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Hodge Laplacian of Brain Networks

D. Vijay Anand™ and Moo K. Chung

Abstract—The closed loops or cycles in a brain network
embeds higher order signal transmission paths, which pro-
vide fundamental insights into the functioning of the brain.
In this work, we propose an efficient algorithm for system-
atic identification and modeling of cycles using persistent
homology and the Hodge Laplacian. Various statistical infer-
ence procedures on cycles are developed. We validate the
our methods on simulations and apply to brain networks
obtained through the resting state functional magnetic res-
onance imaging. The computer codes for the Hodge Lapla-
cian are given in https://github.com/laplcebeltrami/hodge.

Index Terms—Hodge Laplacian, Wasserstein distance,
brain networks, cycle basis, heat kernel smoothing.

|. INTRODUCTION

NDERSTANDING the collective dynamics of brain net-

works has been a long standing question and continues to
remain elusive. Many symptoms of the brain diseases such as
schizophrenia, epilepsy, autism, and Alzheimer’s disease (AD)
have shown possible connections with abnormally high levels
of synchrony in neural activity [1]. The mechanisms under-
lying the emergence of this synchronous behaviour, is often
attributed to the higher order interactions that occur at multiple
topological scales [2], [3]. The higher order interactions are
evidenced across multiple spatial scales in neuroscience such
as collective firing of neurons [1], simultaneous activation of
multiple brain regions during cognitive tasks [4]. The consid-
eration of higher-order interactions can be highly informative
for understanding neuronal synchronisation and co-activation
of brain areas at different scales of the network [5].

Over the past several decades, significant progress has been
made in understanding the structural and functional behavior
of the human brain using functional magnetic resonance
images (fMRI). In typical fMRI network studies, the brain
is usually modelled as a graph whose nodes are specific brain
regions and their connectivity is determined by the strength
of dependency between the brain regions. Often graph theory
based methods have been applied to analyze the brain networks
using quantitative measures such as centrality, modularity and
small-worldness [6], [7], [8], [9], which allows to interpret and
understand the spatial and functional organization of the brain.
Besides, graph measures also provide reliable and quantifiable
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biomarkers that can discriminate normal and clinical popula-
tions [10]. Hence, the graph measures are used to identify and
quantify the differences in the functional networks at both
the individual and group level [6]. The graph comparisons
are often performed in the form of either distance-based
comparisons or statistics applied to graph theory features [6],
[11], [12], [13].

Although graph-based methods can be used to identify
graph attributes at disparate scales ranging from local scales at
the node level up to global scales at the community level, their
power is limited to mostly pairwise dyadic relations [7]. The
inherent dyadic assumption limits the types of neural structure
and function that the graphs can model [14], [15]. Therefore,
brain network models built on top of graphs cannot encode
higher order interactions, i.e., three- and four-way interactions,
beyond pairwise connectivity without additional analysis [16].
To overcome these limitations, we propose to use topological
data analysis (TDA), which has gained a lot of traction in
recent years due to its simplistic construct in systematically
extracting information from hierarchical layers of abstraction.
The algebraic topology in TDA has mathematical ingredients
that can effectively manipulate structures with higher order
relations. One such a tool is the simplicial complex which
captures many body interactions in complex networks using
basic building blocks called simplices [14]. The simplicial
complex representation easily encode higher order interactions
by the inclusion of 2-simplices (faces consisting of 3 nodes)
and 3-simplices (volumes consisting of 4 nodes) to graphs.
We can further adaptively increase the complexity of con-
nectivity hierarchically from simple node-to-node interaction
to more complex higher order connectivity patterns easily.
Simplicial complexes have been used to represent and analyse
the brain data [14], [17], [18]. The modular structure of
network can easily be recognized by means of connected
components, which is the first topological invariant that char-
acterizes the shape of the network. The cycle on the other
hand is a second topological invariant which are loops in the
network [19], [20], [21].

Persistent homology (PH), main TDA technique deeply
rooted in simplicial complexes, enables network representa-
tion at different spatial resolution and provides a coherent
framework for obtaining higher order topological features [22].
The PH based approaches are becoming increasingly popular
to understand the brain imaging data [13], [19], [23]. The
main approach of PH applied to brain networks is to generate
a series of nested networks over every possible parameter
through a filtration [24]. In particular, the graph filtration is
the most often used filtration specifically designed to uncover
the hierarchical structure of the brain networks in a sequential
manner [21].
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Topology-based comparison methods infer the similarity
and dissimilarity of networks based on PH feature summaries
such as persistent diagrams and persistent landscapes [19],
[25], [26]. Typically, a topological discriminating function acts
on these PH summaries to discern their topological similarity
or dissimilarity [19], [22], [25], [26]. The common topological
distances for comparing brain networks are the Gromov-
Hausdorff (GH) and bottleneck (BN) distances [13], [19], [22].

In the last two decades, PH techniques have made significant
inroads in neuroimaging analysis particularly for uncovering
global topological features beyond pairwise interactions [23].
These global features are the topological invariants such
as the number of connected components or cycles in a
network [27], [28]. Traditional PH based methodologies in
neuroimaging have mostly focussed on using these topological
invariants as biomarkers for identifying and characterising
the topological disparities between the control and diseased
populations [20], [29]. While the connected structures of the
brain network have been extensively investigated, the studies
on the cycles in modeling brain networks is very limited [2],
[7]1, [20], [21]. The presence of more cycles in a network
signifies dense connections with stronger redundant connec-
tivity. The cycles in the brain network not only determines
the propagation of information but also controls the feed-
back [26], [30]. Since the information transfer through cycles
can occur in two different paths, they are sometimes inter-
preted as redundant connections. Further, cycles are also
associated with the information diffusion, dissemination and
information bottleneck problems [20], [26], [31].

