproblem (14) at [𝑥𝑘 , 𝑦′𝑘 , 𝜓
′
𝑘
, 𝜆𝑘]𝑇 to obtain search direction 𝑝𝑘

6: Compute 𝛼𝑘 via a line search (if enforcing strong Wolfe conditions, update 𝜓 at 𝛼 using R𝑇
𝑦𝜓𝛼 = −F 𝑇

𝑦 − C𝑇
𝑦 𝜆 − 𝜌C𝑇

𝑦 C)

7: Update
[︂
𝑥𝑘+1, 𝑦𝑘+1, 𝜓𝑘+1, 𝜆𝑘+1

]︂𝑇
=

[︂
𝑥𝑘 , 𝑦

′
𝑘
, 𝜓′

𝑘
, 𝜆𝑘

]︂𝑇
+ 𝛼𝑘 𝑝𝑘

8: end loop

Note: 𝑧 = (𝑥, 𝑦), 𝜋 = (𝜆, 𝜓), 𝐻𝑘 =

⎡⎢⎢⎢⎢⎣
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

⎤⎥⎥⎥⎥⎦ is the Hessian of the Lagrangian M, and 𝛼𝑘 is the step length.

Note that this algorithm is at a very high level, and hides low level implementation details such as the line search
algorithm, BFGS update, penalty parameter and slack variable updates, to name a few. If following an all-inequality
approach for specifying constraints, all constraints will be of the form C(𝑥, 𝑦) ≥ 0. In that case, R(𝑥, 𝑦) = 0 will be
implemented as two sets of constraints: R(𝑥, 𝑦) ≥ 0, and −R(𝑥, 𝑦) ≥ 0.

Computational convergence conditions
A point [𝑥𝑘 , 𝑦′𝑘 , 𝜓

′
𝑘
, 𝜆𝑘]𝑇 is considered sufficiently optimal in Algorithm 4 if it satisfies the following first-order

optimality conditions to specified tolerances:

C̄(𝑥, 𝑦) ≥ 0, 𝜆 ≥ 0, 𝜆𝑇C(𝑥, 𝑦) = 0, and 𝑚𝑧 = 𝑑𝑚/𝑑𝑧 = 0, (16)

where C̄(𝑥, 𝑦) = (C(𝑥, 𝑦),R(𝑥, 𝑦),−R(𝑥, 𝑦)) is the concatenated vector of all constraints in all-inequality form. It can
be shown that this set of optimality conditions in an MFS algorithm is equivalent to the optimality conditions in an RS
algorithm.

Potential pitfalls
It should be noted that the Lagrange multiplier updates in an all-inequality implementation is slightly different. If

𝜓+ and 𝜓− are the Lagrange multipliers corresponding to R(𝑥, 𝑦) ≥ 0 and −R(𝑥, 𝑦) ≥ 0, the updates in lines 3 and 6
in Algorithm 4 must be done such that R𝑇

𝑦 (𝜓+ − 𝜓−) = −F 𝑇
𝑦 − C𝑇

𝑦 𝜆, and R𝑇
𝑦 (𝜓+

𝛼 − 𝜓−
𝛼) = −F 𝑇

𝑦 − C𝑇
𝑦 𝜆 − 𝜌C𝑇

𝑦 C. For
convenience, we recommend setting 𝜓− as 0, and 𝜓+ as the solution obtained from solving the linear system in lines 3
and 6.

It must also be noted that when switching from a reduced-space approach to SURF for any problem, the scaling
of the additional design variables 𝑦 must be taken into account. If the magnitudes of 𝑥 and 𝑦 differ by an order of
magnitude or more, one of them must be scaled in order to approximately match the magnitude of the other. Otherwise,
the optimization algorithm for SURF might be slow to converge depending on the problem.

E. Adaptive tolerance selection
Our investigation has thus far focused on the unification of the RS and FS architectures using the SURF algorithm.

However, in order to exploit the computational benefits of a hybrid algorithm, we need to determine optimal tolerances
that maximize the efficiency. In this subsection, we present a strategy for dynamically determining tolerances for each
model evaluation, leveraging the Armĳo condition in the line search.

