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Abstract – Quantum mechanics is an inherently linear theory. However, collective effects in
many body quantum systems can give rise to effectively nonlinear dynamics. In the present work,
we analyze whether and to what extent such nonlinear effects can be exploited to enhance the
rate of quantum evolution. To this end, we compute a suitable version of the quantum speed limit
for numerical and analytical examples. We find that the quantum speed limit grows with the
strength of the nonlinearity, yet it does not trivially scale with the “degree” of nonlinearity. This
is numerically demonstrated for the parametric harmonic oscillator obeying Gross-Pitaevskii and
Kolomeisky dynamics, and analytically for expanding boxes under Gross-Pitaevskii dynamics.

editor’s  choice Copyright c© 2022 EPLA

In public perception, the prophesied quantum advantage
of novel technologies has become almost synonymous with
anticipated quantum speed-ups. This impression is driven
by quantum computing, which indeed can solve certain
problems faster than any classical computer could [1]. At
least superficially this expectation seems to be at variance
with the so-called quantum speed limits (QSLs), which are
fundamental bounds on the maximal rate with which a
quantum system can evolve [2,3]. In fact, diverging QSLs
can be interpreted as a herald of classicality [4,5], as they
are deeply rooted in more rigorous formulations of Heisen-
berg’s uncertainty relation for energy and time [6].

The apparent contradiction quickly dissolves, once one
realizes that in the lingo of computer science a “speed-up”
simply refers to a smaller number of required single gate
operations, whereas in quantum physics the QSL refers
to the maximal rate with which such a gate operation
can be applied [7]. Thus it also becomes rather obvious
why so much research activity has been dedicated to the
study of QSL in virtually all areas of quantum physics,
including, e.g., quantum communication [8–13], quantum
computation [14,15], quantum control [16–18], many body
physics [19,20], and quantum metrology [21,22]. See some-
what recent reviews on the topic [23,24].

The original QSLs were formulated for standard quan-
tum mechanics [25], whose dynamics is described by the
Schrödinger equation. However, over the last decade it
has become obvious that there is a variety of “quan-
tum resources” that can be employed to speed-up quan-
tum dynamics. For instance, it has been established
that judiciously designed open system dynamics permit
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environment driven speed-ups [26–31]. Similarly, the QSL
is larger for non-Hermitian quantum dynamics [32,33],
for which the quantum states can find literal shortcuts
through Hilbert space.

In the present analysis, we will be focusing on another
type of quantum dynamics, which has not received much
attention in the study of the QSL. Processing informa-
tion requires some form of interaction between signals.
In photonic systems, such interactions can be enabled by
nonlinear optical processes [34]. Nonlinear optics has be-
come almost ubiquitous in fundamental science and tech-
nological applications [35] and can be realized, e.g., with
single atoms in cavities [36], in atomic ensembles [37],
and through atom-atom interactions [38]. It is expected
that nonlinear systems will be able to outperform linear
systems in optical quantum information processing [34].
The reason is that nonlinear quantum optics can provide
both linear operations such as storage and manipulation
of quantum states, as well as nonlinear operations such as
the generation of quanta and quantum logic between pho-
tonic quantum bits. Recent experimental developments
in nonlinear quantum optics hold the promise to enable
the development of universal quantum computers sup-
porting conditional quantum logic operations, which are
now within technological reach [34]. The natural question
arises whether nonlinear interactions can be exploited as
a quantum resource to enhance the QSL. Some evidence
can be found in the literature [39,40], yet a comprehen-
sive analysis within the framework of QSL appears to be
lacking.

We show that there is indeed a speed-up of the rate
of quantum evolution in nonlinear systems. To this end,
we begin with a numerical investigation of a cold bosonic
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quantum gas in a harmonic trap, which is described by
the Gross-Pitaevskii equation [41,42]. We find that the
resulting QSL grows with the strength of the scattering
length, meaning that the stronger the nonlinearity the
faster the quantum state can evolve. While such numerical
evidence is interesting, it is not as insightful as analytical
treatments. Therefore, we then solve the Gross-Pitaevskii
equation for a 1-dimensional box, whose volume expands
at constant rate. For these dynamics, we obtain an analyt-
ical expression for the QSL, and we find our numerical evi-
dence rigorously confirmed. Thus, as main result, we show
that nonlinear quantum effects can quantifiably enhance
the rate of quantum evolution. We conclude the analysis
by also exploring the QSL for the parametric harmonic
oscillator evolving under Kolomeisky dynamics. Remark-
ably, we find that the QSL does not trivially grow with
the order of the nonlinearity.