While cycles appear naturally in networks, it is not easy
to extract or enumerate them. Cycles are often computed
using brute-force depth-first search algorithms [32]. Recently,
a scalable algorithm for computing the number of cycles in
the network was proposed [26]. Cycles are usually identi-
fied by manipulating the boundary matrix in PH [22], [33].
A better approach to determine cycles is by computing the
eigenvectors corresponding to zero eigenvalues of the Hodge
Laplacian [20]. This approach generalizes the graph Laplacian,
the O-th Hodge Laplacian, applied to nodes (0-simplices) to
higher order simplexes. Although these algorithms are useful
to extract cycles in small networks, it is computationally not
feasible to construct and manipulate higher order simplices and
extract cycles for large networks. Ideally, we need algorithms
that can capture higher order interactions and yet retain the
simplicity of graph-based approaches.

We propose a new spectral method using the Hodge Lapla-
cian that can explicitly identify the connections associated with
the cycles. The method is further capable of localizing the
connections contributing to the most discriminative cycles in
networks. This is made possible by computing the independent
cycle basis and then subsequently building a new topological
inference framework that identifies the most discriminating
cycles. For the numerical implementation, we propose an
efficient new algorithm based on the birth-death decomposition
of graphs [25].

Il. METHOD

The detailed explanations on TDA tools such as simplicial

complexes, birth-death decomposition, Hodge Laplacian over

simplicial complexes and the algebraic representation of cycles
are presented.

Fig. 1. (a) lllustration of brain network representation using a graph (left)
and a simplicial complex (right). The graph has only nodes and edges.
The simplicial complex has higher dimensional objects such as triangles
(yellow) and tetrahedrons(blue) in addition to nodes and edges.

A. Graphs as a Simplicial Complex

1) Simplicial Complex: Consider an undirected complete
graph G = (V, w) with vertex set V and edge weight matrix
w = (w;j) [6], [13]. We assume there are p number of nodes.
A binary graph G, = (V, w,) is a graph consisting of the
node set V and the binary edge weights we = (we,ij) given
by

1 if Wijj > €,
ey {O otherwise. M

Denote E. the edge set consisting of all the edges with nonzero
weights. Then we may also represent the binary graph G, as
Ge = (V, E) if there is no ambiguity.

A p-simplex 6, = [vo,01, -+ ,0p] is the convex hull
of p + 1 algebraically independent points vg, 01, -+ ,0p.
A simplicial complex is a collection of simplices such as nodes
(O—simplices), edges (1-simplices), triangles (2-simplices),
a tetrahedron (3-simplices) and higher dimensional counter-
parts. A simplicial complex can be viewed as the higher
dimensional generalization of a graph [22]. Figure 1 illustrates
the difference between graphs and simplicial complexes in
representing a brain network.

2) Chain Complex: A p-chain is a sum of p-simplices
denoted as ¢ = Zi a;o;, where o; are the p-simplices and
the a; are either O or 1 [34]. The collection of p-chains
forms a group and the sequence of these groups is called a
chain complex. To relate chain groups, we denote a boundary
operator 0, : C;, — Cp_1, where Cp, denotes the p-th chain
group. For an oriented p-simplex o), with the ordered vertex
set, the boundary operator is defined as

P
Opop = Z(_l)l[v()avl,"‘ L0y, 0p],

i=0
where [vg, 01, ,0j, - » vplis a (p— 1)-simplex generated
from ¢, = [vo,v1,---,0,] excluding v;. The boundary

operator maps a simplex to its boundaries. Thus, d,07 maps a
triangle to its three edges. We can algebraically show that [22]

O0p—10p0, = 0.

Figure 2 displays a toy example of a simplicial complex with
five vertices (0-simplex), six edges (1-simplex) and a triangle
(2-simplex). The triangle is represented by 71 = [v1, 02, 03]
with a filled-in face (colored yellow). A chain complex
showing 2-chain (set of triangles), 1-chain (set of edges) and
0-chain (set of nodes) is shown on the top right. On the bottom
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Fig. 2. Top left: A simplicial complex with five vertices (0-simplex), six
edges (1-simplex) and a triangle (2-simplex). The triangle is represented
by t; = [v4, vo, v3] with a filled-in face (colored yellow). Top left: A chain
complex showing 2-chain (set of triangles), 1-chain (set of edges) and
0-chain (set of nodes). Bottom left: The 1-cycle which is present in the
simplicial complex. Bottom right: A sequence of boundary operations
applied to ty.

left is the 1-cycle present in the simplicial complex and on the
bottom right, a sequence of boundary operations is applied
to 1. After boundary operation 6>, we get the 1-simplices

[v1, v2] + [v2, 03] — [v1, 03] = €12 + €23 — €13,

which is the boundary of the triangle [20], [23].

3) Cycles: A p-cycle is a p-chain whose boundary is zero.
In a graph (1-skeleton), 1-cycles are loops and O-cycles are
nodes. To compute p-cycles, we use the kernel and image
for the boundary operator and establish their relation to the
p-cycle [22], [35]. Let Z, be the collection of all the p-cycles
given by

Z, =kerdo, = {0, € Cplopo, = 0}.

Let B, be the boundaries obtained as
By =imgop+1 ={op € Cplop = 0p410p+1,0p+1 € Cpi1}.
Since any boundary 0y 110,41 € B) satisfies

OpOp+10p+1 =0,
it is a p-cycle and B, C Z,. Thus, we can partition Z, into
cycles that differ from each other by boundaries through the
quotient space

H,=27Z,/Bp,

which is called the p-th homology group. The p-th Betti
number f, counts the number of algebraically independent
p-cycles, i.e.,

Bp =rankH, = rankZ,—rankB,.