The Armĳo condition in Eq. (12) ensures that an accepted step length 𝛼 results in a sufficient decrease in the merit
function 𝜙. When applying inexact tolerances on R(𝑥, 𝑦) = 0 during model evaluations, the resulting error in the merit

9

function 𝜙(𝛼) should only be a small percentage of the required sufficient decrease at 𝛼. This ensures that an acceptable
step length in the RS is also acceptable for SURF. The required sufficient decrease at 𝛼 is -𝜂𝐴𝛼𝜙′ (0). Therefore, we
want the absolute error |𝜖𝜙 | in the merit function to be less than or equal to -𝜂𝑇𝜂𝐴𝛼𝜙′ (0) where 0 ≤ 𝜂𝑇 < 1 is a small
positive constant. Note that a negative sign is added to the sufficient decrease term since 𝜙′ (0) < 0.

From Eq. (9) for the merit function, we can exactly measure the error in the terms 𝜓𝑇R(𝑥, 𝑦) and 1
2 𝜌R(𝑥, 𝑦)𝑇R(𝑥, 𝑦)

as respectively 𝜓𝑇𝜖𝑟 and 1
2 𝜌𝜖

𝑇
𝑟 𝜖𝑟 , where 𝜖𝑟 = R(𝑥, 𝑦) is the tolerance on the nonlinear solvers. We now approximate 𝜖𝜙

using adjoint-based error estimation for the remaining three terms as

𝜖𝜙 =
d 𝑓
d𝑟

𝜖𝑟 + (𝜆 + 𝜌C(𝑥, 𝑦))𝑇 d𝑐
d𝑟

𝜖𝑟 + 𝜓𝑇𝜖𝑟 +
1
2
𝜌𝜖𝑇𝑟 𝜖𝑟 . (17)

The sufficient decrease requirement |𝜖𝜙 | ≤ −𝜂𝑇𝜂𝐴𝛼𝜙′ (0) now becomes|︁|︁|︁|︁|︁ (︃d 𝑓
d𝑟

+ (𝜆 + 𝜌C(𝑥, 𝑦))𝑇 d𝑐
d𝑟

)︃
𝜖𝑟 + 𝜓𝑇𝜖𝑟 +

1
2
𝜌𝜖𝑇𝑟 𝜖𝑟

|︁|︁|︁|︁|︁ ≤ −𝜂𝑇𝜂𝐴𝛼𝜙′ (0). (18)

Using
d 𝑓
d𝑟

= −𝜕F
𝜕𝑦

𝜕R
𝜕𝑦

−1
and

d𝑐
d𝑟

= −𝜕C
𝜕𝑦

𝜕R
𝜕𝑦

−1
, we get|︁|︁|︁|︁|︁ − (︃

𝜕F
𝜕𝑦

+ (𝜆 + 𝜌C(𝑥, 𝑦))𝑇 𝜕C
𝜕𝑦

)︃
𝜕R
𝜕𝑦

−1
𝜖𝑟 + 𝜓𝑇𝜖𝑟 +

1
2
𝜌𝜖𝑇𝑟 𝜖𝑟

|︁|︁|︁|︁|︁ ≤ −𝜂𝑇𝜂𝐴𝛼𝜙′ (0). (19)

Whenever we apply the Lagrange multiplier update in line 6 in Algorithm 4, the first term in the equation above equals
𝜓𝑇𝜖𝑟 , and the inequality reduces to |︁|︁|︁2𝜓𝑇𝜖𝑟 +

1
2
𝜌𝜖𝑇𝑟 𝜖𝑟

|︁|︁|︁ ≤ −𝜂𝑇𝜂𝐴𝛼𝜙′ (0). (20)