Numerical case study: parametric harmonic os-
cillator. – In the following, we consider quantum dynam-
ics that are described by the Gross-Pitaevskii equation,

i�Ψ̇t(x) =
[
− �

2

2m
∂2
x + U (x, t) + κ |Ψt(x)|2

]
Ψt(x), (1)

where, as usual, we denote a derivative with respect to
time by a dot. Further, U(x, t) is a time-dependent, ex-
ternal potential and κ measures the “strength” of the non-
linearity.

Equation (1) was first discovered in the description of
the propagation of light in nonlinear optical fibers and
planar waveguides [35], and shortly after in the mean-
field description of Bose-Einstein condensates [41,42]. In
cold quantum gases the nonlinearity arises from an ef-
fective treatment of the interaction of the bosonic par-
ticles, whereas in nonlinear optics κ |Ψt(x)|2 describes
the polarization-dependent amplitude in the paraxial
field equations. Since its first description, the nonlin-
ear Schrödinger equation (1) has appeared also in many
other areas of physics, such as in hydrodynamics [43],
in plasma physics [44], and the propagation of Davy-
dov’s alpha-helix solitons, which are responsible for en-
ergy transport along molecular chains [45]. Thus, eq. (1)
has become one of the best studied equations in quantum
physics, from a conceptual as well as a numerical point of
view [46–49].

The Gross-Pitaevskii equation (1) has also found some
attention in quantum control [50–53], yet a genuinely non-
linear QSL appears to be lacking in the literature. In
a first rigorous derivation of a QSL for simple, undriven
Schrödinger dynamics, Mandelstam and Tamm [2] showed
that the minimal time a quantum system needs to evolve
between orthogonal states is bounded from below by the
variance of the energy, ΔE, and τQSL = π�/2ΔE. Since,
however, the variance of an operator is not necessarily
a good quantifier for undriven dynamics [54], Margolus
and Levitin [55] revisited the problem and derived a sec-
ond bound on the quantum evolution time in terms of the

average energy E = 〈H〉 − Eg over the ground state with
energy Eg, τQSL = π�/2E.

More recently, it has been recognized that the QSLs are
bounds on the rate with which quantum states become
distinguishable [5]. Therefore, one typically considers dif-
ferent geometric measures of distinguishability [56,57] in
the derivation of QSL. In our work, we have shown that
these different treatments become equivalent when consid-
ering the metric properties of the quantum dynamics [4,7],
and that for purity preserving dynamics the QSL is sim-
ply determined by the rate with which a quantum state
evolves [13]. Therefore, we define

vQSL ≡
∫

dx|Ψ̇t(x)|2. (2)

For linear dynamics, κ = 0, the quantum state evolu-
tion is simply given by the standard Schrödinger equa-
tion, i�|Ψ̇〉 = H(t)|Ψ〉, where H(t) is the time-dependent
Hamiltonian. Thus we have

v0QSL ≡ vQSL(κ = 0) = 〈H2(t)〉/�
2. (3)

Equation (2) is nothing else but a generalization of the
Mandelstam-Tamm bound [2,13,58], which remains appli-
cable for any purity preserving quantum dynamics, such
as the Gross-Pitaevskii equation (1).

To build intuition, and to gain some insight into possi-
ble nonlinear speed-ups, we now consider the parametric
harmonic oscillator, with potential

U(x, t) =
1
2
mω2

t x
2. (4)

To keep things as simple as possible, we further choose ω2
t

to be a linear function of time,

ω2
t = ω2

0 − (
ω2
0 − ω2

1

)
t/τ, (5)

for which the linear Schrödinger dynamics is analytically
solvable [59]. For this protocol, we solved eq. (1) numeri-
cally for several values of κ. For each of the realizations,
we choose the ground state of the linear problem as initial
state, namely

Ψ0(x) =
(mω0

π�

)1/4

exp
(
−mω0

2�
x2

)
. (6)

The resulting solution is depicted in fig. 1. We observe
that for moderate values of κ the solution of the nonlinear
dynamics remains close to the linear solution, whereas for
large values the dynamics is strongly distinguishable.