In graph G¢, which is 1-skeleton, Betti numbers fo(G¢)
and f1(G¢) counts the number of connected components
(O-cycles) and number of loops (1-cycles) respectively at
threshold €. Betti numbers other than fy and f; are all zero in
graphs.

4) Birth-Death Decomposition: The graph filtration of
weighted graph G is defined as a sequence of nested binary
networks [13], [21]:

GEODGE]D"'DGE](

where g < €1 < --- < € are the sorted edge weights
called the filtration values [13], [21]. The birth and death of
k-cycles during the process of filtration is quantified using
persistence, which is the duration of filtration values from
birth to death. The persistence is usually represented as
one-dimensional intervals as persistent barcode (PB) or two-
dimensional scatter points as a persistent diagram (PD) with
the x-axis representing birth values and the y-axis representing
death values [22].

During the graph filtration, once a component is born,
it does not die. Thus, all the death values of connected com-
ponents are oo and can be ignored. Then the total number P
of birth values of connected components (0-cyles) is

P =po(Goo) —1=p—1. )

The 0D barcode corresponding to 0-cycles consists of a set of
increasing birth values

B(G)=by <by <--- <bp.
During the filtration, cycle is considered as born at —oo. All
the birth values of 1-cycles can be ignored. The 1D barcode
corresponding to 1-cycles consists of a set of increasing death
values

D(G)=d| <dr <--- <dg.

For a graph with ¢ = p(p — 1)/2 number of edges, the total
number of edges ¢ is equivalent to ¢ = P+ Q. Thus, we have
Q = (p — D(p — 2)/2 number of death values of 1-cycles.
During the filtration, the birth of a component and the death
of a cycle cannot occur at the same instant and this can be
more formally stated as [36]:

Theorem 1 (Birth-Death Decomposition): The set of 0D
birth values B(G) and 1D death values D(G) partition the
edge weight set W such that

W = B(G)U D(G), B(G)N D(G) =0.
The cardinalities of B(G) and D(G) are p — 1 and (p — 1)
(p — 2)/2 respectively.

In the graph filtration, the birth values are easily computed
using the maximum spanning tree (MST). Given a weighted
graph G, computing the set of OD birth values B(G) is
equivalent to the finding MST of G through Kruskal’s or
Prim’s algorithms [21], [25]. Once B(G) is computed, D(G) is
simply given as the rest of the remaining edge weights that
are not part of MST. Thus, the barcodes for 0- and 1-cycles
can be computed efficiently in O(q log p).

5) Wasserstein Distance on 1-Cycles: The topological sim-
ilarity or dissimilarity between the networks can be inferred
from the differences between barcodes [37]. The Wasserstein
distance is a metric that is often used to quantify the underlying
differences in the barcodes [36], [38], [39]. Let Q = (VQ, wQ)
and ¥ = (V¥,w") be two given networks with p nodes.
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Their persistent diagrams denoted as Pq and Py are expressed
in terms of scatter points as

xi =0 dP), - xg = (03.dY)
yi= 0 d)). vy =5 dd)

respectively. We can show that the 2-Wasserstein distance on
persistent diagrams is given by

) 1/2
D(Pa,Py) = inf (3 =) )

xePg

over every possible bijection 7 between Pq and Py [36]. Since
persistent diagrams are 1D scatter points for graph filtrations,
the bijection 7 is simply given by matching sorted scatter
points [36]:

Theorem 2: The 2-Wasserstein distance between the 1D
persistent diagrams (1-cycles) for graph filtrations is given by

9 1/2
Di(Pa, Po) = [ D -] "
i=1

where d? and d \f are the i-th smallest death values associated
with 1-cycles (loops).

B. Hodge Laplacian Over Simplicial Complexes

The Hodge Laplacian generalizes the usual graph Lapla-
cian for nodes (0-simplices) to p-simplices. The Laplacian
matrix Lo for a graph is given by Lo = D — A with
degree matrix D and adjacency matrix A. In general, a higher-
dimensional Laplacian can be defined for each dimension p
using two matrices that perform the role of upper and lower
adjacency matrices:

Ly=Ly+L,

where £§)/ and Uﬁ are the upper and lower adjacency Lapla-

cians [15].

1) Hodge Laplacian: The higher dimensional Laplacian
Lp is usually referred to as the Hodge Laplacian or the
p-Laplacian that connects the p-simplices with their adjacent
(p + 1)-(upper adjacency) and (p — 1)-simplices (lower adja-
cency). Consider boundary matrix B, representing boundary
operator 0, [40]

i
p—

T j i
-1, ifg, ; Cop and g,

e i j
0, if O,y Z op

e i J ~ )
1, 1fap_1CaR and o, _, %

Bp)ij = ol )

where 0;271 is the i-th (p-1)-simplex and ali is the j-th
p-simplex. Notations ~ and ~ denote similar (positive) and
dissimilar (negative) orientations respectively. Then the p-th
Hodge Laplacian matrix £, is defined as

L, =BIB,+B,11B],,. 4)

The Hodge Laplacian £, can be viewed as the sum of the
Laplacians from the lower dimensional simplices [41], [42],
[43], [44]

L T
£k = BB,

and upper dimensional simplices
U _ T
‘cp - BP+IBp+1‘

Since By = 0, the Hodge Laplacian for a 1-skeleton is
Lo = BlBlT, which is popularly referred as the graph Lapla-
cian. The boundary matrix B relates how nodes are connected
to form edges is commonly referred as incidence matrix in the
graph theory. Since there is only O-simplices and 1-simplices
in a 1-skeleton, the boundary matrix B, = 0. Thus, the second
term in the Hodge Laplacian £; vanishes and we have

Ly =LY =BIB

for graphs.

