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Abstract: Over the last two decades, topological data analysis (TDA) has emerged as a very powerful
data analytic approach that can deal with various data modalities of varying complexities. One of
the most commonly used tools in TDA is persistent homology (PH), which can extract topological
properties from data at various scales. The aim of this article is to introduce TDA concepts to
a statistical audience and provide an approach to analyzing multivariate time series data. The
application’s focus will be on multivariate brain signals and brain connectivity networks. Finally,
this paper concludes with an overview of some open problems and potential application of TDA to
modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect
models to capture variations in the topological properties of data collected from multiple subjects.

Keywords: topological data analysis; persistence diagram; persistence landscape; multivariate time
series analysis; brain dependence networks

1. Introduction
The field of topology has a rich history spanning more than two centuries, with its

origins tracing back to the work of Leonhard Euler on the famous Königsberg bridge
problem. Euler tackled this problem in the 18th century, specifically in the year 1736, as he
sought to find a solution to the challenge of finding a walk through the city that would
cross each of its bridges once and only once [1]. In the centuries that followed, the field
of topology was enriched by the contributions of numerous renowned mathematicians,
such as Enrico Betti, Camille Jordan, Johann Benedict Listing, Bernhard Riemann, Felix
Hausdorff (much later), and many others [2]. By the turn of the 20th century, Henri
Poincaré had developed the concepts of homotopy and homology, thus starting the new
field of algebraic topology. The field of topology witnessed major advances and theoretical
breakthroughs throughout the twentieth century, becoming one of the most important
fields of mathematics, but without practical applications.

Despite the major theoretical development throughout the 1900s, the application
aspect did not really take off until much later. Indeed, it was only in the early 2000s that
topology found its way to the applications arena under the coinage of topological data
analysis. Topological data analysis (or TDA) has witnessed many important advances over
the last twenty years, it aims to unravel and provide insights about the “shape” of the
datum, following the central TDA dogma: datum has a shape, the shape has meaning,
and meaning drives value. This is done by analyzing the persistence homology using a
persistence diagram or barcode. The reader is referred to [3] for an introduction to the
notion of persistence, [4,5] for a survey on persistent homology and barcodes, and [6] for a
review of TDA in general.

Several tools have been developed under the TDA framework to analyze many types
of data. These tools have been applied to a broad array of scientific fields, including
biology [7], finance [8], and brain signals [9,10]. These tools aim to guide the practitioner
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to understand the geometrical features present in high-dimensional data, which are not
always directly accessible using other classical techniques. Even if such features could be
observed upon examination using classical graph-theoretical methods, these would not
have been found automatically if the topological methods had not first detected them.

In recent years, the field of deep learning has witnessed a growing emphasis on the
application of deep neural networks to investigate physiological signals, with a primary
focus on brain imaging [11]. Convolutional neural networks (CNNs), pioneered by Yan
LeCun and his collaborators [12,13], have been instrumental in driving progress across
various scientific domains, including neuroscience [14]. These models have demonstrated
their effectiveness in tasks such as the classification and segmentation of neuroimaging
data [15–17].

Notably, CNNs have been applied to neuroimaging data, including functional MRIs
(fMRIs), where the BOLD response is treated as a 3D image at the voxel level [18]. CNNs
leverage convolutional filters to extract meaningful features [13]. Additionally, CNN-based
approaches have explored regions of interest (ROIs) to reduce spatial complexity and
estimate dependence between pairs of ROIs, leading to the analysis of functional connectiv-
ity matrices [19,20].

Moreover, the recent advancements in graph neural networks (GNNs) [21,22] have
expanded the scope of CNN models to accommodate irregular data structures, such as
weighted networks. GNNs harness message-passing techniques, allowing the application
of CNN-like models to situations where node neighborhoods are determined by network
weights instead of node positions [23,24]. This progress introduces new possibilities for
exploring weighted brain networks, providing valuable insights into their topological
properties. Nonetheless, the challenges related to limited interpretability and explainability,
model selection, the risk of overfitting, sensitivity to node ordering, and the absence of
global information present significant barriers to the efficacy of such approaches.

Despite recent efforts to employ GNN-like models for assessing and interpreting
topological information in brain networks [25,26], these models exhibit limited descriptive
power when contrasted with the insights provided by topological data analysis (TDA)
methods. Rather than pursuing one method’s dominance over the other, there is significant
potential in merging deep learning and topological data analysis to unravel how topological
information is encoded within these networks, as demonstrated in prior work [27].

The primary tools in TDA are Morse and Vietoris–Rips filtrations, which have been
extensively used in various applications. For instance, Morse filtrations have been used
to study patterns in imaging data, such as in [28,29], or the geometry of random fields
in general, as in [30]. However, Vietoris–Rips filtrations (through persistence homology)
have been extensively used to study many types of point cloud datasets. This includes
time series data and their transformations using various embedding techniques. To better
understand persistence homology, a few concepts, such as simplicial complexes and their
filtrations, will be introduced.

No matter the chosen approach, whether GNN-based or TDA-based, the analysis of
brain signals comes with a diverse set of strengths and limitations. Table 1 offers a concise
overview, outlining the distinctive advantages and potential challenges associated with
each method.

This paper has the overarching goal of introducing fundamental TDA concepts to
scientists working with diverse data types, including biological, physical, and financial
signals. It provides a comprehensive perspective on how these concepts can be applied to
the analysis of multivariate time series data. The paper begins with a concise introduction
to TDA and persistent homology. In Section 2, we delve into crucial TDA background
topics, encompassing Morse filtration, persistent homology, and time-delay embeddings
for univariate time series. Section 3 is dedicated to the application of TDA to dependence
networks in multivariate time series. Section 4 presents a framework for identifying
topological group differences via permutation tests, and Section 5 explores some open
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problems of interest in neuroscience, particularly in studies that investigate variations in
brain dependence across disease groups.

Table 1. Advantages and Disadvantages of neuroimaging data analysis methods.

Method Advantages Disadvantages

C
N

N
at

th
e

vo
xe

ll
ev

el
• Strong ability to capture spatial

patterns.
• Can handle 2D or 3D datasets with

high resolution.
• Automatically learns relevant fea-

tures from raw data.

• Requires large amounts of data for
training.

• Model selection is difficult.
• Does not lend well to statistical

analysis.
• Considers spatial neighbor only.

G
N

N
Ba

se
d

on
FC • Models brain networks as graphs.

• Leverages message passing across
neighbors to learn the suitable
representation.

• High discriminative power.
• Can detect topological differences

between networks.

• Requires large amounts of data for
training.

• Model selection is difficult.
• Does not lend well to statistical

analysis.
• Can be sensitive to node relabeling.

M
or

se
Fi

ltr
at

io
n

• Provides topological insights on the
arrangement of the local extrema.