In fig. 2 we plot the corresponding QSL (2). As ex-
pected, we observe that the stronger the nonlinearity, i.e.,
the larger the value of κ, the faster the evolution of the
quantum state. While this numerical result is interest-
ing and confirms our intuition, more analytical insight is
desirable. In particular, it would be useful to be able
to “design” optimal nonlinearities to meet, e.g., speed
requirements.
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Fig. 1: From left to right: absolute value, real part, and imaginary part of the solution Ψτ (x) of eq. (1), for the parametric
harmonic oscillator (4) and κ = 0 (blue, dashed line), κ = 5 (purple, dot-dashed line), and κ = 10 (red, solid line). Other
parameters are �ω0 = 5, �ω1 = 1, m = 1, and τ = 2.

Fig. 2: Left: QSL (2) for the parametric harmonic oscillator (4) for κ = 0 (blue, dashed line), κ = 5 (purple, dot-dashed line),
and κ = 10 (red, solid line). Right: QSL (2) for the parametric harmonic oscillator (4) evaluated at t = τ/2 as a function of κ
and with the same color coding as on the left. Other parameters are �ω0 = 5, �ω1 = 1, m = 1, and τ = 2.

Scale-invariant Gross-Pitaevskii dynamics. –
Therefore, we now continue with a special class of

time-dependent problems. Consider the scale-invariant,
nonlinear Schrödinger equation

i� Ψ̇t(x) =
[
− �

2

2m
∂2
x +

1
λ2
t

U

(
x

λt

)
+

κ

λt
|Ψt(x)|2

]
Ψt(x),

(7)
where λt is an external control parameter, such as the
volume of an optical trap confining the BEC. Then, if
λt is given for some arbitrary a, b, and c by λt =√

at2 + 2bt + c, a solution of eq. (7) can be written
as [51,52,60]

Ψt(x) = exp
(

− i

�
μ0 τ(t)

)
exp

(
imλ̇t

2�λt
x2

)
Φ(x, λt), (8)

where Φ(x, λt) = Φ(x/λt)/λ2
t is a scale-invariant solution

of the instantaneous Gross-Pitaevskii equation (7), μ0 is
the initial chemical potential, and τ(t) =

∫ t

0
ds/λ2

s. Note
that for linear dynamics κ = 0, the chemical potential
reduces to the average energy of the initial state, ε0.

A few lines of simply algebra reveal that the QSL (2)
can be written as

vQSL =
μ2
t

�2
+

mμt

�2

(
λ̇2
t

λ2
t

− λ̈t

λt

)
〈x2〉

+
m2

4�2

(
λ̇4
t

λ4
t

− 2λ̇2
t λ̈t

λ3
t

+
λ̈2
t

λ2
t

)
〈x4〉 +

λ̇2
t

�2
〈p2〉, (9)

where we introduced the instantaneous chemical potential
μt = μ0/λ2

t , and 〈xn〉 =
∫

dxxn|Φ (x, λt) |2.
Example: infinite square well. As a case study, we

continue with an analytically solvable example. Arguably,
the simplest, nontrivial problem in quantum mechanics is
a particle trapped in an infinite square well. The potential
simply is

U(x) =

{
0, ∀x ∈ [0, λ],
∞, otherwise.

(10)

Obviously the one-dimensional box with time-varying
length is scale invariant. This has been exploited, for
instance, in standard thermodynamic problems such as
analyzing the validity of the quantum Jarzynski equal-
ity [61,62], and to construct explicit expressions for the
counterdiabatic field [50,52,63].

As a point of reference, and to build intuition we begin
with the linear case κ = 0. For completeness, recall that
the eigensystem is given by

ψn(x, λ) =

√
2
λ

sin
(nπ

λ
x
)

and En(λ) =
�
2π2

2mλ2
n2.

(11)
Moreover, we choose a parameterization in which the box
is expanded at constant rate v, and hence λt = λ0 + vt.
Accordingly, the QSL (9) simplifies to read

vQSL =
ε2t
�2

+
mεt
�2

v2

λ2
t

〈x2〉 +
m2

4�2

v4

λ4
t

〈x4〉 +
v2

�2
〈p2〉, (12)
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where εt = ε0/λ2
t and ε0 is the initial energy. We imme-

diately observe that vQSL is a sum of positive terms, and
hence we can continue comparing the nonlinear case to the
linear result term by term.