Until this point in the paper, we only considered a scalar penalty parameter 𝜌 instead of a vector of penalty parameters
for simplifying the analysis. However, in practice, 𝜌 is a vector initialized with zero, and the vector gets updated in each
optimization iteration to ensure a descent direction. We note that within the SURF algorithm, the penalty parameters
in the vector 𝜌 corresponding to the residuals R(𝑥, 𝑦) = 0 remains at zero or extremely low values if some nominal
tolerance is enforced. This means that our tolerance selection criterion above could be further simplified to

|2𝜓𝑇𝜖𝑟 | ≤ −𝜂𝑇𝜂𝐴𝛼𝜙′ (0). (21)

Now applying the Cauchy-Schwarz inequality |𝜓𝑇𝜖𝑟 | ≤ ∥𝜓∥2∥𝜖𝑟 ∥2, and the inequality ∥𝜓∥2 ≤ √
𝑛𝑟 ∥𝜓∥∞, we get

∥𝜖𝑟 ∥2 ≤ − 1
2√𝑛𝑟 ∥𝜓∥∞

𝜂𝑇𝜂𝐴𝛼𝜙
′ (0), (22)

where 𝑛𝑟 is the number of scalar residuals in R(𝑥, 𝑦).
Converging the nonlinear solvers in each model evaluation such that the residual norm is below the tolerance limit

derived in Eq. (22) ensures a sufficient decrease during the line search. These adaptively computed inexact tolerances
save computation by relaxing tolerances whenever possible. A value of 0.01 for the constant 𝜂𝑇 works well for many
problems in practice. This value essentially ensures that the error in the merit function is less than one percent of the
required sufficient decrease. However, we note that higher values of 𝜂𝑇 , such as 0.1, also yield good results for some
problems we tested.

We also note that Eq. (22) can be readily adapted to problems with multiple residual systems R1 (𝑥, 𝑦1), R2 (𝑥, 𝑦2),
etc. In such problems, it is ideal for each term to contribute equally to the error in the merit function. Therefore, the
tolerance selection criterion for each residual system can be written as

∥𝜖𝑟𝑖 ∥2 ≤ − 1
2𝑛𝑟

√
𝑛𝑟𝑖 ∥𝜓𝑖 ∥∞

𝜂𝑇𝜂𝐴𝛼𝜙
′ (0), (23)

where 𝑛𝑟 is the number of nonlinear systems in the model, 𝑛𝑟𝑖 is the length of the 𝑖th residual vector, and 𝜓𝑖 is the
Lagrange multiplier for the 𝑖th residual system. This criterion offers finer control as we can now choose tolerances on a
variable-by-variable basis per model evaluation.

10

V. Numerical Results
In this section, we present the results from applying the general, SQP-based SURF algorithm on two different

application problems. In the first problem, we maximize the efficiency of a low-fidelity motor model by optimizing its
sizing variables. In the next problem, we maximize the annual energy production (AEP) from a wind farm by optimizing
the locations of wind turbines.

The implementation of our SQP optimizer follows the algorithm outlined in [13] for the SNOPT optimizer. The QP
subproblems within the SQP algorithm are solved using the open-source QP solver OSQP [14]. The computational
models used in both studies are written in the Computational System Design Language (CSDL) [6].

A. Motor optimization
We first apply the SURF algorithm to a permanent magnet synchronous motor (PMSM) optimization problem. The

motor model is based on a differentiable method [15] proposed by Cheng et al. for the low-fidelity analysis of a PMSM.
The motor model employed in this study was originally developed as a part of a large-scale system model of an eVTOL
aircraft [16]. In our study, we maximize the efficiency of a PMSM subject to lower and upper bounds on the length and
diameter of the motor. The motor optimization problem can be stated as

maximize 𝜂

with respect to 𝐷, 𝐿 ∈ R
subject to 0.05 ≤ 𝐷 ≤ 0.15,

0.15 ≤ 𝐿 ≤ 0.35
where R𝐵 (𝐵𝑚, 𝐷, 𝐿) = 0, R𝜏 (𝜏𝐸𝑀 , 𝐷, 𝐿) = 0,

(24)

where 𝜂 is the efficiency, 𝐷 and 𝐿 are the diameter and length of the motor in 𝑚, R𝐵 is the residual that computes the
flux density 𝐵𝑚 of the magnet, and R𝜏 is the residual that computes the electromagnetic torque 𝜏𝑒𝑚 . A schematic
diagram for the full motor model is shown in Fig. 4. For our study, the inputs angular speed 𝜔, load torque 𝜏𝐿 , and
voltage limit 𝑉𝑚𝑎𝑥 are taken as 3400 𝑟 𝑝𝑚, 500 𝑁𝑚, and 800 𝑉 respectively.