2) Algebraic Representation of 1-Cycles: The spectral
decomposition of Hodge Laplacian is performed to identify
p-cycles of the underlying network [20], [40], [41], [45]. The
p-th homology group H), is a kernel of Hodge Laplacian £,
given by

H, =kerL,.

The eigenvectors with zero eigenvalue of £, span the kernel
space of L. We first solve

£,U, = A,U,,

where A ) is a diagonal matrix of eigenvalues and U, is a
matrix of eigenvectors. The multiplicity of the zero eigenvalue
of Hodge Laplacian £, is the Betti number f,, the rank of the
kernel space of £,. This is related to the algebraic connectivity
and generalizes from the well known fact that the number
of zero eigenvalues of the graph Laplacian is the number
of connected components. Similarly, the number of zero
eigenvalues of the Lo, £1 and £ matrix corresponds to the
number of 0-cycles (connected components), 1-cycles (closed
loops) and 2-cycles (voids or cavities) respectively. Since the
eigenvectors corresponding to the zero eigenvalues are related
to the homology generators [46], we represent a 1-cycle using
the coefficients of the eigenvectors. Let A = (ay(;, j),m) be the
matrix consisting of columns of U; that corresponds to the
zero eigenvalue. The size of A is g x 1 with Betti number /.
Here a;;, j),m is the entries of m-th eigenvector of the Hodge
Laplacian corresponding to edge e;;. The m-th 1-cycle C™ is
then represented as

"= Z aig, j),meij - Q)

ejj€E

C™ can be represented as a vector by putting coefficient
aj(, j),n into the corresponding position in the lexicographi-
cally ordered edge set [e12, €13, -+ , €23, €24, -+ , €q—1,4]" .

For Figure 3-bottom example, the eigendecompostion on the
Hodge Laplacian £ results in the eigenvalues [0.00,0.83,
2.00, 2.69, 4.48] and the eigenvector corresponding to the zero
eigenvalue is obtained as [0.00,0.50, —0.50, 0.50, —O.SO]T.
We ignored ej3 since there is no connection. The 1-cycle is
then represented as

C' = 0.5e33 — 0.5e24 + 0.5e35 — 0.5e4s.

A similar procedure will be used to identify and extract the
1-cycles by breaking down the graph into a subgraph contain-
ing only one 1-cycle.
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Fig. 3. Top-left: A 2-skeleton representation network made of five
vertices connected by six edges. Top-Right: The 1-cycle is formed
by the vertices vo, v4, v5, v3. The numbers on edges are eigenvec-
tor of the Hodge Laplacian L1 corresponding to the zero eigenvalue.
The edge colors indicate the absolute value of coefficients of the
cycle representation C'. Bottom-left: edge eq3 is removed resulting in
1-skeleton. Bottom-right: The 1-cycle identified along with the edges that
constitute the cycle.

3) Computation of 1-Cycle Basis: The representation (5) uses
all the edges representing a 1-cycle. Even the edges that are not
a part of a cycle are used in the representation. This has been
the main limitation of using the Hodge Laplacian in identifying
1-cycles in the past [20]. In the proposed method, we split the
graph into a series of subgraphs such that each subgraph has
only one 1-cycle.

The graph filtration partitions the edges in a given network
uniquely into the birth and death sets. While the edges in the
birth set are responsible for creating components, the edges in
the death set accounts for destroying cycles. The edges in the
birth set forms the maximums spanning tree (MST) with no
cycles. When adding an edge from the death set to MST, a
1-cycle is formed. The process is repeated sequentially till we
use up all the edges in the death set. We claim the resulting
1-cycles form a basis.

Theorem 3: Let M(G) be the MST of graph G. When the
k-th edge dj from the death set D(G) is added to the MST,
1-cycle C¥ is born. The collection of cycles C!, - - - ,C< spans
kerL.

Proof: Let Ej; be the edge set of the cycle C¥. Since Ej
and E; differ at least by edges dj and d;, they are algebraically
independent. Hence, all the cycles C',---,C< are indepen-
dent from each other. Since there should be Q number of
independent cycles in the 1-st Homology group H; = ker Ly,
they form a basis. O

We can sequentially extract 1-cycles using the Hodge Lapla-
cian of the subgraph Gy = (V, T U{dx}), which contains only
one 1-cycle CK. We get exactly one eigenvector corresponding
to the zero eigenvalue. The entries of eigenvector will be all
zero on the edges that are not part of the cycle. Thus, we can
represent 1-cycle C* only using edges that contribute to the
cycle as

ck= Z ai, jy,keij - (6)

eij€EL

Birth death
decomposition

Subgraphs having
only one cycle

Independent 1-cycle
basis from subgraph

Fig. 4. Left: Graph G is decomposed into birth set B(G) with edges
[eq5, €05, €35, €45] and death set D(G) with edges [eqo, €13, €14,
€03, €04, €34]. Middle: The subgraphs is constructed by adding an edge
from the death set to the birth set. Right: The independent 1-cycles
obtained from the eigenvectors of the Hodge Laplacian corresponding to
the zero eigenvalue.

The representation (6) contains only the edges that form the
cycle. All other terms are zero. Thus, C* can be represented as
vectors by putting ay, )« into the corresponding position in
the vectorized edge set [e12, €13, - , €23, €24, , eg—1,4]" .
Subsequently, all the 1-cycle basis C',---,C< can be sys-
tematically extracted and efficiently stored as a sparse matrix.
Since C!,---,C2 forms a basis, any cycle in the graph can
be represented as a linear combination Z,’Q=1 a;Cl.

The extraction of 1-cycle basis of a graph can be summa-
rized to three steps (Figure 4). 1) The birth-death decompo-
sition is used in extracting birth and death values. The edges
le1s, €25, €35, e45] form the birth set B(G) and the remaining
edges [e12, €13, €14, €23, €24, €34] become the death set D(G).
The edges in the birth set correspond to the maximum span-
ning tree (MST). 2) The subgraphs having only one cycle each
are created by adding an edge from the death set to the MST.
3) The Hodge Laplacian is used in identifying only edges that
belong to each cycle.