The corresponding nonlinear problem can also be solved
analytically [64], and the stationary states read

ψn(x, λ) =

√
νK(ν)

λ (K(ν) − E(ν))
sn

(
2nK (ν)

λ
x

∣∣∣∣ν
)

. (13)

Here sn(x|ν) is the Jacobian elliptic function [65], and
K(ν) and E(ν) are elliptic integrals. The parameter ν
is directly related to the strength of the nonlinearity κ. It
it is implicitly determined by

K (ν) (K(ν) − E(ν)) =
mλκ

4n2�2
, (14)

which follows from substituting eq. (13) into eq. (7) for
U(x) as given in eq. (10). Accordingly, the generalized
eigenvalues can be written as

μn(λ) =
�
2

2mλ2
n2 (2K (ν))2 (1 + ν). (15)

With eqs. (13)–(15) the QSL (12) can be computed ex-
actly. However, the resulting expression is rather involved,
and hence does not permit to gain much insight.

Therefore, we now continue to compute corrections to
the quantum speed limit up to linear order in the strength
of the nonlinearity κ. The linear eigensystem (11) is re-
covered for ν = 0. Thus, we begin by expanding the left
side of eq. (14) up to linear order in ν (see footnote 1),
from which we obtain

ν 	 2mλκ

n2�2π2
. (16)

Similarly, the generalized eigenvalues [64] can be written
in terms of the linear energy eigenvalue En(λ) (11) as

μn(λ) 	 En(λ) +
3
2

κ

λ
. (17)

Hence, for the first term in eq. (12) we have already ob-
tained the leading order correction, i.e., “the nonlinear
speed-up”.

The other terms in eq. (12) require a little more work.
We continue with the second moment of the momentum,
which can in fact be computed in closed form. To further
simplify the analysis, we now assume that the system was
initially prepared in its ground state, n = 1. In this case
we have

〈p2〉 =
(2K(ν))2

3λ2(K(ν) − E(ν))
[K(ν)(ν − 1) + E(ν)(ν + 1)] .

(18)
Using eq. (16) for n = 1 we obtain in leading order of κ

〈p2〉 = 〈p2〉lin +
m2κ2

8�4π2
, (19)

1See ref. [65] for mathematical details of the elliptic integrals.

which is again larger than the expression corresponding to
linear dynamics, 〈p2〉lin.

To compute the second and fourth moment of x, we now
need to expand the stationary states (13). For small ν the
Jacobi elliptic function can be approximated by [65]

sn(x|ν) 	 sin(x) − 1
4
ν (x − sin(x) cos(x)) cos(x) (20)

and thus we have

ψn(x, λ) 	 An sin
(

2nK (ν)
λ

x

)

− 1
4
ν

(
2nK (ν)

λ
x − sin

(
2nK (ν)

λ
x

)
cos

(
2nK (ν)

λ
x

))

× cos
(

2nK (ν)
λ

x

)
. (21)

Note that K(0) = π/2 and hence in leading order we re-
cover the eigenfunctions of the linear case (11). Moreover,
An is the new normalization coefficient, which can be writ-
ten in leading order of ν as

An 	
√

2
λ

− ν

8
√

2λ
. (22)

Accordingly, the second moment of x becomes

〈x2〉 	 〈x2〉lin +
3mλ3 κ

32�2π4
. (23)

where we again employed eq. (16). As before we observe
that the leading order in κ is additive and positive. Simi-
larly, we have for the fourth moment

〈x4〉 	 〈x4〉lin +
3(8π2 − 15)mλ3 κ

128�2π6
, (24)

and thus all terms in eq. (9) for nonlinear dynamics are
larger than for the linear, κ = 0 case.

Hence, we immediately conclude that the quantum
speed limit (9), i.e., the maximal rate of quantum state
evolution, for quantum boxes that are prepared in their
corresponding ground states, and whose volume is changed
at constant rate, is larger for nonlinear dynamics than for
linear dynamics. These findings are illustrated in fig. 3.

In conclusion, the analytically solvable model confirms
the numerically found result, namely that nonlinear quan-
tum dynamics supports faster evolution than linear dy-
namics. However, from the analytical result we have also
obtained exact, closed expressions for vQSL in leading or-
der of κ.

Beyond Gross-Pitaevskii dynamics. – In our
analysis we have so far restricted ourselves to the 1-
dimensional Gross-Pitaevskii equation (1). However, it
has been noted [66] that in some situations the description
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Fig. 3: Left: QSL (2) for the time-dependent box (10) for κ = 0 (blue, dashed line), κ = 0.25 (purple, dot-dashed line), and
κ = 0.5 (red, solid line). Right: QSL (2) for the time-dependent box (10) as a function of κ and with the same color coding as
on the left. Other parameters are � = 1, v = 1, and m = 1.