• Can handle 1D signals (functions),
2D and 3D signals (images).

• Assumes smooth functions.
• Cannot handle more than one time

series at a time.

Ti
m

e-
D

el
ay

Em
be

dd
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g

• Enables the topological analysis of
time series data as a cloud point.

• Strong foundations from dynamical
systems.

• Hyperparameter selection (time lag
and embedding dimension).

• Can be sensitive to noise.

V
ie

to
ri

s–
R

ip
s

Fi
ltr

at
io

n

• Considers all threshold values.
• Quantifies topological patterns pre-

cisely at various dimensions.
• Robust to node relabeling.
• Can lend well to statistical analysis.

• Can be computationally expensive
for large datasets.

• Analyzes the data globally and may
lack direct interpretability.

• Lack of directionality.

2. Background Material For TDA
Understanding topological data analysis (TDA) requires familiarization with a few

key concepts. In the TDA literature, it is common to find terminology such as data points,
distance between points, or whether the following TDA summary is stable or unstable.
Such phrases often use vocabulary familiar to the data scientists; however, the meaning
may differ greatly, making it difficult for the reader to understand. Therefore, we invite the
reader to ponder on the following questions.
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• Meaning of data: What constitutes data?
• Meaning of distance: How can we define a meaningful distance (or discrepancy)

between data points?
• Notion of stability: Is this given TDA summary stable? This is addressed through

stability theorems.
These questions will be addressed in this section as well as in coming sections. First,

we start by investigating the application of TDA to univariate time series data, then we
will consider multivariate time series data, such as brain electroencephalogram signals
recorded from electrodes on the scalp. Furthermore, we will examine dependence-based
distance functions that measure the degree of association between time series components
(e.g., between pairs of electrodes). Finally, we demonstrate TDA on real-world applications
with dependence networks.

Data encompass a wide range of concepts. In the mind of a geneticist, ‘data’ refer
to a distinct entity (e.g., a sequence of nucleotides). However, data may take on different
forms for neuroscientists, such as electroencephalogram (EEG), local field potential (LFP),
neuronal spike trains, or functional magnetic resonance imaging (fMRI). In general, data
can be represented in various forms, such as images, functions, time series, counts, random
fields, bandpass-filtered signals, Fourier transforms, localized transforms (e.g., wavelets
and SLEX), etc. In other words, every data type may require a different statistical approach.
For example, a cloud of points in Euclidean space might require one statistical approach,
while a time series of counts might require another.

Similarly, the notion of distance could potentially vary across data modalities. Indeed,
the notion of distance is intrinsically linked to the nature of the data. For example, the dis-
crepancy between two DNA sequences may be different from the discrepancy between two
EEGs. Distance means some measure of proximity between data points present in some
space of reference. For instance, it is meaningless to use a Euclidean distance when dealing
with categorical data as opposed to continuous data, e.g., gender data or a count time series
vs. a cloud of points in R2.

In general, the notion of distance aims to capture some notion of similarity. When the
data naturally originates from a meaningful metric space, one can use the inherited distance
metric from the space of reference. Otherwise, a more suitable metric should be used to
capture the information of interest. For example, if we are interested in studying the brain
networks originating from brain imaging techniques, a meaningful distance metric could be
based on the notion of dependence. Sometimes, the goal of a study is to examine the extent
of synchrony between regions in a brain network and how that synchrony may be disrupted
due to an experimental stimulus or a shock (e.g., epileptic seizure). Often, it would be
more informative to study the potential cross-interactions between oscillatory activities at
different channels and how an increased amplitude in one channel may excite (increase
the amplitude) or inhibit (decrease the amplitude) of another channel. The comprehensive
and general notion of cross-oscillatory interactions, i.e., spectral dependence, is discussed
in [31]. In practice, correlation-based distance measures are commonly used because of their
simplicity in computation and interpretation. However, these approaches can only examine
linear associations and may not be adequate for brain signals, where frequency-specific
cross-interactions and even non-linear interactions may be more informative.

Stability is a tricky concept mainly because it has many facets, especially in the
context of TDA. While the origins of TDA have been in mathematics, it is now more often
applied and further developed by data scientists and statisticians who may have different
motivations and applications in mind. In the mind of a mathematician, the stability of
some transformation (g) means robustness to small deformations in the input and is usually
captured by inequalities, such as

dF
�

g(X), g(Y)
�
 dE

�
X, Y

�
, where g : E ! F (1)
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where Y is a smooth transformation of X; g is the transformation for which we want to
prove the stability; dE is a distance metric (e.g., Euclidean or Hausdorff) between X and Y;
and dF is a norm, e.g., Frobenius ||.||F if function g returns a matrix or the Wasserstein or
Bottleneck distance, as defined in Equations (2) and (3), if g return a set of points.

Wp(A, B) = inf
g:A⇣B

 

Â
x2A

����x � g(x)
����p

•

! 1
p

, (2)

W•(A, B) = inf
g:A⇣B

sup
x2A

����x � g(x)
����

•, (3)

where g represents a bijection between sets A and B.
For statisticians and data scientists, stability has a completely different meaning. In-

deed, statistical reasoning considers stability based on the robustness of a conclusion,
e.g., the result of a statistical test or inference, against perturbations in the original data
due to random noise or any departure from the initial model assumptions. When the
mathematician considers small/smooth perturbations in the input, the statistician consid-
ers adding random noise with small standard deviations or a set of outliers to the data.
Furthermore, the statistician might also consider the perturbation in terms of a change in
the distribution of the data, e.g., if the distribution of data has a heavier tail (for example,
Student’s t-distribution instead of a normal distribution), this might result in the presence
of many unexpected outliers.

Both perspectives can lead to the same result in some cases. For instance, if data
are sampled from a manifold and small sampling noise is added, this is typically similar
to smoothly deforming the manifold and resampling from the new manifold, as seen
from Figure 1. Note that, later in Figure 24 we provide an illustration of this abstract
notion of sampling time series components from an underlying dependence manifold.
However, in this context, adding an outlier to the data may alter the topology of the object
completely. In this case, having a stability theorem is of little practical importance since it is
too restrictive. Indeed, adding an outlier completely alters the input. Hence, the inequality
in Equation (1) still holds. However, it is not always tight enough to provide meaningful
conclusions. Further details regarding the persistence diagram are discussed in [32].

Figure 1. Perturbation of the data from the perspectives of statistics and topology. The original
topological structure is in the upper-left corner (circle). The observed cloud of points in the bottom-
right corner. The mathematician first considers a perturbation of the manifold (PURPLE arrow) and
then a sampling step (BROWN right arrow), whereas the statistician first considers a sampling step
(BROWN left arrow) and then the addition of noise (GREEN arrow).