Motor
Sizing

Magnet
MEC

Motor
Geometry

Flux
Weakening

MTPA

Power, ?
Post -

Processing

IqMTPA

L, D

IqFW

Bm, ? m

Inductance
MEC

Lq, Ld,
RDC

?L - ?*?EM

Lq, Ld,
RDC

Motor
Geometry

Motor
Geometry

? , ?L,

Vmax

Bm, ? m,
RDC

Fig. 4 Motor model architecture [16].

11

0 2 4 6 8 10 12 14
time [s]

10
7

10
5

10
3

10
1

O
pt

im
al

ity

RS
MFS
SURF

0 2 4 6 8 10 12 14
time [s]

10
9

10
7

10
5

10
3

10
1

10
1

O
pt

im
al

ity

RS
MFS
SURF

Fig. 5 Convergence in optimality for RS, MFS and SURF when: (a) R𝐵 is a constraint, (b)R𝜏 is a constraint.

Figure 5 shows the convergence in optimality for the reduced-space, modified full-space and SURF algorithms for
two cases. In the first case, R𝐵 (𝐵𝑚, 𝐷, 𝐿) = 0 was turned into a constraint for the SURF and MFS methods while in the
second case, R𝜏 (𝜏𝐸𝑀 , 𝐷, 𝐿) = 0 was made a constraint for MFS and SURF. Note that RS shown in both plots are the
same, and it follows the standard problem formulation (24) where both residuals are solved exactly. SURF uses the
adaptive tolerance selection strategy explained in section IV. In both cases, only one residual is made a constraint, and
we do not test MFS or SURF with multiple residuals turned into constraints at a time. Because of the particular nature
of these nonlinear equations, a Newton solver is not suitable, and we need bracketing methods for robust solutions.
Therefore, a FS approach cannot converge for this problem, and this was confirmed in our tests.

We observe that during early iterations, the MFS and SURF methods are slightly better in terms of computational
time compared to the RS for the first case. However, we see that the trend is reversed in the second case. For the first
case, we see that MFS is slightly faster than SURF. This can be attributed to the slower convergence of the QP solver
within the SQP algorithm when the residuals are only partially converged. This implies that although we gain more time
with inexact model evaluations, this could sometimes cost us more in the optimization algorithm. For the second case,
we see that SURF is approximately 20 percent faster than MFS. In this case, SURF gains more time from partial model
evaluations compared to the additional time incurred for the QP solutions. Therefore, from the 2 cases above, we infer
that there exists a tradeoff between model evaluation time and QP solver time for the SURF algorithm, and the tradeoff
depends on the nonlinear residual that is included as a constraint.

We note that the motor problem studied here is a relatively small problem to observe significant differences in the
computation time. However, a recurring observation from both cases is that MFS and SURF converge more tightly
to a better optimal solution than RS. We attribute this to the high sensitivity of the reduced-space method to the total
derivatives of the objective and constraints with respect to the vector of design variables 𝑥.

B. Wind farm layout optimization
The wind farm layout optimization (WFLO) problem is a highly multimodal problem characterized by multiple

local optima. Therefore, these problems are traditionally solved using gradient-free optimizers due to their ability to
navigate tough design space. However, gradient-free methods are prohibitively expensive for large-scale wind farm
models with hundreds of design variables. For this reason, gradient-based optimization methods are now widely studied
for large-scale WFLO. With new strategies such as the Wake Expansion Continuation (WEC) [17], gradient-based
approaches are now competitive with gradient-free methods.