C. Statistical Analysis on 1-Cycles

Let Q = {Q,---,Q,} and ¥ = {¥,---,¥,} be the
collections of m and n complete graphs each consisting
of p number of nodes. There are exactly Q = (p — 1)
(p—2)/2 number of cycles in each network. We are interested
in developing new statistical inference procedures testing the
topological difference between Q and V.

1) Inference on Death Values: We use the Wasserstein
distance between graphs in measuring the 1D topological
difference. Consider the average Wasserstein distance within
groups L£w and between groups £p given by [36]:

M[Zpl(ﬂi,ﬂj)-i-zm(%,‘{fj)]
i<j

1 m n
£p = %Zzpl(gia\}’j)

i=1 i=I

Lw =

i<j

We are only using the Wasserstein distance between cycles,
which are computed using the sorted death values. We then
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use the ratio £p/w = L£p/Lw as the test statistic. If the
two groups are topologically close, £p becomes small while
Lw becomes large. Thus the ratio £p,w can be used to
as test statistic. Since the probability distribution of £p/w
is unknown, we used the permutation test [47], [48], [49],
[50], [51]. For large sample sizes m and n, the permutation
test is computationally costly. We adapted for the scalable
transposition test, which sequentially update the test statistic
over transpositions [36], [47]. Unlike the permutation test that
shuffles all graphs in each permutation, the transposition test
only shuffles one graph per group in a permutation. Computing
the statistic £p,w over each permutation requires the recom-
putation of the Wasserstein distance from scrach. Instead,
we perform the transposition of swapping only one graph per
group and setting up an iteration of how the test statistic
changes over the transposition. In real brain network data,
we used the test statistics with 500000 random transpositions
while interjecting a random permutation for every 500 trans-
positions. The intermix of transpositions and permutations has
the effect of speeding up the convergence [47].

2) Common 1-Cycle Basis Across Subjects: If 1-cycle basis
change from one subject to next, it is difficult to use the basis
itself as a feature in statistical analysis. Thus, we propose
to use a common 1-cycle basis across subjects by using the
network template, which is obtained by averaging correlation
matrices of all subjects. Then we encode subject-level vari-
ability in the expansion coefficients of the common 1-cycle
basis ¢ = [C Le2....c Q] obtained from (6). Subsequently,
the vectorized upper triangle entries of individual correlation
matrix w as

w=a;C' —i—azCz—i—---—i—aQCQ.

The coefficients ¢ = [a1, - - -
squares fashion as

s aQ]T are estimated in the least

T g\—14T

a= (¢ ¢) ¢ w. (M
The estimated coefficients « for each subject are then used in
discriminating two groups of networks Q and ¥. Let 6:52 and
a? be the means of the j-th 1-cycle basis in group Q and ¥

respectively. Then we used the maximum difference
LQ,¥) = max_|af —a) 8
(@) = max |af - | ®)
as the test statistic in discriminating between the groups. The
statistical significance is determined using the permutation test.
Unlike previous analysis that cannot localize specific cycles,
the test statistic gives a way to localize most discriminating
cycles by identifying the j-th cycle that gives the maximum.

[1l. VALIDATION

Since cycles can be modeled to embed complex interac-
tions, it can potentially uncover hidden topological patterns
which are hitherto impossible in conventional graphical mod-
els. In literature, there is no baseline statistical method for
explicitly modeling cycles in networks. Also, there is no
ground truth in real brain data. Even if we apply the baseline
methods to real data, it is unclear which method provides the
best answer. Thus, we validated the proposed methods in a
simulation study with the ground truth. The Matlab codes for
the simulation and related Hodge Laplace codes are given in
https://github.com/laplcebeltrami/hodge.
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Fig. 5. The three types of cycles with different topology: circle (1-loop),
lemniscate (2-loops), quadrifolium (4-loops) used in the simulation study.
Gaussian noise N(0, 0.022) is added to the coordinates. Bottom right: the
pairwise Wasserstein distance matrix computed using the death values
of the 1-cycles on 5 networks in each group.

A. Simulation Study |

We generated three types of networks with different number
of loops (1-cycles). Some well known curved shapes such
as a circle, leminiscate, quadrifolium [52] were chosen as
the ground truth and added Gaussian noise N(0,0.02%) to
the coordinates (Figure 5). The circle has a single loop, the
leminiscate has two loops and the quadriform has four loops.
The number of nodes to construct the network were chosen
as p = 64 for all the types. This ensures we have the
same number of cycles (Q = 1953 independent 1-cycles) in
each type of simulated network. For each type of networks,
we generated 6, 8, 10 and 12 number of networks.

1) Death Values: The topological distances between the
simulated networks were measured by computing the
2-Wasserstein distance between the persistent diagrams of
1-cycles. Figure 5 shows the pairwise Wasserstein distance
map showing a clear clustering pattern. Networks with similar
topology have smaller distances while networks with different
topology have relatively large distances. Using the proposed
ratio statistic, we computed p-values comparing different net-
work types. Table I shows the average p-values obtained after
50 independent simulations. Each simulation was perforemd
with 100000 permutations. Networks of the same topology
have large p-values indicating they are shown to be statistically
not different.