A persistence diagram of a topological space is a multiset of points (birth-death pairs)
that represent the various features present in the topology of the dataset. A birth time
means that at this specific time or scale a new topological feature appeared in the filtration,
and the corresponding death time is the time or scale from which such topological feature
is no longer present in the filtration. When dealing with one-dimensional Morse functions,
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we can only consider zero-dimensional features (number of connected components), but in
general, when analyzing an arbitrary set of points, we can consider higher-dimensional
features (wholes, voids, etc.) to better capture the shape of the underlying manifold at hand.
For example, the persistence diagrams in Figure 2 show how even a little additive noise
(with small s) can perturb the persistence diagram. Adding an outlier to the middle of the
circle, however, completely changes the location of the dots (BLUE and ORANGE), which
may lead to different conclusions about the underlying unknown process that generated
the data. Persistence diagrams help visualize/summarize the topological information
contained in the data. A detailed explanation of this notion will follow in the next section.

Figure 2. Persistence diagrams of clouds of points. First row: point data cloud, which includes the
original data sampled from a circle (LEFT); original data plus noise (MIDDLE); the original data
plus an outlier in the center (RIGHT). Second row: corresponding persistence diagram for each
cloud of point. This figure demonstrates the sensitivity of the persistence diagram in the presence of
outliers. This suggests the need for pre-processing (or some transformation) of the data prior to the
application of TDA.

2.1. Persistent Homology of Morse Filtration
The observed time series is often modeled using a mean structure plus a random (and

possibly correlated) noise, as seen in Equation (4) below

y(t) = µ(t) + e(t) (4)

where the mean structure µ(t) is supposed to capture the deterministic trend, and the
noise e(t) accounts for the stochastic fluctuations around the mean, which captures the
autocovariance (or generally, the within dependence) structure. Viewing µ(t) as a Morse
function allows us to use the Morse theory to build a sub-level set filtration that captures
the topological information contained in µ, specifically the arrangement of its critical values,
see Theorem 3.20 in [33], which states the following: The homotopy of the sub-level set
only changes when the parameter value passes through a critical point. To summarize,
the “homotopy” of a set only considers the critical information about its topology and
disregards the effect of continuous deformations; for example, shrinking or twisting the set
without tearing.
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In general, EEG signals represent the superposition of numerous ongoing brain pro-
cesses. Therefore, to accurately characterize and estimate brain functional responses to a
stimulus or a shock, it is necessary to record many trials of the same repeated stimulus.
In this case, a smoothing approach (i.e., averaging many time-locked single-trial EEGs
recorded from the same stimulus) is meaningful as it allows random (non-related to the
stimulus) brain activity to be canceled out and relevant signals to be enhanced. This new
signal is referred to as event-related potential (ERP).

Indeed, applying Morse filtration to ERP data is meaningful as it allows capturing
meaningful information regarding the critical values of the ERP signal. On account of the
additive nature of the noise e, a first step is needed to smooth the time series (i.e., recover
the mean structure µ(t)). After smoothing, the Morse filtration can be built and visualized,
as seen in Figure 3.

Figure 3. Sub-level set technique for a one-dimensional Morse function. On the left is the function
µ(t), on the right is the barcode summary of the zero-dimensional persistence homology.

As parameter a increases, the corresponding sequence of pre-images (i.e., µ�1(]� •, a]))
forms a sub-level set filtration. The topology of the pre-image only changes when a goes
through a critical value with the non-vanishing second derivative or non-singular Hessian
matrix. At every critical value, a component is either born (at local minima) or dies (at local
maxima) by merging with another component.

The Morse filtration summarizes the topological information contained in the mean
of the time series, µ(t), by capturing the information contained in the arrangement of the
local extrema. This implies that TDA incorrectly ignores the information contained in the
noise structure, e.g., the covariance and dependence structure. Therefore, the practitioner
has to verify that the assumptions of Equation (4) are valid. Otherwise applying the Morse
filtration will result in significant information loss. For example, in the time series analysis,
such a model could have disastrous consequences, as in the case of autoregressive processes;
see Figure 4. In this example, the presence of a high-frequency first-order autoregressive
(AR(1)) process does not modify the mean structure significantly, which does not alter the
conclusions of the Morse filtration as the smoothing step cancels the noise structure and
unravels the true mean structure. The presence of a low-frequency AR(1) noise process can
be problematic because this can be incorrectly absorbed into the mean structure µ(t). This
could lead the Morse filtration to erroneous conclusions.
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Figure 4. (LEFT) Time series with zero-mean plus a low-frequency AR(1) process (r = +0.95);
original time series in blue and smoothed time series in orange. (RIGHT) time series with zero-mean
plus a high-frequency AR(1) process (r = �0.95); original time series in blue and smoothed time
series in orange.

2.2. Persistent Homology of Vietoris–Rips Filtration
Homology theory, initially developed to differentiate between topological objects using

group theory, serves as a fundamental tool in algebraic topology. It enables the analysis of
diverse properties associated with these objects, including connected components, voids,
and cavities. Figure 5 illustrates various topological objects, such as polygons, spheres,
and tori, with each exhibiting unique characteristics with varying Betti numbers. Typically,
the data are assumed to be finite samples from a distribution on an underlying topological
space. In order to analyze the shapes of the data, we usually build the homology of
the data by looking at the generated networks of neighboring data points at varying
scales/distances, as seen in Figure 6. We call this sequence of increasing networks the
Vietoris–Rips filtration, see [34]. In Figure 6, we demonstrate that with the increasing radius
e, the spheres centered around data points expand, creating a network of interconnected
points. The objective of this approach is to identify when these geometric patterns emerge
(birth) and how long they persist (death time minus birth time) across a broad range of
radius values. In this way, TDA provides a solution that obviates the requirement for
potentially arbitrary threshold selections.

Figure 5. Examples of topological objects with the corresponding Betti numbers. The zero-Betti
number (b0) counts the number of components, the one-Betti number (b1) counts the number of
cycles or wholes, and the two-Betti number (b2) counts the number of voids, etc.
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Figure 6. Example of a Vietoris–Rips filtration. As the radius e increases, the balls centered around
the data points with radius e start intersecting, leading to the appearance of more features in the
increasing sequence of simplicial complexes.

The Vietoris–Rips filtration is constructed based on the notions of a simplex and
simplicial complex, A simplicial complex is a finite collection of sets closed under the
subset relation (see illustration in Figures 7 and 8). Simplicial complexes can be considered
as higher-dimensional generalizations of graphs. Using simplicial complexes provides
a summary of data shapes across all scales through a mathematical object tailored for
abstract manipulations.