We now solve the wind farm layout optimization problem

maximize 𝐴𝐸𝑃

with respect to x, y ∈ R𝑁𝑡

subject to 𝑑𝑖 𝑗 ≥ 𝑑𝑚𝑖𝑛 for 𝑖 = 1, 2, ..., 𝑁𝑡 − 1 and 𝑗 = 𝑖 + 1, 𝑖 + 2, ..., 𝑁𝑡 ,

𝜙(𝑥𝑖 , 𝑦𝑖) ≥ 0 for 𝑖 = 1, 2, ..., 𝑁𝑡

where R(x, y,w𝑒 𝑓 𝑓) = 0,

(25)

12

where 𝐴𝐸𝑃 is the annual energy production, x and y are vectors containing (𝑥𝑖 , 𝑦𝑖) coordinates denoting the location of
𝑖th wind turbine, 𝑁𝑡 is the number of wind turbines to be positioned in the wind farm, 𝑑𝑖 𝑗 is the distance between 𝑖th
and 𝑗 th turbines, 𝜙 ≥ 0 represents the boundary constraint, w𝑒 𝑓 𝑓 is a vector containing the effective wind speeds at
each turbine location, and R(x, y,w𝑒 𝑓 𝑓) = 0 represents the implicit nonlinear system that solves for w𝑒 𝑓 𝑓 . The wind
farm boundary is represented by 𝜙 = 0, and 𝜙(𝑥, 𝑦) > 0 implies (𝑥, 𝑦) lies in the feasible region.

For our study, we use the open-source NREL 5MW wind turbine [18] model. The probability distribution of wind
conditions is discretized into 16 wind direction bins for a constant wind speed of 9.8 m/s, as in the IEA37 case studies.
The turbine wakes were formulated using the Bastankhah wake model [19], the turbulence intensity model from [20],
and superposition with root sum-of-squares [21]. The spacing constraint enforces a minimum distance 𝑑𝑚𝑖𝑛 of 1.8 rotor
diameters between any two turbines. We use a simple rectangular wind farm boundary defined by x, y ∈ [−750, 750]𝑁𝑡

with 𝑁𝑡 = 9.
We now apply optimization on the wind farm model using a variation of the new SURF algorithm and the traditional

RS algorithm. The SURF algorithm applied here does not use the adaptive hybrid selection criteria presented in Sec. IV
but instead uses FS model evaluations in line 6 and exact model evaluations in line 3 of Algorithm 4. This strategy
consistently performs better than a RS approach for the WFLO problem (25).

Figure 6 shows a comparison of the RS and SURF methods applied to the WFLO problem. Figure 6(a) compares
the convergence of the two methods while Fig. 6(b) compares the optimized results from both methods. Since WFLOP
is multimodal, different optimization algorithms often converge to different local minimas. Depending on the minima it
converges to, one algorithm can be significantly faster than the other, and the pattern could be random with randomized
initial guesses. Therefore, while comparing convergence behaviors, it is important to ensure that all methods converge
to the same solution. Figure 6(b) is thus necessary to confirm that both our methods converged to the same solution.

In Fig. 6(a), we see that SURF is approximately 25 per cent faster compared to RS when both methods converged
to the same optimality of 10−5. Figure 6(b) shows that the optimized results from both RS and SURF are identical.
Altogether, this means that when both methods converge to the same local optima, SURF is faster than the traditional
RS method.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

10
6

10
4

10
2

10
0

10
2

10
4

O
pt

im
al

ity

RS
SURF

750 500 250 0 250 500 750
x coordinate [m]

600

400

200

0

200

400

600

y
co

or
di

na
te

 [m
]

RS
SURF

Fig. 6 (a) Convergence in optimality, and (b) optimized turbine locations for RS and SURF.

VI. Conclusion
In this paper, we presented a hybrid architecture for multidisciplinary design optimization (MDO) that unifies two

conventional architectures, namely, the reduced-space architecture, and the full-space architecture. The goal of the
paper was to extend the previously proposed SURF algorithm that achieves this unification, however, for a simplified,
equality-constrained setting.