When testing networks of different topology (first three
rows), we have small p-values indicating they are shown to
be statistically different. The results indicate the proposed
method perform well in discriminating networks of different
topology. As the number of networks increase in each group,
the p-values get smaller showing increased statistical power
over increased sample size. When testing networks of identical
topology (last three rows), we have large p-values indicating
they are not showing statistical differences and does not
produce much false positives. Thus, the method perform well
as expected.
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TABLE |
THE PERFORMANCE RESULTS OF THE WASSERSTEIN DISTANCE ON
1-CYCLES ARE SUMMARIZED AS AVERAGE P-VALUES FOR TESTING
DIFFERENT LOOP TYPES. WE GENERATED DIFFERENT NUMBER OF
NETWORKS. THE SMALLER P-VALUES IN THE FIRST THREE ROWS
INDICATE THAT OUR METHOD CAN DISCRIMINATE NETWORK
DIFFERENCES. THE LARGER P-VALUES IN THE LAST
THREE ROWS INDICATE THAT WE ARE NOT
PRODUCING FALSE POSITIVES

loop types 6 networks 8 networks 10 networks 12 networks
1vs.2 14x1073% 6.8x107° 6.1x107% 4.4x10°7
1vs. 4 11x1073 54x107%° 49x107% 52x10°7
2vs. 4 1.2x1073 6.6x1075 3.2x107% 20x10~7
1vs. 1 0.3954 0.5336 0.9790 0.7834
2vs. 2 0.6516 0.8404 0.3458 0.5376
4vs. 4 0.5943 0.8294 0.7561 0.5403

TABLE I

THE PERFORMANCE RESULTS OF THE COMMON 1-CYCLE BASIS
METHOD ARE SUMMARIZED AS THE AVERAGE P-VALUES. THE
SMALLER P-VALUES INDICATE THAT OUR METHOD CAN
DISCRIMINATE NETWORK DIFFERENCES (FIRST THREE

Rows) WHILE THE LARGER P-VALUES INDICATE
THAT OUR METHOD DOES NOT PRODUCE
FALSE POSITIVES (LAST THREE Rows)

loop-type | 6 networks 8 networks 10 networks 12 networks
lvs.2 | 21x1073 20x10"% 1.0x10°° 0.0000
1vs. 4 1.9x1073 1.2x10~% 2.0x10°5 0.0000
2 vs. 4 1.8x1073% 14x10~% 1.0x10°° 0.0000
1vs. 1 0.4263 0.6606 0.8736 0.6735
2vs. 2 0.3962 0.8919 0.9620 0.5590
4 vs. 4 0.7988 0.7365 0.4598 0.9815

Group 1 Group 2 Group 3
Y fﬁ..‘- m
sy £ s~
b4 5 4 - N 2
-: - . !
\‘Nu-"‘ \‘M‘ Ay an®

Fig. 6. Top: Three topologically different network shapes with different
number of loops in each group. Group 1 has three loops, Group 2 has
two loops and Group 3 has one loop. Bottom: The sample points for the
simulation networks generated using the Gaussian noise N(0, 0.052) on
the base network.

TABLE llI

THE PERFORMANCE RESULTS SHOWING AVERAGE P-VALUES WITH

THE STANDARD DEVIATIONS. THE FALSE POSITIVE AND FALSE
NEGATIVE RATES ARE SHOWN IN THE BRACKETS. SMALLER ERROR

RATES ARE PREFERRED. THE GRAPH THEORY FEATURES
Q-MODULARITY £ AND BETWEENNESS £p¢; ARE USED. THE
GROMOV-HAUSDORFF DISTANCE £ AND THE BOTTLENECK
DISTANCE £y IN PERSISTENT HOMOLOGY ARE USED.
THE £y IS THE PROPOSED WASSERSTEIN DISTANCE
ON DEATH VALUES. £¢ IS THE PROPOSED TEST
STATISTIC ON THE COMMON 1-CYCLE BASIS

2) Common 1-Cycles Basis Across Subjects: We used the
maximum gap between coefficients of 1-cycle basis as the test
statistic on the same simulation study. The test was repeated
for 10 times and the average p-values are reported. Each
simulation was performed with 100000 permutations. Table II
shows the average p-values obtained for the simulation. The
p-values are low for networks with differences while the
p-values are large when the network has no difference. The
method performed better than Wasserstein distance based
method reported in Table I.

B. Simulation Study Il

We used a different simulation setting for comparing the
proposed method against existing methods. We constructed
topologically different shapes by combining circular arcs
with and without a gap (Figure 6). The networks were
generated by sampling points from different topological
shapes. We considered three topologically different networks
with the difference in their number of loops in each group.
Group 1 has three loops, Group 2 has two loops and Group 3
has one loop. An individual network in each group is
generated by first sampling the coordinates y; for the i-th
node along the ground truth patterns. The coordinates y; are
perturbed with Gaussian noise N(0,0.05%). The weight wjj
between nodes y; and y; is given by the Euclidean distance.
To retain only the dominant loops in the network, we applied
the following thresholding scheme

wi; = wij (1= I;) + 107 1; - U0, 1),

Groups £ Lpet £cH £BN Lo L
1vs. 2 0.4192 | 0.5167 | 0.4880 | 0.4495 | 0.0023 | 0.0000
’ +0.28 +0.28 +0.30 +0.30 +0.00 +0.00
(0.94) | (0.98) | (0.88) | (0.92) | (0.00) | (0.00)
1vs. 3 0.3521 | 0.4673 | 0.4903 | 0.5419 | 0.0000 | 0.0000
o +0.31 +0.27 +0.29 +0.30 +0.00 +0.00
(0.76) | (0.98) | (0.94) | (0.98) | (0.00) | (0.00)
2 vs. 3 0.5671 | 0.4672 | 0.5503 | 0.4362 | 0.0144 | 0.0000
' +0.28 +0.30 +0.29 +0.29 +0.03 +0.00
(0.96) (0‘96) (0.98) (1.00) (0.06) (0.00)
1vs. 1 0.5399 | 0.5170 | 0.4251 | 0.4793 | 0.5069 | 0.4917
’ +0.26 +0.28 +0.26 +0.27 +0.29 +0.25
(0.04) | (0.04) | (0.08) | (0.04) | (0.04) | (0.06)
2vs. 2 0.5487 | 0.5291 0.5153 0.5031 0.4524 0.5164
> +0.30 +0.26 +0.29 +0.30 +0.26 +0.32
(0.02) | (0.02) | (0.04) | (0.04) | (0.04) | (0.14)
3 vs. 3 0.4836 | 0.4608 | 0.5322 | 0.5464 | 0.5069 | 0.5086
: +0.30 +0.26 +0.25 +0.33 +0.32 +0.31
(0.08) | (0.06) | (0.04) | (0.10) | (0.04) | (0.04)