Simplicial complexes can be as simple as a combination of singleton sets (disconnected
nodes), or more complicated, such as a combination of pairs of connected nodes (edges),
triplets of triangles (faces), quadruplets of tetrahedrons, any higher-dimensional simplex,
as shown in Figure 7), or a combination of different k-simplices in general, as shown in
Figure 8. Though the notion of a simplicial complex may seem almost identical to that of
networks, there is a major difference. On the one hand, networks and graphs disregard
surfaces, volumes, etc., and can be thought of as flexible structures, whereas simplicial
complexes take a much richer approach by keeping track of many levels of complexity
represented by various k-simplices.

The above definition of simplicial complexes provides a rigorous description of the
Vietoris–Rips filtration as an increasing sequence of simplicial complexes. To construct this
increasing sequence of simplicial complexes, practitioners use the concept of a cover with
an open ball around each node. An important motivation behind this approach is the Nerve
theorem [35]. The Nerve theorem, historically proposed by Pavel Alexandrov (sometimes
attributed to Karol Borsuk), simplifies continuous topological spaces into abstract combina-
torial structures (simplicial complexes) that preserve the underlying topological structure
and can be examined by algorithms. The Nerve theorem states that a set and the nerve of
the set covering are homotopy equivalent as the resolution of the cover increases, i.e., they
have identical topological properties, such as the number of connected components, holes,
cavities, etc.
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Figure 7. Simplices with different dimensions.

Figure 8. Example of a simplicial complex with four nodes, six edges, and two faces. If S is a
simplicial complex, then every face of a simplex in S must also be in S.

As a result of the Nerve’s theorem, see Figure 9, the topological properties (i.e., Betti
numbers) of the simplicial complexes generated from the open cover should emulate those
of the underlying manifold as the resolution of the covering increases and, thus, the open
cover converges to the original manifold.

Figure 9. The open cover (LEFT) and the corresponding nerve (RIGHT) have identical Betti numbers,
denoted by bk (i.e., number of connected components, holes, voids, etc.). As the resolution of the
cover increases the topological structure of the resulting nerve resembles that of the original space.

In practice, to construct the Vietoris–Rips filtration from a finite set of points, one
looks at the increasing finite cover (

Sn
i=1 Ui(r), where Ui(r) is a ball centered around

the ith point/node with radius r) of the topological space of interest at a wide range of
radius values, as seen in Figure 7. Another example is considered in Figure 10, where the
threshold values (where topological features appear or disappear) are denoted by ei. Once
the persistent homology is constructed, it needs to be analyzed using some topological
summary such as the barcode, the persistence diagram, or the persistence landscape.
In Figure 11, we see the representation of the corresponding persistence diagram and the
persistence landscape.

The persistence diagram (PD) is constructed based on the times of birth and death of
the topological features in the filtration as seen in Figure 11. Thus, for every birth-death
pair, a point is represented in the diagram, e.g., (e1, e2) and (e2, e3). The points in the PD are
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color-coded so that every color represents a specific dimension of the homology (dimension
0 for connected components, dimension 1 for cycles, etc.).

It is difficult to manipulate (e.g., take averages or compute distances) persistence
diagrams (e.g., compute Bottleneck distance or Wasserstein distance; see Figure 12). In [36],
the authors compare persistence diagrams. In particular, they show how it can be time-
consuming to compute the Bottleneck or the Wasserstein distances as it is necessary to
find point correspondence. Additionally, defining a “mean” (or center) or “variation” (or
measure of spread) of a distribution persistence diagram is not straightforward, especially
when the number of points in each diagram varies.

For these reasons, practitioners prefer to analyze a transformation (persistence land-
scape) of the persistence diagram, which is a simpler object (function), as defined in [37]; see
Figure 11. The persistence landscape (PL) can be constructed from the persistence diagram
(PD) by drawing an isosceles triangle for every point of a given homology dimension in
the PD centered around the birth and death times, as shown in Figure 11. In case there are
intersecting lines, the most persistent (highest) function is defined to be the PL (i.e., l1);
see Figure 13. For more details regarding the properties of the persistence landscape, refer
to [37].

Figure 10. When e = 0, all points are disconnected, but as e grows, the open cover becomes larger.
When e = e1, some of the balls start to intersect and, thus, an edge is created (or more generally,
a higher-dimensional simplex, if more than two balls intersect) between the pair of points, which
results in the creation of a cycle (one-dimensional hole). When e = e2, more edges (ten 1-simplices)
are added, as well as a tetrahedron (four 2-simplices and one 3-simplex), which results in the creation
of a new cycle and the destruction of the first cycle. Finally, when e = e3, more simplices are added
and the second cycle disappears.
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Figure 11. Corresponding persistence diagram (LEFT) and persistence landscape (RIGHT) from the
cloud of points defined in Figure 10.

Figure 12. Wasserstein distance (LEFT) vs. bottleneck distance (RIGHT). To compute any of the two
distances, the optimal point correspondence needs to be found, which might become computationally
infeasible as the number of mappings increases in the order of O(nnF

E ).

Figure 13. Construction of a complex persistence landscape (PL) from a persistence diagram (PD).

Since the PLs are functions of a real variable (scale), the framework enables the
computation of group “averages” and to conduct proper statistical inference, such as the
construction of confidence regions. Consequently, other statistical properties, such as the
strong law of large numbers, and the central limit theorem, can be derived for the PL,
as shown in [37].
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2.3. Time-Delay Embeddings of Univariate Time Series
So far, we described the process of building the persistence homology from a cloud of

points in a metric space. However, in order to analyze time series data using the previous
method, it is necessary to create some kind of embedding of the univariate time series into
a metric space. For example, instead of studying the time series {Y(t), t = 1, . . . , T}, we
will study the behavior of the cloud of points {Zs = (Y(s), Y(s � 1)), s = 2, . . . , T}, as seen
in Figure 15. This particular embedding is known as the time-delay embedding, see [38],
and it aims to reconstruct the dynamics of the time series by taking into consideration the
information in lagged observations.

In a time-delay embedding, the aim is to reconstruct the phase space (the space
that represents all possible states of the system) based on only one observed time series
component, borrowing information from the lagged observations to do so. Under the
initial assumptions, this is indeed possible since all the components are interdependent
through the shared dynamical system. This phase space may contain valuable information
regarding the behavior of the time series. For example, the time series might display
some chaotic behavior in time; see Figure 14. However, in the phase space, it might
show some convergence to some attractor (a region of the phase space toward which the
system converges); see [38,39] for more details regarding the application of topological data
analysis to time series data. The foundation of this method derives from the framework of
dynamical systems. Indeed, Takens’s theorem states conditions under which the attractor
of a dynamical system can be reconstructed from a sequence of observations, as can be seen
in Figure 14.

Therefore, when practitioners use topological data analysis to analyze the shape of
the point cloud embedding of a time series, they are, in fact, assessing the geometry of the
attractor of the underlying dynamical system.