We reviewed the traditional reduced-space and full-space formulations, and the preliminary unification in Sec.
III. The preliminary unification results are based on the modified full-space method that exhibits the behavior of a
reduced-space method. These results are applicable for equality-constrained optimization problems, however, they
neglect many practical components of an optimization algorithm.

13

In Sec. IV, we presented new theoretical results that prove the equivalence of the reduced-space and modified
full-space methods in presence of line searches and quasi-Newton Hessian approximations. Furthermore, we provide
additional results that extend this equivalence for general, inequality-constrained optimization problems solved using
sequential quadratic programming (SQP). The SURF algorithm can then be obtained by applying inexact tolerances to
certain solvers in the modified full-space algorithm. A method for adaptively selecting nonlinear solver tolerances for
the SURF algorithm is also derived in this section.

In Sec. IV, we solved two design optimization optimization problems using the reduced-space and SURF algorithms
based on SQP. SURF converges approximately 25 percent faster compared to reduced-space in one of the problems. In
the other problem, SURF was able to converge more tightly than the reduced-space to provide a better solution.

SURF unifies the reduced-space and full-space architectures for a practical optimization setting using SQP solvers.
We presented one tolerance selection criterion for nonlinear solvers but future work could look into more adaptive
tolerance selection strategies including an update strategy for the linear systems when inexact nonlinear tolerances are
applied. The numerical studies provided in this paper offer initial insights, however, extensive testing with different
problems is required to mature the algorithms presented, and to discover other potential benefits of this new paradigm.
The discussions in the paper were focused on SQP algorithms, however, interior point methods are also equally
competitive for large-scale optimization. Studies on extending the SURF algorithm for interior point methods is another
potential direction for future research.

Acknowledgments
The first author would like to thank Luca Scotzniovsky for his help with the low-fidelity motor model. This material

is based upon work supported by the National Science Foundation under Grant No. 1917142.

References
[1] Joshy, A. J., and Hwang, J. T., “Unifying Monolithic Architectures for Large-Scale System Design Optimization,” AIAA Journal,

2021, pp. 1–11. doi:https://doi.org/10.2514/1.J059954.

[2] Wolpert, D. H., and Macready, W. G., “No free lunch theorems for optimization,” IEEE transactions on evolutionary computation,
Vol. 1, No. 1, 1997, pp. 67–82.

[3] Ho, Y.-C., and Pepyne, D. L., “Simple explanation of the no-free-lunch theorem and its implications,” Journal of optimization
theory and applications, Vol. 115, 2002, pp. 549–570.

[4] Hwang, J. T., and Martins, J. R., “A computational architecture for coupling heterogeneous numerical models and
computing coupled derivatives,” ACM Transactions on Mathematical Software (TOMS), Vol. 44, No. 4, 2018, p. 37.
doi:https://doi.org/10.1145/3182393.

[5] Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open-source framework for
multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075–1104. doi:https://doi.org/10.1007/s00158-019-02211-z.

[6] Gandarillas, V., Joshy, A. J., Sperry, M. Z., Ivanov, A. K., and Hwang, J. T., “A graph-based methodology for constructing
computational models that automates adjoint-based sensitivity analysis,” Structural and Multidisciplinary Optimization (under
review), 2022.

[7] Joshy, A. J., Yan, J., and Hwang, J. T., “A hybrid architecture for large-scale system design optimization of PDE-based models,”
AIAA SCITECH 2022 Forum, 2022, p. 1614.

[8] Martins, J. R., and Lambe, A. B., “Multidisciplinary design optimization: a survey of architectures,” AIAA journal, Vol. 51,
No. 9, 2013, pp. 2049–2075.

[9] Cramer, E. J., Dennis, J. E., Jr, Frank, P. D., Lewis, R. M., and Shubin, G. R., “Problem formulation for multidisciplinary
optimization,” SIAM Journal on Optimization, Vol. 4, No. 4, 1994, pp. 754–776.