where U(0,1) is

the uniform distribution on the interval

(0,1) and the indicator function /;; = 1 if w;; > 0.5 and
0 otherwise. The edge weights w;; are constructed such that
the connections larger than the threshold 0.5 are replaced
with random noise to retain only the dominant loops in the
networks. We generated 60 random networks per group.

We compared our model to graph theory features
(Q-modularity, betweenness) [10] and persistent homol-
ogy methods (Gromov-Hausdorff and bottleneck distances)
[19], [21]. Table III shows the performance results with
the average p-values with the standard deviations. The false
negative rates and false positive rates are also given in the
brackets. £9 and L. are based on the Q-modularity and
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betweenness. For the graph theory features, we used a similar
test statistic as (8) and used the maximum absolute difference
in the average graph theory features in each group. £gH
and £py are based on the Gromov-Hausdorff and bottleneck
distances. The computation of the Gromov-Hausdorff and
bottleneck distances follows the methods in [19]. £y, is the
proposed Wasserstein distance based on death values. £, is
the proposed statistical inference based on the common
l-cycle basis. In all the test, we used the permutation test
with 100000 permutations.

In testing topological differences (first three rows), the
existing methods did not perform well failing to identify the
topological differences. The proposed methods £, and £,
performed very well and were able to differentiate topological
differences. In testing no topological difference (last three
rows), all the methods performed reasonably well and did
not report any false positives. If there are subtle topological
differences that are difficult to differentiate, existing methods
will likely to fail while the topological method will likely to
detect signals.

IV. APPLICATION

A. Dataset and Preprocessing

In this study, we used the the subset of the resting-state
fMRI data collected in the Human Connectome Project
(HCP) [53], [54]. We used the data used in [55]. The subjects
were in ages ranging from 22 to 36 years with average
age 29.24 + 3.39 years for 172 males and 240 females.
The fMRI data were acquired for approximately 15 minutes
for each scan. The participants are at rest with eyes open
with relaxed fixation on a projected bright cross-hair on a
dark back-ground [53]. The fMRI data were collected on a
customized Siemens 3T Connectome Skyra scanner using a
gradient-echoplanar imaging (EPI) sequence with multiband
factor 8, repetition time (TR) 720ms, time echo (TE) 33.1 ms,
flip angle 52°, 104 x90 (RO x PE) matrix size, 72 slices, 2mm
isotropic voxels, and 1200 time points is used.

The standard minimal preprocessing pipelines [54] such
as spatial distortion removal [56], motion correction [57],
bias field reduction [58], registration to the structural MNI
template, and data masking using the brain mask obtained
from FreeSurfer [54] is performed on the fMRI scans. This
resulted in the resting-state fMRI with 91 x 109 x 91, 2mm
isotropic voxels at 1200 time points.

The scrubbing is done to remove fMRI volumes with
spatial artifacts in functional connectivity [59] due to sig-
nificant head motion [55], [59]. The framewise displacement
(FD) from the three translational displacements and three
rotational displacements at each time point to measure the
head movement from one volume to the next is calculated.
The volumes with FD larger than 0.5mm and their neighbors
were scrubbed [55], [59]. 12 subjects having excessive head
movement are excluded from the dataset, resulting in a refined
fMRI dataset of 400 subjects (168 males and 232 females),
which we analyzed in this study. Subsequently, the Automated
Anatomical Labeling (AAL) template was applied to parcel-
late the brain volume into 116 non-overlapping anatomical
regions [60]. The fMRI across voxels within each brain parcel-
lation is averaged, which resulted in 116 averaged fMRI time

series with 1200 time points for each subject. The additional
details on the processing can be found in [55] and [36].

B. Cycle Computation

For each subject, we measured the whole-brain functional
connectivity by computing the Pearson correlation matrix
p = (pij) over while time points across 116 brain regions.
This resulted in 400 correlation matrices of size 116 x 116.
Since the dataset contains p = 116 nodes, the total number of
edges in the brain network is ¢ = p(p — 1)/2 = 6670.

We then performed the birth-death decomposition following
Theorem 1. The number of edges in the birth set is

P=p—1=116—1=115.
The number of edges in the death set is
Q=g — P =06555.

The edges from the death set are then sequentially added to
the birth set to generate a sequence of 6555 subnetworks. Each
subnetwork has only one cycle which is identified using the
Hodge Laplacian. Figure 7 displays how the number of the
topological invariants £y (number of connected components)
and f; (number of cycles) change over the graph filtration.
po remains at one for a long duration and begins to increase
after correlation value 0.4 and eventually reaches 116 which
is the number of independent components or nodes. On the
other hand, £ begins with Q = 6555 number of cycles and
keeps decreasing as the edges are removed sequentially and
eventually reaches near zero after correlation 0.6. The corre-
lation between 0.4 and 0.6 is the range where the topological
structure of the brain networks seem to change. Once all the
cycles are identified and extracted, we mainly focused on the
death values of cycles. These topological quantities are used
as test statistics for discriminating males from females.