This approach is perfectly meaningful if the initial assumptions of Takens’s theorem are
valid, which is assuming that there is a corresponding dynamical system that is continuous
and invertible, and corresponds to the observed time series. However, very often in time
series analysis (such an approach does not make sense, especially when the observed time
series is noisy), has a constant mean, and has no apparent relation with any dynamical
system and, hence, it is unlikely to observe such patterns. For example in Figure 15, we
see that the time embedding does not show any interesting geometrical features when the
level of noise is high.

Figure 14. Illustration of the reconstructed (using the embedding map f) attractor (red curve in the
manifold M ⇢ Rn) from the time series observations.
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Figure 15. Point cloud embedding of a univariate time series using the sliding window method
for different noise levels. Original time series (TOP) for various standard deviations of the noise e

(from left to right s = 0, s = 0.1, s = 0.5), with corresponding time-delay embedding (BOTTOM).
The dependence structure in this time-delay embedding cannot be visually observed even in the
presence of a moderate level of noise.

3. Topological Methods for Analyzing Multivariate Time Series
Over the last three decades, the analysis of the Human Connectome using various

brain imaging techniques, such as functional magnetic resonance imaging (fMRI) and elec-
troencephalography (EEG), has witnessed numerous successes (see [40–47]), discovering
the background mechanisms of human cognition and neurological disorders. In this regard,
the analysis of the dependence network of a multivariate time series from a topological
point of view will have the potential to provide valuable insight.

A multivariate time series might not display any relevant geometrical features in
point cloud embedding. However, it might display topological patterns in its dependence
network, as seen in Figure 16.

Figure 16. Illustration of a hidden cyclic pattern in the dependence structure. Left subplot: scatter
plot between time series components X5 and X1. Right subplot: scatter plot between time series com-
ponents X4 and X3. Middle subplot: the cyclic latent dependence network of the entire multivariate
time series.

For this example, none of the previous methods can capture the interdependence
between different time series components. However, an application of TDA to the time
series’ dependence network would directly reveal the cyclic pattern.

Traditionally, due to their stochastic nature, multichannel or multivariate brain signals
have often been modeled using their underlying dependence network, i.e., the dependence
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between brain regions or nodes in a brain network; see [48,49]. The brain network is often
constructed, starting from some connectivity measure derived from the observed brain
signals. There are many possible characterizations of dependence and, hence, many possi-
ble connectivity matrices. These include cross-correlations, coherence, partial coherence,
and partial directed coherence. For a comprehensive treatment of spectral dependence,
including potential non-linear cross-oscillatory interactions, we refer the reader to [31].

Due to the difficulty of analyzing and visualizing weighted networks, practitioners
apply some thresholding techniques to create a binary network (from the weighted brain
network) where the edge exists when the continuous connectivity value exceeds the pre-
specified threshold; see [9,50–52]. This thresholding is often arbitrarily selected. A major
problem associated with this common approach is the lack of principled criteria for choosing
the appropriate threshold. Moreover, the binary network derived from a single threshold
might not fully characterize the dependence structure. Obviously, the thresholding ap-
proach induces a bias and a significant loss of information, leading to a simplified network.

Consequently, applying topological data analysis directly to the original data (i.e.,
consider a filtration of connectivity graphs) appears to be an appealing alternative to
the arbitrary thresholding of weighted networks. First, the TDA approach detects all
potential topological patterns present in the connectivity network. Second, by considering
all possible thresholding values, TDA avoids the arbitrary thresholding problem. Refer
to [9] for more details regarding this problem.

To formalize these ideas, let Xi(t) be a time series of brain activity at location i 2 V
and time tt 2 {1, . . . T}, where V = {1, . . . , P} is the set of all P sensor locations (in
EEGs) or brain regions (in fMRI). Therefore, considering a set of P brain channels (e.g.,
electrodes/tetrodes) indexed by V, the object X = (V,D) is a metric space, where Dij is
the dependence-based distance between channel i and channel j (i.e., between Xi(t) and
Xj(t)). We build the Vietoris–Rips filtration by connecting nodes of X that have a distance
of less or equal to a given e, which results in the following filtration:

Xe1 ⇢ Xe2 ⇢ · · · ⇢ Xen , (5)

where e1 < e2 < · · · < en�1 < en are the distance thresholds. Nodes within a given
distance ei are connected to form different simplicial complexes, Xe1 is the first simplicial
complex (single nodes), and Xen is the last simplicial complex (all nodes connected, i.e., a
clique of size n). In general, X e, for a given e, represents the simplicial complex thresholded
at distance e. However, X e only changes for a finite number of distance values, specifically
those present in the distance function, i.e., there are at most n = P(P � 1)/2 simplicial
complexes in the filtration (this is the number of simplicial complexes in the filtration;

of course, the number of possible simplicial complexes must be much higher: 2
P(P�1)

2 ). For a
detailed review on how to build the Vietoris–Rips filtration based on a metric space, refer
to [34].

Given a topological object X with a filtration, as defined in Equation (5), the corre-
sponding homology analyzes the object X by examining its k-dimensional holes through
the k-th homology groups Hk(X ). The zero-dimensional holes represent the connected
components or the clustering information; the one-dimensional holes represent loops, and
the two-dimensional holes represent voids, etc. The rank bk of Hk(X ) is known as the k-th
Betti number; see the illustration in Figure 5. Refer to [53,54] for more rigorous definitions
of these topological objects.

3.1. Examples of Time Series Models
In order to show how TDA can be applied to analyze the dependence pattern of a real

multivariate time series, we illustrate via simulations how topological patterns, such as cy-
cles and holes, can arise in multivariate time series. Based on the idea, developed in [31,55],
the simulated brain signals will be constructed as mixtures of latent frequency-specific
oscillatory sources, i.e., a mixture of frequency-specific neural oscillations. Each of these
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oscillatory random processes can be modeled by a second-order autoregressive (AR(2))
process and, thus, the simulated EEG will be a mixture of these AR(2) processes. A latent
oscillatory process with a spectral peak at the alpha band (8–12 Hz) can be characterized by
an AR(2) process of the following form:

Za(t) = fa
1 Za(t � 1) + fa

2 Za(t � 2) + Wa(t) (6)

where Wa(t) is white noise with E Wa(t) = 0 and Var Wa(t) = s2
a ; and the AR(2) co-

efficients fa
1 and fa

2 are derived as follows. Note that Equation (6) can be rewritten as
Wa(t) = (1 � fa

1 B1 � fa
2 B2)Za(t), where the back-shift operator BkZa(t) = Za(t � k) for

k = 1, 2. The AR(2) characteristic polynomial function is:

F(r) = 1 � fa
1 r1

� fa
2 r2. (7)