[10] Biegler, L. T., Ghattas, O., Heinkenschloss, M., and van Bloemen Waanders, B., “Large-scale PDE-constrained optimization:
an introduction,” Large-Scale PDE-Constrained Optimization, Springer, 2003, pp. 3–13.

[11] Arora, J., and Wang, Q., “Review of formulations for structural and mechanical system optimization,” Structural and
Multidisciplinary Optimization, Vol. 30, No. 4, 2005, pp. 251–272.

14

https://doi.org/https://doi.org/10.2514/1.J059954
https://doi.org/https://doi.org/10.1145/3182393
https://doi.org/https://doi.org/10.1007/s00158-019-02211-z

[12] Haftka, R. T., “Simultaneous analysis and design,” AIAA journal, Vol. 23, No. 7, 1985, pp. 1099–1103.

[13] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM
review, Vol. 47, No. 1, 2005, pp. 99–131. doi:https://doi.org/10.1137/S0036144504446096.

[14] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: an operator splitting solver for quadratic programs,”
Mathematical Programming Computation, Vol. 12, No. 4, 2020, pp. 637–672. doi:10.1007/s12532-020-00179-2, URL
https://doi.org/10.1007/s12532-020-00179-2.

[15] Cheng, Z., Zhao, S., Scotzniovsky, L., Rodriguez, G., Mi, C., and Hwang, J. T., “A Differentiable Method for Low-Fidelity
Analysis of Permanent-Magnet Synchronous Motor,” AIAA SCITECH 2023 Forum, 2023, p. 1091.

[16] Sarojini, D., Ruh, M. L., Joshy, A. J., Yan, J., Ivanov, A. K., Scotzniovsky, L., Fletcher, A. H., Orndorff, N. C., Sperry, M.,
Gandarillas, V. E., et al., “Large-Scale Multidisciplinary Design Optimization of an eVTOL Aircraft using Comprehensive
Analysis,” AIAA SCITECH 2023 Forum, 2023, p. 0146.

[17] Thomas, J. J., McOmber, S., and Ning, A., “Wake expansion continuation: Multi-modality reduction in the wind farm
layout optimization problem,” Wind Energy, Vol. 25, No. 4, 2022, pp. 678–699. doi:https://doi.org/10.1002/we.2692, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2692.

[18] Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore System
Development,” 2009. doi:10.2172/947422, URL https://www.osti.gov/biblio/947422.

[19] Bastankhah, M., and Porté-Agel, F., “Experimental and theoretical study of wind turbine wakes in yawed conditions,” Journal
of Fluid Mechanics, Vol. 806, 2016, p. 506–541. doi:10.1017/jfm.2016.595.

[20] Crespo, A., and Herna´ndez, J., “Turbulence characteristics in wind-turbine wakes,” Journal of Wind Engineering and
Industrial Aerodynamics, Vol. 61, No. 1, 1996, pp. 71–85. doi:https://doi.org/10.1016/0167-6105(95)00033-X, URL
https://www.sciencedirect.com/science/article/pii/016761059500033X.

[21] Katic, I., Højstrup, J., and Jensen, N. O., “A simple model for cluster efficiency,” European wind energy association conference
and exhibition, Vol. 1, A. Raguzzi Rome, Italy, 1986, pp. 407–410.

15

https://doi.org/https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/https://doi.org/10.1002/we.2692
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2692
https://doi.org/10.2172/947422
https://www.osti.gov/biblio/947422
https://doi.org/10.1017/jfm.2016.595
https://doi.org/https://doi.org/10.1016/0167-6105(95)00033-X
https://www.sciencedirect.com/science/article/pii/016761059500033X

	Nomenclature
	Introduction
	Background
	Optimization problem statement
	Reduced-space and full-space formulations
	The modified full-space method joshy2021unifying
	Notation:

	Methodology
	Line searches
	Quasi-Newton Hessian updates
	Inequality-constrained optimization
	A practical SQP algorithm with SURF
	Adaptive tolerance selection

	Numerical Results
	Motor optimization
	Wind farm layout optimization

	Conclusion