C. Inference on Cycle Differences

1) Death Values: The topological similarity between the
networks can be measured by computing the 2-Wasserstein
distance between persistent diagrams of 1-cycles [36].
We computed the average within and between group distances.
Then the transposition test [47] on the ratio statistic was
carried out in determining the statistical significance between
232 female and 168 male brain networks. The observed test
statistic is 1.0232 and corresponding p-value is 0.049 based
on 500000 random transpositions.

2) Common 1-Cycle Basis: The common 1-cycle basis was
obtained from the average correlation matrices of 400 subjects.
We computed the coefficients for each network using (7) and
the mean coefficients for females and males separately for
each cycle. We then used the maximum difference (8) between
mean coefficients as the test statistic. The observed statistic
was 0.408, which corresponds to the p-value of 0.03 based on
500000 permutations.

The five most discriminating cycles are identified by iden-
tifying which cycle gives the the maximum test statistic
values in the decreasing order: 0.408, 0.407, 0.405, 0.396 and
0.393 corresponding to the cycle indexing 2446, 1140, 4090,
3683 and 831. Figure 8 shows five most discriminating cycles
corresponding to the maximum observed statistics. Some
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Fig. 7. The graph filtration of the average correlation network of 400 subjects. Gy is monotonically increasing while 31 is monotonically decreasing

over the filtration. We have total 6555 cycles in the brain network. Middle: Four 1-cycles chosen at specific death values are shown. The edges that
destroy the cycles are shown in blue.
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Fig. 8. The five most discriminating cycles having maximum values in the test statistics are shown. The color bar shows the difference between the
average correlations (female - male) for the five cycles. Bottom Right: The edges that frequently occur in all the five cycles are shown. The color bar
is the overlap frequency.

connections consistently appear in all the five cycles. The (Parietal-Inf-L), Precentral gyrus (Precentral-L), Postcentral

nodes observed in the five most discriminating cycles are gyrus (Postcentral-L), the rolandic operculum (Rolandic-
superior parietal gyrus (Parietal-Sup-L), inferior parietal lobule =~ Oper-L, Rolandic-Oper-R), the median cingulate and para
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cingulate gyri (Cingulum-Mid-R, Cingulum-Mid-L) and the
Insula. The connections between these regions highlight their
importance in discriminating males and females. The symmet-
ric connection between the left and right rolandic operculum,
superior parietal lobule and the middle cingulate appear in
at least 3 most dominating cycles. We determined the overlap
frequency and displayed in the bottom right of Figure 8, where
the color scale correspond to the the number of overlaps in
the 5 cycles.

There is known sex difference in the parietal region,
which is involved in spatial ability such as the mental rota-
tion [61]. [62] reported sex differences in the left parietal,
precentral and postcentral regions in a rs-fMRI study, where
Kendall’s coefficient of concordance (KCC) was used to mea-
sure the similarity of the ranked time series of a given voxel
to its nearest 26 neighbor voxels [63]. The sex difference is
reported in the left rolandic operculum in rs-fMRI study [64].
While all these pervious studies are reporting the sex dif-
ferences at the node level, we are consistently identifying
them within 5 most dominant cycles. The edges connect-
ing Rolandic-Oper-L, Rolandic-Oper-R and Insula appear in
4 cycles. The edges connecting Parietal-Sup-L and Parietal-
Inf-L and the edges connecting Cingulum-Mid-R, Cingulum-
Mid-L and Insula-R occur in 3 cycles. We believe these brain
regions can act as discriminating biomarkers for sexual dimor-
phism studies including Alzheimer’s disease which affects
disproportionately more women than men [65].

D. Comparison Against Baselines

We compared the discriminating power of our method
against Gromov-Hausdorff (GH) and bottleneck (BN) dis-
tances often used in persistent homology. The computed
p-values are 0.540 for GH and 0.277 for BN and not able to
discriminate the networks. Both the GH and BN distances did
not perform well in the real data. We also used graph theory
features Q-modularity and betweenness and obtained p-values
of 0.035 and 0.6202 respectively [10]. Among all 4 baseline
methods, Even though Q-modularity performed well, it cannot
be used to identify connections that are responsible for the
differences and explicitly localize regions that cause significant
topological disparity.

V. CONCLUSION

Cycles in the brain network are one of the most fundamental
topological features in understanding higher order interactions.
In this study, an efficient scalable algorithm to identify and
extract the 1-cycles in a network is proposed. We combine the
ideas from persistent homology and the Hodge Laplacian in
developing the spectral version of topological data analysis.
The proposed spectral-TDA is demonstrated with an illus-
tration and applied to the resting state brain networks from
Human Connectome Project (HCP). The proposed algorithm is
efficient for typical brain network data which has few hundred
nodes (p ~ 100). Even for larger networks (p > 1000),
various computations can be done quickly in O(plog p) run
time using the birth-death decomposition [25].

One of our major goals in the study is to discriminate
networks having different cycles. It is not even clear how
to algebraically represent cycles. To capture this topological

characteristic of loops, we used the common 1-cycle basis to
precisely encode this information across subjects. Through the
combination of MST and the Hodge Laplacian, we were able
to extract and represent 1-cycle basis as a sparse matrix. Any
cycle in the graph is represented as a linear combination of
basis szzl a;C/. Such a vectorization enables us to build
more complex models such as sparse network models or joint
identification of common cycles across subjects [20]. This is
left as a future study.

We designed a new topological inference procedure based
on the 1-cycle attributes such as death values of cycles. The
Wasserstein distance between cycles C' and C/ is simply the
squared difference of death values (d; — d j)z. Such squared
norm makes computations involving cycles straightforward.
The new Wasserstein distance based statistical framework
is used in discriminating the brain networks of males and
females. Our study emphasizes that it is meaningful to study
and model the higher order interactions using cycles for brain
network analysis.
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