Consider the case where the roots of the F(r), denoted by r1 and r2, are both (non-real)
complex-valued and, hence, can be expressed as r1 = M exp(i2py) and r2 = M exp(�i2py),
where the phase y 2 (0, 0.5) and the magnitude M > 1 satisfy causality [56]. For this latent
process Za(t), suppose that the sampling rate is denoted by SR and the peak frequency
is fa 2(8–12 Hz). Then the roots of the AR(2) latent process are ra

1 = Ma exp(i2pya) and
ra

2 = Ma exp(�i2pya) where the phase ya = fa/SR. In practice, we can choose ya = 10/100
for a given SR = 100 Hz and the root magnitude is Ma or a number greater than 1 but “close”
to 1, so that the spectrum of Za(t) is mostly concentrated on the alpha band (8–12 Hz).
The corresponding AR(2) coefficients are fa

1 = 2
Ma

cos(2pya) and fa
2 = �

1
M2

a
. An example

of such a stationary AR(2) process can be visualized in Figure 17.

Figure 17. LEFT: realization from an AR(2) process with f1 = 2
1.414 cos(p 154

500 ) and f2 = �1/1.4142.
RIGHT: true spectrum of this AR(2) process.

Examples. The goal here is to illustrate the previous idea by considering multivariate
stationary time series data with a given cyclic dependence network (cyclic frequency-
specific communities), see Figures 18 and 19. However, the advantage of applying TDA
to the weighted network, as explained above, is to detect the presence of such topological
features. The simulated time series can be visualized in Figures 20 and 21.

It is very common in brain signals to exhibit communities or cyclic structures, as seen
in [46] or in simulations in Figure 22. There are various reasons that could explain the pres-
ence of such patterns in brain networks. In particular, the brain network could be organized
in such a way as to increase the efficiency of information transfer or minimize the energy
consumption. Also, the brain connectivity network could be altered due to a neurological
disease, e.g., among patients with Alzheimer’s disease, brain volumes can shrink, and
there is severe demyelination that could result in the weakening of structural connections,
which could lead to the creation of cycles/holes or voids in the brain’s functional network.
In general, we can imagine the following scenarios:
• Groups of neurons firing together (presence of clusters);
• Groups of neurons sharing some latent processes (potential cycles).
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To generate the previous multivariate time series (in Figures 20 and 21) with both
dependence patterns, we use the following approach.

Figure 18. Example 1: Multivariate time series dependence network with two cycles pattern as
defined in Equation (9).

Figure 19. Example 2: Multivariate time series dependence network with a cycle and a 4-clique
pattern, as defined in Equation (11).

Example 1: The goal of this example is to show how to generate a time series with the
dependence pattern presented in Figure 18. Let Y(t) = [Y1(t), . . . , Y9(t)]0 be the observed
time series, Z(t) = [Z1(t), . . . , Z8(t)]0 be the latent AR(2) processes (as in Figure 17), and
e(t) = [e1(t), . . . , e9(t)]0 be the iid Gaussian innovations. Then we can simulate Y(t)
as follows:

A =
1
2

0

BBBBBBBBBBBBB@

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1

1

CCCCCCCCCCCCCA

, (8)

Y(t) = AZ(t) + e(t). (9)

where e(t) are iid Gaussian white noises with covariance se = I9.
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Figure 20. Example 1: A multivariate time series with a two-loop dependence pattern. High
frequency in the top (cycle), low frequency in the bottom (cycle).

Example 2: The goal of this example is to show how to generate a time series with the
dependence pattern presented in Figure 19. Let Y(t) = [Y1(t), . . . , Y9(t)]0 be the observed
time series, and Z(t) = [Z1(t), . . . , Z5(t)]0 be another set of independent latent AR(2)
processes (as in Figure 17). Then using the following matrix, we can generate the second
dependence structure in Y(t).

A =
1
2

0

BBBBBBBBBBBBB@

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
1 0 0 1 0
0 0 0 1 1
0 0 0 0 2
0 0 0 0 2
0 0 0 0 2
0 0 0 0 2

1

CCCCCCCCCCCCCA

, (10)

Y(t) = AZ(t) + e(t) (11)

where e(t) are iid Gaussian white noises with covariance se = I9. In order to build
the Vietoris–Rips filtration, a dependence-based distance function needs to be defined
between the various components of the time series. For instance, a decreasing function of
any relevant dependence measure could be useful. Therefore, based on the dependence
network, a distance matrix can be used to build the persistence homology. First, we define
the Fourier coefficients and the smoothed periodogram as follows:
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d(wk) =
1
p

T

T

Â
t=1

X(t) exp (�iwkt) (12)

bf (wk) = Â
w

kh(w � wk)d(w)d(w)⇤ (13)

where kh(w � wk) is a smoothing kernel centered around wk and h is the bandwidth
parameter. Second, we define the dependence-based distance function to be a decreasing
function (e.g., G(x) = 1 � x) of the coherence:

C

⇣
Xi(.), Xj(.), w

⌘
=

| fi,j(w)|2

fi,i(w) f j,j(w)
2 [0, 1]. (14)

D

⇣
Xi(.), Xj(.), w

⌘
= G

⇣
C(Xi(.), Xj(.), w)

⌘
. (15)

Coherence at a pre-specified frequency band involves the squared maximal cross-correlation
(across phase shifts) between a pair of filtered signals (where power is concentrated at
the specific band); see [57]. Another way to estimate coherence is via the maximal cross-
correlation-squared of the bandpass filtered signals; see [31].

Figure 21. Example 2: A multivariate time series with one loop and a 4-clique dependence pattern.
High-frequency in the top (cycle), low-frequency in the bottom (4-clique).

Example 3: The goal of this example is to provide a simple model that can ex-
plain/distinguish the observed cyclic structure from the random one in some datasets; see
Figure 22. Assume that we observe six time series components that share common cyclic
latent independent process copies Zi(t) for group 1:
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y1(t) = Z6(t) + Z1(t) + ce1(t)
y2(t) = Z1(t) + Z2(t) + ce2(t)
y3(t) = Z2(t) + Z3(t) + ce3(t)
y4(t) = Z3(t) + Z4(t) + ce4(t)
y5(t) = Z4(t) + Z5(t) + ce5(t)
y6(t) = Z5(t) + Z6(t) + ce6(t)

Assume that we observe five time series components that share random common latent
independent process copies Zi(t) for group 2:

y1(t) = Z6(t) + Z3(t) + Z4(t) + ce1(t)
y2(t) = Z6(t) + Z2(t) + ce2(t)
y3(t) = Z1(t) + ce3(t)
y4(t) = Z1(t) + Z2(t) + Z3(t) + ce4(t)
y5(t) = Z4(t) + Z5(t) + ce5(t)
y6(t) = Z5(t) + ce6(t)

when the parameter c = 0 (vanishing noise), the coherence between the observed time series
is maximal: Coh(yi, yj, w) = 1, 8w 2 Wa, and as the parameter c increases, the coherence
between the observed time series drops to zero when c = •. In this way, the signal-to-noise
ratio (SNR= Var(Signal)

Var(Noise) ) controls the coherence between the components and, therefore,
controls the distance between the components. This simple example aims to demonstrate a
potential explanation of the mechanism behind the appearance of topological features in
the brain dependence network.