Fig. 4: From left to right: absolute value, real part, and imaginary part of the solution Ψτ (x) for the parametric harmonic oscil-
lator (4) with linear dynamics (blue, dashed line), Gross-Pitaevskii dynamics (1) (red, solid line), and Kolomeisky dynamic (25)
(green, dot-dashed line). Other parameters are �ω0 = 5, �ω1 = 1, m = 1, κ = 10, and τ = 2.

Fig. 5: Left: QSL (2) for the parametric harmonic oscillator (4) with linear dynamics (blue, dashed line), Gross-Pitaevskii
dynamics (1) (red, solid line), and Kolomeisky dynamic (25) (green, dot-dashed line). Right: QSL (2) for the parametric
harmonic oscillator (4) evaluated at t = τ/2 as a function of κ and with the same color coding as on the left. Other parameters
are �ω0 = 5, �ω1 = 1, m = 1, and τ = 2.

of Bose systems requires a fundamental modification. This
is, in particular, the case when accounting for three par-
ticles interactions [67–69]. Such scenarios are better de-
scribed by

i� Ψ̇t(x) =
[
− �

2

2m
∂2
x + U (x, t) + κ |Ψt(x)|4

]
Ψt(x),

(25)

where the nonlinear term is of fifth order, rather than third
in eq. (1). For an in-depth discussion of the significance,
properties, and experimental relevance of the Kolomeisky
equation (25) we refer to a recent review article [70].

For our present purposes the immediate question arises
whether making the dynamics “more nonlinear” allows for
a further speed-up of the evolution. To systematically an-
swer this question, we solved eq. (25) numerically for the
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parametric harmonic oscillator (4) with the linear proto-
col (5), and for the same initial state (11). In fig. 4 we
depict the result together with linear evolution and the
Gross-Pitaevskii dynamics.

We observe that the solution of the Kolomeisky dynam-
ics (25) is markedly different from the linear and Gross-
Pitaevskii case (1). Since the quantum speed limit is
determined by the rate at which states become distinguish-
able [5], it appears intuitive that Kolomeisky dynamics
evolve at different speeds than Gross-Pitaevskii dynamics.
However, from plots like in fig. 4 it is not obvious whether
the corresponding speed limit is quantifiably larger or
smaller.

Therefore, we again computed the QSL (9), which is
plotted in fig. 5. We immediately observe that for the
present case, the QSL for Kolomeisky dynamics is almost
always smaller than for the Gross-Pitaevskii case. Hence,
we conclude that higher order nonlinearities do generally
not enhance the rate of quantum evolution. However, now
the obvious question arises whether there is an “optimal”
nonlinearity for which the QSL becomes maximal. Since
answering this question will require an in-depth, system-
atic explorations of physically relevant, nonlinear evolu-
tion equations, we leave the answer for future work.

Concluding remarks. – In the present work we have
demonstrated, with numerical and analytical examples,
that nonlinear quantum dynamics can enhance the rate
of quantum evolution. These findings are not only of aca-
demic interest, but they may find application in a variety
of practically relevant problems. For instance, we can fore-
see that nonlinear quantum speed-ups may be particularly
relevant for quantum communication, quantum computa-
tion, and quantum thermodynamics.

Nonlinear effects in classical optics have been well-
studied in the context of communication [71]. However,
nonlinear effects in optical fibers are typically very
weak [71], since they depend on the intensity of the trans-
mitted signals and the interaction length. Thus, ex-
ploiting nonlinear effects in quantum optics appears more
realistic than in classical optics [72]. Our findings clearly
show that nonlinear effects may enable faster quantum
communication.

Another area, where nonlinear quantum speed-ups may
be relevant, is nonlinear quantum computation. In this
framework, unitary gates are replaced with nonlinear
quantum operations [73–75]. Our results indicate that
nonlinear computing not only has a computational advan-
tage, but also that single gate operations could be im-
plemented faster than in linear computers. Hence, the
overall processing time could be made shorter, and the
quantum computer becomes less susceptible to environ-
mental noise.

Finally, we have recently shown that Bose-Einstein con-
densation can boost the performance of quantum heat
engines [76]. However, our previous analysis [76] was re-
stricted to endoreversible cycles, i.e., finite time operation

that is still slow enough to allow the working medium
to reach a state of local equilibrium. At this point,
it is not obvious that the performance boost will per-
sist for engines that operate far from equilibrium. How-
ever, our present results suggest that, indeed, the power
output may be enhanced by collaborative quantum ef-
fects within the working medium, which would constitute
a thermodynamic advantage arising from the effectively
nonlinear quantum dynamics. See also ref. [77] for similar
conclusions.
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