After generating the time series data from both models as described previously, we
estimate the coherence matrix based on the smoothed periodogram (rectangular window)
for the 100–200 Hz frequency band. Based on this, we construct the distance matrix and
apply TDA to obtain the PD in Figure 23. We can clearly see that the subplot on the left
displays one-dimensional features (orange dot far from the diagonal), whereas the subplot
on the right does not.

Figure 22. Example of cyclic brain connectivity vs. random connectivity.
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Figure 23. Persistence diagram based on the previous example displaying cyclic or group 1 (LEFT)
and random brain connectivity or group 2 (RIGHT).

To summarize, the previous examples intended to convey the underlying topological
pattern of the dependence space. We can try to visualize this idea using Figure 24.

Figure 24. Illustration of a time series dependence embedding in some abstract dependence space.

3.2. TDA vs. Graph-Theoretical Modeling of Brain Connectivity
The human brain is organized both structurally and functionally as well into com-

plex networks. This complex structure allows both the segregation and integration of
information processing. The classical approach to analyzing brain functional connectiv-
ity consists of using tools from the science of networks, which often involves the use of
graph-theoretical summaries, such as modularity, efficiency, and betweenness; see [58].
Graph-theoretical models witnessed an important success in modeling complex brain
networks, as described in [59,60]. The above-mentioned graph’s theoretical summaries
aim to characterize the topological properties of the network being studied and, hence,
can distinguish between small-world, scale-free, and random networks. Indeed, such
graph-theoretical models display important features that are of particular interest in the
study of brain activity. For example, random networks (a network where the edges are
selected randomly) usually have a low clustering coefficient (a low measure of the degree
to which nodes in a graph tend to cluster together) and a low characteristic path length
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(low average distance between pairs of nodes), on the other hand, regular networks have
a high clustering coefficient but a high characteristic path length. However, small-world
models have high clustering (higher than random graphs) and a low characteristic path
(roughly the logarithm of the size of the graph). Furthermore, scale-free networks can have
even smaller characteristic path lengths and potentially smaller clustering coefficients than
those of small-world networks. Such topological properties may have a direct impact on
brain activity, such as the robustness to brain injury or efficiency of information transfer
between brain regions that are far apart (variable cost of brain integration). See [61] for an
overview of small-world networks and their potential applications and properties and [62]
for an overview of the emergence of scale-free networks in random networks. Such models
and graph summaries have been extensively used to study the impact of diseases on the
topology of brain connectivity; see [63,64].

The goal of such an approach is to characterize the topological properties of the
brain’s network. Although such summaries provide interesting and valuable insights into
the topology of brain networks, they nevertheless suffer some limitations. Indeed, such
summaries cannot capture all topological information contained in the network, such as the
presence of holes and voids; see Figure 26. Furthermore, such summaries cannot be applied
directly to a weighted connectivity network. Very often, a thresholding step is necessary,
which can be a serious limitation because it can result in an important loss of information if
the threshold is not selected properly, as seen in Figure 25. In this regard, applying TDA
to brain connectivity could provide complementary information on the topology of the
brain’s functional network since TDA considers all potential threshold values.

Figure 25. The thresholding step consists of comparing the weights of the original network (CENTER)
with a given threshold t. If the weight of the edge is larger than the threshold, one edge is created in
the new network, if the weight is smaller, no edge is added. If the selected threshold is low (t = 0.5),
the resulting network is dense (LEFT); if the threshold is too high (t = 0.7), the resulting network is
sparse (RIGHT). The problem is now as follows: How do we select the threshold t so we balance the
loss of information with sparsity?

There are many advantages to using the persistence homology techniques. The topo-
logical data analysis is designed to study the topological features (geometry and spatial
organization) of networks. Classical approaches describe the topological properties of the
network. However, it remains difficult to detect/assess the topological patterns present in
general, as seen in Figure 26. A graph-theoretical algorithm will count as three different
cycles, the cycles around the same hole (green, blue, and red). However, TDA can detect
exactly only one large hole/topological feature because it uses the concept of a simplicial
complex. Furthermore, an algorithm that clusters the network nodes (modularity analysis)
needs a parameter choice, whereas the TDA techniques provide overall answers regarding
the network topology without parameter tuning.
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Figure 26. Network with a cyclic feature. Original network (TOP), topological structure being
represented (BOTTOM).

4. EEG Analysis and Permutation Testing
The purpose of this section is to compare the differences in the topological features of

the brain connectivity networks of young individuals with attention deficit hyperactivity
disorder (ADHD) and control groups; see [65], specifically, the impact of ADHD on the
connected components (0-dimensional homology) and the network cyclic information
(1-dimensional homology).

The participants in this study were 61 children with ADHD and 60 controls aged
between 7 and 12 years old. The ADHD children were on the drug Ritalin for up to
6 months from the start of the study. None of the children in the control group had a
history of psychiatric disorders, epilepsy, or any report of high-risk behaviors. EEG signals
were recorded based on 10–20 standard by 19 channels at a sampling frequency of 128 Hz,
see Figure 27.

Since visual attention deficits are common characteristics of children with ADHD,
the EEG recordings in this study were conducted while the participants engaged in a
visual attention task. During this task, the children were presented with a series of cartoon
characters and instructed to count them. To ensure a continuous stimulus during the
EEG recording, each image was displayed immediately after the child’s response without
interruptions. Consequently, the duration of the EEG recording for this cognitive visual task
varied, depending on each child’s response speed. We selected 51 subjects with ADHD and
retained 53 healthy control subjects for analysis after preprocessing the data using the PREP
pipeline. The preprocessing steps included removing electrical line effects, addressing
artifacts caused by eye movements, blinks, or muscular activity, identifying and rectifying
issues with low-quality channels, filtering out irrelevant signal components, and ultimately
enhancing topographical localization by re-referencing the signal.
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Figure 27. Scalp EEG with 10–20 standard layouts.

We compute the average coherence matrix for different frequency bands in Hertz;
delta = (0.5–4 Hz), theta = (4, 8 Hz), alpha = (8–12 Hz), beta = (12–30 Hz), and
gamma = (30–50 Hz). The distance function was computed to be (D = 1 � C), as de-
fined in Equation (15). For every frequency band, we build the persistence landscapes for
both ADHD and healthy control groups; see Figures 28 and 29.

In Figures 28 and 29, we observe group-level variations in the persistence landscapes.
In zero-dimensional homology, these differences are noticeable at the delta, theta, and alpha
frequency bands. Similarly, one-dimensional homology exhibits group disparities across all
frequency bands, except the gamma band. However, in the case of two-dimensional homol-
ogy, the differences between the groups appear to be of significantly smaller magnitude,
approximately one order of magnitude lower than the previous ones.

Figure 28. Population average persistence landscapes for the 0-dimensional homology group for
ADHD (orange) and control (blue) groups, at various frequency bands. High-frequency bands do not
seem to display any differences between the two groups. These plots suggest that both groups have a
similar structure at the connected components level.
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Figure 29. Population average persistence landscapes for the 1-dimensional homology group for
ADHD (orange) and healthy control (blue) groups, at various frequency bands. Middle-frequency
bands seem to display differences between the two groups. This suggests that the ADHD group
seems to have more cycles/holes in their dependence network.

Now, if we aim to assess variations in the brain connectivity network topology between
the two groups (ADHD and control), we can formulate the null hypothesis H0 as follows:
“There is no difference in the brain connectivity network between the ADHD and control
groups”. To test this hypothesis, we can employ a permutation test based on the norm of
the discrepancy persistence landscapes at a specific homology dimension and for a given
frequency band W”.

TW
k =

Z

W

���
���l(1)

k (w)� l
(2)
k (w)

���
���
2
dw (16)

To decide whether to reject H0, we need to compare the observed test statistic with a
threshold obtained from the reference distribution of the test statistic under H0. We use
a permutation approach to derive this empirical distribution under the null hypothesis,
as was conducted in [29,37,66]. A formal framework for testing between two groups in
the topological data analysis is presented in [67], with an extension to three groups in [68].
Practical examples of nonparametric permutation tests at an acceptable level can be found
in [69]. Refer to [66] for more examples regarding permutation and randomization tests in
functional brain imaging and connectivity. Therefore, following the permutation approach,
we propose the following procedure:

1. Compute the sample test statistic from the original PLs: l
(1)
1 , . . . , l

(1)
n1 and l

(2)
1 , . . . , l

(2)
n2 .

2. Permute the ADHD and healthy control group labels to obtain l
(1⇤)
1 , . . . , l

(1⇤)
n1 and

l
(2⇤)
1 , . . . , l

(2⇤)
n2 .

3. Compute the sample discrepancy from the permuted PLs:

TW⇤ =
Z

W

����l(1⇤)
k (w)� l

(2⇤)
k (w)

����
2dw

.
4. Repeat steps 2 to 3, B times.
5. Compute the threshold t as the (1 � a)-quantile of the empirical distribution of test

statistic bFT .
After applying the above to our data, we obtain the following reference distribution

for the zero- and one-dimensional homology persistence landscapes.
Despite the differences between the PLs of the two populations in zero- and one-

dimensional homology groups, only the differences in the alpha- and beta-frequency
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bands seem to be significant for the one-dimensional homology group, as shown in
Figures 30 and 31.

Figure 30. Reference distribution for testing for group-level differences between ADHD and healthy
control persistence diagrams, based on B = 100,000 permutations. Zero-dimensional homology group.

Figure 31. Reference distribution for testing for group-level differences between ADHD and healthy
control persistence diagrams, based on B = 100,000 permutations. One-dimensional homology group.

5. Open Problems
As the field of topological data analysis keeps advancing and developing, new and

challenging problems continue to emerge. We briefly discuss three open problems that
may be of interest to readers with an interest in topological data analysis applied to
brain networks.

The study of brain signals shows that brain dependence networks may display
between-group discrepancy as well as within-group variability. Historically, linear mixed-
effect models (LMEMs) have been proposed to analyze data with fixed effects (average
persistence landscape) and random effects (variance of the persistence landscape), e.g.,
y = Xb + Uz + e). Is it possible to develop such a model, which can be applied to detect
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group-level differences (fixed effect, i.e., differences in b) in the topological structure of the
network via the estimated persistence landscapes, as well as within-group variations of the
topological structure (random effects, i.e., differences in z).

Brain dependence networks can be constructed based on various dependence mea-
sures. When correlation or coherence are used to measure dependence between brain
channels, the resulting dependence network is a non-oriented graph. In contrast, when
more complex models of dependence (e.g., the flow of information) are used to model the
dependencies between brain channels, such as partial directed coherence, the resulting
network is an oriented one. This results in a non-symmetric distance function, which is a
problem for the application of TDA. One potential approach to extend the use of TDA to
oriented networks is to use the matrix decomposition A = As + An, where As = 1

2 (A + A0

)

and An = 1
2 (A � A0

).
The classical application of TDA results in a global analysis of the network. Therefore,

it is impossible to state where the topological features are located in the network. Therefore,
it is natural to wonder if TDA can be applied locally to “local sub-networks”. Can we
think of TDA in hierarchical terms? Similarly, sometimes a transient change in connectivity
can be observed in brain networks (e.g., localized behavior in time that leads to task-
specific functional brain connectivity). How can we use TDA to study such evolutionary or
transient events?

6. Conclusions
Historically, brain network analysis relied on graph-theoretical measures, such as

clustering coefficients, betweenness centrality, and the average shortest path length to
study the topology. Although such an approach revealed some interesting facts about the
brain in the past, it does not provide us with the full picture of the network’s geometry.
In contrast, TDA has begun to be used to analyze brain network topological data from a
persistent homology perspective. This enables a summary of all the scales without having
to use arbitrary thresholds.

The purpose of this paper was to provide a pedagogical introduction to topological
data analysis within a multivariate spectral analysis of time series data. This approach
has the advantage of combining the power of TDA with spectral analysis, which will
allow practitioners to characterize the commonalities and differences in the shapes of brain
connectivity networks across different groups for frequency-specific neural oscillations.

We demonstrated the advantages of using the Vietoris–Rips filtration over the Morse
one. We presented a pedagogical review of persistent homology using the Vietoris–Rips
filtration over a cloud of points. We discussed how time-delay embedding could be
pertinent and showed its limits when the initial assumptions of Takens’s theorem are not
satisfied. Finally, we recommended applying TDA to the connectivity network, as this
could capture the rich information contained in the dependence structures of brain signals,
as shown in the data application.

Indeed, the application of TDA to the connectivity networks of ADHD vs. healthy
control individuals shows significant discrepancy between their respective PLs at the alpha-
and beta-frequency bands for the one-homology group. This suggests that the ADHD
condition affects the cyclic structure of the brain connectivity network more than the
connected components.
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